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Abstract: The enormous library of pharmaceutical compounds presents endless research avenues.
However, several factors limit the therapeutic potential of these drugs, such as drug resistance,
stability, off-target toxicity, and inadequate delivery to the site of action. Extracellular vesicles (EVs)
are lipid bilayer-delimited particles and are naturally released from cells. Growing evidence shows
that EVs have great potential to serve as effective drug carriers. Since EVs can not only transfer
biological information, but also effectively deliver hydrophobic drugs into cells, the application of
EVs as a novel drug delivery system has attracted considerable scientific interest. Recently, EVs
loaded with siRNA, miRNA, mRNA, CRISPR/Cas9, proteins, or therapeutic drugs show improved
delivery efficiency and drug effect. In this review, we summarize the methods used for the cargo
loading into EVs, including siRNA, miRNA, mRNA, CRISPR/Cas9, proteins, and therapeutic drugs.
Furthermore, we also include the recent advance in engineered EVs for drug delivery. Finally, both
advantages and challenges of EVs as a new drug delivery system are discussed. Here, we encourage
researchers to further develop convenient and reliable loading methods for the potential clinical
applications of EVs as drug carriers in the future.

Keywords: drug delivery; exosome; microvesicle; apoptotic body; small RNAs

1. Introduction

Multicellular organisms communicate intercellularly via soluble cell-secreted factors,
and the direct interactions between cell surfaces are an essential part of exchanging genetic
information. Distant cell–cell communication in eukaryotic cells utilizes membrane-derived
vesicles secreted into the extracellular space [1]. Extracellular vesicles (EVs), nano-sized
secreted cellular particles, were first purified and validated from various cells during
their discovery in the 1980s. EVs were considered simple membrane fragments until
Raposo et al. characterized the antigen-presenting EVs secreted by B lymphocytes in
1996 [2]. Generally, EVs are classified into exosomes, microvesicles, and apoptotic bodies
according to their diameters and intracellular origins [3,4]. Exosomes are the smallest
EVs with a size of 40–100 nm. They originate from multivesicular endosomes (MVEs),
which contain intraluminal vesicles (ILVs) incorporated with RNA, DNA, proteins, and
lipid. MVEs exit the cell through plasma membrane fusion, which allows intracellular
molecules to traffic through extracellular spaces to distant cells. While microvesicles with
a size of 50–1000 nm are derived directly from the plasma membrane, apoptotic bodies
are typically 1000–5000 nm in diameter and secreted from the cells under apoptosis [3,4].
Although each of them has specific characteristics and forming processes, distinguishing
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them experimentally presents a challenge due to their overlapping sizes and lack of distinct
subtype markers.

The effects of EVs and their cargo have been studied in many diseases such as can-
cer [5], cardiovascular diseases [6], autoimmune diseases [7], inflammatory diseases [8],
and type 2 diabetes mellitus [9]. Their usability and effectiveness are also under eval-
uation in clinical trials [10]. Therapeutic agents, including siRNA [11], miRNA [12],
mRNA/proteins [13], CRISPR/Cas9 [14], and chemical drugs [15] were loaded into EVs
for treating diseases. It has been reported that an exosome-based delivery system could
target cancer stem cells with improved efficiency and specificity [16]. Although technical
difficulties still exist in EVs preparation and cargo-loading efficiency, the therapeutic plat-
form of EVs has promise as a novel drug delivery method. Considering their potential
applications for human diseases, we summarize not only the EVs loading methods, but
also introduce the advantages and challenges of these loading methods.

2. EV Loading Methods

Cargos can be packaged into EVs with or without the help of donor cells. Thus,
methods for encapsulating cargo into EVs can be roughly divided into two types: cell-based
loading methods and non-cell-based loading methods. In the cell-based loading approach,
cargos are usually delivered into the donor cells first. After being packaged into EVs, the
cargos can be secreted and collected in an EV-carrying manner for therapeutic use [17]. The
non-cell-based loading approach involves directly loading chemical or biomolecules into
isolated EVs through electroporation, sonication, incubation, and/or transfection [18]. In
the following content, these methods are reviewed according to the cargos.

