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1. Introduction
The Global Financial Crisis (GFC) of 2008 has changed financial markets permanently, especially
with regard to the pricing of derivatives. Before the GFC, derivative pricing was typically done using
the Black–Scholes model (Black and Scholes, 1973). The basic Black–Scholes theory presumes,
in essence, that transactions have no balance sheet impact for a derivative market maker. In a
pre-GFC environment participants ignored most of their balance sheet costs. However, post-GFC
derivatives pricing has evolved to account for numerous frictional costs; examples include differential
rate spreads, collateral, as well as default intensity of derivative counterparts.

An important assumption required for the Black–Scholes framework is the existence of a unique
risk-free rate. This is not necessarily a reasonable assumption. Piterbarg (2010) developed a
framework that specifically relaxes this assumption. The purpose of the model derived by Piterbarg
(2010) is to price derivatives in the presence of collateral.

When using the Black–Scholes model for the pricing of derivatives, it is also assumed that
volatility remains constant over time. Heston (1993) extended the model to incorporate stochastic
volatility. Later, Heston and Nandi (2000) derived a model in which volatility follows a generalised
autoregressive conditional heteroskedasticity (GARCH) process that allows for a closed-form solution
for European call options. Note that this model assumes the existence of a risk-free rate and no
counterparty credit risk.

As a solution to the impractical assumption of no counterparty credit risk in the Heston–Nandi
model, Wang (2017) extended this model to incorporate counterparty credit risk for vanilla options.
This has also been extended to exotic options by Wang (2020). However, this model also assumes
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the existence of a risk-free rate. Furthermore, Von Boetticher (2017) extended the work by Heston
and Nandi (2000) to incorporate the Piterbarg framework.

Quantitative finance has developed into a multidisciplinary field of study incorporating methods
of mathematical statistics, physics, and numerical analysis, for example. In this paper, we show
a rigorous and pedagogical extension of the well-known Heston–Nandi model to the pricing of
default risky collateralised options in a mathematical statistics setting. Essentially, the work by
Von Boetticher (2017) is extended to the pricing of collateralised options using the Heston–Nandi
model in the Piterbarg framework, in the presence of counterparty credit risk. This is especially
relevant after the GFC given regulatory changes in the industry.

The rest of this paper is structured as follows. Section 2 reviews the recent and relevant literature,
Section 3 focuses on the theoretical framework and derivation of the pricing model, Section 4 focuses
on the empirical results of a numerical example, and finally concluding remarks are considered in
Section 5.

2. Literature review
Research focusing on the pricing of derivatives using GARCH models to model volatility is well
documented in the literature. Duan (1995) initially considered a risk-neutral pricing framework
based on GARCH volatility modelling. This allowed for the pricing of derivatives with time-varying
volatility in the Black and Scholes (1973) framework. A shortcoming of the model by Duan (1995)
(based on a non-linear asymmetric GARCH model) is that it does not have a closed-form solution,
and therefore numerical methods are required.

Heston and Nandi (2000) extended the work by Duan (1995) and derived a closed-form solution
for vanilla options when volatility is modelled using a GARCH process. This model addresses
the assumption of constant volatility in the Black–Scholes framework. However, it still requires
the assumption of a unique risk-free rate and no credit risk; these are not necessarily reasonable
assumptions.

The GFC of 2008 has changed the way in which derivative instrument trades are conducted. An
important factor that needs to be considered in modern pricing frameworks is the presence of collateral
(Hunzinger and Labuschagne, 2015). Piterbarg (2010) extended the Black–Scholes framework to the
pricing of derivatives in the presence of collateral. This framework allows for three different interest
rates; the discount rate is dependent on the amount of collateral that is posted. Von Boetticher (2017)
extended the work by Piterbarg (2010) to incorporate the Heston–Nandi methodology to address the
constant volatility assumption.

The Heston–Nandi model in the Black–Scholes framework requires the assumption of no counter-
party credit risk. The GFC of 2008 has clearly shown that counterparty credit risk is an important
factor to consider when pricing derivative instruments. To address this problem, Wang (2017)
extended the Heston–Nandi model to incorporate counterparty credit risk. This model allows for
correlation between the conditional variance of the underlying asset and the default intensity process.

Wang (2017) shows numerically that vanilla options are cheaper in the presence of counterparty
credit risk. Intuitively, this makes sense because the option holder suffers losses if the counterpary
defaults. This model was later extended to the pricing of executive stock options (Wang, 2018) and
Asian options (Wang, 2020). However, this model still relies on a unique risk-free rate (single-curve
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framework), and does not take collateral into account. Therefore, this paper contributes to the
existing literature by extending the Heston–Nandi model to the pricing of derivatives in the presence
of collateral and counterparty credit risk.

3. Theoretical framework
In this section, the theory applied in this paper is outlined. This section is divided into four
subsections. The first focuses on the Heston–Nandi model (in the Black–Scholes framework).
The second subsection briefly discusses the Piterbarg framework (Black–Scholes with collateral).
Thereafter, the Heston–Nandi model with collateral is briefly outlined. Finally, the Heston–Nandi
model with collateral and counterparty credit risk is considered.

3.1 Heston–Nandi model
The main assumption of the model derived by Heston and Nandi (2000) is that the asset price
dynamics under the real-world measure, 𝑃, are given by

ln
(
𝑆𝑡
𝑆𝑡−1

)
= 𝑟 + _ℎ𝑡 +

√︁
ℎ𝑡 𝑧𝑡 ,

where 𝑆𝑡 is the asset price at time 𝑡, 𝑟 is the constant risk-free rate, _ is the unit risk premium, and 𝑧𝑡
is a standard normal random variable. Furthermore, the conditional variance is modelled using the
following GARCH process:

ℎ𝑡 = 𝛼0 + 𝛽1ℎ𝑡−1 + 𝛼1 (𝑧𝑡−1 − 𝛿1
√︁
ℎ𝑡−1)2.

