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Abstract While climate models and observations generally
agree that climate feedbacks collectively amplify the surface
temperature response to radiative forcing, the strength of the
feedback estimates varies greatly, resulting in appreciable un-
certainty in equilibrium climate sensitivity. Because climate
feedbacks respond differently to different spatial variations in
temperature, short-term observational records have thus far
only provided a weak constraint for climate feedbacks operat-
ing under global warming. Further complicating matters is the
likelihood of considerable time variation in the effective glob-
al climate feedback parameter under transient warming. There
is a need to continue to revisit the underlying assumptions
used in the traditional forcing-feedback framework, with an
emphasis on how climate models and observations can best be
utilized to reduce the uncertainties. Model simulations can
also guide observational requirements and provide insight on
how the observational record can most effectively be analyzed
in order to make progress in this critical area of climate
research.
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Introduction

Climate is determined by the amount and distribution of in-
coming solar radiation absorbed by Earth. In response to en-
ergy imbalances, complex processes give rise to energy flows
within the atmosphere, hydrosphere, lithosphere, cryosphere,
and biosphere occurring over a range of time-space scales. For
an Earth system in equilibrium, these energy flows must pro-
duce outgoing longwave radiation at the top of atmosphere
(TOA) that is equal to the incoming absorbed solar radiation.
The coupled nature of the system is such that external pertur-
bations to the Earth’s energy budget impact all of the Earth
subsystems to varying degrees. The defining challenge for
climate science is to understand and predict the timing and
intensity of the changes for a range of space-time scales in
response to natural phenomena and man’s activities.

The Earth’s surface temperature is expected to rise between
1.5 and 4.5 °C in response to a doubling of atmospheric CO2

concentrations [1]. Despite much effort by the climate science
community, the large range of uncertainty has not narrowed
appreciably over the past 30 years. A key reason is due to the
representation of climate feedbacks in climate models.
Increased CO2 in the atmosphere alters the Earth’s energy
balance by reducing how much thermal infrared radiation is
emitted to space. Most of the excess energy into the system
initially ends up being stored in the ocean, but some also heats
the atmosphere and land and melts snow and sea ice. To re-
store a balance between absorbed solar radiation and outgoing
longwave radiation, the Earth system must emit more infrared
radiation to space. In the absence of other changes, a CO2

doubling would require Earth’s temperature to eventually in-
crease ∼1.2 K [2]. However, temperature changes can also
alter other processes and properties of the climate system,
which can lead to further changes in Earth’s energy balance
that can further modify temperature. In addition to an increase
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in surface temperature, feedbacks associated with water vapor,
clouds, snow and ice, and the vertical temperature structure of
the atmosphere are important. A climate feedback is quanti-
fied through its climate feedback parameter, given by the
change in downward TOA flux for a given temperature
change. Thus, an increase in downward TOA flux with
warming temperatures yields a positive climate feedback
parameter.

Climate models agree that feedbacks collectively amplify
the surface temperature response to external forcing, but the
strength of the feedbacks varies greatly [3]. Water vapor pro-
vides the largest positive feedback, and vertical changes in
water vapor and temperature are tightly coupled.
Accordingly, the sum of the lapse rate and water vapor feed-
backs are well represented by the majority of climate models.
Feedbacks due to clouds and surface albedo (associated with
snow and ice changes) are also positive in all models, but
cloud feedbacks are the largest source of uncertainty in current
predictions of climate sensitivity. The main stabilizing
(negative) feedback comes from the temperature response
(Planck feedback), which is well represented in models [3].

Given the large intermodel spread in climate sensitivity due
to uncertainties in climate feedbacks, it is reasonable to turn to
observations to help narrow the uncertainty. Recent progress
on using observations to help constrain individual feedbacks
(e.g., water vapor and high clouds) is summarized in Boucher
et al. [4]. There is also ongoing work that relies on data from
past climate states to estimate climate sensitivity [5]. Here, we
focus on studies that use Earth Radiation Budget (ERB) sat-
ellite observations for constraining climate feedbacks operating
under global warming. We briefly summarize some of the key
observational findings to date and discuss the challenges
associated with interpreting the results. We also examine the
state of current ERB satellite observations and explore issues
related to data analysis.

Recent Estimates of Climate Feedbacks from Satellite
Measurements

The use of short-term satellite records to infer climate feed-
back has been the subject of considerable debate. Given esti-
mates of radiative forcing, it is possible to use observations of
the covariability between surface temperature and TOA radi-
ation to infer empirical estimates of climate feedback.
Following Gregory et al. [6, 7], Forster and Gregory [8] use
a linearized version of the Earth’s global energy balance in
which TOA net downward radiative flux is equated with the
difference between TOA radiative forcing and the surface
temperature changemultiplied by the climate feedback param-
eter. Since the Earth is not in radiative equilibrium, the climate
feedback derived under transient warming is often referred to
as effective global climate feedback in order to distinguish it
from equilibrium global climate feedback [9]. Using data from

the Earth Radiation Budget Experiment (ERBE), Forster and
Gregory [8] estimate via linear regression a climate feedback
parameter of −2.3 ± 0.7 W m−2 K−1 (1σ uncertainty). Murphy
et al. [10] used observations from both ERBE and the Clouds
and the Earth’s Radiant Energy System (CERES) to infer a
climate feedback parameter of −1.25 ± 0.5 W m−2 K−1. More
recently, Donohoe et al. [11] and Trenberth et al. [12] obtained
climate feedback parameters of −1.2 ± 0.5 and −1.13 ±
0.5 W m−2 K−1, respectively. By comparison, the climate
feedback parameter for a system in which only the tempera-
ture or BPlanck^ feedback is operating is −3.2 W m−2 K−1.
Thus, feedbacks other than the Planck feedback (e.g., water
vapor, clouds, snow and ice, and the vertical temperature
structure of the atmosphere) are collectively positive and
therefore amplify the warming. An alternate approach to esti-
mate climate feedback and equilibrium climate sensitivity is to
use longer records of upper ocean heat content (OHC) change,
forcing, and temperature. These methods as well as others that
use satellite TOA radiation data are discussed in more detail in
Forster [13].

