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Abstract

Cardiopulmonary bypass

Patients with congenital heart disease (CHD) are at risk for developing intestinal dysbiosis and intestinal epithelial
barrier dysfunction due to abnormal gut perfusion or hypoxemia in the context of low cardiac output or cyanosis.
Intestinal dysbiosis may contribute to systemic inflammation thereby worsening clinical outcomes in this patient
population. Despite significant advances in the management and survival of patients with CHD, morbidity remains
significant and questions have arisen as to the role of the microbiome in the inflammatory process. Intestinal
dysbiosis and barrier dysfunction experienced in this patient population are increasingly implicated in critical illness.
This review highlights possible CHD-microbiome interactions, illustrates underlying signaling mechanisms, and
discusses future directions and therapeutic translation of the basic research.
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Introduction

Congenital heart disease (CHD) remains an important risk
for morbidity and mortality in the pediatric population,
accounting for up to 50 % of mortality due to birth de-
fects[1]. Surgical techniques and post-operative manage-
ment have improved survival to adulthood from 30 to
85 % over the past 30 years, but CHD remains a significant
cause of death in patients less than one year of age [2—4].
Contributors to poor outcomes include delayed repair,
multiple organ dysfunction from heart failure, infection,
prematurity, and arrhythmia [4-7]. Although survival to
adulthood continues to improve [8—12], the inflammatory
response and low cardiac output syndrome often seen in
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these patients remain important mediators of disease [13,
14]. Pre- and post-operative inflammatory responses can
lead to abnormalities in the intestinal microbiome and
contribute to worse outcomes following cardiac surgery.

The intestinal microbiome is important in regulating
health and homeostasis [15-18], and its dysregulation
(termed intestinal dysbiosis) has been well studied in
critical illness [19—21] and the cardiac surgical population
[22-24]. With dysbiosis, an imbalance in the normal
microflora of the gut occurs. This imbalance has been im-
plicated in autoimmune disorders, inflammatory bowel
disease, and obesity [18, 19, 25-27]. Recently, hyperten-
sion, stroke, myocardial infarction, diabetes-induced car-
diac dysfunction, and heart failure have also been linked
to intestinal dysbiosis [28—30].

While interactions between the microbiome and car-
diovascular disease continue to grow, CHD has received
little attention in this regard. CHD patients remain at
risk for developing intestinal dysbiosis and intestinal
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epithelial barrier dysfunction (EBD) due to numerous
stressors including abnormal gut perfusion, hypoxemia,
impaired nutrition, and poor cardiac output secondary
to abnormal cardiac function, valvar regurgitation, and/
or residual cardiac shunts [31]. Dysbiosis has been
shown to be present in patients with CHD [32-34]. It is
unclear if dysbiosis or its resolution induces or improves
EBD because the effects of probiotics and synbiotics in
CHD patients have not been well studied [35, 36]. The
interaction between CHD and the microbiome will be
discussed throughout this review and is illustrated in
Fig. 1.

In this review we examine the composition of the in-
testinal microbiome, discuss the evidence of the micro-
biota’s relationship with CHD, and discuss future
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directions for research and therapeutic interventions to
improve outcomes.

The Microbiome

The microbiome is a complex system interacting with
every organ system in the human body [15]. The intes-
tinal microbiome is populated by ~ 100 trillion bacteria
from greater than 2000 species. These bacteria co-exist
and form an integral aspect of homeostasis [37]. There
are six main bacterial phyla which exist in the intestinal
tract: Bacteroidetes, Firmicutes, Actinobacteria, Proteo-
bacteria, Fusobacteria, and Verrucomicrobia. In a
healthy individual, Bacteroidetes and Firmicutes make up
roughly 90 % of the bacterial composition [38]. Proteo-
bacteria, a group of pro-inflammatory opportunistic and
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Fig. 1 Relationship of the microbiome and CHD. CHD results in reduced systemic perfusion and/or hypoxemia to the gut. This can lead to
dysbiosis, an alteration in the normal gut flora, and reduced healthy bacteria and increased pro-inflammatory bacteria. These bacteria produce
cytokine-like molecules, toxins, and metabolites. The byproducts induce intestinal barrier dysfunction, compromising the barrier integrity and a
flux of toxins and cytokines into the systemic circulation. These metabolites lead to increased TMAQO, which effects endothelial activation,
increased thrombotic risk, altered cardiac contractility, and cardiac fibrosis. Dysbiosis also leads to reduced secondary bile acids, which decrease
the inotropy in the heart, and increase circulating cytokines. There is also a reduction in short chain fatty acids, such as butyrate, which yield a
reduction in vascular tone, increased gut inflammation leading to a “leaky gut”. Increased nitrogen respiration leads to reductions in nitric oxide,
maladaptive pulmonary vasoconstriction and promote further growth of pro-inflammatory bacteria. CHD, congenital heart disease; TMAO,
trimethylamine N-oxide; SCFA, short chain fatty acids
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pathogenic bacteria, makes up less than 5% of the bac-
terial population. Proteobacteria include organisms asso-
ciated with disease such as E. coli, Shigella, Salmonella,
Klebsiella, and Pseudomonas [39].