The conditional generating function (given filtration F𝑡 ) of the asset price under the measure 𝑃 is
given by

𝑓𝐵𝑆 (𝑡, 𝜙) = E𝑃
[
𝑆
𝜙
𝑇 |F𝑡

]
.

The conditional generating function is dependent on the parameters and state variables, however, this
is suppressed for notational convenience.

Heston and Nandi (2000) show that the asset price dynamics under the risk-neutral measure 𝑄 in
the Black–Scholes framework are given by

ln
(
𝑆𝑡
𝑆𝑡−1

)
= 𝑟 − 1

2
ℎ𝑡 +

√︁
ℎ𝑡 𝑧

∗
𝑡 ,

where

ℎ𝑡 = 𝛼0 + 𝛽1ℎ𝑡−1 + 𝛼1 (𝑧∗𝑡−1 − 𝛿∗1
√︁
ℎ𝑡−1)2, (1)

𝑧∗𝑡 = 𝑧𝑡 +
(
_ + 1

2

) √︁
ℎ𝑡 ,

𝛿∗1 = 𝛿1 + _ + 1
2
.

The risk-neutral generating function (ensures that the risk-neutral expected price at time 𝑇 > 𝑡 is
𝑆𝑡𝑒

𝑟 (𝑇−𝑡 ) ) takes the following log-linear form:

𝑓 ∗𝐵𝑆 (𝑡, 𝜙) = 𝑆𝜙𝑡 exp {𝐴𝐵𝑆 (𝑡, 𝜙) + 𝐵𝐵𝑆 (𝑡, 𝜙)ℎ𝑡+1} ,
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where

𝐴𝐵𝑆 (𝑡, 𝜙) = 𝜙𝑟 + 𝐴𝐵𝑆 (𝑡 + 1, 𝜙) + 𝛼0𝐵𝐵𝑆 (𝑡 + 1, 𝜙) − 1
2

ln (1 − 2𝛼1𝐵𝐵𝑆 (𝑡 + 1, 𝜙)) , (2)

𝐵𝐵𝑆 (𝑡, 𝜙) = 𝛽1𝐵𝐵𝑆 (𝑡 + 1, 𝜙) − 1
2
𝛿2

1 + 𝜙(_ + 𝛿1) + (𝜙 − 𝛿1)2

2 (1 − 2 (𝛼1𝐵𝐵𝑆 (𝑡 + 1, 𝜙))) . (3)

These coefficients can be calculated recursively using the terminal conditions

𝐴𝐵𝑆 (𝑇, 𝜙) = 𝐵𝐵𝑆 (𝑇, 𝜙) = 0.

Heston and Nandi (2000) explain that the generating function of the spot price is the moment
generating function of the logarithm of the spot price. Hence, 𝑓 ∗𝐵𝑆 (𝑡, 𝑖𝜙) is the characteristic function
of the logarithm of the spot price (where 𝑖 =

√
−1). Using the risk-neutral dynamics, it is possible to

derive a closed form formula for a European call option. The Heston–Nandi price of a European call
option is stated in the theorem below.

Theorem 1 (Heston–Nandi call option in the Black–Scholes framework). The price of a European
call option at time 𝑡 is given by

𝑉𝑡 =
1
2
𝑆𝑡 + 𝑒

−𝑟 (𝑇−𝑡 )

𝜋

∫ ∞

0
Re

[
𝐾−𝑖𝜙 𝑓 ∗𝐵𝑆 (𝑡, 𝑖𝜙 + 1)

𝑖𝜙
𝑑𝜙

]

− 𝐾𝑒−𝑟 (𝑇−𝑡 )
(
1
2
+ 1
𝜋

∫ ∞

0
Re

[
𝐾−𝑖𝜙 𝑓 ∗𝐵𝑆 (𝑡, 𝑖𝜙)

𝑖𝜙
𝑑𝜙

])
, (4)

where Re[·] denotes the real portion of a complex number.

Proof. See Heston and Nandi (2000). ■

3.2 The Piterbarg framework
An important assumption required for the Heston–Nandi model in the Black–Scholes framework is
the existence of a unique risk-free rate, which is not necessarily a practical assumption. The purpose
of the model derived by Piterbarg (2010) is the pricing of derivatives in the presence of collateral. The
Piterbarg framework is an extension of the Black–Scholes framework, which relaxes the assumption
of a unique risk-free rate.

The framework comprises three interest rates, the collateral rate (𝑟𝐶 ), the repurchase agreement
rate (𝑟𝑅), and the funding rate (𝑟𝐹). In general, we have that

𝑟𝐶 ≤ 𝑟𝑅 ≤ 𝑟𝐹 ,

the collateral rate is associated with least risk. It is assumed that collateral is posted in the form of
cash. The funding rate is associated with the most risk (unsecured lending), and finally a repurchase
agreement (collateralised loan) is less risky than unsecured lending; however, there is more risk
associated with the underlying asset than there is with cash.

Piterbarg (2010) assumes the following asset price dynamics under the real world measure, 𝑃:

𝑑𝑆𝑡 = `𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡𝑑𝑊𝑡 ,
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where ` is the drift, 𝜎 is the implied volatility, and 𝑊𝑡 is a standard Brownian Motion under 𝑃. In
the Piterbarg framework, pricing is done under the 𝑄𝑟𝑅 measure. Hence, the dynamics under the
risk-neutral measure 𝑄𝑟𝑅 are given by

𝑑𝑆𝑡 = 𝑟𝑅𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡𝑑�̃�𝑡 ,
where �̃�𝑡 is a standard Brownian Motion under 𝑄𝑟𝑅 . Using a replicating portfolio argument and an
application of the Feynman–Kac theorem (see Shreve, 2004), it is possible to derive an expression
for the price of a call option in the Piterbarg framework (essentially a derivation of the Black–Scholes
model with different interest rates); this is given in the theorem below:

Theorem 2 (Piterbarg call option). The price of a European call option at time 𝑡 is given by

𝑉𝑡 = E
𝑄𝑟𝑅

[
𝑒−

∫ 𝑇

𝑡
𝑟𝐶 (𝑢)𝑑𝑢 (𝑆𝑇 − 𝐾)+ |F𝑡

]

− E𝑄𝑟𝑅

[∫ 𝑇

𝑡
𝑒−

∫ 𝑇

𝑡
𝑟𝐶 (𝑢)𝑑𝑢 (𝑟𝐹 (𝑠) − 𝑟𝐶 (𝑠)) (𝑉 (𝑠) − 𝛾𝐶 (𝑠))𝑑𝑠 |F𝑡

]
,

where 𝛾𝐶 denotes the collateral account.

