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Background: The PAM/Highwire/RPM-1 (PHR) proteins are conserved signaling proteins that regulate axon length
and synapse formation during development. Loss of function in Caenorhabditis elegans rom-1 results in axon
termination and synapse formation defects in the mechanosensory neurons. An explanation for why these two
phenotypes are observed in a single neuronal cell has remained absent. Further, it is uncertain whether the axon
termination phenotypes observed in the mechanosensory neurons of rom-1 mutants are unique to this specific
type of neuron, or more widespread defects that occur with loss of function in rom-1.

Results: Here, we show that RPM-1 is localized to both the mature axon tip and the presynaptic terminals of individual
motor neurons and individual mechanosensory neurons. Genetic analysis indicated that GABAergic motor neurons, like
the mechanosensory neurons, have both synapse formation and axon termination defects in rom-1 mutants. RPM-1
functions in parallel with the active zone component SYD-2 (Liprin) to regulate not only synapse formation, but also
axon termination in motor neurons. Our analysis of rom-1—/—; syd-2—/— double mutants also revealed a role for RPM-1
in axon extension. The MAP3K DLK-1 partly mediated RPM-1 function in both axon termination and axon extension,
and the relative role of DLK-1 was dictated by the anatomical location of the neuron in question.

Conclusions: Our findings show that axon termination defects are a core phenotype caused by loss of function in
rpm-1, and not unigue to the mechanosensory neurons. We show in motor neurons and in mechanosensory
neurons that RPM-1 is localized to multiple, distinct subcellular compartments in a single cell. Thus, RPM-1 might
be differentially regulated or RPM-1 might differentially control signals in distinct subcellular compartments to
regulate multiple developmental outcomes in a single neuron. Our findings provide further support for the previously
proposed model that PHR proteins function to coordinate axon outgrowth and termination with synapse formation.
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Background

During development, an axon uses long-range extracel-
lular guidance cues to navigate the developmental land-
scape. Upon reaching its target site, the axon interprets
guidepost signals from surrounding cells, and forms a
chemical synapse [1,2]. Ultimately, the axon must also
terminate outgrowth, which is a process referred to as
axon termination, at the appropriate time and location.
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The PAM/Highwire/RPM-1 (PHR) proteins play an im-
portant role during development, where they regulate
axon length (dictated by a balance between axon extension
and axon termination) and synapse formation [3]. In mice,
Phrl regulates synapse formation and axon extension in
motor neurons [4,5], and regulates axon termination in
sensory neurons [5]. In fish and mice, Phrl also regulates
axon guidance in the central nervous system [6-9].

Invertebrate systems have also informed our under-
standing of the PHR proteins. Drosophila Highwire (Hiw)
regulates axon branching, and synapse formation at the
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neuromuscular junction [10,11]. The extensive overgrowth
of motor axons in Hiw mutants suggests that axon ter-
mination is likely to be defective in these animals. Work
using fly sensory neurons has also shown that Hiw regu-
lates axon termination [12]. In Caenorhabditis elegans, the
regulator of presynaptic morphology 1 (RPM-1) regulates
synapse formation in motor neurons [13], and both axon
termination and synapse formation in the mechanosen-
sory neurons [14]. Studies in worms and flies have found
that Hiw and RPM-1 function in axon guidance [15,16].

Because of anatomical differences between the motor
axons of flies and worms (where termination sites are
not easily observed, as a result of tiling), it has remained
unclear whether RPM-1 regulates axon termination in
motor neurons. This uncertainty has left open the ques-
tion of whether axon termination defects are a widespread
consequence of losing RPM-1 function, or a cell-specific
phenotype associated with the mechanosensory neurons.
Further, cell biological evidence has been lacking to help
explain the diverse functional roles that the PHR proteins
play during development.

Here, we show that RPM-1 regulates axon termination
in the GABAergic motor neurons. Defective axon ter-
mination in the motor neurons of rpm-1 loss of function
(If) mutants occurs in addition to defects in synapse for-
mation. Of note, in some anatomical locations RPM-1
regulates both axon termination and axon extension of a
single process. Transgenic analysis indicated that rpm-1I
functions cell autonomously to regulate axon termin-
ation, similar to synapse formation. This is consistent
with our observation that RPM-1 localizes to both pre-
synaptic terminals and the mature axon tip of individual
motor neurons. Importantly, this is not an isolated sub-
cellular distribution, as RPM-1 is also concentrated in
the axon tip and presynaptic terminals of mechanosen-
sory neurons. Thus, the subcellular location of RPM-1 is
consistent with the presence of axon termination and
synapse formation defects in both the motor neurons
and the mechanosensory neurons of rpm-1 (If) mutants.

Results
rpm-1 and syd-2/liprin function in parallel genetic
pathways to regulate synapse formation in GABAergic
motor neurons
C. elegans moves using sinusoidal body undulations.
While an oversimplification [17], movement is generated
by cholinergic activation of muscles on one side of the
animal via the VA, DA, VB and DB neurons, and
GABAergic inhibition of muscles on the opposing side via
the ventral and dorsal D neurons (VDs and DDs) [18].
Each individual DD motor neuron (DD1 to DD6) ex-
tends a single axon that bifurcates. In adults, the ventral
process receives neurotransmitter input, and a second
process crosses the animals mid-body and forms
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presynaptic connections with the dorsal muscle cells
(Figure 1A). The axons of the six DD neurons and their
presynaptic sites are tiled contiguously along the dorsal
cord [19]. The 13 VD neurons are arranged with an op-
posing orientation, and tile their presynaptic sites along
the ventral cord (Figure 1B) [20]. A transgene, julsl,
which uses a cell-specific promoter to drive expression
of a fusion protein of synaptobrevin-1 (SNB-1) and
green fluorescent protein (GFP) (SNB-1::GFP) [21], was
used to visualize the presynaptic terminals of the D
neurons. In wild-type animals, SNB-1:GFP puncta were
evenly distributed along the dorsal and ventral cords
(Figure 1A,B). Consistent with previous observations [13],
SNB-1:GFP puncta were aggregated and sections of the
dorsal and ventral cords lacked puncta in rpm-1-/- mu-
tants (Figure 1A,B). Importantly, electron microscopy
has established that defects in SNB-1:GFP puncta in
rpm-1—-/— animals reflect defects in synapse formation,
rather than simply defects in SNB-1 trafficking [13].