Forster and Gregory [8] assume that changes in net TOA
radiation due to internal variations of the system unrelated to
surface temperature are negligible. Spencer and Braswell
[14–16] and Lindzen and Choi [17, 18] argue that climate
feedback determined by linear regression of short satellite
TOA radiation and temperature records is overestimated due
to internal variations (e.g., natural cloud fluctuations or weath-
er noise) that can alter surface temperature directly and there-
by act as a source of Bnonradiative forcing.^ Clouds are typi-
cally viewed as a climate feedback since in response to surface
warming associated with a forcing, they either amplify (posi-
tive cloud feedback) or offset (negative cloud feedback) the
initial forcing [19]. Based upon a simple linear box model of
Earth, Spencer and Braswell [15, 16] claim that atmospheric
feedback diagnosis of the climate system remains an unsolved
problem due primarily to the inability to distinguish between
radiative forcing and radiative feedback in satellite radiative
budget observations.

Several studies [19–21] have pointed out significant weak-
nesses in the Spencer and Braswell [14–16] and Lindzen and
Choi [17, 18] analyses. Murphy and Forster [20] and Dessler
[19] repeated their analysis and showed that when a more
realistic ocean mixed layer depth is used, the correct standard
deviation in outgoing radiation is used, the model temperature
variability is computed over the same time interval as the
observations, and the difference between the linear regression
slope and feedback parameter is an order of magnitude smaller
than in Spencer and Braswell [14–16]. Thus, temperature var-
iations at short time scales are primarily directly driven by
ocean-atmosphere heat exchange, not from cloud fluctuations.
The ocean-atmosphere heat exchange is largely controlled by
El Niño–Southern Oscillation (ENSO) events, during which
the atmosphere gains/losses energy through variations in
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surface evaporation and precipitation latent heating [22].
During a La Niña event, the ocean column takes up energy,
resulting in cooler surface temperatures, and energy is re-
leased to the atmosphere during El Nino events, resulting in
warmer surface temperatures. Clouds respond to these ENSO-
driven forcings at interannual time scales, but many cloud
variations on monthly time scales are also a result of internal
atmospheric variability, such as theMadden-Julian oscillation.
This Bweather noise^ complicates the linear regression ap-
proach, adding uncertainty to regression slopes derived from
TOA radiation and surface temperature.

These studies have also highlighted the importance of
using a global domain when estimating a climate feedback
parameter. Murphy [23] showed that derivation of a climate
sensitivity with a linear regression between satellite TOA ra-
diation and surface temperature records for a limited region
such as the tropics (as is done in Lindzen and Choi [17]) is ill-
posed since heat transport between regions must also be con-
sidered. Accordingly, Brown et al. [24] showed that large-
scale atmospheric circulation changes are the main reason
why positive unforced regional surface temperature anomalies
in the tropics and midlatitudes are associated with positive
anomalies in regional net downward TOA radiative flux,
whereas positive global mean surface temperature anomalies
are associated with negative anomalies in global TOA radia-
tive flux.

Interpreting Short-Term Climate Feedback

In spite of many problems with aspects of some of the earlier
studies, it remains an open question whether or not short-term
climate feedback (or equivalently, effective climate feedback)
derived from observations provides any insight on climate
feedback operating under global warming (equilibrium cli-
mate feedback). Trenberth et al. [22] question the interpreta-
tion of ENSO as an analogue for exploring the forced response
of the climate system. Using 10 years of CERES TOA radia-
tion and surface temperature measurements, Dessler [25] and
Dessler [26] applied the methodology of Soden et al. [27] and
Shell et al. [28] to show that climate feedbacks from short-term
observations and global climate model control runs are gener-
ally consistent, although there are notable differences in the
regional pattern of cloud feedback. They also note that feed-
backs for control and forced climate model runs are only weak-
ly correlated, implying that short satellite records likely only
provide a weak constraint on climate sensitivity. More recently,
Zhou et al. [29] used Coupled Model Intercomparison
Project phase 5 simulations to show that cloud feedbacks in
response to interannual and long-term surface warming are
well correlated owing to a similar low cloud cover decrease
with sea surface temperature occurring at both time scales.
However, because different forcings produce different pat-
terns of warming [9, 30, 31], and many factors that influence

the global radiation budget are sensitive to spatial variations in
temperature, the average long-term cloud feedback differs
from that at interannual time scales [29]. This, together with
the large uncertainty in model representation of low cloud
feedback [32], points to the need for further research on how
short-term observations can best constrain climate feedback
operating under global warming.

Coupled atmosphere-ocean simulations show considerable
time variation in the effective global climate feedback param-
eter under transient warming [7, 13, 31, 33–41]. This implies
that the apparent climate sensitivity inferred from observations
of effective global climate feedback for different periods will
differ from one another even for perfect observations. Armour
et al. [9] argue that global climate feedback is linked to the
time evolution of regional climate feedbacks, which depends
upon the time variation in the geographic pattern of surface
warming resulting from the different response times of land,
ocean, and sea ice. On decadal time scales, warming of the
low-latitude oceans causes strongly negative regional feed-
back, leading to an effective climate sensitivity that is lower
than the equilibrium climate sensitivity. The climate evolution
over the next few decades will thus likely depend strongly
upon the geographic variations in ocean dynamics, heat up-
take, and transport. Other studies explain the time variation in
effective climate feedback through a nonlinear relationship
between global cloud radiative forcing (CRF) and global sur-
face temperature [34, 42].

