

Development and characterization of 33 SNP markers in a critically endangered *Hynobius amjiensis* using ddRAD sequencing

Xia Kan (15589563287@163.com)

zhejiang nomal university https://orcid.org/0000-0002-5718-7705

Guoliang Wang

Beijing Academy of Agriculture and Forestry Sciences

Lili Zhang

Beijing Academy of Agriculture and Forestry Sciences

Xin Zhao

Beijing Academy of Agriculture and Forestry Sciences

Shuangshuang Shan

Zhejiang Normal University

Guiming Liu

Beijing Academy of Agriculture and Forestry Sciences

Chen Shao

Zhejiang Normal University

Yu Wang

Zhejiang Normal University

Research Article

Keywords: Hynobius amjiensis, Single nucleotide polymorphism, Double digest restriction-site associated DNA sequencing, Genetic diversity assessment

Posted Date: August 12th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-804020/v1

License:
() This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License

Abstract

Hynobius amjiensis was considered as one of the 29 most threatened amphibian in China. To effectively conserve, manage and recover the population of this critically endangered species, 33 single nucleotide polymorphism (SNP) markers were developed using double digest restriction-site associated DNA (ddRAD) sequencing. The minor allele frequency per locus ranged from 0.0161 to 0.5000. The observed heterozygosity and expected heterozygosity varied from 0.0323 to 0.6667 (average 0.3303) and from 0.0317 to 0.5000 (average 0.2772), respectively. The inbreeding coefficient value ranged between – 0.3315 and 0.0000. No significant deviation from Hardy-Weinberg equilibrium (P > 0.05) were found in all loci. These novel SNPs will be helpful for the population genetic assessment and conservation of *H. amjiensis*.

Main Text

Anji salamander (*Hynobius amjiensis*) was an endemic species in China. Due to limited distribution and small population size, it was listed as a critically endangered species in the International Union for Conservation of Nature (IUCN) Red List of Threatened Species (Gu and Lau 2004). As one of the 29 most threatened amphibian in China (Zhao 1998), *H. amjiensis* attracted considerable attention. In recent years, a series of conservation activities which focused on this species were carried out. First, a specific National Natural Reserve was constructed to conserve the species in situ. Additionally, as a key species in national biodiversity survey, it was investigated annually to understand the distribution and population size extensively and deeply by the State Forestry Administration of China from 2012 (Yang et al. 2016). Finally, captive breeding and reintroduction were implemented to try to increase the population size from 2008. However, the basic researches, such as life history, ecology and especially population genetics, were fell far behind the conservation practice. Therefore, to formulate appropriate conservation strategies, it was urgent to perform population genetic studies on this species.

Single nucleotide polymorphism (SNP) had become the most effective molecular marker in conservation genomic researches since its wide genome distribution and high level of polymorphism (Liu et al. 2018). Here, 33 novel SNP loci were developed using double digest restriction-site associated DNA sequencing (ddRAD-seq) in *H. amjiensis.*

Thirty-four toe samples of *H. amjiensis* were collected from Qingliangfeng National Natural Reverve. Genomic DNA was extracted using a standard proteinase K and phenol-chloroform approach (Sambrook et al. 1989). DdRAD library was prepared and constructed for paired-end high-throughput sequencing on an Illumina NovaSeq 6000 (Illumina, USA) by Annoroad Gene Technology, China. A total of 77,016 putative SNPs were obtained, of which 100 SNPs were randomly selected for primer designing using software Primer 3 plus (Untergasser et al 2012).

PCR amplifications were performed in a total volume of 20 μ L, containing forward and reverse primers at 10 μ M of each primer, 10 μ L 2×Taq Plus Master Mix (Vazyme Biotech, China), and 50-100 ng template DNA. The thermal cycling procedure was applied with an initial pre-denaturation step at 95 °C for 3 min, followed by 30 cycles at 95 °C for 15 s, the annealing temperature at 65 °C for 20 s, and elongation at 72 °C for 15 s; a final extension at 72 °C for 10 min. The amplicons for each sample were recycled and purified by 2.0 % agarose gel electrophoresis and verified using Sanger sequencing on ABI 3730XL (Thermo Fisher Scientific, US).

