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ABSTRACT

Time-resolved x-ray crystallography (TR-X) at synchrotrons and free electron lasers is a promising technique for recording dynamics of mol-
ecules at atomic resolution. While experimental methods for TR-X have proliferated and matured, data analysis is often difficult. Extracting
small, time-dependent changes in signal is frequently a bottleneck for practitioners. Recent work demonstrated this challenge can be
addressed when merging redundant observations by a statistical technique known as variational inference (VI). However, the variational
approach to time-resolved data analysis requires identification of successful hyperparameters in order to optimally extract signal. In this case
study, we present a successful application of VI to time-resolved changes in an enzyme, DJ-1, upon mixing with a substrate molecule, methyl-
glyoxal. We present a strategy to extract high signal-to-noise changes in electron density from these data. Furthermore, we conduct an abla-
tion study, in which we systematically remove one hyperparameter at a time to demonstrate the impact of each hyperparameter choice on the
success of our model. We expect this case study will serve as a practical example for how others may deploy VI in order to analyze their time-
resolved diffraction data.

VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/4.0000269

I. INTRODUCTION

Time-resolved x-ray crystallography (TR-X) enables the obser-
vation of macromolecular dynamics at atomic resolution, capturing
essential information to understand reaction mechanisms. The
applications of this technique are extremely broad, and within this
paradigm, many experimental approaches have been developed at
both synchrotrons and x-ray free electron lasers (XFELs). These
include pump-probe,1–3 mix-and-inject serial crystallography
(MISC),4–7 temperature jump,8 electric field stimulation,9 and
others, which allow researchers to observe conformational changes

of diverse biological targets.10,11 In this manuscript, we focus on the
data analysis of a successful MISC pink-beam diffraction experiment
carried out at the Advanced Photon Source Sector 14
(BioCARS12,13). This experiment investigated the reaction of a
human enzyme implicated in early-onset Parkinson’s disease, DJ-1,
with one of its putative substrates, methylglyoxal. While this is a fas-
cinating biochemical system of considerable medical relevance, here
we will focus on the challenges inherent in extracting time-resolved
signal from x-ray diffraction experiments rather than the biological
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conclusions of our study. Based on our experience, we offer practical
advice to those conducting time-resolved and comparative crystal-
lography experiments.

The analysis of time-resolved diffraction data is still frequently
challenging. The experiments themselves introduce many sources of
variability. The goal of any time-resolved experiment is to initiate
dynamics as uniformly as possible for all of the protein molecules
inside a crystal. Then, assuming sufficient initiation and reaction
progress, small structural changes occur and are captured at prede-
termined delay times with x-ray pulses. During data collection, the
average structure in time across the crystal is recorded. Many time-
resolved measurements are coupled to serial crystallography experi-
ments, where datasets comprise up to hundreds of thousands of
crystals, introducing additional challenges, such as heterogeneity
across microcrystals and the need for accurate scaling and merging
of reflections across the dataset. Time-resolved differences are most
commonly analyzed with difference electron density (TR-DED)
maps. The Fourier coefficients of such a map consist of the differ-
ence in structure factor amplitudes between two time points. The
phases are usually approximated by those of a high-resolution refer-
ence structure of the crystal in the ground state. While difference
electron density (DED) maps are exquisitely sensitive to changes in
the composition of crystals,14 they are equally sensitive to measure-
ment errors.15 The success of a time-resolved crystallography exper-
iment may therefore hinge upon the accuracy with which
differences in structure factor amplitudes can be measured, which is
a noteworthy challenge. The changes in structure factor amplitudes
between time points are, in most cases, small relative to the structure fac-
tors themselves.14 This means that data must be measured with unusually
high precision in order to accurately infer differences in structure and
observe intermediate states. Contamination of the structure factor differ-
ences by outliers canmask signal in otherwise well-measured data.15

Serial femtosecond crystallography (SFX) experiments were
pioneered at x-ray free electron lasers,16 and serial synchrotron crys-
tallography (SSX) experiments are becoming increasingly popular,
with both monochromatic17–20 and polychromatic x rays.21,22 Data
collection from quasi-monochromatic sources, however, records
only partial Bragg reflections. The most common strategy to handle
this partiality, and thus achieve more precise estimates of structure
factors, is serial crystallography at extreme statistical redundancy.23

Our experimental design is different and exploits a polychromatic
synchrotron beamline (BioCARS 14-ID, Advanced Photon Source),
which has already been used for previously successful SSX experi-
ments.21,24,25 The increased reciprocal space information available
in polychromatic diffraction patterns, as well as recording of full
rather than partial intensities (without crystal rotation), as com-
pared to monochromatic images enabled us to successfully measure
time-resolved changes in structure from fewer microcrystals than are typi-
cally required in an SFX experiment. Other synchrotron beamlines are
starting to broaden their x-ray bandwidth to � 1% due to these bene-
fits.26–28 Nonetheless, many of our conclusions will be applicable to time-
resolved crystallography experiments, regardless of the x-ray bandwidth
or source. The central insight we wish to convey in this manuscript is that
recent advances in data analysis can address the measurement errors
inherent in crystallography experiments and generate high-quality DED
maps. More specifically, we will demonstrate that the statistical method of
variational inference29,30 is well suited to this challenge.

