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Abstract:
Global positioning systems is known to create bias effects such as multipath, ionospheric and tropospheric delays that behave like low-
frequency noise. Random measurement errors can also occur and these are typically characterized as high-frequency noise. The low-
frequency nature of a multipath is what causes the largest error, which in carrier phase measurements can reach up to 5 cm. For a static
base station it is required that both error components (low and high-frequency) are removed and not included in the static baseline
processing.
This paper will introduce two different multi-resolution techniques that can be used separately or combined to remove the low to high-
frequency GPS errors. The first technique is applied using the wavelets as a de-noising tool to tackle the high-frequency errors in the
double difference domain. A detailed analysis is also made to choose the best wavelet base function and threshold technique estimator
by comparing different wavelet parameters along with different thresholding techniques. The second technique discussed in this paper
uses the wavelets technique as a de-trending tool to tackle the low-frequency portion of the double differenced measurements.
The results of this research paper indicate that the de-trending technique can reduce the double difference errors dramatically for short
baselines when compared to the de-noising technique. Conversely, the de-trending technique can cause a biased solution for long base-
lines, as it will enhance the RMS value and indicate good statistics for the solution. However, the will be shifted from it depending on the
low frequency part of the error (ionosphere, low multipath). Therefore, it is important to isolate ionospheric error by modeling (and not
spectrum filtering) before dealing with multipath, as it is hard to separate between both errors in the spectral domain.
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1. Introduction

Multipath mitigation in the final measurements domain (car-
rier/code observables) is a result of the large amount of residu-
als from mitigation in the antenna/receiver domain. (Raquet and
Lachapelle 1996) used amulti-antenna array tomitigate themulti-
path error at the GPS reference station. (Han and Rizos 1997) were
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the first to propose the use of finite impulse response (FIR) filters
to extract or eliminatemultipath. However, this technique has cer-
tain limitations because signals (i.e.: crustal deformation) that fall
into the same frequency band will be removed.

A more effective technique, based on the use of an adaptive filter
to extract and eliminate multipath, was suggested by (Linlin et al.
2000, Lee 2008). SinceGPS observation noise tends to changewith
time, it was determined to bemore appropriate to use an adaptive
filter rather than a fixed filter for the purpose of multipath mitiga-
tion. The implementation of such a technique is dependent on the
selection of an appropriate value for the step-size parameter and
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the filter length. (Zhang and Bartone, 2004) developed a multi-
pathmitigation techniquebasedon themultipath frequency spec-
trum analysis. They used code minus carrier to model multipath
errors and identify window size before the error was transformed
into the frequency domain using the Fast Fourier Transform (FFT).
In the Fourier coefficients domain, the authors mitigated the mul-
tipath error based on the estimated multipath frequency. The re-
construction stage uses the Inverse Fast Fourier Transform (IFFT) to
compute themultipath error-reduced code-phase measurements.
This technique effectively reduces code multipath error, particu-
larly in the static mode, where the multipath fading frequency is
well predicted and the fading frequency ranges from zero to 1 Hz.
However, more investigation is required to apply this correction in
kinematic mode given the rapid change in multipath frequency.