SYD-2 regulates active zone size, and defects in the ac-
tive zone of syd-2-/- mutants result in abnormal
morphology of SNB-1::GFP puncta in D neurons [22,23].
We also observed abnormal, diffuse morphology of
SNB-1:GFP puncta in syd-2-/- animals in the dorsal
(Figure 1A) and ventral cord (Figure 1B). Consistent
with a previous study [24], we found that rpm-1-/-; syd-
2-/- double mutants were uncoordinated and small
(data not shown), and had enhanced defects in synapse
formation in the dorsal (Figure 1A) and ventral cord
(Figure 1B). Given that we used null alleles [13,22], these
results confirm that rpm-1 and syd-2 function in parallel
genetic pathways to regulate synapse formation in the
GABAergic motor neurons.

rpm-1 and syd-2 regulate axon termination and axon
extension at the posterior tip of the dorsal cord

Aside from its role in synapse formation, RPM-1 also
functions in the mechanosensory neurons to regulate
axon termination [14,25]. Because the processes of the
GABAergic motor neurons in C. elegans are tiled, ter-
mination points are not easily observed. As a result, it is
uncertain whether rpm-1I regulates axon termination in
these neurons.

Previous electron and light microscopy studies showed
that the processes of DD6 and VD13 are fasciculated,
and that the VD13 process extends alone to a stereo-
typed termination point at the posterior tip of the dorsal
cord [19,26]. These observations suggested that if RPM-
1 regulated axon termination in the DD or VD motor
neurons, defects might be detected at the posterior tip
of the dorsal cord. A transgene, juls76, which uses a
cell-specific promoter to drive expression of GFP, was
used to visualize the morphology of the DD and VD
neurons [27]. In wild-type juls76 animals, GFP is present
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Figure 1 rpm-1 and syd-2 regulate synapse formation in GABAergic motor neurons. (A) Schematic of a DD motor neuron
innervating dorsal muscle cells (inspired by Worm Atlas). Green triangles represent presynaptic terminals. P,c.2sSNB-1:GFP (julsT)
was visualized with epifluorescent microscopy for the indicated genotypes. The dorsal cord has gaps (arrow) and aggregated
presynaptic terminals (arrowhead) in rom-1 mutants. (B) Schematic of VD motor neuron innervating ventral muscle cells. Green
triangles represent presynaptic terminals. SNB-1:GFP was visualized with epifluorescent microscopy for the indicated genotypes. The

VD, ventral D neuron. Scale bar, 10 pm.

ventral cord has gaps (arrow) and aggregated presynaptic terminals (arrowhead) in rpom-1 mutants. In A and B, defects are
enhanced in rpm-1; syd-2 double mutants. Analysis was performed on young adults grown at 25°C. DD, dorsal D neuron;

throughout the nerve cords. We observed relatively pre-
cise termination of the dorsal cord at the posterior of
the animal as a single, thin VD13 process, which was
consistent with prior work (Figure 2A, arrow) [26]. The
VD13 termination site corresponded consistently to the
relative position of the VD13 cell body (Figure 2A, arrow-
head). Anterior to this termination point, we observed a
thicker bundle that reflects the DD6 termination point
overlapping with the VD13 process (Figure 2A, asterisk).
In rpm-1-/- mutants, we observed termination defects in
which the posterior tip of the dorsal cord overextended
beyond the position of the VD13 cell body (Figure 2A).
Quantitation of overextension defects showed they were
modestly penetrant, but significant (compare 27.9 + 1.3%
termination defects for rpm-1 with 6.0 +2.2% for wild-
type, Figure 2B). Given location and process thickness,

these defects are likely to reflect overextension of the
VD13 process.

Because syd-2 functions in a parallel pathway with
rpm-1 to regulate synapse formation, we also tested
whether syd-2 regulates dorsal cord termination. Our
analysis relied upon two alleles of syd-2: ju37, which re-
sults in a premature stop at glutamine 397 and is likely to
be a molecular null allele [22], and 0k217, which results in
a stop codon at position 200 and, as assessed by RT-PCR
and immunoblotting is likely to represent a null allele
[28]. While syd-2-/- mutants did not have defects in pos-
terior termination, rpm-1-/-; syd-2—-/- double mutants
had enhanced penetrance of overextension defects com-
pared with rpm-1-/- single mutants (compare 39.6 + 1.9%
overextension termination defects for rpm-1; syd-2(ju37)
and 39.8 £ 3.1% for rpm-1; syd-2(0k217) with 27.9 +1.3%
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Figure 2 rpm-1 and syd-2 regulate posterior dorsal cord termination. (A) Schematic of the posterior GABAergic motor neurons (VD12, DD6,
and VD13) (inspired by Worm Atlas). The posterior tip of the dorsal cord was visualized using P,,c.,sGFP (juls76) and epifluorescent microscopy.
Highlighted are the posterior termination sites of DD6 (asterisk) and VD13 (arrow). The VD13 process terminates extension above the VD13 cell body
(arrowhead). In rom-1 mutants, posterior termination is impaired and the dorsal cord is overextended. In rpm-1; syd-2 double mutants, failed extension
(undergrowth) and termination defects (overextension) were observed. Scale bar, 10 um. (B) Quantitation of posterior termination defects for the
indicated genotypes. For each genotype, the mean is shown from five or more counts (at least 20 worms/count). Analysis was performed on young
adults grown at 23°C. Error bars represent the standard error of the mean. Significance was determined using an unpaired Student’s t test: ***P < 0.001.

for rpm-1, Figure 2A,B). Interestingly, rpm-1-/—; syd-2-/-
double mutants also had posterior axon extension defects
in which the dorsal cord was undergrown (Figure 2A).
Axon undergrowth occurred with moderate, but signifi-
cant, penetrance in rpm-1-/—; syd-2-/- double mu-
tants (29.3 £ 2.4% undergrowth for rpm-1; syd-2(ju37)
and 33.6+3.0% for rpm-1; syd-2(ok217), Figure 2B).
Thus, rpm-1 regulates both axon termination and axon
extension at the posterior tip of the dorsal cord by
functioning in a parallel genetic pathway to syd-2. Our
observation that axon extension phenotypes were only
observed in rpm-1-/-; syd-2-/- double mutants and
that axon termination phenotypes were present in rpm-
1-/- single mutants supports two conclusions. (1)
RPM-1 functions primarily in axon termination and
secondarily in axon extension. (2) RPM-1 potentially

regulates the balance between axon extension and axon
termination in an individual neuron.