Proof. See Piterbarg (2010). ■

It is clear from the above that the price of a fully collateralised call option is given by

𝑉 (𝐹𝐶 )
𝑡 = E𝑄𝑟𝑅

[
𝑒−

∫ 𝑇

𝑡
𝑟𝐶 (𝑢)𝑑𝑢 (𝑆𝑇 − 𝐾)+ |F𝑡

]
, (5)

and the price of a zero collateral call option is given by

𝑉 (𝑍𝐶 )
𝑡 = E𝑄𝑟𝑅

[
𝑒−

∫ 𝑇

𝑡
𝑟𝐹 (𝑢)𝑑𝑢 (𝑆𝑇 − 𝐾)+ |F𝑡

]
.

The extended Heston–Nandi model is considered in the next subsection.

3.3 Heston–Nandi model with collateral
The Heston–Nandi model in the Black–Scholes framework relies on the existence of a unique risk-free
rate. Therefore, Von Boetticher (2017) extended the model by Heston and Nandi (2000) to price
collateralised options; this was done in the Piterbarg framework. Von Boetticher (2017) shows that
the Heston–Nandi asset price dynamics under measure 𝑄𝑟𝑅 take the following form:

ln
(
𝑆𝑡
𝑆𝑡−1

)
= 𝑟𝑅 − 1

2
ℎ𝑡 +

√︁
ℎ𝑡 𝑧

∗
𝑡 , (6)

where ℎ𝑡 is the same as (1). Furthermore, the log-linear form of the risk-neutral generating function
is given by

𝑓 ∗𝑃 (𝑡, 𝜙) = 𝑆𝜙𝑡 exp {𝐴𝑃 (𝑡, 𝜙) + 𝐵𝑃 (𝑡, 𝜙)ℎ𝑡+1} ,
where

𝐴𝑃 (𝑡, 𝜙) = 𝜙𝑟𝑅 + 𝐴𝑃 (𝑡 + 1, 𝜙) + 𝛼0𝐵𝑃 (𝑡 + 1, 𝜙) − 1
2

ln (1 − 2𝛼1𝐵𝑃 (𝑡 + 1, 𝜙)) ,

𝐵𝑃 (𝑡, 𝜙) = 𝛽1𝐵𝑃 (𝑡 + 1, 𝜙) − 1
2
𝛿2

1 + 𝜙(_ + 𝛿1) + (𝜙 − 𝛿1)2

2 (1 − 2 (𝛼1𝐵𝑃 (𝑡 + 1, 𝜙))) .
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Clearly, 𝐴𝑃 (𝑡, 𝜙) and 𝐵𝑃 (𝑡, 𝜙) are the same as equations (2) and (3) respectively, the only difference
is that the risk-free rate 𝑟 is replaced by the repurchase agreement rate 𝑟𝑅 . Using the boundary
conditions

𝐴𝑃 (𝑇, 𝜙) = 𝐵𝑃 (𝑇, 𝜙) = 0,

𝐴𝑃 (𝑡, 𝜙) and 𝐵𝑃 (𝑡, 𝜙) are calculated recursively.
The Heston–Nandi price of a European call option in the Piterbarg framework is given in the

following theorem.

Theorem 3 (Heston–Nandi call option in the Piterbarg framework). The Heston–Nandi price of a
fully collateralised call option at time 𝑡 is given by

𝑉 (𝐹𝐶 )
𝑡 =

1
2

(
𝑆(𝑡)𝑒

∫ 𝑇

𝑡
(𝑟𝑅 (𝑢)−𝑟𝐶 (𝑢) )𝑑𝑢 − 𝐾𝑒

∫ 𝑇

𝑡
𝑟𝐶 (𝑢)𝑑𝑢

)
+ 𝐾
𝜋
𝜓(𝑟𝐶 ),

where the function

𝜓(𝑟𝐶 ) = 𝑒−
∫ 𝑇

𝑡
𝑟𝐶 (𝑠)𝑑𝑠 𝑒

∫ 𝑇

𝑡
𝑟𝑅 (𝑠)𝑑𝑠

𝐾

∫ ∞

0
Re

[
𝐾−𝑖𝜙 𝑓 ∗𝑃 (𝑡 ,𝑖𝜙+1)

𝑖𝜙

]
𝑑𝜙

− 𝑒−
∫ 𝑇

𝑡
𝑟𝐶 (𝑠)𝑑𝑠

∫ ∞

0
Re

[
𝐾−𝑖𝜙 𝑓 ∗𝑃 (𝑡 ,𝑖𝜙)

𝑖𝜙

]
𝑑𝜙,

and 𝑓 ∗𝑃 (𝑡, 𝜙) ensures that E𝑄𝑟𝑅 [𝑆𝑇 |F𝑡 ] = 𝑆𝑡𝑒𝑟𝑅 (𝑇−𝑡 ) . The price of a zero collateral call option is,

𝑉 (𝑍𝐶 )
𝑡 =

1
2

(
𝑆(𝑡)𝑒

∫ 𝑇

𝑡
(𝑟𝑅 (𝑢)−𝑟𝐹 (𝑢) )𝑑𝑢 − 𝐾𝑒

∫ 𝑇

𝑡
𝑟𝐹 (𝑢)𝑑𝑢

)
+ 𝐾
𝜋
𝜓(𝑟𝐹).