Recently, Sherwood et al. [43] reviewed additional con-
cerns relevant to constraining climate feedback with observa-
tions. In the traditional framework, feedbacks are associated
with processes and properties that respond to surface temper-
ature changes. The feedbacks alter Earth’s energy balance by
enhancing or offsetting the initial forcing. Notable examples
of feedbacks tied to temperature are the water vapor and snow-
ice albedo feedback. However, recent modeling studies
[44–48] have pointed out that the forcing itself can lead to
changes that can alter Earth’s energy balance independent of
surface temperature. For example, increased CO2 concentra-
tions can alter the vertical temperature lapse rate in the middle
and lower troposphere by altering longwave radiative heating
rates. Solar, aerosol, or greenhouse gas perturbations can lead
to horizontal variations in atmospheric heating rates and
land/ocean contrasts that can alter atmospheric circulations
and cloud patterns. These in turn can alter the TOA energy
budget. As such, these are not Bfeedbacks^ since they do not
involve a response to surface temperature. Changes that occur
directly due to the forcing itself, without involving the global-
mean temperature, are referred to as Badjustments,^ and the
corresponding TOA radiative imbalance change is referred to
as an Beffective^ radiative forcing [43]. Because adjustments
and feedbacks can occur on similar time scales, separating the
two effects poses a major challenge for constraining climate
feedback using observations. The clouds will respond to
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ocean/land and vertical lapse rate adjustments at the same time
as they respond to surface temperature change. This will be
true regardless of how the forcing is imposed. Clearly, the
adjustments will be much stronger immediately following a
large instantaneous forcing, but they will also be important
over the longer term for a slower continuous radiative forcing.

Because observation-based estimates of climate sensitivity
and climate feedback require reliable radiative forcing data
[49], uncertainties in aerosol radiative forcing remain a signif-
icant source of uncertainty, particularly as observational re-
cords become longer. Zelinka et al. [50] show considerable
model spread in effective radiative forcing by aerosols among
global climate models, and Forster [13] notes that aerosol
forcing is the largest contributor to uncertainty in estimates
of effective climate sensitivity from long-time scale
(multidecadal) observational records (e.g., in situ estimates
of ocean heat content change). Quaas [51] highlighted the
observational challenges involved in quantifying the contribu-
tion by aerosol-cloud interactions, which dominates the uncer-
tainty in climate model radiative forcing. Because aerosol ef-
fects can exert significant tropospheric cloud adjustments, di-
agnosing climate sensitivity from observations is challenging
[52].

Use of Climate Models to Interpret Observations

To improve our understanding of the time dependence of cli-
mate feedbacks and their relationship to climate sensitivity,
both modeling and observations are essential. However, given
the substantial internal variability in the climate system, it is
unclear how long an observational record is needed to con-
strain climate feedback. Chung et al. [52] addressed this ques-
tion by analyzing climate feedbacks from coupled atmosphere-
ocean model simulations using a radiative kernel approach [3,
27, 28]. They computed climate feedbacks from differences
between climate states as a function of the length of the time
average to define the climate states and the time separation
between the climate states. Based upon their results ([52], their
Fig. 5f), in order to reduce the upper bound of uncertainty in
climate sensitivity by a factor of 2 (equivalent to a 1σ uncer-
tainty in climate feedback of 0.13 W m−2 K−1), an averaging
length of at least 10 years would be required to define the
climate states and the climate states would need to be separated
by 40 years, thus requiring an observational record of at
least 50 years. The main driver for such a long record is from
the cloud feedback contribution, which exhibits considerably
more variability than other feedback contributions (e.g., lapse
rate, water vapor, and surface albedo). Importantly, the Chung
et al. [52] analysis does not factor in observational uncer-
tainties, which would further increase the length of the record
needed [53].

It is unclear whether or not alternate approaches to the
radiative kernel method can be used to help constrain climate

feedback with observational records shorter than 50 years. For
example, the approach used by Forster and Gregory [8] infers
the total climate feedback parameter through a regression of
monthly or annual mean TOA radiative flux and surface tem-
perature anomalies. Thus far, the method has been applied to
observational records that have been too short to yield robust
results (e.g., 15 years or less). It is therefore an open question
as to how long a record is necessary. It is also unclear how the
data should be averaged, whether monthly, annually, or over a
longer period. Forster [13] note that the use of annual averages
produces a larger effective climate feedback parameter (smaller
effective climate sensitivity, ECS) compared to the use of
monthly averages. Estimates based upon longer-term
(multidecadal) upper (0–700 m) OHC tendency, radiative forc-
ing, and surface temperature data also point to a larger effective
climate feedback (smaller ECS) [13]. Given these discrepan-
cies, there is a need for detailed studies evaluating the strengths
and weaknesses of the different methodologies. For example, a
model analysis similar to that performed by Chung et al. [52]
may help answer some basic questions. In fact, there is a need
for more such model simulations to help guide climate observ-
ing system requirements in general (these are often referred to
as climate Observing System Simulation Experiments
(OSSEs)).