rpm-1 and syd-2 regulate axon termination at the anterior
tip of the dorsal cord

Axon termination can also be assessed relatively easily at
the anterior tip of the dorsal cord, which consists of the
fasciculated processes of the DD1 and VD1 neurons. In
wild-type animals, anterior termination occurs prior to
the axon of the dorsal RME neuron (RMED) (Figure 3A,
schematic and arrow). rpm-I1-/- mutants showed ter-
mination defects in which the dorsal cord overextended
beyond the RMED axon (Figure 3A, arrowhead). Over-
extension defects occurred with moderate penetrance
in rpm-1-/- mutants (43.8 £ 4.4% termination defects,
Figure 3B). In syd-2—/- animals, the anterior tip of the
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Figure 3 rpm-1 and syd-2 regulate anterior dorsal cord termination. (A) Shown is a schematic of the DD1 and VD1 neurons that fasciculate
to form the anterior tip of the dorsal cord, which terminates prior to the RMED axon (arrow) (inspired by Worm Atlas). The anterior tip of the
dorsal cord was visualized using P,,c-sGFP (juls76) and epifluorescent microscopy. Highlighted are the normal termination site (arrow), and
anterior overextension defects in rom-1 mutants and rpm-1; syd-2 double mutants (arrowhead). (B) Quantitation of anterior termination defects
for the indicated genotypes. For each genotype, the mean is shown from five or more counts (at least 20 worms/count). (C) Pyc.sGFP (juls76)
and Pg,.;smCherry (bggls6) were visualized in rpom-1 mutants using epifluorescent microscopy. Shown is a GFP positive, overextended dorsal cord
process (upper panel, arrowhead), and the mCherry positive, anterior termination site of DD1 in a normal location (lower panel, arrow). Analysis
was performed on young adults grown at 23°C. Error bars represent the standard error of the mean. Significance was determined using an
unpaired Student's t test: ***P < 0.001. RMED, dorsal RME neuron; RMEL, left RME neuron; RMER, right RME neuron; RMEV, ventral RME neuron;
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dorsal cord terminated extension normally (Figure 3A,B).
However, the penetrance of anterior termination defects
was enhanced in rpm-1-/-; syd-2—-/- double mutants
(compare 77.3 + 1.7% termination defects for rpm-1; syd-2
(ju37) and 76.9 + 2.2 for rpm-1; syd-2(ok217) with 43.8 +
4.4% for rpm-1, Figure 3B).

Anterior termination defects potentially reflected
overextension of the processes of DD1 or VDI1. To
differentiate these two neurons, we simultaneously
expressed two transgenes: juls76 (P,,..sGFP, ex-
pressed in the VD and DD neurons) and bggls6
(Pgp-13smCherry, expressed only in the DD neurons
[29]). As shown in Figure 3C, the anteriorly overex-
tended process in rpm-I1-/- mutants was labeled with
GEFP (juls76), but not mCherry (bggls6), demonstrating

that this phenotype was probably due to overextension
of the VD1 process.

rpm-1 and syd-2 function cell autonomously to regulate
dorsal cord termination and extension

rpm-1 functions cell autonomously in the GABAergic
motor neurons to regulate synapse formation [13] and in
the mechanosensory neurons to regulate axon termination
and synapse formation [14]. Similarly, syd-2 functions cell
autonomously in the GABAergic motor neurons to regu-
late active zone assembly [22]. To test whether rpm-1 and
syd-2 function cell autonomously to regulate dorsal cord
termination, we engineered rpm-1-/- single mutants or
rpm-1—-/-; syd-2—/- double mutants that carried a trans-
genic extrachromosomal array in which the native rpm-1
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promoter or a cell-specific promoter (P, »s) was used to
express RPM-1 or SYD-2. We found that transgenic expres-
sion of RPM-1 using its native promoter (P,m.1RPM-1),
which is only expressed in neurons, strongly rescued the
anterior and posterior overextension defects in rpm-1—/-
mutants and rescued the enhanced defects in rpm-1-/-;
syd-2—/- double mutants (Figure 4A,B). Transgenic expres-
sion of RPM-1 specifically in the GABAergic motor neu-
rons (P,,,..2sRPM-1) partially, but significantly, rescued the
termination defects in rpm-1-/- mutants and rpm-1-/-;
syd-2-/- double mutants (Figure 4A,B). Transgenic
expression of SYD-2 specifically in the GABAergic
motor neurons partially, but significantly, rescued anterior
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and posterior termination defects (overextension), and
posterior extension defects (undergrowth) in rpm-1-/-;
syd-2-/- double mutants (Figure 4A,B).

It should be noted that we tested a range of injection
concentrations from 1 ng/pl to 20 ng/pl for transgenes
driven by the unc-25 promoter. For the posterior termin-
ation site, optimal results were obtained with DNA
injected at 1 to 2.5 ng/ul. For the anterior termination site,
optimal results were obtained with DNA injected at 5 ng/
pl. Given the wide range of concentrations that we tested,
the reduced efficacy of rescue with the unc-25 promoter
compared with the rpm-1 promoter might reflect differ-
ences in timing of expression during development.
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Figure 4 rpm-1 and syd-2 function cell autonomously to regulate anterior and posterior dorsal cord termination. Quantitation of defects
at (A) the anterior and (B) the posterior tip of the dorsal cord using Py, ,sGFP (juls76) for the indicated genotypes. For transgenes, the mean is
shown for data collected from four or more independently derived transgenic lines for each genotype. Analysis was performed on young adults
grown at 23°C. Error bars represent the standard error of the mean. Significance was determined using an unpaired Student's t test: ***P <0.001,
**P < 0.01. wt, wild-type.
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Overall, these findings demonstrate that lesions in syd-2
and rpm-1 are responsible for dorsal cord termination de-
fects, and that syd-2 and rpm-1 function cell autono-
mously in the GABAergic motor neurons to regulate axon
termination and axon extension at the anterior and pos-
terior tip of the dorsal cord.

RPM-1 functions through DLK-1, FSN-1 and GLO-4 to
regulate dorsal cord termination and extension

Previous studies have identified several mechanisms by
which RPM-1 regulates synapse formation and axon ter-
mination. (1) RPM-1 negatively regulates a mitogen acti-
vated protein (MAP) kinase pathway by ubiquitinating
the most upstream kinase in the pathway, the dual leu-
cine zipper-bearing kinase 1 (DLK-1) [30,31]. (2) RPM-1
functions as part of an E3 ubiquitin ligase complex that
includes F-box synaptic protein 1 (FSN-1) [24]. (3)
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RPM-1 positively regulates gut granule loss 4 (GLO-4)
and activates a Rab GTPase pathway [25]. (4) RPM-1
positively regulates the microtubule binding protein
RAE-1 [32]. We wanted to test whether RPM-1 func-
tions through similar mechanisms to control dorsal cord
termination.