2.1. Cell-Based Loading Methods

Cell-based loading, also known as endogenous loading, employs the indirect deposi-
tion of a therapeutic cargo into EVs through donor cell manipulation (Figure 1). Incubation
and transfection are widely used to load the cargo into donor cells. After purification
of released EVs, EV-carrying cargos can be used for therapeutic purposes [19–21]. This
method provides a convenient and effective way for loading biological materials and drug
therapies into EVs.

2.1.1. Doxorubicin

The chemotherapeutic agent doxorubicin is both highly efficacious and cytotoxic,
specifically to cardiac cells. Efficacy has been limited by insufficient cellular uptake,
instability in the acidic tumor environment, and intermediate solubility due to ampho-
teric property [22,23]. EVs can mitigate these limitations, and doxorubicin can be loaded
into EVs simply by application to cells in vitro. Jang et al. and Kanchanapally et al.
treated various cells with doxorubicin, including U937 monocytes, macrophages, and
cancer cells. After incubation for 24 to 48 h, doxorubicin-loaded EVs could be isolated
from culture media [24,25]. Silva et al. developed hybrid EVs, which consist of compo-
nents of macrophage-derived EVs and iron oxide nanoparticles. This team treated THP-1
macrophages with magnetic iron oxide nanoparticles and doxorubicin, which results in
the generation of EVs containing both iron oxide and chemotherapeutic agents. These
hybrid EVs could be manipulated by magnetic force for delivering the doxorubicin to
the cancer cells [23]. Moreover, Yong et al. used an electrochemical etching method to
load doxorubicin into luminescent porous silicon nanoparticles (PSiNPs) for cell treatment.
Through this process, exosome-sheathed PSiNPs (E-PSiNPs) containing doxorubicin were
constructed as the drug delivery system [26].
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2.1.2. Curcumin

Currently, it has been demonstrated that natural products have beneficial effects
for multiple human diseases. However, their commercial development is limited due
to low biocompatibility, poor solubility, and poor absorption [27]. Curcumin, a natural
polyphenolic compound, has been shown to suppress cancer cell growth both in vitro and
in vivo (e.g., tumor stem cells). However, clinical curcumin use is problematic due to its
low solubility and cellular uptake [28]. Perteghella et al. sought to remove these barriers
by loading curcumin into EVs. They used silk nanoparticles to enhance loading efficiency.
The nanoparticles were conjugated with curcumin and then applied to mesenchymal stem
cells. After incubating for several days, EVs containing silk/curcumin nanoparticles were
observed [29].

2.1.3. Other Drugs

Besides the doxorubicin, Silva et al. loaded tissue-plasminogen activator (t-PA),
disulfonated tetraphenyl chlorin (TPCS2a), and, 5,10,15,20-tetra(m-hydroxyphenyl)chlorin
(mTHPC) into magnetic iron oxide hybrid EVs by adding the magnetic nanoparticles and
drugs to the differentiated THP-1 cells. They also showed that magnetically engineered-
EVs did not disturb the cellular uptake of drugs and the uptake of engineered EVs by
cancer cells could be kinetically modulated and spatially controlled under a magnetic
field [23]. Millard et al. loaded mTHPC into EVs isolated from human umbilical vascular
endothelial cells (HUVEC). To isolate EVs containing mTHPC from cell-culture media, they
treated HUVECs with mTHPC for 2 h and maintained the cells in fresh media for 72 h [30].

2.1.4. miRNA

miRNA is a group of small non-coding RNA containing ~22 nucleotides that bind to
the 3′-UTR of target mRNA to suppress gene expression [31]. The role of altered miRNAs
has been characterized in many pathologies, such as viral infections, inflammatory diseases,
and cancer [32,33]. Currently, transfection is a reproducible method for miRNAs loading
into EVs through a cell-based method. For example, the transient transfection of miRNAs
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into donor cells can package miRNAs as a cargo into secreted EVs. Through this simple
transfection, EV-loaded miRNAs such as miR-1-1, miR-210, miR-584, and miR-21-5p have
shown therapeutic effects by binding to disease-induced mRNA [34–37]. On the other
hand, stable transfection has also been used to generate miRNA-loaded EVs. For example,
Monfared et al. generated a miR-21 expressing stable cell line using HEK 293T cells. miR-21-
loaded EVs were isolated from culture media and applied therapeutically in a glioblastoma
rat model [38]. Zeh et al. made an immortalized human amniocyte cell line, stably releasing
EV-encapsulated-miR-493 or miR-744 [39]. Furthermore, lentiviral packaging systems can
overexpress miRNAs in the donor cells, which are difficult to transfect, such as stem cells,
lymphocytes, and some cancer cells. After lentiviral transduction, miR-335, miR-302a,
miR-3188, miR-101-3p, and miR-125-5p were successfully encapsulated into donor cell
EVs [40–45].