Bacteroidetes and Firmicutes, the predominant constit-
uents, are integral to maintaining gut health. A crude
measure of microbiome well-being is the Firmicutes to
Bacteroidetes (F/B) ratio. In infants, the F/B ratio is ~ 0.4,
while in adults, it is ~ 10 indicating that Firmicutes contri-
bution increases with maturity [40]. Higher F/B ratios
have been associated with obesity, coronary artery disease,
stroke, heart failure, and autoimmune disease [26, 41].

Organisms within different bacterial phyla regulate gut
health through a variety of mechanisms. Increases in
pro-inflammatory bacteria are associated with a decrease
in bile acid synthesis and correlate with EBD [42, 43].
Beneficial bacteria, such as Lactobacillus reuteri and
Lactobacillus rhamnosus, assist in developing the intes-
tinal mucus barrier, an important defense system for the
gut [43]. Similarly, small molecule signaling between
bacterial organisms and host cells via butyrate, trimethy-
lamine N-oxide (TMAO), nitric oxide, cytokines, and
endotoxins have been reported. The magnitudes of these
signals are dynamic in cardiovascular diseases.

The Microbiome and Cardiovascular Disease

The gut microbiome is implicated in a variety of cardio-
vascular disease states, from hypertension and stroke to
heart failure [44]. Elevations of pro-inflammatory bac-
teria, Proteobacteria, in the blood have been associated
with an increased risk of developing cardiovascular
diseases [45]. Dysbiosis is a noted factor in the develop-
ment of atherosclerosis through increases in endotoxins
and cytokines. Lipopolysaccharides (LPS) and peptido-
glycans activate reactive oxygen species and inflamma-
tory pathways when they are released into the
bloodstream [46]. These reactive oxygen species can in-
duce arrhythmias, cardiac remodeling through apoptosis
and necrosis, endothelial smooth muscle hypertrophy,
and oxidative damage to endothelial cells [47, 48]. In-
creased amounts of Enterobacteriaceae, a large family of
pathogenic and LPS-producing organisms within the
phylum Proteobacteria, concurrently with reduced
amounts of Bacteroidetes have been noted in patients
with identified atherosclerotic cardiovascular disease [49,
50]. Patients with heart failure typically have intestinal
wall edema and reduced gut perfusion. This can lead to
bacterial translocation through deregulated gut barrier,
cytokine production, and endotoxin absorption, which
have also been linked to progressive heart failure [51].
This positive feedback loop of heart failure inducing dys-
biosis and dysbiosis exacerbating heart failure is an im-
portant mechanism of disease severity. All of these
changes to the intestinal microbiome can influence the
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development and exacerbation of multiple cardiovascu-
lar disease states.

Other signaling molecules produced by gut microbiota
(e.g. TMAO, butyrate, NO) also have cardiovascular ef-
fects. Trimethylamine (TMA) is produced by intestinal
microbiota in the Firmicutes and Proteobacteria phyla
through conversion of L-carnitine or choline, found in
red meats [52]. This is then converted to TMAOQO in the
liver. High intake of red meat results in a higher amount
of TMAO, which has been associated with the develop-
ment of coronary artery disease, atherosclerosis, and
stroke [44]. Similarly, inflammatory gut bacteria have
also been correlated with elevated TMAO and coronary
plaques [53, 54]. The hypothesis of the heart-gut axis is
growing in acceptance and relates to the production of
increased TMAO and endotoxins, and gut bacterial
translocation in the progression of worsening heart fail-
ure and advancement of atherosclerotic disease [28, 55].