Wavelets are used extensively as an alternative to FFT analysis be-
cause their elements are essentially waveforms indexed by three
parameters: position, scale and frequency. This is what produces
such strong localized time–frequency properties, which gives the
wavelets the ability to provide an accurate location of the tran-
sient component in the signal while retaining information about
the fundamental frequency. Therefore, wavelet transforms offer
advantages over the frequency domain analysis (Fourier analysis)
and the time domain analysis (Kalman filter). Most of the research
conducted on wavelet multipath mitigation uses wavelet trans-
form on its own or combined with other techniques to mitigate
high-frequency multipath error. (Dammalage et al. 2010) used bi-
orthogonal wavelets to de-noise codemeasurements for DGPS ap-
plications and reached a 60% error reduction. (Ogaja and Sati-
rapod 2007) applied the Symlet base function at the fourth scale
decomposition level to detect and separate high-frequency mul-
tipath errors from receiver noise when using high-rate (1-Hz) GPS
data. (Souza and Monico, 2004) investigated the use of both Sym-
let and Daubechies base functions to reduce the high-frequency
multipath in GPS relative positioning. They tested both the hard
and soft threshold along with the median threshold estimator
and concluded that Symlet12 along with the hard threshold per-
formed the best and achieved a 30% error reduction. (Satira-
pod and Rizos 2005) used wavelets to mitigate multipath at per-
manent stations. The use of wavelets as a de-noising tool for
processing and mitigating multipath error proved to be an effec-
tive tool for high-frequency multipath mitigation. In contrast, de-
noising techniques cannot remove this type of error in medium
to low-frequency multipath components. As a result, wavelets
should be used differently according the type of errors being mit-
igated, for high frequency errors wavelet de-noising should be
used to mitigate that error while in low frequency error wavelet
de-trending should be the method of mitigation. Many of the
techniques discussed above already used wavelets as a de-noising
tool (Dammalage et al. 2010, Ogaja and Satirapod 2007, Souza and
Monico 2004 and Satirapod and Rizos 2005) but it is still not clear
which wavelet parameters should be used with GPS double differ-
encedata tomitigate themedium tohigh-frequency errors (mainly

multipath and uncorrelated ionospheric error). Moreover, there
is no compartative analysis made using different wavelet thresh-
olding estimators or techniques to mitigate the medium to high-
frequency errors or the best wavelets denoising technique for GPS
error mitigation.
This research paper will introduce two different multi-resolution
techniques that can be used separately or combined to remove
the low to high-frequency GPS errors. The first technique is ap-
plied using the wavelets as a de-noising tool to tackle the high-
frequency errors in the double difference domain and to obtain a
de-noised double difference signal that can be used in a position-
ing calculation. A detailed analysis is also made to choose the best
wavelet base function and threshold technique estimator by com-
paring different wavelet parameters along with different thresh-
olding techniques. The second technique discussed in this paper
uses thewavelets techniqueas ade-trending tool to tackle the low-
frequency portion of the double differenced measurements. The
de-trended and the de-noised double differenced measurements
will be used to compute accurate positions for the baselines length
from a few hundred meters to 50 km.

2. Wavelets De-Noising

Double difference errors may have low (coarse-gain) and/or
high frequency (fine-gain) fluctuations. Fortunately, the high-
frequency aspect is relatively easy to remove if the proper de-
noising threshold is applied. Multi-resolution analysis has been
proven to be an important tool for eliminating noise in signals. The
strong localization properties of the wavelets in the time and fre-
quency domain allow the wavelets to detect fine and coarse vari-
ations in the signal (Hubbard 1998). A basic wavelet de-noising
algorithm consists of three steps:

1. Decompose the noisy signal (double difference GPS signal)
using a wavelets multi-resolution analysis of its details and
approximations.

2. De-noise the details’ wavelets coefficients, which contain
the high-frequency portion of the signal.

3. Reconstruct the de-noised signal by applying the inverse
wavelet transform to de-noised coefficients.

cmn = ⟨S,Φm,n⟩ =
∑

l∈Z

hl⟨S,Φm−1,2n+1⟩ =
∑

l∈Z

hl−2ncl(m−1)

(1)

dmn = ⟨S,ψm,n⟩ =
∑

l∈Z

gl⟨S,ψm−1,2n+1⟩ =
∑

l∈Z

gl−2ncl(m−1)

(2)