2.1.5. siRNA

siRNA is a powerful tool to block gene expression. Different from permanent genome
editing technology, siRNA inhibits gene expression at the post-transcriptional level. This
specificity enables tight control of siRNA-based therapies [46]. However, the delivery of
negatively charged siRNA throughout the cell membrane is challenging, and prolonged
siRNA stability is also a concern [47]. EVs present a solution to these therapeutic issues
inherent to siRNA. Similarly, transfection is an effective way for packaging siRNA into EVs
via donor cells. For example, Zhang et al. found that transfected siRNA can be encapsulated
into secreted EVs. Subsequently, they were able to identify hepatocyte growth factor (HGF)
siRNA loaded EVs after donor cell transfection [48].

2.1.6. mRNA/Protein

Even though mRNA-based gene therapy possesses many advantages regarding easy
manipulation and expression, the unstable structure and ubiquitous presence of RNase
are obstacles to overcome [49]. EVs could serve as an ideal carrier for functional mRNA
delivery [50]. Given the larger size of mRNA, the development of mRNA as EV cargo
can be more difficult compared with miRNA and siRNA, since most full-length mRNAs
in EVs are smaller than 1 kb [51]. Thus, the length of desired mRNAs must be taken into
consideration for packaging into EVs. Mizrak et al. first reported the therapeutic potential
of EV-encapsulated mRNA/protein. They transfected prodrug-converting enzyme cyto-
sine deaminase (CD)-uracil phosphoribosyltransferase (UPRT) into HEK 293T cells and
isolated EVs loaded with CD-UPRT-EGFP mRNA/protein [52]. Kanada et al. observed
luciferase loading of EVs isolated from luciferase transfected HEK 293FT cells [17]. Vituret
et al. loaded cystic fibrosis transmembrane conductance regulator (CFTR) glycoprotein
and its encoding mRNA into cystic fibrosis cells to improve the function of CFTR chloride
channel. They isolated EVs from CFTR-positive Calu-3 cells and A549 cells transfected
with an adenoviral CFTR expressing vector [53]. Khan et al. and Forterre et al. used HEK
293T cells to load mRNA/protein into EVs that achieved successful cellular delivery and
targeting [54,55]. Unique molecular mechanisms have also been reported to induce specific
mRNA/protein loading into EVs in HEK 293T models. Nedd4 family-interacting protein 1
(Ndfip1) induced EV loading of phosphatase and tensin homolog deleted on chromosome
10 (PTEN) by Nedd4 family proteins [56,57]. Using this EVs releasing mechanism, Sterzen-
bach et al. loaded protein into EVs. They linked Cre recombinase with WW domains of the
Nedd4 binding site of Ndfip1 allowing connected WW domains to be loaded into EVs and
secreted into the extracellular area [58].

2.1.7. DNA

DNA modifications are mainstays of gene therapy, and recent research has signifi-
cantly improved vector delivery and safety in gene therapy [59]. EVs are attractive delivery
mechanisms for DNA modifications due to the higher efficiency and safety of EVs. Kanada
et al. transfected Cre-encoding plasmid DNA into HEK 293T, and the successfully isolated
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EVs contained the plasmid DNA [17]. The same group also loaded minicircle DNA that
encodes prodrug-converting enzymes into 4T1 cells and then isolated EVs containing the
DNA [60]. Similarly, Haney et al. isolated EVs containing DNA from IC21 macrophages
after transfecting TPP1-encoding plasmid DNA [61]. Although only a few attempts have
been reported, Tran et al. demonstrated effective DNA loading conditions in transfected
E. coli using several plasmids. They showed that a higher copying ability of the plasmid
induced more DNA loading, and the plasmid origin affected loading efficiency, while plas-
mid size was not a significant factor in the range of 3.5 kb to 15 kb. [62]. The CRISPR/Cas9
system allows for precise DNA manipulation. This system has been commonly encapsu-
lated through viral vectors [63]. The loading of CRISPR/Cas9 into EVs presents a novel
area for improving safety and stability issues inherent to viral vectors. Li et al. successfully
loaded C/EBPα CRISPR/Cas9 into EVs. [64] Since RNA-binding proteins can increase the
incorporation of RNA into EVs [65], they fused RNA-binding protein HuR with exosomal
membrane protein CD9 to increase the loading efficiency. To engineer the CRISPR/Cas9
cargo, they transfected CD9-HuR and CRISPR/Cas9 with packing plasmid psPAX2 and
pMD2G into HEK 293T cells and isolated EVs [64].