Butyrate is a short-chain fatty acid essential to the host
immune homeostasis and a major energy source for
intestinal epithelial cells [56]. The most abundant
butyrate-producing organisms are Clostridium, Eubac-
terium, Fusobacterium, and Bifidobacterium [57-59].
The depletion of butyrate-producing organisms contrib-
utes to intestinal EBD and upregulated inflammatory re-
sponses in the body. Higher F/B ratio and elevations in
Enterobacteriaceae have been associated with depleted
quantities of butyrate-producing organisms, increased
systemic inflammation, and stroke [60]. A diet high in
fiber promotes butyrate-producing organism growth and
has been shown to stabilize plaque size in atherosclerosis
[59]. Heart failure and coronary artery disease have also
been associated with a reduction in butyrate-producing
organisms [59, 61].

Organisms of the oral and intestinal microbiome that
are engaged in nitrogen respiration are an important
source of nitric oxide (NO). Reactive oxygen and nitro-
gen species reduce nitrates and nitrites to deplete NO
precursors and lead to impairment of NO-dependent
vascular function [62, 63]. If there is depletion of nitric
oxide, due to either reduced production or increased
consumption, this could contribute to pulmonary hyper-
tension (PHTN); recent evidence is beginning to show a
link between the microbiota and PHTN [64].

The Microbiome and congenital Heart Disease

Congenital heart disease, while separate from the above
cardiovascular diseases, shares the risk for heart failure,
hyper-thrombotic states, reduced splanchnic perfusion,
and PHTN [65, 66]. Unique to CHD are complex
lesions, namely single ventricle physiology, which will re-
quire a patient to undergo multiple surgeries using car-
diopulmonary bypass (CPB) and live with hypoxemia for
extended periods. Intestinal hypoxemia promotes
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inflammation, thereby inducing changes to the intestinal
microbiome. Similar changes are observed during re-
duced blood flow [67, 68]. Building from what is known
in the adult population, similar processes and cardiovas-
cular abnormalities can give insight into the micro-
biome’s role in CHD and point to future study.

Intestinal epithelial barrier dysfunction has been asso-
ciated with CPB [69]. This involves hypoxic, ischemic, or
inflammatory injury to intestinal cells [70-73]. An intact
intestinal barrier is a potent defense against enteric path-
ogens as well as inflammatory cytokines and toxins
secreted from bacteria in the gut. Many patients with
CHD experience impaired gut perfusion, either from
poor cardiac output, hypoxemia-related vasoconstriction,
or both. Intestinal dysbiosis may play a role in worsening
EBD by enabling growth of LPS-producing bacteria, such
as Escherichia coli and Enterobacteriaceae, leading to
systemic inflammation [72]. Reduced gut perfusion and
increased growth of Enterobacteriaceae are risk factors
in the development of necrotizing enterocolitis [7, 74].
While necrotizing enterocolitis is a relatively uncommon
pathology, it poses a risk to these patients and requires
exposure to antibiotics, which can further disrupt the
normal gut flora[74]. One mechanism for development
of intestinal EBD includes inflammation following CPB
leading to worsened dysbiosis and activation of cytokines
and toxins from pro-inflammatory bacteria [69, 75, 76].
Roughly 25 % of patients with CHD will require cardiac
surgery with CPB [77]. We know existing dysbiosis is
exacerbated following CPB [34]. Ischemia-induced EBD
and dysbiosis, secondary to low cardiac output syndrome
in the post-operative period, can also occur [78]. This
may result in reduced populations of butyrate-producing
organisms [79]. Butyrate is responsible for maintaining
the intestinal barrier through modulation of G-coupled
proteins and transcription factors, namely the nuclear
transcription factor-kB (NF-kB) pathway, to upregulate
regulatory T-cells. Loss of butyrate producing organisms
can lead to EBD resulting in passive leak of lipopolysac-
charides and other microbial toxins, which then bind to
toll-like receptors on T cells activating the innate
immune response [59, 61, 80, 81]. A third mechanism
involves elevated TMAO production leading to EBD and
activated inflammatory processes causing further cardiac
injury [81-83]. TMAO is known to be associated with
barrier dysfunction and activation of inflammatory cyto-
kines [39, 84].