Proof. See Von Boetticher (2017), Section 3.2. ■

It is clear from the above that if 𝑟𝐶 = 𝑟𝑅 = 𝑟𝐹 = 𝑟, the Heston–Nandi price of a call option in the
Black–Scholes framework (4) is obtained. The use of the above model addresses the unreasonable
assumption of a unique risk-free rate. However, it does not take the effect of counterparty credit risk
into account; this is the focus of the next subsection.

3.4 Heston–Nandi model with collateral and counterparty credit risk
The focus of this subsection is the derivation of the Heston–Nandi price of a default risky European
call option (in the presence of collateral) in the Piterbarg framework. The overall objective is to
extend the model derived by Von Boetticher (2017) to incorporate counterparty credit risk by making
use of an approach similar to Wang (2017).

The asset price dynamics under measure𝑄𝑟𝑅 are consistent with equation (6). The random default
time 𝜏 is modelled as the first jump time of a Cox process with intensity ^𝑡 (Wang, 2017). The
following 𝑄𝑟𝑅 dynamics are assumed for the default intensity:

^𝑡 = 𝜔 + 𝑏^𝑡−1 + 𝑎𝑧 (^ )𝑡−1.

The mean arrival rate of default in (𝑡, 𝑡 + 1] is given by

𝑄𝑟𝑅 (𝜏 > 𝑡 + 1|F𝑡 ) = E𝑄𝑟𝑅 [𝑒−^𝑡 ] = 𝑒−^𝑡+1 .
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We also assume that 𝑧∗𝑡 and 𝑧 (^ )𝑡 have correlation coefficient 𝜌.
Wang (2017) explains that when pricing a default risky call option, two parts need to be considered.

The first part is if no default event during the life of the trade, in this case the payoff, is equal to
the payoff of a vanilla call option (full collateral or zero collateral in this case). The second part
considers that a default event occurs during the life of the trade, in this case only a portion of the
option value can be recovered.

By making use of (5) and the argument above, the price of a default risky European call option,
which is fully collateralised, is formulated as follows (assuming constant interest rates):

�̃� (𝐹𝐶 )
𝑡 = 𝑒𝑟𝐶 (𝑇−𝑡 )E𝑄𝑟𝑅

[
1{𝜏>𝑇 } (𝑆𝑇 − 𝐾)+

��F𝑡 ]
+ E𝑄𝑟𝑅

[
1{𝑡≤𝜏≤𝑇 }\𝑒𝑟𝐶 (𝜏−𝑡 )E𝑄𝑟𝑅

[
𝑒𝑟𝐶 (𝑇−𝜏 ) (𝑆𝑇 − 𝐾)+

��F𝜏 ]
����F𝑡

]

= 𝑒𝑟𝐶 (𝑇−𝑡 )E𝑄𝑟𝑅
[
1{𝜏>𝑇 } (𝑆𝑇 − 𝐾)+

��F𝑡 ] + \𝑒𝑟𝐶 (𝑇−𝑡 )E𝑄𝑟𝑅
[
1{𝑡≤𝜏≤𝑇 } (𝑆𝑇 − 𝐾)+

��F𝑡 ]
= 𝑒𝑟𝐶 (𝑇−𝑡 )E𝑄𝑟𝑅

[
1{𝜏>𝑇 } (𝑆𝑇 − 𝐾)+ + \1{𝑡≤𝜏≤𝑇 } (𝑆𝑇 − 𝐾)+

��F𝑡 ] ,
where \ is the recovery rate, and 1{𝜏>𝑇 } is an indicator function that takes a value of one if a default
event occurs after the expiry of the option (𝜏 > 𝑇) and zero otherwise. The value of a zero collateral
option is expressed as

�̃� (𝑍𝐶 )
𝑡 = 𝑒𝑟𝐹 (𝑇−𝑡 )E𝑄𝑟𝑅

[
1{𝜏>𝑇 } (𝑆𝑇 − 𝐾)+ + \1{𝑡≤𝜏≤𝑇 } (𝑆𝑇 − 𝐾)+

��F𝑡 ] .
It is important to note that 1{𝑡≤𝜏≤𝑇 } = 1 − 1{𝜏>𝑇 } . Hence, the fully collateralised price can be
simplified as follows:

�̃� (𝐹𝐶 )
𝑡 = 𝑒𝑟𝐶 (𝑇−𝑡 )E𝑄𝑟𝑅

[
1{𝜏>𝑇 } (𝑆𝑇 − 𝐾)+ + \1{𝑡≤𝜏≤𝑇 } (𝑆𝑇 − 𝐾)+

��F𝑡 ]
= (1 − \)𝑒𝑟𝐶 (𝑇−𝑡 )E𝑄𝑟𝑅

[
1{𝜏>𝑇 } (𝑆𝑇 − 𝐾)+

��F𝑡 ] + \𝑒𝑟𝐶 (𝑇−𝑡 )E𝑄𝑟𝑅
[(𝑆𝑇 − 𝐾)+

��F𝑡 ]
= (1 − \)𝑒𝑟𝐶 (𝑇−𝑡 ) (𝐼1 − 𝐾𝐼2) + \𝑒𝑟𝐶 (𝑇−𝑡 ) (𝐼3 − 𝐾𝐼4),

where

𝐼1 = E𝑄𝑟𝑅
[
𝑆𝑇1{𝜏>𝑇,𝑆𝑇≥𝐾 }

��F𝑡 ] , (7)
𝐼2 = E𝑄𝑟𝑅

[
1{𝜏>𝑇,𝑆𝑇≥𝐾 }

��F𝑡 ] , (8)
𝐼3 = E𝑄𝑟𝑅

[
𝑆𝑇1{𝑆𝑇≥𝐾 }

��F𝑡 ] , (9)
𝐼4 = E𝑄𝑟𝑅

[
1{𝑆𝑇≥𝐾 }

��F𝑡 ] . (10)

𝐼2 is the probability of the counterparty surviving up to time 𝑇 and the option expiring in the money
(𝐼1 scales this value by the expected value of the underlying price at expiry). 𝐼4 is the probability
of the option expiring in the money (default risk is not taken into account), 𝐼4 scales this value by
the expected value of the underlying price at expiry. The zero collateral price of a default risky call
option takes a similar form:

�̃� (𝑍𝐶 )
𝑡 = (1 − \)𝑒𝑟𝐹 (𝑇−𝑡 ) (𝐼1 − 𝐾𝐼2) + \𝑒𝑟𝐹 (𝑇−𝑡 ) (𝐼3 − 𝐾𝐼4).