Taken together, researchers have developed numerous cell-based loading approaches
so far. For small molecules drugs, passive loading methods can be applied with anticipated
efficiency. In contrast, biomolecules have to be delivered into the donor cells with active
loading methods, such as transfection and vial transduction.

2.2. Non-Cell-Based EVs Loading Methods

Non-cell-based EV loading methods, also known as exogenous or direct loading,
deposits a therapeutic cargo into EVs after isolation. Different siRNA, miRNA, proteins,
CRISPR/Cas9, hydrophobic compound derived natural product, and anticancer drugs
can be loaded into EVs through sonication, electroporation, transfection reagents, and a
specific buffer agent (Figure 2). Some compounds can be loaded into EVs by mixing at
room temperature. Although these loading methods can be classified as passive and active
loading, they also can be combined for optimized loading efficiency [66]. Passive loading
involves loading the therapeutic cargo into EVs through diffusion, whereas active loading
consists of the disruption of EV membranes through electroporation or sonication, allowing
entry into the EVs. After completing the reaction, the membrane is recovered by incubation
for a while at room temperature or 37 ◦C. Through this process, EVs can be stabilized [67].

2.2.1. Doxorubicin

Ingato et al. and Wu et al. loaded doxorubicin into EVs derived from cancer cells by
incubating 25 µg/mL EVs in 1 mL PBS (by protein content) and 1 mg/mL doxorubicin
mixture at 37 ◦C for several hours [68,69]. Triethylamine solution has also been used
for incubating EVs and doxorubicin [70,71]. Saponin induces permeabilization of the
EV membrane, creating pores by removing membrane cholesterol, and can be used for
loading EV cargo without destroying the membrane [72]. Goh et al. used saponin to
load doxorubicin into EVs isolated from U937 cells. They compared the efficiency of
several methods, including simple mixture incubation at room temperature for 24 h, simple
mixture incubation at 37 ◦C for 24 h, saponin-added incubation at room temperature for
5 min, and three freeze-thaw cycles. Even though these methods incorporated doxorubicin
into EVs, they differed in loading efficiency. When loading 200 µg/mL doxorubicin, the
saponin method showed the most efficient loading (~50%) [73]. Doxorubicin was loaded
into EVs derived from HEK 293T cells and HeLa cells via electroporation [74–76]. Qi et al.
and Zhang et al. conjugated magnetic iron oxide with EVs to improve targeting efficiency
and then mixed doxorubicin via moderating stirring incubation or electroporation [77,78].
Alternatively, Li et al. loaded doxorubicin into EVs first and then conjugated magnetic
iron oxide [79]. Both methods improved loading efficiency. Srivastava et al. applied gold
nanoparticles (GNPs), which combine well with small molecules but have limitations as a
drug carrier, so their incorporation as an EV cargo can address the limitation. First, they
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conjugated GNPs with doxorubicin using hydrazone pH-sensitive linkers. After then,
doxorubicin was simply incubated at 37 ◦C at 250 revolutions per minute (rpm) for 2 h [80].
Kim et al. and Rayamajhi et al. synthesized hybrid EVs using simple thin-film hydration
and then loaded doxorubicin via sonicator [81,82].
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2.2.2. Curcumin