Hypoxemia and inflammatory insults are also known
activators of hypoxia-inducible factor 1 (HIF-1) and NF-
KB [72]. HIF-1 is a transcription factor known as the
master regulator of cellular and developmental responses
to hypoxia [85]. NF-«B is a family of transcription
factors involved in activation of cytokines and other in-
flammatory  processes  [86]. Organisms  within
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Proteobacteria and Firmicutes can upregulate the NF-kB
pathway through binding of damage-associated and
pathogen-associated molecular patterns found on epithe-
lial cells, leading to vascular inflammation and cytokine
activation [87-91]. During hypoxemic conditions, En-
terobacteriaceae have been shown to increase both NEF-
kB and HIF-1a signaling through interferon gamma acti-
vation, leading to de-regulation of intestinal epithelial
tight junction proteins and activation of inflammatory
cytokines [92-96]. Suppression of HIF-la improves
intestinal EBD [72, 95]. HIF-1a has been shown to be
upregulated in both cyanotic and acyanotic cardiac le-
sions [97]. HIF-la and NF-kB regulate each other
through both inflammatory and hypoxic activation [98—
100]. In patients with CHD, there can be inflammation
from reduced splanchnic blood flow, hypoxemia, or a
combination of both. Figure 2 illustrates how these
mechanisms are involved in the development of systemic
inflammation through intestinal dysbiosis and EBD
under hypoxemic and ischemic conditions.

Bacteria and diet may also be involved in promoting
PHTN. CHD is a high risk population for PHTN, occur-
ring at rates of 10-30 % [101]. Pro-inflammatory bac-
teria reduce circulating NO and NO precursors [102].
Disproportionate vasoconstriction and endothelial re-
modeling drives development of PHTN, and a reduction
in bioavailability of NO signaling is a hallmark of PHTN
[103]. Risks for developing this in CHD include excessive
blood flow to the pulmonary system and a persistent
hypoxemic state [104, 105]. Adult studies have shown
the oral and intestinal flora correlate with increased risk
of PHTN [64]. Certain organisms, such as Firmicutes
and Actinobacteria, result in increased plasma arginase
and ornithine transcarbamylase, thereby reducing the
amount of circulating L-arginine, the major precursor of
NO [103]. These same organisms are also involved in
production of TMAO [64]. Proteobacteria induce further
denitrification resulting in reduction beyond NO to N,O
and NH; [106]. Metabolism of nitrate is an important
pathway for production of NO, and dysbiosis with ele-
vated Enterobacteriaceae can consume NO reducing the
availability of this potent vasodilator [106, 107].

Non-traditional signaling pathways involving micro-
RNA (miRNA) also influence CHD and the microbiome
[108, 109]. There are miRNA’s associated with intestinal
dysbiosis, barrier dysfunction, and CHD. These small,
evolutionally conserved, non-coding RNA regulate gene
expression [110]. Specific miRNA have been identified
to be involved in cardiac embryologic development, and
their dysregulation can lead to structural abnormalities
[111-117]. Upregulated miR-146 may reduce hypoxia-
induced cardiomyocyte apoptosis through inhibition of
the NF-xB pathway [118]. Studies have also found
miRNA produced by intestinal epithelial cells regulate
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Fig. 2 CHD-induced activation of HIF-1a and NF-kB. Hypoxia and inflammation induced activation of HIF-1a and NF-kB pathways leads to
intestinal barrier dysfunction and systemic inflammation. Hypoxia with reduced cardiac output induces selection of pro-inflammatory bacteria
activating NK and T cells yielding increased production of IFN-y. IFN-y signals activation of NF-kB transcription factors and subsequent activation
of the HIF-1a pathway intestinal epithelial cells. HIF-1a activates pro-inflammatory cytokines leading to intestinal barrier dysfunction and
permeability of bacteria, toxins, and cytokines into systemic circulation. Hypoxia also induces LPS producing bacterial leading to immune cell
activation and subsequent inflammatory cytokine cascade. This induces intestinal barrier dysfunction leading to systemic inflammation. Hypoxia
also leads to increase pattern recognition receptors on intestinal epithelial cells which bind to pro-inflammatory microbe ligands activating the
HIF-1a pathway and NF-kB transcription factors. This induces a pro-inflammatory cell response as well as host protective measures including anti-
apoptosis, anti-oxidant, and anti-microbial peptides. This feeds back to inhibit the barrier disruption and cytokine activation. When patients
undergo CPB, this increased systemic inflammation induces significant reactive oxygen species and cytokine activation leading to severe barrier
dysfunction and exacerbating the systemic inflammatory process following surgery with CPB. CPB, cardiopulmonary bypass; CO, cardiac output;
EBD, epithelial barrier dysfunction; HIF, hypoxia-inducible factor; IEC, intestinal epithelial cell; IFN-y, interferon gamma; LPS, lipopolysaccharide; NF-
kB, nuclear factor kappa B cells; NK, natural killer; ROS, reactive oxygen species

the expression of gut microbes [119-121]. MiR-515-5p  have been identified in both the microbiome and CHD,
and miR1226-5p promote growth of Fusobacterium no study has demonstrated miRNA with coordinated
nucleatum and Escherichia coli, respectively [119]. Both  roles in both CHD and the microbiome. The overlap of
miR-191 and miR-212 are involved in intestinal EBD  miRNA in the microbiome, CHD, and EBD, as well as
through disruption of zonula occludens-1, a protein in-  the complex role of miRNA in regulation of cardiac dis-
volved in cell tight junctions [122, 123]. While miRNA ease, is illustrated in Fig. 3.
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Current gaps in knowledge