Deriving closed form expressions for (7) to (10) will allow for the derivation of a closed form
expression for the Heston–Nandi price of an option in the Piterbarg framework in the presence of
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counterparty credit risk. Wang (2017) derived an expression for the characteristic function under the
𝑄 measure. Under the 𝑄𝑟𝑅 measure the derivation is the same, the only difference is the drift of the
underlying asset is equal to 𝑟𝑅 . In this case, the risk-neutral generating (log-linear) function is given
by

𝑓 ∗𝑃𝐷 (𝑡, 𝜙1, 𝜙2) = exp

{
𝜙1𝑥𝑡 + 𝜙2

𝑡∑︁
𝑠=1

^𝑠 + 𝐴𝑃𝐷 (𝑡, 𝜙1, 𝜙2)
}

× exp
{
𝐵 (1)
𝑃𝐷 (𝑡, 𝜙1, 𝜙2)ℎ𝑡+1 + 𝐵 (2)

𝑃𝐷 (𝑡, 𝜙1, 𝜙2)^𝑡+1

}
,

where 𝑥𝑇 = ln 𝑆𝑇 and

𝐴𝑃𝐷 (𝑡, 𝜙1, 𝜙2) = 𝜙1𝑟𝑅 + 𝐴𝑃𝐷 (𝑡 + 1, 𝜙1, 𝜙2) + 𝛼0𝐵
(1)
𝑃𝐷 (𝑡 + 1, 𝜙1, 𝜙2)

+ 𝜔𝐵 (2)
𝑃𝐷 (𝑡 + 1, 𝜙1, 𝜙2) − 1

2
ln

(
1 − 2𝑎𝐵 (2)

𝑃𝐷 (𝑡 + 1, 𝜙1, 𝜙2) (1 − 𝜌2
)

− 1
2

ln

(
1 − 2

(
𝛼1𝐵

(1)
𝑃𝐷 (𝑡 + 1, 𝜙1, 𝜙2) +

𝑎𝐵 (2)
𝑃𝐷 (𝑡 + 1, 𝜙1, 𝜙2)𝜌2

1 − 2𝑎𝐵 (2)
𝑃𝐷 (𝑡 + 1, 𝜙1, 𝜙2) (1 − 𝜌2)

))
,

𝐵 (1)
𝑃𝐷 (𝑡, 𝜙1, 𝜙2) = 𝛽1𝐵

(1)
𝑃𝐷 (𝑡 + 1, 𝜙1, 𝜙2) − 1

2
𝜙1 + 𝛼1 (𝛿1 + _)2 + 𝐵 (1)

𝑃𝐷 (𝑡 + 1, 𝜙1, 𝜙2)

+ (𝜙1 − 2𝛼1 (𝛿1 + _)𝐵 (1)
𝑃𝐷 (𝑡 + 1, 𝜙1, 𝜙2))2

2
(
1 − 2

(
𝛼1𝐵

(1)
𝑃𝐷 (𝑡 + 1, 𝜙1, 𝜙2) + 𝑎𝐵

(2)
𝑃𝐷 (𝑡+1,𝜙1 ,𝜙2 )𝜌2

1−2𝑎𝐵(2)
𝑃𝐷 (𝑡+1,𝜙1 ,𝜙2 ) (1−𝜌2 )

)) ,

𝐵 (2)
𝑃𝐷 (𝑡, 𝜙1, 𝜙2) = 𝑏𝐵 (1)

𝑃𝐷 (𝑡 + 1, 𝜙1, 𝜙2) + 𝜙2,

with boundary conditions

𝐴𝑃𝐷 (𝑇, 𝜙1, 𝜙2) = 𝐵 (1)
𝑃𝐷 (𝑇, 𝜙1, 𝜙2) = 𝐵 (2)

𝑃𝐷 (𝑇, 𝜙1, 𝜙2) = 0.

Given the boundary conditions, 𝐴𝑃𝐷 (𝑡, 𝜙1, 𝜙2), 𝐵 (1)
𝑃𝐷 (𝑡, 𝜙1, 𝜙2) and 𝐵 (2)

𝑃𝐷 (𝑡, 𝜙1, 𝜙2) are calculated
recursively. The closed form expression is reported in the theorem below.

Theorem 4 (Heston–Nandi call option in the Piterbarg framework in the presence of counterparty
credit risk). In the presence of counterparty credit risk, the price of a fully collateralised European
call option is given by

�̃� (𝐹𝐶 )
𝑡 = 𝑒𝑟𝐶 (𝑇−𝑡 ) (1 − \)

(
Π1 (𝑡, 𝑇) + 1

2
𝑓 ∗𝑃𝐷 (𝑡, 1,−1) − 𝐾Π2 (𝑡, 𝑇) − 1

2
𝐾 𝑓 ∗𝑃𝐷 (𝑡, 0,−1)

)

+ 𝑒𝑟𝐶 (𝑇−𝑡 )\
(
Π3 (𝑡, 𝑇) + 1

2
𝑓 ∗𝑃𝐷 (𝑡, 1, 0) − 𝐾Π4 (𝑡, 𝑇) − 1

2
𝐾

)
,

44 VENTER & MARÉ



where 𝑓 ∗𝑃𝐷 (·) is the risk-neutral characteristic function and

Π1 (𝑡, 𝑇) = 1
𝜋

∫ −∞

0
Re

[
𝑒𝑖𝜙1 ln𝐾 𝑓 ∗𝑃𝐷 (𝑡, 𝑖𝜙1 + 1,−1)

𝑖𝜙1

]
𝑑𝜙1,

Π2 (𝑡, 𝑇) = 1
𝜋

∫ −∞

0
Re

[
𝑒𝑖𝜙1 ln𝐾 𝑓 ∗𝑃𝐷 (𝑡, 𝑖𝜙1,−1)

𝑖𝜙1

]
𝑑𝜙1,

Π3 (𝑡, 𝑇) = 1
𝜋

∫ −∞

0
Re

[
𝑒𝑖𝜙1 ln𝐾 𝑓 ∗𝑃𝐷 (𝑡, 𝑖𝜙1 + 1, 0)

𝑖𝜙1

]
𝑑𝜙1,

Π4 (𝑡, 𝑇) = 1
𝜋

∫ −∞

0
Re

[
𝑒𝑖𝜙1 ln𝐾 𝑓 ∗𝑃𝐷 (𝑡, 𝑖𝜙1, 0)

𝑖𝜙1

]
𝑑𝜙1.