Carobolante et al. encapsulated curcumin into EVs isolated from cow skim milk and
Caco-2 cells by mixing curcumin ethanol solution with EVs in PBS at room temperature
overnight with stirring [83]. Tian et al. also loaded curcumin into EVs via mixing. To
improve targeting, they conjugated cyclo (Arg-Gly-Asp-D-Tyr-Lys) peptide, which has a
high affinity for integrin αvβ3 [84]. Zou et al. used saponin for membrane permeabiliza-
tion and engineered the surface of EVs through donor cell transfection. They transfected
10E8-pDisplay expressing vector, which targets Chinese hamster ovary cells. Using EVs
isolated from these engineered cells, they encapsulated curcumin into EVs via saponin per-
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meabilization [85]. Others have used repeated freeze-thaw cycling to load curcumin [84,86].
Magnetic iron oxide nanoparticles have also been used with curcumin. Mixing EVs, cur-
cumin, and magnetic iron oxide nanoparticles followed by electroporation successfully
encapsulates them into EVs [87].

2.2.3. Paclitaxel

Paclitaxel is an anticancer drug that inhibits cell division, but poor cellular uptake
and side effects limit its efficacy. Several EV loading methods of paclitaxel can improve
therapeutic efficiency and minimize side effects. Saari et al. and Agrawal et al. loaded
paclitaxel into EVs via simple incubation [88,89]. Sonication successfully loads paclitaxel,
as demonstrated by Kim et al. and Salarpour et al. in which paclitaxel and EVs were
mixed and sonicated [90,91]. In EVs derived from IC21 macrophages, sonication resulted
in roughly 30% more loading efficiency than saponin permeabilization [61]. A similar
tendency was confirmed by others in EVs from RAW264.7 cells when evaluating with
mixing and EV incubation, electroporation, and sonication. For the incubation, the mixture
was incubated at 37 ◦C with 1 h of shaking. The mixture was electroporated at 1000 kV for
5 ms and incubated at 37 ◦C for 30 min to promote recovery of the exosome membrane. The
mixture was sonicated for 6 cycles of 30 s on and off with 2 min of cooling between each
cycle and then incubated at 37 ◦C for 60 min for exosome membrane recovery. The loading
efficiency of paclitaxel into EVs was as follows: simple incubation < electroporation <<
sonication [81].

2.2.4. Aspirin

Delivering functional aspirin to target cells is difficult due to poor water solubility [92].
These limitations have prevented aspirin use in severe diseases such as cancer, even though
its effects as an anticancer agent have been long known. To resolve the low water-solubility
issue, Tran et al. loaded aspirin into EVs for cancer treatment. Before loading aspirin
into EVs, they constructed a nanoparticle of poloxamer 407 with MgO or TPGS. This
nanoparticle was mixed with aspirin and EVs isolated from HT29 and MDA-MB-231 cells
and incubated at room temperature for two hours with shaking [93]. Aspirin has also been
loaded into EVs via freeze-thaw cycling with incubation and sonication [92]. Kalinec et al.
loaded aspirin into EVs isolated from auditory HEI-OC1 cells. They incubated EVs and
aspirin at 25 ◦C for 1 h with 5 min sonication [94].

2.2.5. Other Drugs

Yang et al. reported a method for the loading of the antibacterial linezolid into EVs de-
rived from RAW264.7 cells. Linezolid was mixed with EVs, and the mixture was incubated
at 37 ◦C for 1 h [95]. Dexamethasone was successfully loaded into EVs isolated from HEI-
OC1 cells by room temperature incubation and 5 min of sonication [96]. Using this protocol,
they loaded various drugs, including aspirin, arachidonic, eicosapentaenoic, docosahex-
aenoic, and linoleic acids, lipoxin A4, and resolvin D1 [94]. Erastin is a chemotherapeutics
drug inducing ferroptosis. Even though erastin is a small molecule drug, poor water
solubility and nephrotoxicity limit its applications. Similarly, Yu et al. encapsulated erastin
into EVs to treat triple-negative breast cancer using sonication [97].