X-ray diffraction data typically contain many redundant observa-
tions of reflections. Merging is the process of averaging the intensities
of redundant measurements to estimate a consensus set of intensities,
which can be used in structure determination or, indeed, Fourier dif-
ference map analyses. This task is complicated by the nature of the dif-
fraction experiment, as discussed above. The observed intensity is
always modulated by a number of effects, which are unavoidable and
lead to systematic errors in the measurements. These errors cannot be
accounted for strictly by analytical correction factors.31 Prior to merg-
ing, observed intensities are corrected using numerical optimization, a
procedure known as scaling.32 Conventionally, scaling algorithms
work by fitting a model of systematic errors in order to minimize the
discrepancy between repeated observations of the same reflection. This
has been a very successful strategy for conventional, rotation-method
data. Every major crystallography software package implements a scal-
ing algorithm. An alternative to sequential scaling and merging was
recently proposed, which jointly estimates merged structure factors
alongside the systematic error model using variational inference.33 This
algorithm is implemented in the Python package, careless, which is
freely available and open source (https://github.com/rs- station/careless).

Variational inference is a Bayesian method which uses gradient-
based optimization to estimate a quantity of interest given some exper-
imental observations and a set of prior beliefs.29,30 This is similar in
concept to maximum a posterior (MAP) or regularized maximum-
likelihood estimation. However, it differs in that a distribution is recov-
ered for the estimand rather than a point estimate. Importantly, the
width of this distribution can be used to assign a confidence to the esti-
mate. In the context of careless, the estimand is the structure fac-
tor amplitudes, and the data are unmerged, unscaled intensities. The
prior distribution is Wilson’s priors,34 which are derived under the
assumption of random atomic coordinates within a crystalline lattice.
Because variational inference relies on gradient-based optimization, it
can be easily implemented in a modern deep-learning framework like
PyTorch or TensorFlow,35,36 which provides automatic differentiation.
In light of this, variational inference models frequently incorporate
components based on deep learning. Careless is no exception.
Indeed, a deep neural network is used to estimate systematic errors
from experimental metadata. This is a black-box function, which
ingests metadata for each reflection observation and outputs an esti-
mate of the systematic error. In careless, parameters of this net-
work are learned jointly with the structure factor amplitudes. We
explore the benefits of this approach, specifically in the context of opti-
mizing time-resolved difference peaks, in this work.

The main advantage of variational inference is flexibility.
Consequently, software like careless should not be thought of as a
push-button scaling solution. Rather, it is a modeling toolkit that can be
used to extract themost signal possible from a time series. Doing so requires
the user to identify the proper set of model hyperparameters to maximize
the desired signal. Extensive hyperparameter searches can be computation-
ally prohibitive. Therefore, we offer some lessons from our own experience
to help decrease the burden of finding the optimal hyperparameters.

II. METHODS
A. Experimental design

All diffraction data were collected from DJ-1 microcrystals
(�25lm in size, grown as previously described5,37) at APS BioCARS
14-ID-B12,13 with a custom sample cell coupled to a microfluidic
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mixer.38 Briefly, the DJ-1 microcrystals first pass through a microflui-
dic mixer where the substrate, methylglyoxal, is rapidly diffused into
the crystals for reaction initiation. The freshly mixed crystals continue
to flow into the sample cell observation region for data collection. The

flow speeds were adjusted to match the 3.6 ls exposure time at a 10Hz
repetition rate so that fresh crystals intersect the x-ray interaction
region for every frame. Flow rates and the position of the x-ray beam
were adjusted to get different time points within the same mixer.

FIG. 1. careless commands used in this work.

TABLE I. Ablation study results. To ensure consistent comparisons, all time points were truncated at 1.77 Å resolution. The average difference peak height and standard devia-
tion across time points (after mixing) for each merge condition are shown. The average and standard deviation across time points (after mixing) for RSCC for the ligand alone
and for the full model for each merge condition are also shown. The R-factors and CCwork=CCfree are reported for the 0-s time point. CChalf and CCpred are reported over all time
points.

Dataset
Active site diff peak
mean6 std. dev.

RSCC ligand only
mean 6 std. dev.

RSCC full model
mean 6 std. dev. Rwork=Rfree

CCwork=CCfree

(highest shell)

Baseline 19.06 2.6 0.9606 0.005 0.8736 0.014 21.94/23.58 0.510/0.449
No deconvolution 20.16 2.2 0.9576 0.006 0.8566 0.004 21.67/23.56 0.535/0.491
No multivariate prior 11.66 2.0 0.9526 0.010 0.8626 0.012 22.83/24.98 0.335/0.357
No robust error model 13.76 1.8 0.9416 0.009 0.8416 0.013 23.23/26.00 0.469/0.447
No image layers 14.46 2.1 0.9626 0.007 0.8816 0.017 21.29/22.97 0.526/0.435
No positional encoding 17.96 1.7 0.9336 0.012 0.8156 0.014 25.30/28.27 0.473/0.480
No wavelength norm. 9.26 1.8 0.9556 0.006 0.8616 0.016 22.04/24.18 0.493/0.446

Dataset CChalf (highest shell) CCpredðPearsonÞ test/train (overall) CCpredðSpearmanÞ test/train (overall)

Baseline 0.347 0.723/0.685 0.548/0.554
No deconvolution 0.315 0.744/0.706 0.553/0.559
No multivariate prior 0.094 0.486/0.834 0.545/0.563
No robust error model 0.305 0.766/0.977 0.523/0.533
No image layers 0.312 0.882/0.889 0.537/0.542
No positional encoding 0.341 0.724/0.686 0.536/0.545
No wavelength norm. 0.340 0.703/0.750 0.518/0.531
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Diffraction images were collected at 3, 5, 10, 15, 20, and 30 s post mix-
ing, plus an initial state (0 s, without mixing), yielding 7 datasets total.
As previously reported,37 DJ-1 crystallizes in space group P3121, which
has an indexing ambiguity.