The double differenced signal (S) can be represented by approx-
imation coefficients cnm and dnm detailed part (see Eq. (1) and
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Eq. (2)). The double difference GPS signal is decomposed into two
sets of coefficients: low frequency (approximationdnm) andhigher
frequency (details cnm) by convolving the input signal with low
pass (L) and high pass (H) filters, psim,n is the wavelets function
generated from the original mother wavelets ψ ∈ L2(R),Φm,n is
the scaling function,m is the scale or level of decomposition, and
n is the shifting or translation integer respectively. One of themain
advantages of wavelets is the presence of various parameters that
can be controlled to help in the classification and separation of dif-
ferent types of signals with different frequencies. The concept of
wavelet analysis is based on finding the similarities between the
candidate base function and the signal, therefore the wavelet pa-
rametersmust be selected tomatch the properties of the GPS dou-
ble difference error. Four different parameters are used in this re-
search to create several combinations to detect the optimum com-
bination in reducing the high-frequency GPS errors. These param-
eters are:

1. Wavelet base function and vanishing moment

2. Level of decomposition

3. Threshold type

4. Threshold estimator

All the possible combinations among the parameters are investi-
gated to ensure that the use of the wavelet transform technique
is efficient for GPS error mitigation. These parameters will be de-
scribed in the next subsections.

2.1. Wavelet base function and Vanishing moment

The main criterion for selecting the wavelet base function is that
the base function matches the shape of the main error, which in
this case is the multipath. Ray (2000) demonstrated the pattern
of the carrier phase multipath error in GPS signals, which can take
one of two shapes (Figure 1). The multipath error with a small
magnitude causes a sinusoidal pattern, while the multipath er-
ror with a high magnitude causes a saw-tooth pattern. There-
fore, for the purposes of this investigation, the wavelet base func-
tion that can match both sinusoidal and saw-tooth pattern will
be used. There are a number of wavelet base functions (includ-
ing Haar, Daubechies, Coiflets, Symlet, Biorthogonal) that differ in
the way their scaling and wavelet functions are defined. Wavelets
are classified into a family by the number of vanishing moments,
N . This number, which is weakly linked to the number of oscilla-
tions (the more vanishing moments a wavelet has, the more it os-
cillates), determines what a wavelet does not extract, that is, what
it recognizes. Wavelets with one vanishing moment do not rec-
ognize a linear function. Therefore, two vanishing moments make
wavelets blind to quadratic functions as well as three vanishing
moments to cubic functions, and so on. Wavelets with many van-
ishingmoments also yield small coefficients when used to analyze
a low frequency (Hubbard 1998). Within each family of wavelets

Figure 1. Carrier phase multipath error pattern for short multipath
delays due to a reflected signal of SNR equal to a) 20 dB
and b) 3 dB (after Ray 2000).

Figure 2. Candidate wavelet base function at different vanishing mo-
ments.

there are wavelet subclasses distinguished by the number of co-
efficients and by the level of iterations. The filter lengths and the
number of vanishing moments for four different wavelet families
are tabulated in Table 1. For its ability to decompose the signal
into independent frequency bands through a nested sequence in
the wavelet transform domain, orthogonal wavelets must be se-
lected. The wavelets functions shown in Table 1 are candidates to
detect high-frequency error in GPS signals as they can match the
sinusoidal and saw-tooth pattern shown in Figure 1.

Table 1. Wavelets families and their properties.

Wavelets Filter Number of Vanishing Orthogonal
Family length moments

Daubechies 2M M yes
Symlets 2M M yes
Coiflets 6M 2M−1 yes

Biorthogonal max(2Nr,2Nd)+2 2M−1/2M No

2.2. Level of decomposition

Multi-Resolution Analysis (MRA) is used in the construction of or-
thogonal wavelet bases and the fast decomposition of a signal into
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Figure 3. Block diagram of the one-dimensional wavelets decompo-
sition (Elhabiby 2007).

independent frequency bands through a nested sequence. MRA
builds a pyramidal structure that requires an iterative application
of scaling or levels of decomposition andwavelets functions to low
pass (LP) and high pass (HP) filters, respectively (Figure 3). These
filters initially act on the entire signal band at a high frequency
(lower scale values) and gradually reduce the signal band at each
stage. As a result of this structure, the signal is decomposed into
an approximation cnm and a detailed dnm part. Decomposition
into high level is required to capture the low-frequency multipath.
In this research paper an investigation is conducted on the level
of decomposition that captures most of the correlated errors be-
tween levels 1 to 12 on 1 Hz GPS double difference data.