2.2.6. miRNA

EVs can be loaded with miRNA for safe and efficient delivery to target cells. For
incorporating miRNAs into EVs, liposome-based transfection reagents can be applied
to isolated EVs [98]. miRNAs, miR-335-5p, miR-21, and miR-143 have been successfully
transfected into EVs with transfection reagents [99–101]. Electroporation is one of the most
commonly used methods for loading miRNA directly into EVs. For example, miR-155,
miR-26a, miR-155, miR-31, miR-451a, miR-939, miR-128-3p, miR-223 mimic, and miR-142
mimic have been successfully loaded [102–108]. Several methods have been devised to
improve loading efficiency. Zhang et al. developed a method to load miRNA into EVs
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using modified calcium chloride transfection. EVs, miRNA mimic, and calcium chloride
were mixed with PBS and placed on ice for 30 min, followed by miRNA incorporation
by heat shock at 42 ◦C for 60 s [109]. According to the miRNA copy number per EV,
the loading efficiency of modified calcium chloride transfection is comparable with the
electroporation [110]. It has been reported that a cholesterol group is attached to the 3′

end of the miRNA to facilitate in vivo delivery [111]. Interestingly, Gong et al. identified
that cholesterol-modified miRNA can quickly internalize into EVs by itself due to the
hydrophobic-moiety modification. They incubated cholesterol-modified miRNA with EVs
in PBS (37 ◦C, 90 min, 500 rpm shaking). The loading efficiency of miR-159 was 1.2%,
whereas cholesterol-modified miR-159 improved to 5.33% [70]. Zhang et al. used peptide-
conjugated EVs as well as cholesterol-modified miRNA. To improve the targeting property
of EVs, they conjugated cyclo (Arg-Gly-Asp-D-Tyr-Lys) peptide [c(RGDyK)], which can
detect ischemic brain, onto the surface of EVs. Then, they incubated the engineered EVs
with cholesterol modified miR-210 in PBS (37 ◦C, 60 min) and successfully obtained the
miR-210-loaded EVs for therapy [112]. Jeyaram et al. loaded miRNA by pH gradient
EV modification. EVs were isolated from HEK293T cells and dehydrated, followed by
incubation in citrate buffer of various pH for one hour. After, EVs were dialyzed in HEPES
buffered saline (pH 7.0) for 24 h. Modified EVs were incubated with miR-93 in PBS at
various time points and temperatures. In a citrate buffer with a pH of 2.5, a two-hour
incubation with 22 ◦C PBS resulted in the most efficient loading of miR-93 [12].

2.2.7. siRNA

Similar as miRNA, non-cell-based EV loading methods are widely used for siRNA
loading by researchers. Some studies reported that transfection reagents promote siRNA
loading into EVs. After isolating EVs, siRNA was transfected with EVs using commercial
transfection reagents. EVs, siRNA, and reagents were incubated together for several hours
at 37 ◦C allowing siRNA incorporation in EVs. [113,114]. Another popular method of
loading siRNA directly into EVs is electroporation. The external electric field increases
cellular membrane permeability by creating a hydrophilic pore and allows siRNA to enter
EVs. This method has allowed EVs to knock down gene expression in target cells using
siRNA cargo, including several genes, GAPDH, cyclophilin B, BACE1a, BACE1b, luciferase,
PLK-1, VEGF, KrasG12D, and TPD52 [115–120]. Some studies have attempted to increase
the silencing efficiency by allowing siRNA to reach target cells with high probability. They
conjugated EVs with peptides that bind specific receptors of target cells. The transfection
of donor cells can create EVs with specific peptides within their membrane. Rabies virus
glycoprotein (RVG)-derived peptide, which binds p75 neurotrophin receptor, was con-
jugated to EVs, and then siRNA was loaded through electroporation [1,121,122]. Chen
et al. conjugated klotho protein to EVs, which binds circulating endothelial progenitor
cells (EPCs). Then, adenosine kinase (ADK) siRNA was loaded into EVs through electro-
poration to develop a cardiovascular disease therapeutic [123]. However, studies found
electroporation can induce siRNA aggregation, which may cause overestimation of loading
efficiency [124,125]. Lamichhane et al. loaded siRNA into EVs using a water bath sonicator
by mixing EVs and siRNA in PBS, incubating for 30 min at room temperature, followed
by sonication at 35 kHz for 30 s. Sonication of more than 30 s degraded the EVs [126]. Liu
et al. loaded opioid receptor Mu (MOR) siRNA into RVG-EVs by sonication, and sonication
achieved higher efficiency than electroporation [127]. Milk-derived EVs can inhibit cell
growth of various cell lines [128], and several studies have used milk EVs loaded with
siRNA for anticancer effects. After isolating milk-derived EVs, siRNA can be loaded with
transfection reagents [129–132]. Cholesterol-conjugated hydrophobic siRNA can be loaded
into EVs by simple incubation [11,133]. Biscans et al. conjugated several natural lipids,
including fatty acids, sterols, and vitamin E, with siRNA. They suggested that vitamin
E-conjugated siRNA showed the most efficient loading and delivery to neurons [134]. Ha-
raszti et al. elucidated that the type of linker used to conjugate cholesterol to hydrophobic
siRNA affected loading efficiency. For the huntingtin siRNA targeting neurons, the TEG (tri-
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ethyl glycerol) linker showed better efficiency than the C7 (2-aminobutyl-1-3-propanediol)
linker [135]. Jhan et al. fused several lipids such as DOTAP, POPC, DPPC, and POPG
with EVs to make a hybrid-lipid membrane structure and then loaded siRNA into EVs
through electroporation. These engineered EVs showed a higher gene silencing effect
than lipofectamine transfection [136]. Jeyaram et al. loaded GAPDH siRNA through pH
gradient modification of EVs. HEK 293T-derived EVs were incubated in pH 2.5 citrate
buffer for one hour. Modified EVs were incubated with siRNA in PBS for 2 h at 22 ◦C.
The modified EVs showed 54% knockdown efficiency, whereas unmodified EVs did not
decrease GAPDH expression level [12].