B. Data reduction

Data were initially processed using BioCARS’ Python script13 for
hit finding as well as indexing and integration of images in parallel
with Precognition software (Renz Research, Inc.). Next, indexing
ambiguities were resolved for each dataset using a custom program
(HEX-AMBI, M. Schmidt, personal communication). All details about
processing with careless can be found on Zenodo (10.5281/
zenodo.10481982). Briefly, the �.ii files output from Precognition were
converted to .mtz format using to_mtz.sh. Then, a custom pro-
gram, Scramble, was used to correct the consistency of the indexing
convention across all datasets (the source code for Scramble is available
on GitHub, https://github.com/Hekstra-Lab/scramble/). In this work,
we used commit 746597266febb2e8dcf1a0728abe77a47e804bc8 for
Scramble and commit 389b3e8084cb5a443a90a3481d80d4197b5b02b3
for careless. In addition to being freely available from GitHub, the
source code for both of these programs is archived in our Zenodo
deposition. Careless33 was used to merge and scale the data.

C. Ablation study and hyperparameter sweeps

In order to assess the impact of our careless hyperparameter
choices on performance, we performed an ablation study wherein we
disabled one hyperparameter at a time. The ablations were achieved by
changing the baseline merging script as detailed in Fig. 1.
Hyperparameter sweeps were performed for the multivariate prior and
for the robust error model. For the multivariate prior, the r value in
line 3 of Fig. 1(a) is varied with the following values: 0.500, 0.800,
0.900, 0.950, 0.990, and 0.999. For the robust error model, the degrees
of freedom are varied with the following values: 4, 8, 16, 32, and 64
[Fig. 1(d)]. Dataset quality was assessed with the active site difference
peak height, real-space correlation coefficients (RSCCs) over the ligand
and the whole model, R-factors, CChalf, CCwork=CCfree, and CCpred. To
facilitate comparison, all the experiments conducted here were trun-
cated at a consistent, 1.77 Å resolution cutoff. These results are pre-
sented in Table I. The active site peak heights were calculated from
difference maps between each time point post mixing with the initial,
0-s dataset. The average difference peak height and standard deviation
across all time points for each merge condition is shown in Table I.
The RSCC values were calculated against the refined models for each
time point (after mixing) using the baseline script [Fig. 1(a)]. The aver-
age and standard deviation across these time points are reported. The
R-factors and CCwork=CCfree are reported for the 0-s time point. CChalf

and CCpred are reported over all time points.

D. Calculation and quantification of time-resolved
difference maps

We estimated phases for difference map peaks by refinement of a
ground state model38 against the 0-s time point data. We restricted
refinement to rigid body and individual, isotropic atomic displacement
parameters in the PHENIX39 software package. We used the rs.
diffmap function available in the rs-booster package for the
reciprocalspaceship40 Python library. These difference maps use the

model phases from PHENIX and the merging output from care-
less. We quantified difference map peaks using rs.find_peaks
which relies on GEMMI.41 In Table I, we report the standard deviation
of difference-peak heights across time points.

III. CARELESS ABLATION STUDIES

Modern machine-learning algorithms are complex and contain
many settings that control their performance. These “hyperpara-
meters” are fixed during model training and so must be selected or
“tuned” by iteratively re-fitting a model with different settings to
achieve the best results. With many settings to choose, it is generally
impossible to explore the entirety of hyperparameter space for a spe-
cific problem. The reality is that determining a successful protocol for
training a deep-learning model often relies on a mixture of intuition
and one-dimensional hyperparameter searches.

Here, we present a protocol for merging time-resolved DJ-1 data
based on one-dimensional hyperparameter searches and our devel-
oped intuition. In order to rationalize the impact of each decision
involved in selecting our protocol, we conducted an ablation study
wherein we disable one model feature at a time relative to the opti-
mized protocol which we will refer to as “baseline.” This method is fre-
quently employed in the deep-learning literature. A famous example of
this principle is summarized in Fig. 4(a) of Jumper et al.42 The parame-
ters used in our baseline protocol are listed in Fig. 1(a), which uses the
same syntax as the careless command line interface.

The “best” parameters for merging with careless remains an
active field of research and may be dataset-specific. Both the ablation
study and hyperparameter sweep allowed us to assess the impact of
each hyperparameter on the success of merging. We hope these results
help future users build an intuition for the most critical parameters,
demonstrate a sensible way to approach screening parameters, and
share practical advice on how to evaluate the results.

We used the following metrics to judge merged dataset quality:
mean and standard deviation of active site difference peak across time
points (after mixing), mean and standard deviation of the real space
correlation coefficient (RSCC) across time points (after mixing) for the
ligand only and for the full model, Rwork=Rfree (for the 0-s time point),
CCwork=CCfree (for the 0-s time point), CChalf (across all time points),
and CCpred (across all time points). Apart from CCpred, these parame-
ters are standard crystallographic figures of merit.