Due to the large spread in climate sensitivity among
state-of-the-art global climate models, many studies
have explored ways of constraining model estimates of
climate sensitivity and feedback by evaluating model
projections according to how closely present-day ob-
served climate is captured by the models [32, 54–61].
If one or more observed climate variables exhibits a
strong relationship between present-day and future cli-
mate, then in principle, the observations can be used to
identify the models most likely to provide a more accu-
rate estimate of climate sensitivity. While this approach
has been remarkably useful for climate model evaluation
and diagnosis using historical observations, it has yet to
produce a single widely accepted set of observational
constraints for narrowing the range in climate sensitivity
[57]. A large part of the problem is that since climate
models must be relied upon to identify the variables and
relationships between present-day and future climate,
model weaknesses/deficiencies combined with observa-
tional error add considerable uncertainty, limiting our
ability to narrow the range in climate sensitivity.
Recently, the climate community has adopted the term
Bemergent constraints^ to characterize relationships be-
tween intermodel variations in a quantity describing
some aspect of observed climate and intermodal varia-
tions in a future climate prediction of some quantity
[62]. Importantly, in order to qualify as an emergent
constraint, the relationships must be physically explain-
able rather than a possibly fortuitous result.
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Satellite TOA ERB Data Record

Given the internal variability of the climate system, improved
observational constraints for climate feedback likely require
much longer (multidecadal) climate data records. Currently,
the longest continuous global ERB observations are from
CERES instruments flying on the Terra, Aqua, and S-NPP
satellites. A CERES instrument is scheduled for launch on
JPSS-1 in 2017, and a follow-on ERB instrument called the
Radiation Budget Instrument (RBI) is being built to fly on
JPSS-2 in 2021 (Fig. 1).

The reliability of satellite TOA ERB data is influenced
primarily by instrument calibration uncertainty, the physical
realism of algorithms used to infer geophysical parameters
(e.g., clouds, aerosols, and radiative flux), time and space
sampling, and the quality of the ancillary input datasets.
Which of these factors dominate the error budget is a strong
function of the time-space scales that we are interested in
resolving. At short time-space scales, the limiting factor is
primarily the frequency at which the observations are collect-
ed and algorithm uncertainty. At longer time-space scales,
radiometric stability of the instruments and long-term consis-
tency of other input data sources matter more. Periodic
reprocessing of the entire CERES record is needed to ensure
that the data record reflects variations in the climate system as
opposed to artifacts associated with algorithm and/or input
data changes. Combined use of CERES and imager data en-
ables not only TOA fluxes but also surface radiative fluxes too
[63].

Because the present generation of ERB satellite instru-
ments lacks the absolute calibration accuracy needed to over-
come a data gap [64], it is critical that there be at least 1-year

overlap between successive satellite missions. There is a high
probability that ERB continuity will be achieved through
2030 given the heritage and maturity of current and near-
future instruments and data algorithms. Figure 2 provides an
estimate of the probability of a gap for the current CERES and
RBI flight schedule using historical spacecraft and instrument
survival rates [65]. Although not yet official, we assume that a
second RBI instrument will fly on the JPSS-3 satellite in 2026.
The underlying assumption is that the mission terminates if
the primary operational sensor (e.g., MODIS or VIIRS) or
spacecraft fails or if fuel becomes too low. The assumed
end-of-life dates are 2025, 2021, and 2027 for Terra, Aqua,
and NPP, respectively. For the case in which CERES or RBI
instruments fly on all available platforms (Terra, Aqua, S-
NPP, JPSS-1, JPSS-2, and JPSS-3; blue line), the probability
of a gap ranges from 0.15 to 0.20 in the 2028–2030 time
frame. The red line shows an alternate scenario, in which
RBI does not fly on JPSS-2 but instead flies on JPSS-3. In
that case, the gap probability increases markedly to ≈0.45 in
2028 and over 0.50 in 2030.

Thus far, the CERES data products have shown a remark-
able ability to track internal variations. To illustrate, Fig. 3a–c
shows the TOA flux anomalies from Terra and Aqua using the
latest version of CERES data products (SSF1deg-Edition4).
The Terra and Aqua trends are within 0.2 Wm−2 per decade
for SW and 0.3 Wm−2 per decade for LW and net at the 95 %
significance level. Further improvements are anticipated with
the Climate Absolute Radiance and Refractivity Observatory
(CLARREO) mission, which will enable intercalibration of
many passive satellite instruments in various orbits [66]. A
CLARREO Pathfinder mission consisting of a single reflected
solar instrument is scheduled to fly on the International Space

Fig. 1 Flight schedule of global ERB monitoring satellite instruments
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Station in 2020 as a technology demonstration, which can in
principal lead to a more extensive CLARREO mission as
proposed in Wielicki et al. [66].

To estimate the uncertainty in the climate feedback param-
eter due to satellite TOA radiation data using the regression
method, Table 1 shows the results using the following three
different CERES datasets: Energy Balanced and Filled
(EBAF) Ed2.8 [67, 68], Terra SSF1deg-Month Ed4A, and
Aqua SSF1deg-Month Ed4A. The SSF1deg-Month Ed4A
dataset was just recently released and is currently only avail-
able through November 2014. It includes the latest instrument
calibration improvements [69], cloud properties, and angular
distribution models [70]. We consider the common period of
July 2002 to November 2014, when all three datasets are
available, and use two surface temperatures, Goddard
Institute for Space Studies Surface Temperature Analysis

(GISSTEMP) [71] and Hadley Centre Climatic Research
Unit version 4 (HadCRUT4) data [72]. Given that the forcing
term for such a short period has only a small impact on the
climate feedback parameter derived from this method [13], we
neglect that term here. The choice of CERES dataset yields an
uncertainty in the climate feedback parameter of
0.1 Wm−2 K−1 (1σ). The uncertainty due to the scatter in the
data is approximately 0.5 Wm−2 K−1 (1σ). Therefore, the un-
certainty due to the choice of CERES dataset is a factor of 5
smaller than the noise contribution to the uncertainty. The
choice of temperature data also matters. On average, the dif-
ference between climate feedback parameters inferred from
GISSTEMP and HadCRUT4 is 0.27 Wm−2 K−1. Using a
greater number of temperature datasets, Dessler and Loeb
[73] found that the spread in the cloud feedback parameter
can be as high as 0.8 Wm−2 K−1 owing to the choice of the
temperature dataset.