In glo-4-/- and fsn-1-/- single mutants, anterior ter-
mination defects were present, but they occurred with
lower penetrance than in rpm-1-/- mutants (Figure 5A).
In contrast, glo-4—/- and fsn-1-/- single mutants did not
display significant posterior termination defects (Figure 5B).
We observed enhanced penetrance of anterior and pos-
terior termination defects in glo-4—/—; fsn—/— double
mutants that were of similar levels to rpm-I1-/- mutants
(Figure 5A,B). Because we used null alleles of glo-4 and
fsn-1, these results show that glo-4 and fsn-1 function in
parallel genetic pathways to regulate termination of the
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Figure 5 Anterior and posterior dorsal cord termination is regulated by fsn-1, glo-4, and dlk-1. Quantitation of termination defects at (A)
the anterior and (B) the posterior tip of the dorsal cord using P,.,sGFP (juls76) for the indicated genotypes. For each genotype, the mean is
shown from five or more counts (at least 20 worms/count). Analysis was performed on young adults grown at 23°C. Error bars represent the
standard error of the mean. Significance was determined using an unpaired Student’s t test: ***P <0.001 **P < 0.005, *P < 0.05, ns, not
significant. wt, wild-type.
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dorsal cord. Prior studies have shown that FSN-1 and
GLO-4 mediate RPM-1 function in axon termination in
the mechanosensory neurons and synapse formation in
the GABAergic motor neurons [24,25]. Our results sup-
port the model that RPM-1 functions through similar
mechanisms to regulate axon termination in GABAergic
motor neurons.

Next, we examined the MAP kinase kinase kinase
(MAP3K) DLK-1, which also functions downstream of
RPM-1 and is a target of the ubiquitin ligase activity of
RPM-1 [25,30]. dlk-1-/- single mutants displayed normal
anterior and posterior termination (Figure 5A,B). However,
in rpm-1-/-; dlk-1-/- double mutants and in rpm-1-/-;
syd-2—/-; dlk-1-/- triple mutants, we observed strong,
but partial suppression of anterior termination defects
(Figure 5A). In contrast, posterior overextension defects
were not suppressed in rpm-1-/-; dlk-1-/- double mu-
tants or rpm-1-/—; syd-2—/—; dlk-1-/- triple mutants
(Figure 5B). Interestingly, rpm-1-/-; syd-2-/-; dlk-1-/-
triple mutants showed strong suppression of under-
growth defects in the posterior tip of the dorsal cord
(Figure 5B). Thus, in GABAergic motor neurons DLK-1
plays a varying role in mediating the function of RPM-1
in axon termination, and anatomical location appears
relevant to the role of DLK-1. Importantly, our data
also indicate that DLK-1 regulates axon termination in
the anterior of the dorsal cord, and regulates extension
(and not termination) in the posterior of the dorsal
cord.

rpm-1 regulates axon termination of the DD5 neuron
within the dorsal cord

Given that rpm-1 regulates axon termination at the tips of
the dorsal cord, we next sought to determine whether
rpm-1 regulates axon termination within the interior of
the dorsal cord. To address this question, we used the
transgene bggls6 (Pgp_13mCherry) that expresses mCherry
only in the DD neurons, which have axons that tile along
the length of the dorsal cord and innervate dorsal muscles
in adults [20]. In wild-type bggls6 animals, mCherry was
clearly visible in the DD neurons from DD1 (most anterior
DD neuron) to DD5 (interior DD neuron). mCherry ex-
pression in DD6 (most posterior DD neuron) was insuffi-
cient for detection by epifluorescent microscopy. We
confirmed that mCherry was expressed in DD5 and not
detected in DD6 by analyzing animals that were trans-
genic for both juls76 (labeled all DD and VD neurons with
GFP) and bggls6 (labeled only DD1 to 5 with mCherry)
(Figure 6A).

In wild-type animals, the DD5 axon consistently termi-
nated at a location that corresponded to the ventral termin-
ation site of the small, posterior DD5 process (Figure 6A
schematic and 6B, arrow). In contrast, rpm-1-/— mutants
had axon termination defects in which the DD5 axon
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overextended beyond its normal termination point (Fig-
ure 6B, arrowhead). Axon termination defects in DD5 were
moderately penetrant in rpm-1-/- animals (compare 59.7
+2.9% termination defects in rpm-1 with 124+ 1.8% in
wild-type, Figure 6C). Thus, rpm-1 regulates termination of
the DD5 axon within the dorsal cord.

RPM-1 localizes to the mature axon tips and the
presynaptic terminals of GABAergic motor neurons and
mechanosensory neurons

In motor neurons, RPM-1 localizes to the perisynaptic
zone, a presynaptic region that surrounds the synaptic
vesicles [13,25,33]. In Drosophila, transgenically expressed
Hiw localizes broadly throughout the presynaptic terminal
[34]. Localization of RPM-1 and Hiw to the presynaptic
terminal is consistent with their function in synapse for-
mation. While the localization of mammalian Phrl in ma-
ture axons is unclear, in immature growing axons that
lack synapses, murine Phrl is localized throughout the
axon, and excluded from much of the growth cone [5].
This observation suggested that PHR proteins might ter-
minate extension by localizing to axon tips. Consistent
with this hypothesis, RPM-1 is localized to puncta
throughout the axon of SAB motor neurons, and is also
concentrated at the tip of the SAB axon [33].