In careless, no prior is placed on either the parameters or the
output of the neural network, which estimates reflection scales. This is
a design choice intended to encourage the neural network to overfit
before the structure factors do. The goal is to prevent the model from
introducing artifacts into the output. In consequence, in the overfit
regime, the structure factors will not contain the maximum possible
signal from the sample. Careful assessment of overfitting is therefore
warranted to recover optimal time-resolved differences. CCpred can be
used to assess overfitting by evaluating the correlation between pre-
dicted and observed reflections,33 which is an important aspect of
hyperparameter selection in any machine-learning model. More spe-
cifically for CCpred, we report two approaches, Pearson’s correlation
with inverse variance weights [CCpredðPearsonÞ] and Spearman’s rank
correlation [CCpredðSpearmanÞ]. We report these coefficients based on
the training data and a set of test reflections, which were used to train
the scaling model. Worse performance on the test data is suggestive of
overfitting, which is an indicator of suboptimal hyperparameter val-
ues43 (Chapter 7). All of our results are summarized in Table I, for
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details on calculating each metric, see the Methods section. The out-
come of each ablation study and, when applicable, one-dimensional
parameter sweeps are presented below in more detail.

A. Harmonic deconvolution

One crucial consideration with polychromatic diffraction is that
reflection observations need not correspond to exactly one Miller
index. In fact, the pink-beam geometry maps all the reflections from a
particular central ray onto the same point on the detector. A central
ray is defined as the set of reflections, which lie on a ray extending out-
ward from the origin of reciprocal space. For instance, the three reflec-
tions indicated in Fig. 2 all share the central ray passing through
reflection h ¼ 0; k ¼ 1. These three reflections are called harmon-
ics.44,45 In the experiment, they will be stimulated by different wave-
lengths of x rays. This can be seen by noting the difference in the
magnitude of their scattered beam wavevectors represented by the
length of the arrows in Fig. 2. The corresponding wavelengths are tab-
ulated in the table to the right of the figure. Despite the difference in
the magnitudes of the scattered wavevectors, the direction is shared.
That is, the colored lines in Fig. 2 are parallel. In reality, there is only
one crystal to serve as the origin for these vectors. Therefore, the reflec-
tions end up precisely superposed on the detector. This phenomenon
of harmonic overlap is distinct from the spatial overlaps, which occur
frequently in pink-beam crystallography.45,46 Spatial overlaps can be
resolved during integration by profile-fitting algorithms. However,
harmonic overlaps must be deconvolved during scaling.47

Careless33 implements one such algorithm for harmonic deconvo-
lution. In order to assess the impact of harmonic deconvolution on the
analysis of our time-resolved data, we ran careless in monochro-
matic mode using the careless mono subprogram in place of the
careless poly subprogram typically applied to pink-beam data
[Fig. 1(b)]. We found that disabling harmonic deconvolution did not
markedly affect our results. Interestingly, there is a small decrease in
RSCC Full Model, but otherwise, we saw no significant difference in
the active site difference peak height, RSCC Ligand Only, or refine-
ment R-values (Table I). Harmonic deconvolution did lead to a slight
improvement in CChalf in the highest resolution bin. We attribute the
lack of a dramatic difference to the high redundancy of these data as
well as the experimental design. Specifically, the current beam parame-
ters at BioCARS12 mean that only a very small fraction (1% or less) of
observations are typically harmonics. In general, we still recommend
using harmonic deconvolution for pink-beam diffraction.
Nevertheless, it will most likely only provide a substantial improve-
ment for low-redundancy data or higher spectral-bandwidth sources.

B. Multivariate prior

The Bayesian model implemented in careless allows the user
to express various expectations about the relation between crystallo-
graphic datasets through a multivariate prior distribution. To do so,
users may specify a conditional dependence structure wherein each
dataset is dependent on at most one “parent” dataset. Conditional
dependence is an appropriate assumption in situations whenever a
structure is solved simultaneously with a derivative structure. For each
parent–child pair, users specify a value between zero and one for the
multivariate prior r parameter, which indicates the expected degree of
correlation between the two datasets (this distribution is referred to as

the “double-Wilson” distribution, as it extends the conventional Wilson
distribution to the bi- and multivariate case). On the command line,
this is done by defining the parent–child relationship with –double-
wilson-parents¼None,0,0,0,0,0,0, where each entry in the
list indicates the index of the parent dataset (datasets are indexed in the
order in which they are provided to careless, starting at 0). In this
case, each dataset is a child of the 0th dataset, which corresponds to the
0-s dataset before substrate addition. None indicates that the 0th data-
set lacks a parent. Next, the r parameter is set by –double-
wilson-r¼0,0.99,0.99, 0.99,0.99,0.99,0.99, where
for each child node, the expected correlation with its parent dataset
node is set fhere 0.990 for all nodes except the 0th [Fig. 1(c)]g. Higher
numbers indicate a greater expectation of correlation. The multivariate
prior r is related but not identical to the expected Pearson correlation.
As with other hyperparameters discussed here, r should be selected on
the basis of crossvalidation by assessing the model fit to the training
data and a held-out set of test data using the CCpredmeasure. The multi-
variate prior distribution will be described in greater detail in a separate
manuscript.48

Removing the multivariate prior had a drastic impact on the
quality of our analysis. The active site difference peak mean had a 7.4r
reduction. There is, however, only a minor decrease in the RSCCs.
Notably, the multivariate prior was the only hyperparameter to have a
considerable effect on CChalf, and thus, also impacts the overall resolu-
tion of the final dataset as CChalf was used as the main criterion to
determine the resolution cutoff.