The effective climate feedback parameter also exhibits a
surprisingly strong sensitivity to the period considered.

Fig. 2 Probability of a data gap in the global satellite ERB time series
from present through a given year. The blue curve includes all ERB
instruments flying or planned, whereas the red curve excludes the ERB
instrument on the J2 satellite

Fig. 3 Anomalies in global mean
TOA flux for CERES Terra and
Aqua from SSF1deg-Edition4A.
a SW, b LW, and c net

Table 1 Effective climate feedback parameter and uncertainty (1σ) for
July 2002 to November 2014 from regression of CERES net TOA flux
and surface temperature anomalies

GISSTEMP HadCRUT4

EBAF Ed2.8 −0.89 ± 0.56 −1.12 ± 0.63
SSF1deg Ed4A (Terra) −0.74 ± 0.64 −1.10 ± 0.75
SSF1deg Ed4A (Aqua) −0.68 ± 0.61 −0.90 ± 0.69
Average −0.77 ± 0.60 −1.04 ± 0.69
Standard deviation 0.11 0.12
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Using the EBAF2.8 dataset, an effective climate feedback
parameter was determined for 2001–2013 and 2001–2015
(Table 2). For the 2001–2015 period, the effective climate
feedback parameter decreased by a factor of 3 to 5 for monthly
averages and 5 to 14 for annual averages compared to that for
2001–2013. This is likely associated with the inclusion of the
strong El Niño in 2014–2015. Consistent with Forster [13],
the effective climate feedback parameter tends to be larger
using annual averages.

In order to evaluate the influence of a data gap on satellite-
derived effective climate feedback parameter, we consider
monthly anomalies between 2001 and 2015 for CERES
EBAF Ed2.8 global net TOA flux and GISSTEMP surface
air temperature (Table 3). With no data gap, the effective feed-
back parameter is −0.35 ± 0.43Wm−2 K−1. Assuming a 1-year
gap in 2008 and no calibration change following the gap, the
e ffec t ive feedback parameter becomes −0 .19 ±
0.45 Wm−2 K−1. However, when calibration error is intro-
duced by imposing a ±2 % discontinuity to the period follow-
ing the gap, the effective feedback parameter changes further
by ±0.05 Wm−2 K−1. Thus, in this example, introducing a gap
of 1 year has a substantial impact on the effective feedback
parameter derivation both due to the data that is missing and to
a lesser extent the calibration difference between the period
prior to and after the gap.

Conclusions

The large spread in equilibrium climate sensitivity (1.5–
4.5 °C) has not narrowed appreciably during the past 30 years,
owing primarily to uncertainties in the representation of cli-
mate feedbacks in climate models. While observationally based
estimates suggest that climate feedbacks collectively enhance
the temperature response to a forcing, the magnitudes of the
climate feedback parameter estimates vary greatly. Use of ob-
servations to constrain climate models and narrow the range in
climate sensitivity has thus been largely unsuccessful so far.
Even with perfect observations, there are limitations to what
can be achieved with short observational records because differ-
ent forcings produce different patterns of warming, and
feedbacks respond differently to different spatial variations in

temperature. At multidecadal time scales, coupled
atmosphere-ocean simulations show considerable time varia-
tion in the effective global climate feedback parameter, pro-
viding a further imperative for continuing to collect stable,
long-term climate observations. At the same time, there is a
need to continue to revisit the underlying assumptions used in
the traditional forcing-feedback framework, with an emphasis
on how climate models and observations can best be utilized
to reduce uncertainties not only in climate sensitivity but also
the spatial and temporal patterns of climate change. The cli-
mate models can also provide important insights on the obser-
vational requirements needed to make progress in this area.
For example, dedicated climate OSSEs can help establish the
suite of climate variables that need to be observed over multi-
ple decades, at what accuracy, temporal/spatial resolution,
etc., and can also help guide how the data should most effec-
tively be analyzed. The climate OSSE framework is also crit-
ical to help guide process-based observational requirements
(both satellite and field campaigns) in model development
efforts. Ultimately, improved representation of climate feed-
backs in models requires realistic, physically based parameter-
izations. Process observations play a critical role in model
development, while longer-term observations are needed to
assess model representation of climate variability and change
at interannual and decadal time scales.

On the observational side, it is more critical than ever to
commit to sustained long-term and stable measurements of
key variables used to estimate climate feedbacks. These include
solar irradiance, TOA Earth radiation budget, in situ ocean
heat storage, aerosols, clouds, ice sheet and sea ice volume,
and temperature/humidity profiles. For passive remote sensing
satellite measurements, overlap between successive missions is
needed to avoid data gaps in the record and to ensure a
consistent calibration throughout. There is also a need to fly
dedicated radiance calibration missions (e.g., CLARREO)
that can help improve the accuracy and stability of a wide
range of passive sensors (including weather satellite instru-
ments) in various orbits, thereby making our observing system
more accurate. This represents a paradigm shift from the typical
satellite mission that targets observations of specific geo-
physical variables. However, given that the climate system

Table 2 Effective climate feedback parameter for 2001–2013 and
2001–2015 using monthly and annual averages in the regression

Date range Monthly averages Annual averages

GISSTEMP HadCRUT4 GISSTEMP HadCRUT4

2001–2013 −1.13 ± 0.52 −1.18 ± 0.58 −3.6 ± 1.6 −4.5 ± 1.8
2001–2015 −0.35 ± 0.43 −0.27 ± 0.47 −0.48 ± 1.1 −0.32 ± 1.1

TOA radiation data were from the CERES EBAF Ed2.8

Table 3 Effective climate feedback parameter using monthly averages
in the regression

Data range Calibration change
following gap

Effective feedback
parameter (Wm−2 K−1)

2001–2015 None −0.35 ± 0.43
2001–2015 (gap in 2008) None −0.19 ± 0.45
2001–2015 (gap in 2008) +2 % −0.25 ± 0.46
2001–2015 (gap in 2008) −2 % −0.14 ± 0.46

Net TOA radiation data are from the CERES EBAFEd2.8, and surface air
temperature anomalies are from GISSTEMP
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changes and feedback we are trying to observe are small com-
pared to the internal variability of the climate system, and
given that at long time scales instrument calibration is the
dominant error source, such a paradigm shift is critically
needed.