2.3. Threshold type

The wavelet thresholding technique was developed primarily for
removingnoise andoutliers, compression, andpattern recognition
of the signal before wavelets reconstruction. In this analysis, two
thresholding methods are presented: hard and soft thresholding.
The former is for matrix compression and the latter for de-noising
signals.
Hard thresholding is like a gate. If a value is below a certain thresh-
olding value, it is set to zero (Figure 4). Wavelet coefficients (given
as an absolute value) larger than a certain specified threshold δ
should be included in the reconstruction. The reconstructed func-
tion q̂(t) can be expressed as follows (Ogden 1997):

q̂(t) =
∑

m

∑

n
I{|dmn |>δ}dmnψm,n (3)

Where I{|dmn |>δ} is the indicator functionof this set ofwavelet coef-
ficients for thresholding, ψm,n is the wavelets function generated
from the original mother wavelets ψ ∈ L2(R), m is the scale or
level of decomposition, and n is the shifting or translation integer
respectively.

Figure 4. Hard threshold (left) and soft threshold (right).

This function represents a “keep or kill” wavelet reconstruction
technique in that it assumes a value of one for the coefficients re-
quired in the reconstruction process and zero for the coefficients
that should be removed. Hard thresholding is a type of nonlinear
operator on thewavelet coefficients vector and leads to a resultant
vector of the estimated coefficients d̂mn , which can be involved in
the reconstruction process, as follows:

d̂mn =
{
dmn, if |dmn| ≥ δ

0, otherwise (4)

Soft thresholding is defined as

d̂mn =






dmn − δ, if |dmn| ≥ δ
0, if |dmn| ≤ δ

dmn − δ, if |dmn| < δ
(5)

Based on Figure 4, it is clear that soft thresholding is generally lin-
ear (straight line with slope to be determined). The input for this
figure is wavelet coefficient dmn before thresholding and the out-
put is the estimated coefficient d̂mn after thresholding. Soft thresh-
olding is used in de-noising signals hidden in background noise.
The main objective is to attenuate the noise while amplifying the
signal. The thresholding δ ′ value is computed using a threshold
estimator (Ogden 1997).

2.4. Threshold estimator

Choosing a threshold value in the threshold function is a key
challenge for in-signal de-noising. The reason for this is that the
threshold estimator, which controls the flow of noise in the signal,
can have a very small threshold value. This can cause some noise
to be saved after the signal de-noising. On the other hand, a
larger thresholding value will cause distortion. Therefore, it is
crucial to select the proper threshold value while performing the
de-noising technique. Donoho and Johnstone (1994) presented
several proposals about the choice of the threshold estimators. In
this paper four threshold estimators are investigated for GPS error
mitigation in the double difference domain, these estimators are:

1- Stein’s unbiased maximum likelihood threshold estimator
(Rigrsure)
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This estimator uses the SURE threshold, which was established
using Stein’s unbiased maximum likelihood estimator. For each
threshold value the corresponding value-at-risk is found and then
the threshold that reduces the risk threshold values is chosen
based on the following algorithms:

P = [P0,P1, · · · ,PN−1] ,P0 < P1 < · · · < PN−1 (6)

The elements of P are squares of the wavelets coefficients, which
are sorted from small to large order. The risk algorithm is:

R (K) =
[

N − 2K− (N − K) Pk+
k∑

I=1

PI

]
/N (7)

Where k = 0, 1, . . . , N − 1. According to the resulting risk
curveR (k), theminimumcorresponding value to beKmin and the
threshold is defined as:

λ = σ
√

PKmin (8)

2- Median threshold estimator
This threshold value is based on the following wavelet transform:

λ = σ
√

2logN (9)

Where N is the signal length, σ is the noise standard deviation,
which can be evaluated by the following equation,

σ = median( |dj(k)| )
0.6745 (10)

Where dj (k), is the high frequency coefficient after the wavelets
decomposition, and median is calculating intermediate values
of the operation.