Localization of RPM-1 to the perisynaptic zone of motor
neurons is consistent with RPM-1 regulating synapse for-
mation. However, this subcellular localization does not ex-
plain the role we have now discovered for RPM-1 in axon
termination. To determine whether RPM-1 is localized to
the axon tips of the DD neurons (GABAergic motor neu-
rons) as well as to their presynaptic terminals, we used
transgenics and confocal microscopy. rpm-1-/- animals
were engineered to carry two transgenic arrays simultan-
eously: juls77 (an integrated array that expresses RPM-1::
GEFP in the VD and DD neurons), and bggEx99 (an extra-
chromosomal array that expresses mCherry only in the
DD neurons). In juls77 bggEx99 animals, mCherry
allowed us to visualize the axon termination points of
DD1 and DD5, where we readily observed concentration
of RPM-1::GFP (Figure 7A,B, arrows). We also observed
RPM-1::GFP puncta that were not at the axon termination
point, and represent presynaptic localization (Figure 7B,
asterisk). It should be noted that because RPM-1::GFP was
expressed using the unc-25 promoter, RPM-1:GFP puncta
could be present in either the DD or VD neurons. How-
ever, the precise colocalization between RPM-1:GFP
puncta, and DD1 and DD5 axon tips suggests that at least
a portion of the RPM-1::GFP is likely to be localized at the
DD axon tips. Importantly, juls77 rescued both axon ter-
mination and synapse formation defects in the DD motor
neurons of rpm-1-/— mutants, thereby demonstrating that
juls77 expresses a functional RPM-1:GFP construct that



Opperman and Grill Neural Development 2014, 9:10
http://www.neuraldevelopment.com/content/9/1/10

Page 9 of 15

A DD5 axon B

termination
int
Dorsal Py

wild-type

Posterior

DD5 cell body
Pflp-13::mCherry

Punc-25::GFP

dorsal D neuron; wt, wild-type.

Figure 6 rpm-1 regulates axon termination of the DD5 motor neuron. (A) Schematic highlights the axon termination site of the DD5
neuron (arrow) (inspired by Worm Atlas). Blue box highlights the region of the DD5 axon that was visualized using epifluorescent
microscopy and two transgenes: P, »sGFP (juls76) and Pg,_;smCherry (bggls6). mCherry highlights the DD5 termination point (arrow),
while GFP fills both DD5 and DD6. (B) Arrow highlights the normal DD5 axon termination point. In rpm-1 mutants, the DD5 axon
overextends (arrowhead). (C) Quantitation of DD5 axon termination defects for the indicated genotypes. For each genotype, the mean is
shown from five or more counts (at least 20 worms/count). Analysis was performed on young adults grown at 23°C. Error bars represent
the standard error of the mean. Significance was determined using an unpaired Student's t test: ***P < 0.001. Scale bars, 10 um. DD,

100
ek
 —
80
%
termination | ¢ 1
defects
DD
(bDS) 40
20— —
0
wt rpm-1

is expressed at physiologically relevant levels (Figure 7C
and Additional file 1).

Previous studies showed that rpm-1-/- mutants have
multiple defects in the mechanosensory neurons of C.
elegans, including axon termination defects in the anterior
lateral microtubule (ALM) and posterior lateral micro-
tubule (PLM) neurons, and synaptic branch defects in the
PLM neurons that are associated with a failure to form
synapses [14,25]. While RPM-1 plays an important, cell au-
tonomous function in the mechanosensory neurons, its
subcellular localization in these neurons is unknown. Our
observation that RPM-1 was concentrated at both axon ter-
mination sites and presynaptic terminals in the DD neurons
suggested that this might also be the case in the mechano-
sensory neurons. To test this, we engineered rpm-1-/-
animals that expressed a transgenic extrachromosomal
array, bggEx101, that uses cell-specific promoters to express
mCherry (Pec;mCherry) and RPM-1:GFP (P 3RPM-1::
GFP) simultaneously in the mechanosensory neurons. We
observed that mCherry diffusely filled the axon, axonal
branch, and cell bodies of the ALM and the PLM mechan-
osensory neurons (Figure 7D,E, and data not shown). In
contrast, RPM-1:GFP was strongly concentrated in puncta
at the terminal tip of both the ALM and PLM axons
(Figure 7D,E, arrows). RPM-1:GFP was also concentrated
at the presynaptic terminals of the PLM mechanosensory
neurons (Figure 7G, arrows). We observed diffuse low
levels of RPM-1:GFP in the ALM and PLM cell bodies,

which was often excluded from the nucleus (data not
shown). The intensity and location of our transgenic
coinjection marker (P,.3RFP) prevented us from deter-
mining whether RPM-1::GFP was localized to the pre-
synaptic terminals of the ALM neurons, but given the
results in PLM neurons this is likely to be the case.
bggEx101 (Ppec3sRPM-1::GFP) rescued both the ALM
and the PLM axon termination defects in rpm-I1-/-
mutants, which demonstrates that this array expresses
functional RPM-1::GFP at physiologically relevant levels
(Figure 7F). Notably, while bggEx101 was generated by
injecting plasmid DNA encoding RPM-1::GFP at 20 ng/pl,
arrays made with higher concentrations of DNA (50 ng/ul)
often resulted in mechanosensory neurons with high levels
of RPM-1::GFP expression. In such cells, GFP signal filled
the entire cell body and axon, and concentration at the
axon tip and at the presynaptic terminal could not be
observed (data not shown).

These results, showing that RPM-1 is compartmental-
ized in discrete subcellular locations in the GABAergic
motor neurons and the mechanosensory neurons, is
consistent with the phenotypes caused by rpm-1 (If) in
these types of neurons.

Synaptic activity differentially regulates termination at
the anterior and posterior tip of the dorsal cord

Over 20 years ago, work on Drosophila indicated that
axon length and branching in motor neurons was
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(A) Schematic shows the termination site of the DD1 neuron (arrow) (inspired by Worm Atlas). Blue box highlights where confocal microscopy
was used to visualize PynsRPM-1:GFP (juls77) and Pg,.;smCherry (bggEx99). RPM-1:GFP is concentrated at the tip of the DD1 axon (arrow). (B) Schematic
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DD5 axon (arrow). (C) P,c2sRPM-1:GFP (juls77) rescues axon overextension defects caused by rom-1 (If) in the posterior and anterior tip of
the dorsal cord. For each genotype, the mean is shown from five or more counts (at least 20 worms/count). (D,E) Schematic shows the
mechanosensory neurons of C. elegans. Blue box highlights the region of the animal where confocal microscopy was used to visualize
Pmec.7mCherry or P ec sRPM-1:GFP (bggEx10T7). RPM-1:GFP is concentrated at the tip (arrow) of (D) the ALM axon and (E) the PLM axon.