In addition to the ablation study, we also performed a one-
dimensional parameter sweep of the prior correlation value (Fig. 3).
We used the height of the active site difference peak as our main crite-
rion for selecting the optimal value. We found a maximum in differ-
ence peak height with a prior correlation value of 0.990 [Fig. 3(a)]. At
this value, the mean value across all time points was 19r, whereas the
maximum value was 23r (15 s time point). Additionally, we far sur-
pass the noise standard of 3r at our optimized value (0.990) and meet

FIG. 2. The origin of harmonic overlap in pink-beam crystallography depicted by the
reciprocal lattice for a 2-dimensional crystal. The diffracting condition, shaded gray,
is bounded by the three limiting spheres determined by the minimum and maximum
wavelength of the spectrum and the resolution limit of the sample. Three reflections
from the same central ray are on the diffracting condition. Their scattered beam
wavevectors, depicted as arrows, have different magnitudes, inverse wavelengths,
but are all parallel. The wavelengths and resolutions of these reflections are
recorded in the table to the right. Because the scattered beams are parallel, they
will arrive at the same location on the detector.
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or exceed this for all of our tested values. The active site difference
peak heights, however, were strongly influenced by the prior correla-
tion value [Table I and Fig. 3(a)]. We encourage users to carefully
screen the prior correlation value for their own datasets to try to find a
maximum.

As an additional real space metric, we used RSCCs for the ligand
alone and for the full model [Figs. 3(b) and (c)]. For the ligand alone,
the RSCC increases monotonically with respect to r, but the RSCC for
the full model starts to suffer around r¼ 0.950. We also used Rfree as
an additional metric to assess map-model agreement and see the low-
est values between 0.950 and 0.999.

CCpredðPearsonÞ and CCpredðSpearmanÞ were both computed for
crossvalidation to assess overfitting and to ultimately decide the best r
value. Ideally, these CCpred indicators should have the highest possible
value while having the smallest gap between the test and train set, as
this would indicate that the predicted and observed reflections corre-
late well with each other. In order to estimate the uncertainty of our
correlations, we used bootstrapping49 to estimate a distribution for
both CCpredðPearsonÞ and CCpredðSpearmanÞ. For CCpredðPearsonÞ, we
see the smallest gaps between the test and train set median values
[Fig. 3(e)] at r¼ 0.990, which corresponds well with our difference
peak maximum and reasonably matches our RSCC and Rfree results.
Interestingly, r-values below 0.990 demonstrate strongly bimodal
CCpredðPearsonÞ distributions, which resolve at higher values. At 0.999,
the test and train values increase, but the gap between test and train
also increases. We interpret this as a less favorable setting. However,
we note that the discrepancy in difference peak heights between
r ¼ 0.990 and 0.999 is marginal.

C. Robust error model

A key consideration in fitting models to data is specifying an error
model, more specifically how the measurement errors are expected to
be distributed. The default choice in careless is that errors follow a
normal distribution with a standard deviation determined by the empir-
ical uncertainty estimates from integration. The major drawback of a
normally distributed error model is that it is very sensitive to outliers
(see Chapter 2.4 of Murphy50). Fortunately, the Bayesian framework
used by careless is quite flexible and affords some control over the
error model. Specifically, careless33 provides a robust alternative to
the normally distributed error model in the form of a Student’s t-
distribution. The Student’s t-distribution has heavier tails than a normal
and is therefore more tolerant of outliers.51,52 The degree of tolerance
can be controlled by specifying a parameter of the t-distribution, the
degrees of freedom, �. For larger values of degrees of freedom, the
model is more sensitive to outliers. As � approaches infinity, the error
model becomes equivalent to the normal distribution. In nearly all
examples we have encountered, �¼ 32 has outperformed the normally
distributed error model. Therefore, we recommend this setting, which
can be implemented on the command line using –studentt-like-
lihood-dof¼32 [Fig. 1(d)]. In our ablation study, we found that
the robust, Student’s t-distributed error model was among the strongest
determinants of model performance as judged by time-resolved differ-
ence peak height (Table I). Specifically, the use of the normal distribu-
tion in place of the robust error model resulted in a 5.3r decrease in the
mean difference peak height. There was also a minor decrease on the
RSCC Ligand Only and RSCC Full Model.