3- Heuristic threshold estimator

The heuristic threshold estimator synthesizes the two former
thresholds. When the ratio of the signal and noise is small, a fixed
threshold is adopted; otherwise, using Rigrsure is the norm.

4- MinimumMaximum (Minimax) threshold estimator

The Minimax threshold estimator is a thresholding method devel-
oped by (Donoho and Johnstone, 1994) that is based on minimiz-
ing the l2 risk (Eq. (11)). The minimax principle is used in statis-
tics to design estimators. For unknown regression functions, it is
possible to integrate the de-noised signal to the estimator; there-
fore, theminimax estimator realizes theminimumof themaximum
mean square error for the worst function in a certain set.

Λ+
n ≤ 2 logn+ 1 and lim

n→∞
Λ+

n = 2 logn

λ+
n ≡ the largest λ attaining Λ+

n

Λ+
n ≤

√
2 logn and lim

n→∞
λ+

n =
√

2 logn (11)

Figure 5. Approximation and details coefficients at different level of
decomposition.

3. Wavelet De-Trending

The low-frequency portion of multipath is what creates the largest
error, which in carrier phase measurements can reach up to 5 cm.
Wavelets are used to remove the high-frequency oscillation from
the investigated signal by changing the detail coefficient values
of the wavelet decomposition to zero and reconstructing the sig-
nal using the modified wavelet coefficients. If the details associ-
ated with noise cannot be determined properly, either useful sig-
nals will be missed or a reconstructed signal may contain severe
noise. In the case of a double difference signal, multipath is dis-
tributed at varying levels of decomposition. In order to reach the
low-frequency multipath error, a higher level of decomposition is
required (Time (sec) Figure 5). Thresholding the details coefficients
at a level where the largest low-frequency multipath error is sus-
pected will reduce the overall error. But to reach that error, other
unwanted frequencies are induced in the reconstructed signal at
the lower levels of decomposition.

A new approach based on a wavelet de-trending technique is in-
troduced to remove the long wavelength carrier phase multipath
error in themeasurements domain. In order tomitigatemultipath,
GPS double difference observables are introduced to an adaptive
wavelets analysis procedure based on high and low pass filter de-
composition with varying levels of resolution (El-Ghazouly et al.
2008). The procedure is applied after cycle slips detection and re-
pair. Based on the previous knowledge and facts that the largest
errors are caused by the low-frequency multipath, the wavelet
transform approach is used to separate themultipath error at high
levels of decomposition. The separated wavelet coefficients (ap-
proximation or high-level decomposition coefficients) are trun-
cated using wavelets thresholding techniques before the recon-
struction of the signal to acquire the true double difference carrier
phase residuals out of the low-frequency multipath (El-Ghazouly
2009).
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4. Case Study of baseline range 100 m to 50 km

This section describes GPS data collection campaigns that were
conducted between 2007 and 2012 in order to investigate GPS er-
ror in the multi-resolution domain and develop the proper proce-
dure for errormitigation. The focus of these experimentswas to in-
vestigate correlated errors in the double difference measurement,
a critical step for building the necessary procedures for mitigation.
Three experiments were designed to cover baselines from 100 m
to 50 km in different geometric conditions. The first experiment
was established at the University of Calgary in November 2007 us-
ing NovAtel’s GPS receivers. It was developed in a controlled envi-
ronment where very short baselines were used to eliminate iono-
spheric and tropospheric errors and multipath remained the main
source of error. The objective of this experimentwas to assessmul-
tipath and noise errors that can be introduced in reference stations
and then evaluate their characteristics within the multi-resolution
domain. To extend the baseline length from 100m to 30 km, a sec-
ond experimentwas conducted at Nose Hill Park, in northwest Cal-
gary. In this experiment, two types of receivers were used: Trimble
R8 dual-frequency GPS receivers along with an IGS station desig-
nated PRDS, near Priddis, southeast of Calgary. The data was col-
lected at four GPS receivers simultaneously between January 9th

and 11th 2008 at one-second intervals. To further extend the anal-
ysis to a 50 km baseline, GPS observations were collected from the
Cansel VRS network (Can-Net) fromMay 22nd to May 24th, 2012.