(F) Prec3RPM-1:GFP (bggEx101) rescues axon termination defects in ALM (gray) and PLM neurons (hook, black bars). For each genotype, the mean is
shown from three or more counts (at least 20 worms/count). For P,.c3GFP (negative control), three independently derived transgenic lines were
analyzed. (G) Blue box highlights the region of the PLM that was visualized by epifluorescent microscopy. Shown below is RPM-1:GFP (bggEx101)
concentrated at the presynaptic terminals of a PLM neuron (arrows). All images and analysis were generated using young adult animals grown at 23°C.
Error bars represent the standard error of the mean. Significance was determined using an unpaired Student's t test: ***P < 0.001. ALM, anterior
lateral microtubule; AVM, anterior ventral microtubule; PLM, posterior lateral microtubule; PVM, posterior ventral microtubule; wt, wild-type.
Scale bars, 5 pm.

regulated by synaptic activity [35]. Ether a-go-go; Shaker
double mutants show similar (although somewhat weaker)
phenotypes to those observed in Highwire mutants, in
which motor axons are overgrown and have excess

branching, and abnormal synapse morphology is also ob-
served. This suggested that the enhanced defects in dorsal
cord termination observed in rpm-1—-/-; syd-2—/- double
mutants (Figures 2 and 3) might be due to loss of synaptic
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activity. This hypothesis was consistent with our observa-
tion that synapse formation was heavily impaired in the
dorsal and ventral cords of rpm-1-/-; syd-2-/- double
mutants (Figure 1). It is plausible that synaptic activity,
synaptic connectivity, or a combination of both, might in-
fluence intracellular signals that regulate axon termination
in the dorsal cord. We opted to test the role of synaptic
activity in dorsal cord termination by impairing GABAer-
gic transmission at the presynaptic terminal using unc-25
—/- mutants, which lack glutamic acid decarboxylase
[36], and by impairing transmission at the postsynaptic
terminal using unc-49-/- mutants, which lack y-amino
butyric acid (GABA) receptors in muscles [18,37]. In
unc-25-/- and unc-49-/- single mutants, we observed
no defects in the morphology of GABAergic motor neu-
rons (data not shown), or termination of the anterior or
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posterior tip of the dorsal cord (Figure 8A,B). Thus, loss
of chemical neurotransmission at the GABAergic neuro-
muscular junction in C. elegans does not impair dorsal
cord termination. Likewise, unc-25-/-; syd-2-/- and
unc-49-/-; syd-2—-/— double mutants did not have im-
paired anterior or posterior termination (Figure 8A,B).
However, unc-25-/-; rom-1-/- and unc-49-/-; rpm-1-/-
double mutants showed enhanced penetrance of anter-
ior termination defects similar to rpm-1-/-; syd-2-/-
double mutants (Figure 8A). No further increase in de-
fective anterior termination was observed in unc-25-/—;
rpm-1-/—; syd-2—/- triple mutants (Figure 8A). In con-
trast, unc-25-/—; rpm-1-/— or unc-49-/-; rpm-1-/-
double mutants did not enhance posterior termination de-
fects, although rpm-1-/-; syd-2-/- double mutants were
strongly enhanced for both overextension and undergrowth
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Figure 8 Synaptic activity regulates termination at the anterior, but not the posterior, tip of the dorsal cord. Quantitation of termination
defects at (A) the anterior and (B) the posterior tip of the dorsal cord using P,,.»sGFP (juls76) for the indicated genotypes. For each genotype,
the mean is shown from five or more counts (at least 20 worms/count). Analysis was performed on young adults grown at 23°C. Error bars
represent the standard error of the mean. Significance was determined using an unpaired Student's t test. ***P <0.001, **P < 0.005, ns, not
significant. wt, wild-type.
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defects (Figure 8B). Thus, rpm-1 functions coordinately
with synaptic activity to regulate termination of the anter-
ior, but not the posterior, tip of the dorsal cord.

Discussion

The PHR proteins function in a range of developmental
events, including axon termination, axon guidance, and
synapse formation. In C. elegans, RPM-1 functions cell
autonomously to regulate synapse formation in the
GABAergic motor neurons, and functions cell autono-
mously in the mechanosensory neurons to regulate both
axon termination and synapse formation [13,14,25,30].
We now show that RPM-1 also functions cell autono-
mously in the GABAergic motor neurons to regulate
axon termination. Prior to our study, axon termination
defects caused by rpm-1 (If) might have been considered
cell-specific defects associated with the mechanosensory
neurons and, as such, of lesser interest. Our results here
demonstrate that this is not the case, and strengthen the
argument that a core function of the PHR proteins is to
regulate axon termination.

Our observation that RPM-1 is concentrated in two
distinct subcellular compartments, the mature axon tip
and the presynaptic terminal, points to a possible explan-
ation for why RPM-1 regulates both axon termination and
synapse formation in an individual neuron. RPM-1 may
differentially regulate specific local signals or the intensity
of core signals at different subcellular locations. This idea
is consistent with a prior study, which showed that RPM-1
negatively regulates signaling by UNC5 (UNC-5) and
Robo (SAX-3) to control axon termination in the mechan-
osensory neurons [16]. Thus, RPM-1 localized at the axon
tip may regulate local signaling triggered by axon guidance
cues. In contrast, RPM-1 signaling at the presynaptic
terminal is unlikely to regulate signaling by guidance cues,
and therefore presumably has a distinct role in synapto-
genesis. It was previously proposed that RPM-1 might
coordinate axon extension and termination with synapse
formation [3,16]. Our finding that RPM-1 is localized to
distinct subcellular compartments within individual neu-
rons provides cell biological evidence to support this
model further, and raises the interesting possibility that
different activating or inhibitory signals might converge
on RPM-1 in distinct locations.

Because RPM-1 is concentrated at the mature axon
tip, it is possible that RPM-1 acts to cap a growing axon
and trigger termination of extension. Presumably,
localization of RPM-1 at the mature axon cap continues
to silence signaling (most likely by guidance cues, as dis-
cussed previously) to ensure that the axon termination
site is maintained. Transgenic studies in flies have shown
that Hiw is enriched at presynaptic boutons, and there is
a presynaptic bouton at the tip of fly motor neurons
[34]. Thus, it is plausible that Hiw is concentrated at the
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mature axon tip, although this has not been explicitly
examined. To our knowledge, it remains uncertain
whether vertebrate PHR proteins are concentrated at the
mature axon tip; however, work in mice has shown that
Phrl is localized throughout the axon and excluded
from portions of the growth cone in actively growing
axons that have not formed synapses [5]. Collectively,
these observations raise the interesting possibility that at
some point during development, PHR proteins may con-
centrate in the growth cone to trigger formation of a
mature axon cap that is no longer capable of extension.
Further support for or against this model is likely to be
obtained by addressing a number of questions. Does
RPM-1 localize to the axon tip prior to or following ter-
mination of axon outgrowth? What is the temporal rela-
tionship between RPM-1 localized to the axon tip and
RPM-1 localized to the presynaptic terminal? Finally,
where does RPM-1 localize during active axon growth
prior to termination?