We performed a one-dimensional parameter sweep of � to deter-
mine whether 32 was the optimal value for our data (Fig. 4). This was
implemented by simply changing –studentt-likelihood-
dof¼ to either 4, 8, 16, or 64. We used the active site difference peak
heights, RSCCs, Rfree, and both CCpredðPearsonÞ and
CCpredðSpearmanÞ as the main metrics to assess the results (Fig. 4).
We again used bootstrapping49 to estimate a distribution for both
CCpredðPearsonÞ and CCpredðSpearmanÞ. By all these criteria, it is
immediately clear that Student’s t distribution outperforms the normal
distribution, just as demonstrated in Dalton et al.33 Upon closer
inspection, it is evident that 32 is the best value for the degrees of free-
dom of this dataset. Although the active site difference peak heights
are not strongly affected by �, there is a moderate maximum at 32
[Fig. 4(a)]. The RSCCs are more sensitive to � and both show a moder-
ate peak at 32 [Figs. 4(b) and 4(c)]. The average Rfree value across time
points at 64 is slightly lower than at 32 [Fig. 4(d)]. For
CCpredðPearsonÞ, 32 has the smallest difference between the mean test
and train and has the train set with the least variability [Fig. 4(e)]. For
CCpredðSpearmanÞ, there is a slight maximum in the test and train
mean values and the smallest gap between the test and train sets at 32
[Fig. 4(f)]. Overall, this demonstrates that utilizing a few figures of
merit is a good practice for selecting values from one-dimensional
parameter sweeps. We particularly recommend this combination of
using a real-space measure like difference-peak height alongside CCpred

as criteria.

D. Image layers

By default, careless uses a scaling model with purely global
parameters. This can be inappropriate for serial crystallography appli-
cations wherein each diffraction image typically corresponds to a sepa-
rate crystal. Variation in the size and quality of samples require
different scaling corrections. In such situations, it is important to allo-
cate some of the parameter budget to local parameters, which are able
to make corrections to each sample independently. In careless,
this can be done by using image layers. Image layers are neural net-
work layers, which have separate parameters for each image in the
dataset [see Fig. 5(a) of Ref. 33]. The appropriate number of image
layers for a dataset can be determined by crossvalidation. In this study,
we used 2 image layers which we have found to be sufficient in most
serial-crystallography cases. This was implemented by using the
–image-layers¼2 command line argument [Fig. 1(e)]. Crucially,
we have never seen 2 image layers lead to overfitting for a serial data-
set. In the single-crystal scenario, we have observed cases where image
layers can be detrimental to difference map inference. Regarding the
serial DJ-1 data, removing the image layers led to a 4.6r decrease in
the signal-to-noise of the time-resolved difference peak supporting our
assertion that local parameters are beneficial for serial-crystallography
data analysis (Table I). There is, however, no marked change on the
RSCCs or other crystallographic statistics.

E. Positional encoding

Owing to a variety of effects, the observed intensity of a reflection
can vary spatially across the detector.31 In the case of features such as
panel gaps, background scatter, and shadows from the beamstop or
other equipment, intensity variations can be abrupt. These sorts of
high-frequency variations can be difficult for neural networks to
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model.53 One well-validated solution to this problem is to use a posi-
tional encoding strategy54–56 whereby coordinates are mapped to a
higher-dimensional representation which the scale model can more
easily interpret. In careless, this is accomplished using the
–positional-encoding-keys¼ command line argument. This
parameter takes a set of comma separated metadata keys and instructs
careless to encode them into a higher-dimensional representation
[Fig. 1(f)]. The dimensionality of the encoding is controlled by the
–positional-encoding-frequencies¼ argument [Fig. 1(f)].
In our most successful protocol, we used positional encoding of the
detector coordinates of each reflection observation. We found this gave
a modest, approximately 2r, increase in difference peak height (Table I).
Interestingly, removing positional encoding negatively affected RSCCs,

Rwork=Rfree and CCwork=CCfree, so its main benefit seems to contribute to
absolute scaling accuracy rather than the accuracy of structure factor
differences.

F. Wavelength normalization

At synchrotron light sources, it is often necessary to use a poly-
chromatic x-ray beam in order to record time-resolved diffraction at
sufficient temporal resolution for biological processes. The BioCARS
14-ID beamline at the Advanced Photon Source provides a polychro-
matic beam with sub-microsecond time-resolution (best time resolu-
tion at this beamline is determined by a duration of the single x-ray
pulse).12,13 Owing to the nature of synchrotron radiation, the

FIG. 3. Results of a one-dimensional sweep of the multivariate prior correlation parameter. (a) The active site difference peak heights for various multivariate prior correlation
values. There is a clear maximum at 0.990. (b) and (c) RSCCs for ligand alone and for the full model. (d) Rfree is provided as an additional global measure of map to model
agreement. (e) and (f) CCPred was calculated to assess overfitting using either the maximum-likelihood weighted Pearson or Spearman correlation coefficients. Careless produ-
ces a posterior distribution for each intensity observation. The mean and standard deviation of this distribution are recorded in the �_predictions_#.mtz files saved
after model training. The means of these distributions is typically used to compute CCPred or the correlation between observed and predicted intensities. Here, we quantify the
uncertainty in CCPred using the bootstrap method whereby we resample the predicted intensities recorded in the careless output with replacement 1000 times yielding 1000 esti-
mates of CCPred per hyperparameter setting. These bootstrapped estimates are visualized as violin plots. The optimal hyperparameter setting has the highest value while hav-
ing the smallest gap between test and train. We observe this clearly at 0.990 for CCPredðPearsonÞ and at 0.999 for CCPredðSpearmanÞ, indicating that the exact optimum
likely lies between the two.
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BioCARS beam exhibits a characteristically skewed undulator spec-
trum [Fig. 5(a)]. The relatively large bandwidth of the beam provides
significantly increased photon flux compared to monochromatic
beamlines and consequently much shorter exposure times. It also
increases the number of Bragg peaks observed in each image
[Fig. 5(b)]. However, the spectrum bandwidth introduces an additional
challenge in data analysis. In particular, the basal flux differs by
wavelength. Therefore, the empirical intensity of each reflection
depends on the wavelength at which it is observed on a particular
image. In order to model this, a straightforward approach can be
used in careless. Namely, the empirical wavelength of each