Several descriptive statistics were calculated. Specifically, the minor allele frequency (MAF) and P value representing the deviations from Hardy-Weinberg equilibrium (HWE) for each locus were tested using VCFtools (Danecek et al. 2011). The observed heterozygosity (H_0) and expected heterozygosity (H_E) were calculated using PLINK (Chang et al. 2015). The inbreeding coefficient index (F_{is}) was calculated using Genepop V4.7 (Rousset 2008).

In total, thirty-three SNP loci were identified from 33 primer pairs (Table 1). The minor allele frequency per locus ranged from 0.0161 to 0.5000. The observed heterozygosity and expected heterozygosity varied from 0.0323 to 0.6667 (average 0.3303) and from 0.0317 to 0.5000 (average 0.2772), respectively. The inbreeding coefficient value ranged between -0.3315 and 0.0000. No loci showed significant deviation from Hardy-Weinberg equilibrium (P > 0.05). These novel SNP markers will contribute to the understanding of population genetic structure and be useful for the population conservation of *H. amjiensis*.

Declarations

Acknowledgments Thanks to Linhe Huo, Dr. Kai Zhou, Dr. Dandan Guo, Zhiwen Yao, Xin Liu and Yanqiang Wang from Beijing Agro-biotechnology Research Center for suggestions of protocol.

Funding Information

This research was supported by Zhejiang Provincial Natural Science Foundation of China under Grant No. L19C030005, the National Natural Science Foundation of China under Grant No. 31400472 and Special Program for Innovation of Beijing Academy of Agriculture and Forestry Sciences under Grant No. KJCX201907-2.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

Ethical approval This research was approved by the Ethics Committee of Zhejiang Normal University and it was conducted under Law of the People's Republic of China on the Protection of Wildlife (August 28, 2004).

Author contribution

All authors contributed to the study conception and design. Material preparation were performed by Yu Wang, Xia Kan and Shuangshuang Shan, data collection and analysis were performed by Xia Kan, Guoliang Wang, Lili Zhang, Xin Zhao, Guiming Liu, Chen Shao and Yu Wang. The first draft of the manuscript was written by Xia Kan. All authors read and approved the final manuscript, and consented to publish.

Data Availability

The datasets generated during and analysed during the current study are available from the corresponding author on reasonable request.

ORCID

References

Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ (2015) Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaScience 4:7. https://doi.org/10.1186/s13742-015-0047-8

Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G, Marth GT, Sherry ST, McVean G, Durbin R, 1000 Genomes Project Analysis Group (2011) The variant call format and VCFtools. Bioinformatics 27:2156-2158. https://doi.org/10.1093/bioinformatics/btr330

Gu H, Lau MWN (2004) *Hynobius amjiensis*. The IUCN Red List of Threatened Species 2004: e.T59089A11869355. https://dx.doi.org/10.2305/IUCN.UK.2004.RLTS.T59089A11869355.en

Liu K, Yu H, Li Q (2019) Development and characterization of 108 SNP markers in the Iwagaki oyster, *Crassostrea nippona*. Conserv Genet Resour 11:437-442. https://doi.org/10.1007/s12686-018-1047-7

Rousset F (2008) GENEPOP'007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour 8(1):103-106. https://doi.org/10.1111/j.1471-8286.2007.01931.x

Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd eds. Cold Spring Harbor Laboratory Press, New York

Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3–new capabilities and interfaces. Nucleic Acids Res 40: e115. https://doi.org/10.1093/nar/gks596

Yang J, Chen CS, Chen SH, Ding P, Fan ZY, Lu YW, Yu LP, Lin HD (2016) Population genetic structure of critically endangered salamander (*Hynobius amjiensis*) in China: recommendations for conservation. Genet Mol Res 15(2):gmr.15027733. https://doi.org/10.4238/gmr.15027733