Acknowledgments Funding for this work was provided by NASA’s
Radiation Budget Measurement project. The authors would like to thank
Drs. Bruce Wielicki and Bjorn Stevens for their helpful discussions and
their leadership in this area of research. The CERES datasets were ob-
tained from http://ceres.larc.nasa.gov/compare_products.php. GISTEMP
data were accessed on 2016-06-08 from http://data.giss.nasa.
gov/gistemp/. HadCRUT4 were accessed on 2016-06-08 from
http://www.metoffice.gov.uk/hadobs/hadcrut4/index.html.

Compliance with Ethical Standards

Conflict of Interest On behalf of all authors, the corresponding author
states that there is no conflict of interests.

Open Access This article is distributed under the terms of the Creative
Commons At t r ibut ion 4 .0 In te rna t ional License (h t tp : / /
creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided you give appro-
priate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

References

1. IPCC. Summary for Policymakers. In: Stocker TF, Qin D, Plattner
G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V,
Midgley PM, editors. Climate change 2013: the physical science
basis. Contribution of working group I to the fifth assessment report
of the intergovernmental panel on climate change. Cambridge:
Cambridge University; 2013. p. 3–32.

2. Colman R. A comparison of climate feedbacks in general circula-
tion models. Clim Dyn. 2003;20:865–73.

3. Soden B, Held IM. An assessment of climate feedbacks in coupled
ocean–atmosphere models. J Clim. 2006;19:3354–60.

4. Boucher O, Randall D, Artaxo P, Bretherton C, Feingold G, Forster
P, et al. Clouds and aerosols. In: Stocker TF, Qin D, Plattner G-K,
TignorM, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley
PM, editors. Climate change 2013: the physical science basis.
Contribution of working group I to the fifth assessment report of
the intergovernmental panel on climate change. Cambridge:
Cambridge University; 2013. p. 571–657.

5. Masson-Delmotte V, Schulz M, Abe-Ouchi A, Beer J, Ganopolski
A, González Rouco JF, et al. Information from Paleoclimate
Archives. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen
SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM, editors.
Climate change 2013: the physical science basis. Contribution of
working group I to the fifth assessment report of the intergovern-
mental panel on climate change. Cambridge: Cambridge
University; 2013. p. 383–464.

6. Gregory JM, Stouffer RJ, RAPER SCB, STOTT PA, RAYNER
NA. An observationally based estimate of the climate sensitivity.
J Clim. 2002;15(22):3117–21.

7. Gregory JM. A new method for diagnosing radiative forcing and
climate sensitivity. Geophys Res Lett. 2004;31:L03205.
doi:10.1029/2003GL018747.

8. Forster PM, Gregory JM. The climate sensitivity and its compo-
nents diagnosed from Earth radiation budget data. J Clim. 2006;19:
39–52.

9. Armour KC, Bitz C, Roe GH. Time-varying climate sensitivity
from regional feedbacks. J Clim. 2013;26:4518–34.

10. Murphy DM, Solomon S, Portmann RW, Rosenlof KH, Forster
PM, Wong T. An observationally based energy balance for the
Earth since 1950. J Geophys Res. 2009;114:D17107. doi:10.1029
/2009JD012105.

11. Donohoe A, Armour KC, Pendergrass AG, Battisti DS. Shortwave
and longwave radiative contributions to global warming under in-
creasing CO2. Proc Natl Acad Sci U S A. 2014;111(47):16700–5.

12. Trenberth KE, Zhang Y, Fasullo JT, Taguchi S. Climate variability
and relationships between top-of-atmosphere radiation and temper-
atures on Earth. J Geophysical Res. 2015;120(9):3642–59.

13. Forster PM. Inference of climate sensitivity from analysis of Earth’s
energy budget. Annu Rev Earth Planet Sci. 2016;44:85–106.

14. Spencer R, Braswell BH. Potential biases in feedback diagnosis
from observational data: a simple model demonstration. J Clim.
2008;21:5624–8.

15. Spence J, Braswell BH. On the diagnosis of radiative feedback in
the presence of unknown radiative forcing. J Geophys Res.
2010;115:D16109. doi:10.1029/2009JD013371.

16. Spencer RW, Braswell WD. On the misdiagnosis of surface tem-
perature feedbacks from variations in Earth’s radiant energy bal-
ance. Remote Sens. 2011;3(8):1603–13.

17. Lindzen RS, Choi Y-S. On the determination of climate feedbacks
from ERBE data. Geophys Res Lett. 2009;36.

18. Lindzen RS, Choi Y-S. On the observational determination of cli-
mate sensitivity and its implications. Asia-Pacific J Atmos Sci.
2011;47(4):377–90.

19. Dessler AE. Cloud variations and the Earth’s energy budget.
Geophysical Res Lett. 2011;38(19):n/a-n/a.

20. Murphy DM, Forster PM. On the accuracy of deriving climate
feedback parameters from correlations between surface temperature
and outgoing radiation. J Clim. 2010;23(18):4983–8.

21. Trenberth KE, Fasullo JT, Abraham JP. Issues in establishing cli-
mate sensitivity in recent studies. Remote Sens. 2011;3:2051–6.