Microbiome colonization and diversity is well docu-
mented in adult populations of cardiovascular disease,
and we continue to learn more about its importance.
Very little data exists evaluating the microbiome in
CHD. Details related to microbial disparity in varying
cardiac lesions, such as cyanotic and acyanotic lesions,
and how these change following surgical repair and palli-
ation will be important area of investigation. Dysbiosis
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has been identified in patients with CHD [32-34], but
the effects of probiotics or synbiotics has only been
briefly evaluated [35, 36]. This area of research holds po-
tential to identify therapeutic interventions aimed to im-
prove morbidity and mortality in this patient population.
Dilli and colleagues [35] demonstrated reduced sepsis,
hospital length of stay, and mortality following the use
of probiotics in patients with CHD. Probiotics have also
been shown to reduce the degree of mucosal
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potential regulatory mechanisms of miRNA on cardiac and vascular function, intestinal epithelium, and the microbiome in CHD. MiR-1226-5p
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inflammation following CPB in an animal study [124].
Rectified dysbiosis may also facilitate better regulation of
maladaptive vasoconstriction to reduce the PHTN seen
in these patients.

Further investigation is needed to evaluate signaling
mechanisms for EBD, and to evaluate the relationship to
stress, altered blood flow, and hypoxia leading to in-
creased systemic inflammation. It is also unknown how
small molecules, such as butyrate, TMAO, and nitrates
influence inflammatory pathways, such as HIF-la and
NF-«B. Additionally, how these signaling pathways are
upregulated in settings of cyanotic heart lesions is an im-
portant area which will improve our understanding of
how systemic inflammation is generated. As EBD offers
a mechanism for toxins and inflammatory metabolites to
enter systemic circulation [125-127], methods to
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prevent or resolve the barrier dysfunction both pre- and
post-operatively may also hold promise as therapeutic
interventions.

Metagenomic and metabolomic are other tools avail-
able to help elucidate mechanisms of dysbiosis and
enzyme activation in patients with CHD, which will
potentially discern linkages between altered gut flora
and systemic inflammation. Biomarkers and pro-
inflammatory mediators associated with pronounced
systemic inflammation may yield targets by which to
identify patients with higher risks of low cardiac output
syndrome following CPB. This inflammatory cascade
may be suppressed with improvements in the micro-
biota. There may also be a role to activate specific
miRNA to promote bacterial growth and regulate in-
flammatory pathways. Studies to identify miRNA that
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are involved in both CHD, the microbiome, and EBD
would also improve our understanding of these pro-
cesses as well as offer potential therapeutic targets to
reduce inflammation in these patients. While studies re-
garding the influence of the microbiome and outcomes
in CHD are lacking, there is importance evaluating inter-
ventions and expanding our understanding of these
relationships. A flow chart indicating mechanisms and
feedback promoting ongoing inflammation is provided
in Fig. 4.

Conclusions

Intestinal dysbiosis is an important area of focus in pa-
tients with congenital heart disease and involves links
with intestinal barrier dysfunction and systemic inflam-
mation. Larger studies evaluating the microbiome in this
patient population are needed to heighten the under-
standing of how changes in the microbiota affect CHD
outcomes. This understanding will assist in development
of animal models evaluating interventions on the micro-
biome and the degree of systemic inflammation follow-
ing CPB. Potential interventions include probiotics and
synbiotics as well as the possibility of pre-operative fecal
microbiome transplant to improve the gut proportion of
healthy, gut-protective bacteria. Intestinal dysbiosis
present in patients with CHD may be a contributing fac-
tor to the intestinal EBD following cardiac repair and
CPB. Improving the intestinal microbiome to reduce
pro-inflammatory bacteria and increase butyrate produ-
cing organisms, reduce nitrate respiration, and modulate
pathways such as HIF, NF-kB, and miRNA are import-
ant aims for future investigation. These may play a key
role in increasing our understanding of signaling mecha-
nisms and identify therapeutic targets. There remains
much to be understood about the microbiome’s influ-
ence on homeostasis in CHD so that additional improve-
ments in health, surgical outcomes, and the quality of
life may be accomplished.
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