2.2.8. Protein

Haney et al. loaded recombinant human TPP1 protein into EVs derived from IC21
macrophages through sonication or saponin permeabilization methods. For the sonication
method, 500 µL EVs suspension (1011 particles per mL) were supplemented with 5 µL
TPP1 (20 µg/100 µL) and sonicated at room temperature for 30 min. For the saponin
permeabilization, 500 µL EVs suspension (1011 particles per mL) were supplemented with
5 µL TPP1 (20 µg/100µL) and 10 µL saponin solution to final concentration 0.4 mg/mL,
and incubated at RT for 30 min. Although sonication loaded 40% more protein than
saponin permeabilization, both methods loaded 7-times and 5-times more than donor cell
transfection, respectively [61].

2.2.9. DNA

Exogenous DNA can be loaded into EVs via electroporation. Lamichhane et al. iso-
lated EVs from HEK 293T cells and loaded 5 µg of dsDNA into 10 µg of EVs in a final
volume of 50 µL electroporation buffer [19]. Kao et al. isolated EVs from CHRF cells and
loaded Cy5-labeled pGFPns via electroporation [137]. Jeyaram et al. used HEK 293T cell
EVs after incubating in pH 2.5 citrate buffer for one hour. Modified EVs were mixed with
single-stranded DNA in PBS for 2 h at 22 ◦C [12]. Kim et al. isolated EVs from HEK293 and
SKOV3 cells and loaded CRISPR/Cas9 targeting PARP-1 through electroporation. A total
of 10 µg of DNA was mixed with 30 µg of exosomes and Cas9- and sgRNA-expressing
plasmids were loaded by electroporation (1000 V, 10 ms, 2 pulses) [138].

Comparing with the cell-based methods, non-cell-based loading approaches have
more flexibility without affecting the donor cells. Nevertheless, these methods may alter
the integrity of the EV membrane and affect the bioactivity of cargos depending on the
approaches (Table 1).

Table 1. Comparison of cargo loading methods.

Cell-Based Cargo Loading Methods

Method Cargo Pros Cons Reference

Passive incubation
Small molecule drugs,

such as doxorubicin and
curcumin

Simple and convenient;
can be adopted by most

laboratories

Low loading efficiency; may
affect the EV components [22–25]

Transfection
Biomolecules, including

small RNAs, mRNA,
DNAs and proteins

Load large cargos;
efficiency is relatively high

Transfection reagent is
required; loading efficiency

relies on the transfection
efficiency

[34–37,52,53,64]

Non-Cell-Based Cargo Loading Methods

Method Cargo Pros Cons Reference

Passive incubation
Small molecules drugs,

such as doxorubicin and
curcumin

Very simple; can be easily
adopted by most

laboratories
Low loading efficiency [68–71,83,93]

Transfection MiRNAs and siRNAs Load large cargos;
enhanced efficiency

May alter the property and
structure of EVs [98,113,114]