Zhao EM (1998) China Red Data Book of Endangered Animals: Amphibia & Reptilia. Science Press, Beijing. (in Chinese)

Tables

Table 1 Characteristics of 33 SNP loci developed for *H.amjiensis*

Primer ID	Primer sequence (5'-3')	Size (bp)	SNP position	SNP type	MAF	HO	HE	Fis	HWEP
Ham_snp01	F:CCAGAATTCACCCTGGGGAG	106	54	A/C	0.0833	0.1667	0.1528	-0.0741	NS
	R:GCCCTGTGAGATCTGTGCTG								
Ham_snp02	F:CCAGAATTCACCCTGGGGAG	127	43	T/G	0.0690	0.1379	0.1284	-0.0566	NS
	R:GCCCTGTGAGATCTGTGCTG								
Ham_snp03	F:CCAGAATTCACCCTGGGGAG	104	65	C/T	0.0833	0.1667	0.1528	-0.0741	NS
	R:GCCCTGTGAGATCTGTGCTG								
Ham_snp04	F:CCAGAATTCACCCTGGGGAG	125	96	T/G	0.2241	0.3793	0.3478	-0.0732	NS
	R:GCCCTGTGAGATCTGTGCTG								
Ham_snp05	F:CCAGAATTCACCCTGGGGAG	119	46	C/T	0.5000	0.6667	0.5000	-0.3182	NS
	R:GCCCTGTGAGATCTGTGCTG								
Ham_snp06	F:CCAGAATTCACCCTGGGGAG	105	51	A/C	0.0667	0.1333	0.1244	-0.0545	NS
	R:GCCCTGTGAGATCTGTGCTG								
Ham_snp07	F:GCTCTGCCACCCATCTTC	101	79	T/C	0.1333	0.2667	0.2311	-0.1373	NS
	R:CCGCCAATGACATCAGGGTA								
Ham_snp08	F:GTGGCAATAACCTCAGGGGA	110	55	G/T	0.3621	0.5862	0.4620	-0.2526	NS
	R:GATGCGGACCGATTGTTTGG								
Ham_snp09	F:ATACAACAAGCCCAACACGC	134	74	A/C	0.1833	0.3667	0.2994	-0.2083	NS
	R:GCGTGTTGCTGGTTATTCCC								
Ham_snp10	F:ACAAAAGGTGGGGGGATGTCC	119	55	C/T	0.1964	0.3929	0.3157	-0.2273	NS
	R:GCCCTGTGAGATCTGTGCTG								