22. Trenberth KE, Fasullo JT, O’Dell C, Wong T. Relationships be-
tween tropical sea surface temperature and top-of-atmosphere radi-
ation. Geophys Res Lett. 2010;37:L03702. doi:10.1029/2009
GL042314.

23. Murphy DM. Constraining climate sensitivity with linear fits to
outgoing radiation. Geophys Res Lett. 2010;37:L09704.
doi:10.1029/2010GL042911.

24. Brown PT, Li W, Jiang JH, Su H. Unforced surface air temperature
variability and its contrasting relationship with the anomalous TOA
energy flux at local and global spatial scales. J Clim. 2016;29:925–
40.

25. Dessler AE. A determination of the cloud feedback from climate
variations over the past decade. Science. 2010;330:1523–7.

26. Dessler AE. Observations of climate feedbacks over 2000–10 and
comparisons to climate models*. J Clim. 2013;26(1):333–42.

27. Soden BJ, Held IM, Colman R, Shell KM, Kiehl JT, Shields CA.
Quantifying climate feedbacks using radiative kernels. J Clim.
2008;21(14):3504–20.

28. Shell KM, Kiehl JT, Shields CA. Using the radiative kernel tech-
nique to calculate climate feedbacks in NCAR’s Community
Atmospheric Model. J Clim. 2008;21(10):2269–82.

29. Zhou C, Zelinka MD, Dessler AE, Klein SA. The relationship be-
tween inter-annual and long-term cloud feedbacks. Geophys Res
Lett. 2015;42.

Curr Clim Change Rep (2016) 2:170–178 177

http://ceres.larc.nasa.gov/compare_products.php
http://data.giss.nasa.gov/gistemp/
http://data.giss.nasa.gov/gistemp/
http://www.metoffice.gov.uk/hadobs/hadcrut4/index.html
http://dx.doi.org/10.1029/2003GL018747
http://dx.doi.org/10.1029/2009JD012105
http://dx.doi.org/10.1029/2009JD012105
http://dx.doi.org/10.1029/2009JD013371
http://dx.doi.org/10.1029/2009GL042314
http://dx.doi.org/10.1029/2009GL042314
http://dx.doi.org/10.1029/2010GL042911


30. Hansen J. Efficacy of climate forcings. J Geophys Res. 2005;110:
D18104. doi:10.1029/2005JD005776.

31. Gregory JM, Andrews T. Variation in climate sensitivity and feed-
back parameters during the historical period. Geophys Res Lett.
2016;43(8):3911–20.

32. Bony S, Dufresne JL. Marine boundary layer clouds at the heart of
tropical cloud feedback uncertainties in climate models. Geophys
Res Lett. 2005;32:L20806. doi:10.1029/2005GL023851.

33. Murphy DM. Transient response of the Hadley Centre coupled
ocean–atmosphere model to increasing carbon dioxide. Part I:
Control climate and flux adjustment. J Clim. 1995;8:36–56.

34. Senior CA, Mitchell JFB. Time-dependence of climate sensitivity.
Geophys Res Lett. 2000;27:2685–8.

35. Raper SCB, Gregory JM, Stouffer RJ. The role of climate sensitiv-
ity and ocean heat uptake on AOGCM transient temperature re-
sponse. J Clim. 2002;15:124–30.

36. Boer GJ, Yu B. Climate sensitivity and climate state. Clim Dyn.
2003;21:167–76.

37. Kiehl J, Shields CA, Hack JJ, Collins WD. The climate sensitivity
of the Community Climate System Model, version 3 (CCSM3). J
Clim. 2006;19:2584–96.

38. Williams KD, IngramWJ, Gregory JM. Time variation of effective
climate sensitivity in GCMs. J Clim. 2008;21(19):5076–90.

39. WintonM, Takahashi K, Held IM. Importance of ocean heat uptake
efficacy to transient climate change. J Clim. 2010;23:2333–44.

40. Li C, von Storch J-S, Marotzke J. Deep-ocean heat uptake and
equilibrium climate response. Clim Dyn. 2013;40:1071–86.

41. Andrews T, Gregory JM, Webb MJ. The dependence of radiative
forcing and feedback on evolving patterns of surface temperature
change in climate models. J Clim. 2015;28:1630–48.

42. Andrews T, Gregory JM, WebbMJ, Taylor KE. Forcing, feedbacks
and climate sensitivity in CMIP5 coupled atmosphere-ocean cli-
mate models. Geophysical Res Lett. 2012;39(9):n/a-n/a.

43. Sherwood SC, Bony S, Boucher O, Bretherton C, Forster PM,
Gregory JM, et al. Adjustments in the forcing-feedback framework
for understanding climate change. Bull Am Meteorol Soc.
2015;96(2):217–28.

44. Andrews T, Forster PM. CO2 forcing induces semi-direct effects
with consequences for climate feedback interpretations. Geophys
Res Lett. 2008;35:L04802. doi:10.1029/2007GL032273.

45. Gregory J,WebbM. Tropospheric adjustment induces a cloud com-
ponent in CO2 forcing. J Clim. 2008;21(1):58–71.

46. Colman R, McAvaney BJ. On tropospheric adjustment to forcing
and climate feedbacks. Clim Dyn. 2008;36:1649–58.

47. Kamae Y, Watanabe M. On the robustness of tropospheric adjust-
ment in CMIP5 models. Geophys Res Lett. 2012;39.

48. Wyant MC, Bretherton CS, Blossey PN, Khairoutdinov M. Fast
cloud adjustment to increasing CO2 in a superparameterized climate
model. J Adv Model Earth Syst. 2012;4:M05001. doi:10.1029
/2011MS000092.