Electroporation/Sonication/
Freeze-thaw/Saponin

Small molecules drugs;
biomolecules, including

small RNAs, mRNA,
DNAs and proteins

Possible to load
macromolecules; loading

efficiency is relatively high

Increase EV instability; small
RNA or EV aggregation;

additional equipment or wash
step may be required

[61,84,86,87,90,91,
102–108,137,138]
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3. Conclusions and Future Directions

Dysregulated gene expression promotes the pathogenesis of many human diseases.
Gene therapy is considered an ideal treatment for various disorders, such as inherited
diseases and many cancers [139]. However, the immune rejection response against for-
eign substances and the limited stability of the vectors limits optimal application [140].
Artificially engineered nanoparticles, such as liposomes, polymeric nanoparticles, and
magnetic nanoparticles, have been widely used for drug delivery. Nanoparticles have
many applicable properties, such as high loading efficacy, safety, and cell targeting ben-
efits as target-specific drug carriers. Even though nanodrugs are being investigated in
clinical trials, the immune responses, toxicity issues, and high cost have limited develop-
ment [141]. However, the EV delivery system has distinct advantages over vector delivery
and artificial nanoparticles. EVs are natural products originating from the cell surface, and
thus better at avoiding activating immune responses [142]. Another advantage of EVs is
specificity for target cells. The tissue-homing characteristics of EVs allow the transport of
their therapeutic cargo to distant target cells [143]. In diseases where drug receptors lack
sufficient expression due to mutations or situations involving biological barriers such as
the blood-brain barrier, the drug-loaded EVs can facilitate drug delivery by fusing with
the membrane of target cells [144]. For example, many have studied the treatment of
triple-negative breast cancer, which lacks estrogen receptors, progesterone receptors, and
human epidermal growth factor receptor 2 [67,145]. EVs present a targeting system that
could overcome this kind of barrier for treatment. For this reason, they are expected to be
safer and more efficient for delivering oligonucleotides and plasmids [146].

Despite these advantages, there are several developmental challenges. Although sev-
eral methods for isolating EVs, such as ultracentrifugation, immunoaffinity, size exclusion,
precipitation, and microfluidics techniques, have been reported, there are still no efficient
isolation methods to achieve pure EVs. Jeppesen et al. reassessed the characteristics of EVs
reported by other research groups. They showed at least 20 different results from existing
reports [4]. Another disadvantage is the diverse mechanisms of cellular uptake, depending
on the cell type and administration method [147]. Some researchers conjugated EVs with
functional ligands to target the cells to improve specific cellular uptake [1,112,121,122].
Sometimes loading methods affect EV stability. The integrity of EVs can become dam-
aged by sonication or permeabilization agents [66]. Additionally, electroporation has been
known to aggregate siRNA during the loading process. To improve this technical problem,
Kooijmans et al. added EDTA to the electroporation buffer [125]. Even though the effect
of a low amount of EVs cargo is similar to that of conventional methods, the loading effi-
ciency may be improved for better results [148]. To increase the loading efficiency, several
researchers conjugated nanovesicles, which have high loading capacity [23,77,78,87,149].
Many challenges remain in designing the most efficient and effective EV loading methods.

The field of EVs is exponentially growing, as many studies focus on technical optimiza-
tion of loading methods in the pre-clinical stage. In this review, we mainly summarized
the methods for cargo loading into naturally generated EVs. However, some engineered
EVs, such as gesicles [150], artificial EVs [151], and mimetic EVs [152] are not discussed in
the current review.

Human cell/tissue-derived EVs have been applied in clinical trials as anti-cancer
drug vehicles [153,154]. For instance, in a clinical trial (NCT03608631), KrasG12D siRNA
was proposed to be loaded into mesenchymal stromal cells (MSC)-derived EVs for the
treatment of patients with metastatic pancreas cancer. Besides the cancer studies, in the
clinical trial NCT03608631, miR-124-enriched EVs from MSC cells were proposed to treat
acute ischemic stroke.

Although safety and tolerance of EVs as carriers have been observed in most clinical
trials [153–156], many challenges remain before applying EVs as drug carriers in clinical
trials, such as loading efficiency and the purity of EVs for clinical use. Little is known
about the mechanisms of cell-based or non-cell-based drug loading methods. Therefore,
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further investigations are expected not only to develop novel methods but also to explore
the molecules that improve cargo loading efficiency through mechanistic studies.
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