Similarly, the zero collateral price in the presence of counterparty credit risk is

�̃� (𝑍𝐶 )
𝑡 = 𝑒𝑟𝐹 (𝑇−𝑡 ) (1 − \)

(
Π1 (𝑡, 𝑇) + 1

2
𝑓 ∗𝑃𝐷 (𝑡, 𝑇, 1,−1) − 𝐾Π2 (𝑡, 𝑇) − 1

2
𝐾 𝑓 ∗𝑃𝐷 (𝑡, 𝑇, 0,−1)

)

+ 𝑒𝑟𝐶 (𝑇−𝑡 )\
(
Π3 (𝑡, 𝑇) + 1

2
𝑓 ∗𝑃𝐷 (𝑡, 𝑇, 1, 0) − 𝐾Π4 (𝑡, 𝑇) − 1

2
𝐾

)
.

Proof. See the Appendix. ■

4. Empirical results
In this study, the Heston–Nandi option pricing model in the Piterbarg framework is applied to the
pricing of three-year S&P500 index call options in the presence of counterparty credit risk. Daily
data from 4-Jan-2010 to 31-Jan-21 were obtained from the Thomson–Reuters Datastream databank.
The Heston–Nandi parameters are calibrated to historical returns in the Black–Scholes framework
(𝑟𝐶 = 𝑟𝑅 = 𝑟𝐹 = 𝑟) using the maximum likelihood method. Furthermore, for the default intensity,
parameters consistent with a Ba rating for corporate bonds are assumed (consistent with Wang,
2020). According to Hull (2017), the average cumulative issuer-weighted default rate (based on 1970
to 2009) of a Ba rated bond with a three-year term is 4.492%. The risk-free rate is assumed to be
equal to the three-year US treasury yield. The parameters are given in Tables 1 and 2.

We assume a correlation of 𝜌 = 0.5. The three-year US treasury yield on 31-Jan-20 is 𝑟 = 1.3%.
We assume that 𝑟𝑅 = 𝑟, 𝑟𝐶 = 1% (collateralised and therefore less risky, which implies a lower rate),

Table 1. Underlying process parameters.

Parameter Value
_ 4.6429
𝛼0 0.0000
𝛼1 5.2800 × 10−6

𝛽1 0.7557
𝛿1 183.7511

Table 2. Default intensity parameters.

Parameter Value
𝜔 1.540 × 10−7

𝑎 2.600 × 10−11

𝑏 0.977

COLLATERALISED OPTIONS IN THE PRESENCE OF COUNTERPARTY CREDIT RISK 45



and 𝑟𝐹 = 1.6% (higher rate because there is no collateral). The call option prices (relative to the spot
price) assuming no default risk in a single-curve framework (Heston and Nandi, 2000), full collateral
options, and zero collateral (Von Boetticher, 2017) options are plotted in Figure 1. In addition, the
default risky (Wang, 2017, for the single-curve case) prices are also included. Moneyness is defined
as the spot price over the strike price.

It is clear from the above that default risky options are cheaper than options that are not default
risky. This is consistent with expectations (if a default occurs, the payoff is less than that of a vanilla
option). Furthermore, fully collateralised options are more expensive (less risk) when compared
to zero collateral options. To illustrate the effect of correlation, at-the-money (ATM) option prices
assuming different correlation values are illustrated in Figure 2. It is clear from Figure 2 that the
correlation between the underlying volatility process and default intensity does not have a significant
impact on ATM option prices using the parameters outlined above.

5. Conclusion
In this paper, a closed-form expression for the Heston–Nandi price of a collateralised European call
option in the presence of counterparty credit risk was derived. This is an extension of the work by
Von Boetticher (2017), who derived an expression for the Heston–Nandi price of a collateralised
European call option in the absence of counterparty credit risk in the Piterbarg framework. Using
an approach similar to Wang (2017), the work by Von Boetticher (2017) is extended to incorporate
counterparty credit risk.

As a numerical example, the model was applied to three-year S&P500 index options. The
underlying process parameters were calibrated in a single-curve framework, assuming no default
risk. The assumed default risk parameters are consistent with a Ba rated corporate bond. The
prices obtained are consistent with expectations, default risky bonds are cheaper than options with
no counterparty credit risk, and fully collateralised options are more expensive when compared to
zero collateral options.

The effect of correlation is tested by plotting the default risky ATM option price for different levels
of correlation. The results indicate that correlation has an insignificant impact when pricing using
the calibrated parameters. Areas for future research include the extension of the model to exotic
options and also a comparison of different default intensity assumptions.

Appendix A: Proof of Theorem 4
The proof of Theorem 4 is outlined below. The proof follows Wang (2017) closely. However, Wang
(2017) derived expressions for the required probabilities in the Black–Scholes framework (measure
𝑄). This relies on the existence of a unique risk-free rate. To extend the model to the Piterbarg
framework (multiple interest rates to account for the presence of collateral), it is necessary to derive
expressions for the probabilities under the 𝑄𝑟𝑅 measure.