reflection observation is computed from the experimental geome-
try used at integration. Then, this wavelength is provided to the
careless scale model during merging. On the command line,
this is done by including ’Wavelength’ as a metadatum
[Fig. 1(g)]. Our experiments indicate that careless is able to
approximate the spectral nature of the beam. This can be best visual-
ized as a histogram of the scale values estimated by careless as a
function of wavelength [Fig. 5(c)]. As can be seen, the inferred scales
recapitulate the characteristic peak and long tail of the pink-beam
spectrum. Removing the wavelength metadatum from the care-
less scaling model leads to a featureless dependence of scale on

FIG. 4. The results of the one-dimensional sweep of Student’s t degrees of freedom, �, on active site difference peak heights, RSCCs, and CCPred. (a)–(c) The active site differ-
ence peak heights and RSCCs have a slight maximum at 32. (d) Rfree is provided as an additional global measure of map to model agreement. (e) CCpredðPearsonÞ has the
smallest gap between test and train at 32, which are the optimal results. (f) CCpredðSpearmanÞ is an alternative metric to assess overfitting. It has the best results at 32 with
the highest overall value, albeit by a small margin, and the smallest gap between test and train. The distributions visualized in the violin plots were generated by the bootstrap
method described in the caption of Fig. 3.
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wavelength [Fig. 5(d)], indicating that careless is not able to
latently infer the wavelength from the remaining metadata.
Furthermore, removing the wavelength leads to the worst perform-
ing model in our ablation study with time-resolved difference peaks
diminished by roughly 10r relative to our baseline. There is, how-
ever, no major change on RSCCs or other crystallographic metrics.

IV. DISCUSSION

We demonstrated the importance of various careless hyper-
parameters for getting high-quality merged datasets and especially for
capturing time-resolved differences. In particular, we found that wave-
length normalization had the largest impact on difference peak heights.
This is due to our use of a wide bandwidth (� 5%) x-ray beam. The
next most important parameter, as judged from difference peak
heights, is the use of a multivariate prior. For our dataset, we found a

prior correlation of r ¼ 0.990 to be the optimal value, but in general,
we found the specific value to be quite influential. It is possible that the
ideal value may vary for different datasets and types of time-resolved
experiment modalities. It is strongly recommended to do a one-
dimensional sweep of the multivariate prior to determine which value
is best for your specific use case. CCpred-based crossvalidation measures
can be unreliable for the multivariate prior. In the limit r ! 1, the
structure factor differences between time points are forced to zero.
This equates to learning a single set of structure factors to represent
the average across all the time points. Therefore, higher r-values can be
thought of as reducing the effective parameter count of the model,
which leads to less apparent overfitting and superior CCpred values.
This indicates a shortcoming of CCpred in determining the optimal r-
value. We caution users that for this scenario, CCpred should not be
trusted uncritically. If real-space measures of performance are available,

FIG. 5. Careless infers the spectrum from wavelength metadata. (a) The spectrum of the x-ray beam at BioCARS measured by a channel-cut monochromator. (b) An
example diffraction pattern from our DJ-1 dataset with the indicated spots circled and colored by the predicted peak wavelength. (c) A two-dimensional histogram of the scale
value (systematic error) predicted by careless and the peak wavelength predicted by Precognition (Renz Research). The skewed distribution is similar to the BioCARS
spectrum, indicating that careless can infer spectral information. (d) The equivalent two-dimensional histogram produced from the wavelength-normalization ablation study
wherein careless did not have access to the peak wavelength of each reflection observation.
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such as the difference peak heights, this is one place where it would be
appropriate to rely on those rather than assessments of model fit.

Using a robust error model (Student’s t likelihood with �¼ 32)
and implementing image layers (with a value of 2) are additional set-
tings, which may improve difference map peak heights. These specific
values have been consistent for the serial crystallography datasets to
which careless has been applied thus far,33 so they are a good start-
ing point. Given the consistency in the performance of these values,
one-dimensional sweeps are not necessarily vital for these hyperpara-
meters, especially when using the default parameters for the neural
network depth and width (–mlp-width¼10 and –mlp-
layers¼20). Our mlp-width was kept at 6 due to limits on our
accelerator card and the large number of reflections across the seven
datasets. We recommend you increase mlp-width to the maximum
value supported by your accelerator card.

Positional encoding had only a modest impact on the difference
peak heights, but it had a larger impact on standard crystallographic
figures of merit, like Rwork=Rfree and CCwork=CCfree. Thus, it is still an
important parameter to utilize. Harmonic deconvolution had minimal
effects on the analysis quality. This is expected on the basis of the
experimental design in this case, in which only a small fraction (<1%)
of reflections have contributions frommultiple harmonics.