49. Otto A, Otto FEL, Boucher O, Church JA, Hegerl G, Forster PM,
et al. Energy budget constraints on climate response. Nat Geosci.
2013;6:415–6.

50. ZelinkaMD,Andrews T, Forster PM, Taylor KE. Quantifying com-
ponents of aerosol-cloud-radiation interactions in climate models. J
Geophysical Res. 2014;119(12):7599–615.

51. Quaas J. Approaches to observe anthropogenic aerosol-cloud inter-
actions. Curr Clim Change Rep. 2015;1(4):297–304.

52. Chung E-S, Soden BJ, Clement AC. Diagnosing climate feedbacks
in coupled ocean–atmosphere models. Surv Geophys. 2012;33(3-
4):733–44.

53. Leroy S, Anderson J, Dykema J, Goody R. Testing climate models
using thermal infrared spectra. J Clim. 2008;21(9):1863–75.

54. AllenMR, IngramWJ. Constraints on future changes in climate and
the hydrologic cycle. Nature. 2002;419:224–32.

55. Knutti R, Hegerl G. The equilibrium sensitivity of the Earth’s tem-
perature to radiation changes. Nat Geosci. 2008;1:735–43.

56. Clement AC, Burgman R, Norris JR. Observational and model
evidence for positive low-level cloud feedback. Science.
2009;325(5939):460–4.

57. Klocke D, Pincus R, Quaas J. On constraining estimates of climate
sensitivity with present-day observations through model weighting.
J Clim. 2011;24(23):6092–9.

58. Fasullo JT, Trenberth KE. A less cloudy future: the role of subtrop-
ical subsidence in climate sensitivity. Science. 2012;338(6108):
792–4.

59. Tett SFB, Rowlands DJ, Mineter MJ, Cartis C. Can top-of-
atmosphere radiation measurements constrain climate predictions?
Part II: climate sensitivity. J Clim. 2013;26(23):9367–83.

60. Sherwood SC, Bony S, Dufresne JL. Spread in model climate sen-
sitivity traced to atmospheric convective mixing. Nature.
2014;505(7481):37–42.

61. Tan I, Storelvmo T, Zelinka MD. Observational constraints on
mixed-phase clouds imply higher climate sensitivity. Science.
2016;352(6282):224–7.

62. Klein SA, Hall A. Emergent constraints for cloud feedbacks. Curr
Climate Change Rep. 2015;1(4):276–87.

63. Kato S, Loeb NG, Rose FG, Doelling DR, Rutan DA, Caldwell TE,
et al. Surface irradiances consistent with CERES-derived top-of-
atmosphere shortwave and longwave irradiances. J Clim.
2013;26(9):2719–40.

64. Loeb NG,Wielicki BA,Wong T, Parker PA. Impact of data gaps on
satellite broadband radiation records. J Geophys Res. 2009;114:
D11109. doi:10.1029/2008JD011183.

65. Castet J-F, Saleh JH. Satellite reliability: statistical data analysis and
modeling. J Spacecr Rocket. 2009;46(5):1065–76.

66. Wielicki BA, Young DF, Mlynczak MG, Thome KJ, Leroy S,
Corliss J, et al. Achieving climate change absolute accuracy in
orbit. Bull Am Meteorol Soc. 2013;94(10):1519–39.

67. Loeb NG, Wielicki BA, Doelling DR, Smith GL, Keyes DF, Kato
S, et al. Toward optimal closure of the Earth’s top-of-atmosphere
radiation budget. J Clim. 2009;22(3):748–66.

68. Loeb NG, Lyman JM, Johnson GC, Allan RP, Doelling DR, Wong
T, et al. Observed changes in top-of-the-atmosphere radiation and
upper-ocean heating consistent within uncertainty. Nat Geosci.
2012;5(2):110–3.

69. Loeb N, Manalo-Smith N, Su W, Shankar M, Thomas S. CERES
top-of-atmosphere Earth radiation budget climate data record: ac-
counting for in-orbit changes in instrument calibration. Remote
Sens. 2016;8(3):182.

70. Su W, Corbett J, Eitzen Z, Liang L. Next-generation angular distri-
butionmodels for top-of-atmosphere radiative flux calculation from
CERES instruments: methodology. Atmos Meas Tech. 2015;8(3):
611–32.

71. Hansen J, Ruedy R, Sato M, Lo K. Global surface temperature
change. Rev Geophys. 2010;48:RG4004. doi:10.1029/2010
RG000345.

72. Morrice CP, Kennedy JJ, Rayner NA, Jones PD. Quantifying un-
certainties in global and regional temperature change using an en-
semble of observational estimates: the HadCRUT4 data set. J
Geophys Res. 2012;117:D08101. doi:10.1029/2011jd017187.

73. Dessler AE, Loeb NG. Impact of dataset choice on calculations of
the short-term cloud feedback. J Geophysical Res. 2013;118(7):
2821–6.

178 Curr Clim Change Rep (2016) 2:170–178

http://dx.doi.org/10.1029/2005JD005776
http://dx.doi.org/10.1029/2005GL023851
http://dx.doi.org/10.1029/2007GL032273
http://dx.doi.org/10.1029/2011MS000092
http://dx.doi.org/10.1029/2011MS000092
http://dx.doi.org/10.1029/2008JD011183
http://dx.doi.org/10.1029/2010RG000345
http://dx.doi.org/10.1029/2010RG000345
http://dx.doi.org/10.1029/2011jd017187

	Understanding Climate Feedbacks and Sensitivity Using Observations of Earth’s Energy Budget
	Abstract
	Introduction
	Recent Estimates of Climate Feedbacks from Satellite Measurements
	Interpreting Short-Term Climate Feedback
	Use of Climate Models to Interpret Observations
	Satellite TOA ERB Data Record

	Conclusions
	References