Proof. To evaluate the integral 𝐼1, it is necessay to define a new probability measure

𝑄 (1)
𝑟𝑅 (𝑦) = E

𝑄𝑟𝑅

[
1{𝑦}𝑆𝑇1{𝜏>𝑇 }

��F𝑡 ]
E𝑄𝑟𝑅

[
𝑆𝑇1{𝜏>𝑇 }

��F𝑡 ] ,
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Figure 1. S&P500 index option prices.
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for any event 𝑦 ∈ F𝑇 . The characteristic function of 𝑥𝑇 under 𝑄 (1)
𝑟𝑅 is given by

𝑓 (1) (𝑡, 𝑖𝜙1) = E𝑄
(1)
𝑟𝑅

[
𝑒𝑖𝜙1𝑥𝑇

��F𝑡 ]
=
E𝑄𝑟𝑅

[
𝑒𝑖𝜙1𝑥𝑇 𝑆𝑇1{𝜏>𝑇 }

��F𝑡 ]
E𝑄𝑟𝑅

[
𝑆𝑇1{𝜏>𝑇 }

��F𝑡 ]
=
E𝑄𝑟𝑅

[
𝑒 (𝑖𝜙1+1)𝑥𝑇 1{𝜏>𝑇 }

��F𝑡 ]
E𝑄𝑟𝑅

[
𝑆𝑇1{𝜏>𝑇 }

��F𝑡 ]

=
E𝑄𝑟𝑅

[
𝑒 (𝑖𝜙1+1)𝑥𝑇 𝑒−

∑𝑇
𝑠=𝑡 ^𝑠

��F𝑡 ]
E𝑄𝑟𝑅

[
𝑒𝑥𝑇−

∑𝑇
𝑠=𝑡 ^𝑠

��F𝑡 ]

=
𝑓 ∗𝑃𝐷 (𝑡, 𝑖𝜙1 + 1,−1)
𝑓 ∗𝑃𝐷 (𝑡, 1,−1) .

In this case, standard probability theory applies (Kendall and Stuart, 1977) and the distribution
function corresponding to 𝑓 (1) is given by

𝐹 (1) (𝑥𝑇 ; 𝑥) = 1
2
− 1
𝜋

∫ −∞

0
Re

[
𝑒𝑖𝜙1𝑥 𝑓 (1) (𝑡, 𝑖𝜙1)

𝑖𝜙1

]
𝑑𝜙1.

This implies that

𝑄 (1)
𝑟𝑅 (𝑥𝑇 ≥ ln𝐾) = 1 − 𝐹 (1) (𝑥𝑇 ; ln𝐾)

=
1
𝜋

∫ −∞

0
Re

[
𝑒𝑖𝜙1 ln𝐾 𝑓 (1) (𝑡, 𝑖𝜙1)

𝑖𝜙1

]
𝑑𝜙1 + 1

2
.

By using the definition of 𝑄 (1)
𝑟𝑅 , we have that

𝑄 (1)
𝑟𝑅 (𝑥𝑇 ≥ ln𝐾) = E

𝑄𝑟𝑅

[
1{𝑥𝑇≥ln𝐾 }𝑆𝑇1{𝜏>𝑇 }

��F𝑡 ]
E𝑄𝑟𝑅

[
𝑆𝑇1{𝜏>𝑇 }

��F𝑡 ] ,

which implies

E𝑄𝑟𝑅
[
1{𝑥𝑇≥ln𝐾 }𝑆𝑇1{𝜏>𝑇 }

��F𝑡 ] = 𝑄 (1)
𝑟𝑅 (𝑥𝑇 ≥ ln𝐾) × E𝑄𝑟𝑅

[
𝑆𝑇1{𝜏>𝑇 }

��F𝑡 ]
=

(
1
𝜋

∫ −∞

0
Re

[
𝑒𝑖𝜙1 𝑓 (1) (𝑡, 𝑖𝜙1)

𝑖𝜙1

]
𝑑𝜙1 + 1

2

)
𝑓 ∗𝑃𝐷 (𝑡, 1,−1)

= Π1 (𝑡, 𝑇) + 1
2
𝑓 ∗𝑃𝐷 (𝑡, 1,−1),

which is an explicit expression for 𝐼1.
For 𝐼2 a similar process is required. Define the probability measure

𝑄 (2)
𝑟𝑅 (𝑦) = E

𝑄𝑟𝑅

[
1{𝑦}1{𝜏>𝑇 }

��F𝑡 ]
E𝑄𝑟𝑅

[
1{𝜏>𝑇 }

��F𝑡 ] .
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The characteristic function of 𝑥𝑇 takes the form

𝑓 (2) (𝑡, 𝑖𝜙1) = E𝑄
(2)
𝑟𝑅

[
𝑒𝑖𝜙1𝑥𝑇

��F𝑡 ]
=
E𝑄𝑟𝑅

[
𝑒𝑖𝜙1𝑥𝑇 1{𝜏>𝑇 }

��F𝑡 ]
E𝑄𝑟𝑅

[
1{𝜏>𝑇 }

��F𝑡 ]
=
E𝑄𝑟𝑅

[
𝑒𝑖𝜙1𝑥𝑇 1{𝜏>𝑇 }

��F𝑡 ]
E𝑄𝑟𝑅

[
1{𝜏>𝑇 }

��F𝑡 ]

=
E𝑄𝑟𝑅

[
𝑒𝑖𝜙1𝑥𝑇 𝑒−

∑𝑇
𝑠=𝑡 ^𝑠

��F𝑡 ]
E𝑄𝑟𝑅

[
𝑒
∑𝑇

𝑠=𝑡 ^𝑠
��F𝑡 ]

=
𝑓 ∗𝑃𝐷 (𝑡, 𝑖𝜙1,−1)
𝑓 ∗𝑃𝐷 (𝑡, 0,−1) .