rpm-1 regulates axon termination and axon extension
Our genetic analysis showed that rpm-1 (If) mutants
have defects in axon termination of the GABAergic
motor neurons at the anterior tip, the posterior tip, and
within the dorsal cord. rpm-1-/-; syd-2—-/- double mu-
tants had enhanced axon termination defects (evident by
increased numbers of axons showing overgrowth), and
also had enhanced defects in axon extension exclusively
at the posterior tip of the dorsal cord (evident by in-
creased numbers of neurons with axon undergrowth).
Thus, the use of a sensitizing genetic background has
allowed us to determine that rpm-1 functions primarily
in axon termination and secondarily in axon extension
in the motor neuron (VD13) that forms the posterior
dorsal cord termination site. To our knowledge, this is
the first evidence that, in a single cell, rpm-1 regulates
both axon termination and extension of the same
process. This provides further support for the model that
RPM-1 is a general and key regulator of axon length.
Previous studies with fish cortical neurons and with
murine motor neurons reported the surprising and dif-
fering result that Phrl regulates microtubule disassembly
and assembly, respectively [5,38]. Initially, we assumed
that this paradox was due to a difference in the type of
neuron analyzed. While this is still a potential factor, our
finding that rpm-1 regulates axon termination at the an-
terior and posterior tip of the dorsal cord, but regulates
extension exclusively at the posterior, suggests the inter-
esting possibility that the location of a neuron and its
environment might also instruct how the PHR proteins
regulate axon length. However, given the anatomical dif-
ferences between different GABAergic motor neurons (for
example, the VD1 neuron has unique axon anatomy), it
remains possible that intrinsic differences in individual
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motor neurons dictate whether RPM-1 regulates axon ex-
tension or termination.

We have also found that synaptic activity, acting as a
secondary player, functions coordinately with RPM-1 to
regulate termination of the anterior tip of the dorsal
cord. Thus, enhanced termination defects at the anterior
of the dorsal cord in rpm-1-/-; syd-2-/- double mu-
tants are likely to reflect enhancer effects associated with
loss of synaptic transmission resulting from severely im-
paired synapse formation in these double mutants. By
contrast, synaptic activity does not function coordinately
with RPM-1 to regulate termination at the posterior tip of
the dorsal cord. As a result, the enhanced defects in poster-
ior termination of rpm-1-/-; syd-2—/- double mutants are
likely to reflect loss of a signal other than synaptic trans-
mission, possibly synaptic connectivity. Given that SYD-2
is localized to the active zone of presynaptic terminals and
not axon tips [22,33], it is unlikely that SYD-2 functions at
the axon tip to regulate axon termination. Overall, our re-
sults demonstrate that axon termination is established co-
ordinately by a core signal from RPM-1, and secondary
signals (such as synaptic activity), which are dependent
upon the location or the type of neuron in question.

Prior studies showed that two Wnts, LIN-44 and EGL-
20, and the canonical B-catenin BAR-1 regulate axon
termination of the GABAergic motor neurons at the
posterior tip of the dorsal cord [26] and within the dor-
sal cord [39]. Wnts acting in the posterior of C. elegans
have also been shown to regulate synapse position in the
cholinergic DA9 motor neuron [40], and axon polarization
in the PLM mechanosensory neurons [41-43]. Given that
both Wnt (If) mutants, and rpm-1 (If) mutants have axon
termination defects at the posterior tip of the dorsal cord,
it is plausible that Wnt and RPM-1 signaling function to-
gether to regulate axon termination in GABAergic motor
neurons. Consistent with this, we have found that bar-1
functions in the same genetic pathway as rpm-1 to regu-
late axon termination in the PLM mechanosensory neu-
rons, and synapse formation in the GABAergic motor
neurons (Tulgren and Grill, unpublished observation). In
the future, we hope to address the question of whether
RPM-1 and Wnt signaling converge differentially on BAR-
1, thereby providing multiple mechanisms for regulation
of the BAR-1 B-catenin.

The role of DLK-1 in axon termination and axon extension
varies with location

Previous studies established the role of RPM-1, and PHR
proteins in general, as negative regulators of the MAP3K
DLK-1 (called Wallenda in flies and Dlk in mammals)
[5,11,30,44]. We have found that axon termination de-
fects caused by rpm-1 (If) are suppressed by dlk-1 (If) at
the anterior, but not the posterior tip of the dorsal cord.
However, it is notable that dlk-1 (If), while unable to
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suppress enhanced overextension defects in rpm-1-/-;
syd-2—/— double mutants, strongly suppressed under-
growth defects in rpm-1-/—; syd-2-/- double mutants.
These results demonstrate that RPM-1 regulates axon
extension at the posterior tip of the dorsal cord by inhi-
biting DLK-1, but RPM-1 does not function through
DLK-1 to regulate axon termination in this location.
Our findings are consistent with prior studies, which
showed that RPM-1 and Hiw function only in part
through DLK-1 signaling [11,25,34]. Further, our results
suggest that the anatomical location of a neuron may
dictate whether DLK-1 regulates axon termination or
axon extension. We propose three possible explanations
for the role that location plays in the variable contribu-
tion of DLK-1 to axon termination or extension. (1)
Extracellular cues may differentially regulate RPM-1 ef-
fects on DLK-1. (2) The extracellular environment may
shape the relative contribution of DLK-1 signaling or the
activation of DLK-1 independent of RPM-1. (3) Intrinsic
differences between GABAergic motor neurons in differ-
ent anatomical locations may affect the contribution of
DLK-1 signaling to axon termination and extension.

rpm-1 regulates both axon termination and synapse
formation in GABAergic motor neurons

Our analysis indicated that the anterior and posterior
dorsal cord termination defects in rpm-1 (If) mutants
probably reflect overextension of the VD1 and VD13
processes, respectively. In the interior of the dorsal cord,
rpm-1 (If) mutants have axon termination defects in the
DD5 motor neuron. Previous work showed that synapse
formation defects are also observed along the length of
the dorsal cord in rpm-1 (If) mutants and, thus, are oc-
curring in DD5 [13,30]. The presence of both axon ter-
mination defects and synapse formation defects in the
DD5 neuron of rpm-1 (If) mutants is consistent with our
observation that RPM-1 is localized to the axon tip and
the presynaptic terminal of DD5 (Figure 7B). Thus, RPM-
1 regulates both axon termination and synapse formation
in a single motor neuron, DD5. Similar logic suggests that
the same situation exists in VD1 and VD13.