RSCCs can be used as an additional real-space metric. Overall,
the RSCCs provide similar, but not identical, results as the active site
difference peak heights. Specifically, we see slight differences in the
results for the one-dimensional hyperparameter sweep for the multi-
variate prior and the ablation studies for image layers and wavelength
normalization. Given the resolution and the small scale of change
expected for these data, the active site difference peak height is a more
appropriate measurement. For other experiments, especially those
with larger structural changes, the RSCC Full Model may be a better
metric. We recommend calculating the active site difference peak
heights and the RSCCs and then using experimental knowledge, Rfree,
and CCpred to determine optimal hyperparameter settings, especially
for the multivariate prior. For example, in our one-dimensional hyper-
parameter sweep of the multivariate prior, the average difference peak
height has a peak at 0.990, the average RSCC for the ligand has a maxi-
mum at 0.999, and the average RSCC for the full model has a slight
peak at 0.950. When being conservative about overfitting and utilizing
CCpred, it becomes clear that 0.990 is an appropriate choice.

The resolution limit, dmin, of the data also needs to be set for
every iteration of careless. We found that the maximum resolution
attainable, based on a CChalf threshold of 0.3, was dependent on the
hyperparameter values we used. Our baseline dataset has 1.77 Å reso-
lution across all time points. We also processed our data with
CrystFEL.57,58 The resolution cutoff for each time point in this case
was determined based on>0.2 value of CChalf and had a slightly differ-
ent value for each time point, but the average resolution was 1.98 Å.
We attribute this 0.21 Å gain in resolution to the structure imposed by
the multivariate prior. This is clearly demonstrated by the degradation
of highest-shell CChalf exhibited in the multivariate prior ablation
(Table I). Since it is ideal to have as high resolution data as possible to
interpret time-resolved differences, we see this as a strong argument in
favor of using careless for time-resolved crystallography data.

Based on our experience, we recommend the following protocol.
Starting from an appropriate baseline configuration, such as the one
presented in Fig. 1(a),

(1) determine the resolution cutoff using CChalf ;
(2) sweep the multivariate prior correlation (r) and determine the

optimal value based on real-space performance measures;
(3) determine the optimal value of �, Student’s t likelihood degrees

of freedom, based on CCpred; and
(4) re-determine the resolution cutoff using CChalf.

For the first resolution cutoff test (1), we suggest starting with the
resolution determined from a standard program, such as CrystFEL,57

Precognition (Renz Research, Inc.), DIALS,59 or the Daresbury Laue
Suite,60 and then increase this in small increments determined by your
desired precision until you approach a CChalf value of 0.3 in the highest
resolution shell. For the one-dimensional sweep of the multivariate prior
correlation parameter (2), we recommend the following values: 0.500,
0.800, 0.900, 0.950, 0.990, and 0.999. The optimal value should be chosen
to avoid significant overfitting as judged by CCpred while maximizing a
desirable real-space measure such as difference peak height or RSCC.

Once a suitable multivariate Wilson parameter has been estab-
lished, Student’s t distribution � sweep can be performed (3). It is most
reasonable to test logarithmically spaced values of �. For instance,
� ¼ 4; 8; 16; 32; 64. CCpred seems to be the most useful metric for
selecting the optimal � value. Finally, once these hyperparameters have
been optimized for your dataset, it may be possible to gain additional
resolution. It may be worthwhile to attempt to extend the resolution
(4) in small increments (0.01–0.05 Å) until CChalf in the highest resolu-
tion shell drops below 0.3.

While performing the aforementioned hyperparameter sweeps,
we suggest calculating all the figures of merit in Table I to assess your
results. Sometimes, the various figures of merit can give conflicting
results for the overall best dataset. For example, sometimes, the R-fac-
tors would decrease (improved result), but the difference peak heights
would also decrease (worse result). Whenever they are available, we
suggest using difference peak heights or RSCCs as the criterion for
selecting the best strategy. We view CChalf and CCpred as the next two
most important metrics. CChalf acts as a standard crystallographic met-
ric to help evaluate the overall consistency and resolution of the
dataset.

CCpred is useful to assess overfitting and can be estimated using
either Pearson’s or Spearman’s rank correlation coefficient. Which
estimator is more accurate is likely to depend on the particular data
being analyzed. Pearson’s method admits weights derived from the
empirical uncertainties of reflection intensities estimated during inte-
gration. Spearman’s rank correlation coefficient is generally more
robust to outliers. Therefore, the quality of the uncertainty estimates
and the frequency of outliers in a dataset will impact the relative accu-
racy of each metric. More study is needed to assess alternative mea-
sures of fit. However, for the time being, we recommend users
consider both Pearson and Spearman CCpred for hyperparameter opti-
mization. Ultimately, a decision can frequently be made as to which is
superior on the basis of real-space measures.

Overall, we have presented insights on the key parameters when
utilizing careless to merge time-resolved serial crystallography
data. We have also provided practical advice on how to screen such
parameters and how to interpret the results. Although our datasets
were collected via pink-beam crystallography at a synchrotron, we
expect the described approach to be broadly applicable across serial
crystallography modalities. Additionally, we believe there is a general
takeaway for scaling and merging time-resolved data regardless of the
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algorithm being used. In particular, the importance of the multivariate
prior for these datasets demonstrates that scaling all time points jointly,
and ideally against the same reference data, is generally useful for
time-resolved crystallography data. We expect this conclusion applies
equally to data scaled by variational inference or more traditional, least
squares methods.
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