Ham snp11	F:CTAGGGCCGGAGATGAGAGA		146	61	C/T	0.16	67 0.	3333	0.2778	-0.1837	NS
	R:CCTTGGAAATGGAGGGCTGT										
Ham_snp12	F:CTAGGGCCGGAGATGAGAGA		126	43	T/C	0.17	86 0.	3571	0.2934	-0.2000	NS
	R:CCTTGGAAATGGAGGGCTGT										
Ham_snp13	F:CTAGGGCCGGAGATGAGAGA		112	85	T/A	0.26	67 0.	4000	0.3911	-0.0058	NS
	R:CCTTGGAAATGGAGGGCTGT										
Ham snp14	F:TGGCGCGTTACCTGATAGAC		104	62	G/T	0.36	67 0.	5333	0.4644	-0.1317	NS
	R:GGACACATCGATCCGTCTCA										
Ham snp15	F:GGATAGGTGCTCTAAGCCGG		116	59	A/G	0.01	79 0.	0357	0.0351	0.0000	NS
	R:AGACTCTACTGGCCCAGGAT										
Ham snp16	F:CCCCTCCTTTTTCCCAACCTC		103	53	A/C	0.01	67 0.	0333	0.0328	0.0000	NS
	R:AGAGTCCCGGGAAGAGGAAT										
Ham snp17	F:AATCAGGAGCCGCACATGTG		101	36	C/A	0.16	67 0.	3333	0.2778	-0.1837	NS
	R:AAATGCGTTCGCTCTCCTCC										
Ham snp18	F:TAGATGATGGTGCGCAGTGG		119	36	T/C	0.01	67 0.	0333	0.0328	0.0000	NS
	R:GACCCATCGATCCGTCTCAA										
Ham snp19	F:CACGCTGTACAAAGTGCACC		111	67	A/G	0.15	00 0.	3000	0.2550	-0.1600	NS
_ 1	R:CCAACACCCTCAGCACCATA										
Ham snp20	F:GGGTAAATTGACCGCGCTTT		120	80	T/C	0.14	52 0.	2903	0.2482	-0.1538	NS
_ 1	R:CGACGACATCTGGAACCCTG										
Ham snp21	F:GTCCCGCGGGTCTTCAAA		104	33	T/C	0.10	71 0.	2143	0.1913	-0.1020	NS
_ 1	R:CAGCCTTCCCTCACTCCTTG				,						
	F:TGGCAATCAGAGAACACGCT	101	76	Т	/C	0.2258	0.3871	0.34	-0.	0909	NS
Ham_snp22											
	R:GGGCAATAGGCTGAAGCTGA	100	20		10	0.01.01	0.0000	0.07	17 0.0	000	NO
Ham_snp23	F:GGCCCTTTAAGAGAGCAGCA	102	29	А	/G	0.0161	0.0323	0.03	0.0	000	NS
	R:GGTAGGGAGCATGGACATGG	4.0.4	0.1	-				0.40			
Ham_snp24	F:CACGTCGTGGATGAACGGG	101	21	T,	/A	0.4500	0.5667	0.49	950 -0.	1281	NS
	R:GCACATCAGACTGCGCCA	400	= 0	-		0.0044					
Ham_snp25	F:CCGAGACGCTTACTTCCACA	123	53	G	/A	0.2241	0.4483	0.34	-0.	2727	NS
	R:ACTCTGGGAGCAGCATTGAG				_						
Ham_snp26	F:ATCCTCCGGGGGTAAGACC	127	53	Α	/C	0.3571	0.5000	0.45	.92 -0.	0708	NS
	R:ACGACAATGTTCCTGGGGTC										
Ham_snp27	F:ATCCTCCGGGGGGTAAGACC	105	31	А	/G	0.1333	0.2667	0.23	-0.	1373	NS
	R:ACGACAATGTTCCTGGGGTC										
Ham_snp28	F:ATCCTCCGGGGGGTAAGACC	104	23	А	/G	0.2500	0.5000	0.37	-0.	3182	NS
	R:ACGACAATGTTCCTGGGGTC										
Ham_snp29	F:ATCCTCCGGGGGGTAAGACC	109	57	T,	/G	0.1250	0.2500	0.21	.88 -0.	1250	NS
	R:ACGACAATGTTCCTGGGGTC										
Ham_snp30	F:ATCCTCCGGGGGGTAAGACC	110	68	Α	/C	0.1250	0.2500	0.21	.88 -0.	1250	NS
	R:ACGACAATGTTCCTGGGGTC										
Ham_snp31	F:ATCCTCCGGGGGGTAAGACC	123	65	С	/T	0.1786	0.3571	0.29	-0.	2000	NS
	R:ACGACAATGTTCCTGGGGTC										
Ham_snp32	F:ATCCTCCGGGGGGTAAGACC	106	48	G	/A	0.3929	0.6429	0.47	-0.	3315	NS
	R:ACGACAATGTTCCTGGGGTC										
Ham_snp33	F:ATCCTCCGGGGGGTAAGACC	104	39	T,	/C	0.3214	0.5714	0.43		2934	NS
	R:ACGACAATGTTCCTGGGGTC										

MAF: minor allele frequency, HO: observed heterozygosity, HE: expected heterozygosity, Fis: inbreeding coefficient, HWEP: results for Hardy-Weinberg equilibrium test, NS: non-significant