Conclusions

Our findings prompt several conclusions. (1) RPM-1 is
localized to distinct subcellular compartments at mature
axon tips and presynaptic terminals, which is consistent
with RPM-1 regulating axon termination and synapse
formation, respectively. (2) RPM-1 functions coordinately
with different signals, one of which is synaptic activity, to
regulate axon termination in different anatomical loca-
tions. (3) As the relative success of synapse formation is
reduced (such as in rpm-1-/—; syd-2—/- double mutants
compared with rpm-1-/- single mutants), the penetrance
of axon termination defects increases, suggesting a
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molecular link between these two processes. Collectively,
these findings raise an intriguing possibility: RPM-1 may
function in different subcellular locations to coordinate
synapse formation with termination of axon outgrowth,
based on the level of synaptic activity or connectivity.

Methods

Strains and genetics

The N2 strain of C. elegans was propagated using stand-
ard techniques [45]. Alleles used included: rpm-1(ju44),
syd-2(ju37), syd-2(0k217), fsn-1(gk429), glo-4(0k623), dlk-
1(ju476), unc-25(e156), and unc-49(e362). Standard C.
elegans genetic procedures were used to generate double
and triple mutants, and alleles were tracked by PCR
genotyping. Because PCR could not be used for syd-2
(ju37), we used an X-linked mating strategy. syd-2; rpm-1
double mutants were identified based on their UncSma
(Uncoordinated and Small) phenotype. syd-2; rpm-1; dlk-1
triple mutants were constructed by isolating rpm-1-/-;
syd-2-/—-; dlk-1+/-animals that were UncSma, and subse-
quently isolating homozygous triple mutants in which the
UncSma phenotype was suppressed. juls77/+juls76/+re-
combinant heterozygous animals were isolated by visu-
ally monitoring both juls76 and Py, 3GFP expressed by
juls77. These animals were analyzed as heterozygotes
because juls77; juls76 homozygous animals were not vi-
able, for reasons that were unclear. Transgenes used in-
cluded: julsl (P, 2sSNB-1:GFP), juls76 (P, 2sGFP),
juls77  (Pyc0sRPM-1::GFP), bggEx99 (Pg,.;smCherry),
bggls6 (Pyy,.;smCherry), and bggEx101 (P,y;ec.sRPM-1:GFP;
P,.ec.;mCherry). Work and protocols performed with C.
elegans involving recombinant DNA were approved by the
Institutional Biosafety Committee of The Scripps Research
Institute - Florida (protocol #: 2012-013).

Transgenics

Transgenic animals were generated by standard microinjec-
tion procedures. Transgenes were constructed using the
coinjection marker Py, sRFP (50 ng/pl), and pBluescript
(50 ng/pl). For transgenic rescue experiments, plasmids in-
cluded: pCZ160 (Pypm 1 RPM-1), pBG-46 (PpecsRPM-1:
GFP), pBG-137 (P,,,c.0sRPM-1), pBG-GY465 (P,,,,.25SYD-2),
and pBG-GY497 (Pmec3GFP). pCZ160 (Pipm-1RPM-1),
pBG-46 (P ec.sRPM-1:GFP), and pBG-137 (P,,,..osRPM-1)
were injected into rpm-1-/- mutants at 20 ng/pl for all
rescues. pPBG-GY465 (P, 2sSYD-2) was injected into
rpm-1-/—; syd-2—/- double mutants at 5 ng/pl for pos-
terior and anterior overextension defects, and at 1 to
2.5 ng/ul for posterior undergrowth defects. For bggEx99,
pBG-GY411 (Pg,13mCherry) was injected at 50 ng/ul.
bggls6 was a spontaneous integrant of bggEx99. For
bggEx101, pBG-46 (Pec3RPM-1:GFP) and pBG-GY258
(Prmec.7mCherry) were injected at 20 ng/pl and 10 ng/yl,
respectively.
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Analysis of synapse and axonal morphology using
epifluorescent microscopy

For analysis of GFP, mCherry or SNB-1:GED, live animals
were anesthetized using 1% (v/v) 1-phenoxy-2-propanol in
M9 buffer and visualized using a 40x magnification oil-
immersion lens and an epifluorescent microscope (Leica
CFR5000). A CCD camera (Leica DFC345 FX) was used for
documentation. Images were analyzed and scale bars applied
using Leica Application Suite for Advanced Fluorescence
(LAS-AF) software. Termination defects were quantified by
manually scoring juls76 (P,,.2s:GFP) for dorsal cord tips,
and bggls6 (P, 2s:mCherry) for DD5. Each genotype was
quantitated by manually scoring three counts of 10 to 20
animals from two or more independent experiments.

Confocal microscopy

Transgenic animals were anesthetized using 1% (v/v) 1-
phenoxy-2-propanol in M9 buffer. GFP:RPM-1 and
mCherry were visualized in live animals using a Zeiss 780
laser scanning confocal microscope at 63x magnification
under oil immersion. Images were acquired using Zeiss’
ZEN software, and analyzed using Image ] software.

Additional file

Additional file 1: juls77 (P,,c.2sRPM-1::GFP) rescues synapse
formation defects in rpm-1 mutants. ju/s7 (P, >sSNB-1:GFP) was used
to visualize presynaptic terminals in the dorsal cords of animals with the
indicated genotypes. SNB-1:GFP puncta were quantitated by scoring the
number of puncta that were present per 100 um of dorsal cord. Note
that juls77 (Punc-2sRPM-1:GFP rescues synapse formation defects caused
by rom-T1 (If).

Abbreviations

ALM: anterior lateral microtubule; CCD: charge-coupled device; DD: dorsal D
neuron; DLK: duel leucine zipper-bearing kinase; FSN: F-box synaptic protein;
GABA: y-amino butyric acid; GFP: green fluorescent protein; GLO: Gut granule
loss; Hiw: Highwire; If: loss of function; MAP3K: mitogen activated protein
kinase kinase kinase; PAM: protein associated with Myc; PCR: polymerase
chain reaction; PHR: PAM/Highwire/RPM-1; PLM: posterior lateral microtubule;
RMED: dorsal RME neuron; Robo: roundabout; RPM: regulator of presynaptic
morphology; RT-PCR: reverse transcriptase polymerase chain reaction;

SAX: sensory axon guidance; SNB: synaptobrevin; SYD: synapse defective;
UNC: uncoordinated; VD: ventral D neuron.
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