The corresponding distribution function is given by

𝐹 (2) (𝑥𝑇 ; 𝑥) = 1
2
− 1
𝜋

∫ −∞

0
Re

[
𝑒𝑖𝜙1𝑥 𝑓 (2) (0, 𝑖𝜙1)

𝑖𝜙1

]
𝑑𝜙1,

which implies

𝑄 (2)
𝑟𝑅 (𝑥𝑇 ≥ ln𝐾) = 1 − 𝐹 (2) (𝑥𝑇 ; ln𝐾)

=
1
𝜋

∫ −∞

0
Re

[
𝑒𝑖𝜙1 ln𝐾 𝑓 (2) (𝑡, 𝑖𝜙1)

𝑖𝜙1

]
𝑑𝜙1 + 1

2
. (11)

By using (11) above and the definition of 𝑄 (2)
𝑟𝑅 it is possible to derive an expression for 𝐼2,

𝐼2 = E𝑄𝑟𝑅
[
1{𝜏>𝑇,𝑆𝑇≥𝐾 }

��F𝑡 ]
= 𝑄 (2)

𝑟𝑅 (𝑥𝑇 ≥ ln𝐾) ×𝑄𝑟𝑅 (𝜏 > 𝑇)
= 𝑄 (2)

𝑟𝑅 (𝑥𝑇 ≥ ln𝐾) × E𝑄𝑟𝑅

[
𝑒
∑𝑇

𝑠=1 ^𝑠
��F𝑡 ]

= 𝑄 (2)
𝑟𝑅 (𝑥𝑇 ≥ ln𝐾) × 𝑓 ∗𝑃𝐷 (𝑡, 0,−1)

= Π2 (𝑡, 𝑇) + 1
2
𝑓 ∗𝑃𝐷 (𝑡, 0,−1).

For the derivation of 𝐼3, the following probability measure is defined:

𝑄 (3)
𝑟𝑅 (𝑦) = E

𝑄𝑟𝑅

[
1{𝑦}𝑆𝑇

��F𝑡 ]
E𝑄𝑟𝑅

[
𝑆𝑇

��F𝑡 ] ,

and the characteristic function of 𝑥𝑇 under 𝑄 (3)
𝑟𝑅 ,

𝑓 (3) (𝑡, 𝑖𝜙1) = E𝑄
(3)
𝑟𝑅

[
𝑒𝑖𝜙1𝑥𝑇

��F𝑡 ]
=
E𝑄𝑟𝑅

[
𝑒𝑖𝜙1𝑥𝑇

��F𝑡 ]
E𝑄𝑟𝑅

[
𝑆𝑇

��F𝑡 ]
=
𝑓 ∗𝑃𝐷 (𝑡, 𝑖𝜙1 + 1, 0)
𝑓 ∗𝑃𝐷 (𝑡, 1, 0)

.
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It is possible to show that

𝑄 (3)
𝑟𝑅 (𝑥𝑇 ≥ ln𝐾) = 1

𝜋

∫ −∞

0
Re

[
𝑒𝑖𝜙1 ln𝐾 𝑓 (3) (𝑡, 𝑖𝜙1)

𝑖𝜙1

]
𝑑𝜙1 + 1

2
,

which implies

𝐼3 = 𝑄 (3)
𝑟𝑅 (𝑥𝑇 ≥ ln𝐾) × E𝑄𝑟𝑅

[
𝑆𝑇

��F𝑡 ]
= 𝑄 (3)

𝑟𝑅 (𝑥𝑇 ≥ ln𝐾) × 𝑓 ∗𝑃𝐷 (𝑡, 1, 0)

= Π3 (𝑡, 𝑇) + 1
2
𝑓 ∗𝑃𝐷 (𝑡, 1, 0).

Finally,

𝐼4 = E𝑄𝑟𝑅
[
1{𝑆𝑇≥𝐾 }

��F𝑡 ]
= 𝑄𝑟𝑅 (𝑥𝑇 ≥ ln𝐾)
= 1 −𝑄𝑟𝑅 (𝑥𝑇 ≤ ln𝐾)

=
1
𝜋

∫ −∞

0
Re

[
𝑒𝑖𝜙1 ln𝐾 𝑓 ∗𝑃𝐷 (𝑡, 𝑖𝜙1, 0)

𝑖𝜙1

]
𝑑𝜙1 + 1

2

= Π4 (𝑡, 𝑇) + 1
2
.

This implies

�̃� (𝐹𝐶 )
𝑡 = (1 − \)𝑒𝑟𝐶 (𝑇−𝑡 ) (𝐼1 − 𝐾𝐼2) + \𝑒𝑟𝐶 (𝑇−𝑡 ) (𝐼3 − 𝐾𝐼4)

= (1 − \)𝑒𝑟𝐶 (𝑇−𝑡 )
(
Π1 (𝑡, 𝑇) + 1

2
𝑓 ∗𝑃𝐷 (𝑡, 1,−1) − 𝐾

(
Π2 (𝑡, 𝑇) + 1

2
𝑓 ∗𝑃𝐷 (𝑡, 0,−1)

))

+ \𝑒𝑟𝐶 (𝑇−𝑡 )
(
Π3 (𝑡, 𝑇) + 1

2
𝑓 ∗𝑃𝐷 (𝑡, 1, 0) − 𝐾

(
Π4 (𝑡, 𝑇) + 1

2

))
,

and

�̃� (𝑍𝐶 )
𝑡 = (1 − \)𝑒𝑟𝐹 (𝑇−𝑡 ) (𝐼1 − 𝐾𝐼2) + \𝑒𝑟𝐹 (𝑇−𝑡 ) (𝐼3 − 𝐾𝐼4)

= (1 − \)𝑒𝑟𝐹 (𝑇−𝑡 )
(
Π1 (𝑡, 𝑇) + 1

2
𝑓 ∗𝑃𝐷 (𝑡, 1,−1) − 𝐾

(
Π2 (𝑡, 𝑇) + 1

2
𝑓 ∗𝑃𝐷 (𝑡, 0,−1)

))

+ \𝑒𝑟𝐹 (𝑇−𝑡 )
(
Π3 (𝑡, 𝑇) + 1

2
𝑓 ∗𝑃𝐷 (𝑡, 1, 0) − 𝐾

(
Π4 (𝑡, 𝑇) + 1

2

))
,

which completes the proof. ■
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