4.1. Description of Experiments

4.1.1. Experiment #1 (Short baseline at the University of Calgary)

This experiment is designedunder controlledenvironment to elim-
inate most of DGPS errors and keep multipath error as the main
error source. The ultimate goal of this experiment is to distinguish
themultipath signaturebecauseof short and longdelays, and then
transfer it to the multi-resolution domain. This experimental test
wasmade at the University of Calgary using four NovAtel 600 dual-
frequency antennas and four OM4GPS receivers. The datawas col-
lected at both the Calgary Center for Innovative Technology (CCIT)
and the Engineering building on the University of Calgary campus,
shown in Figure 6. The equipment used at each station is listed in
Table 2. The configuration at the reference station consisted of one
receiver and antenna, which were used to collect data on the roof
of the Engineering building.

On the roof of the CCIT building, the three rover stations were
arranged, as shown in Figure 6. The data collection started on
November 11th , 2007 and lasted for three days at a rate of one-
second data intervals. The total number of epochs collected per
day was 7200, which reflects two hours of data collection per day.
The baseline length between the reference station and the rover
station was in the range of 100 m so as to guarantee the elimi-
nation of all the correlated errors such as ionospheric and tropo-
spheric errorswhen applying thedouble differencemeasurements
(Hofmann 2001). The only remaining errors should be the multi-

Figure 6. Experiment #1 Short baselines at university of Calgary.

path and the antenna phase center variation. Tominimize antenna
phase center error, aNovAtel 600 antennawhichhas a stable phase
center variationwas used, and both the reference and rover anten-
nas were oriented to the north direction.

4.1.2. Experiment #2 (Short to medium baseline at Nose Hill park)

This experiment is designed to investigate the behavior of GPS er-
rors in the multi-resolution domain. It was established using four
GPS points set on Nose Hill Park in northwest Calgary. Nose Hill
Park is a natural environment park, which provides ideal condi-
tions for GPS observations. It allows a clear view of the sky without
any obstructions. Those points, designated NH1, NH2, NH3, and
NH4 were marked with an iron rebar drilled into the ground. All
points were occupied by Trimble R8 dual-frequency GPS receivers
mounted on tripods above the markers. A fifth point, N5 used in
Experiment #1, was chosen on the roof of the engineering building
at the University of Calgary. In this station, the 600 dual-frequency
antennas and OEM4 GPS receivers that were used in the previous
experiment were also used again in this experiment. Furthermore,
an IGS station designated Prds, near Priddis south-east of Calgary,
was used as an additional base station. The experiment was con-
ducted over three days, from January 9th to January 11th, 2008.
Each receiver was used at the same point on all days. All receivers
were operated in static mode. The data collection started on Jan-
uary 9th , 2008 and collected on three different days at the rate of
one second intervals. The total numberof epochs collectedperday
was 7200, which reflects two hours of data collection per day. The
baseline length ranged from 200 meters between NH1 and NH3
to 30.80 kilometers between Prds and NH1. Table 3 shows the re-
ceiver used at each station, the dates of data collection and dura-
tion.

4.1.3. Experiment #3 (Can-Net Medium baseline)

To assess the proposed multi-resolution technique for mitigation
of medium to low frequency errors, GPS observations were col-
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Table 2. Observation dates and equipment used for reference and rover measurements.

Station Receiver Antenna Observation Duration
(Hour)

E1, E2, W6 Probak-DL-4-RT2 Novatel, GPS-600-LB
11-Nov Day01 2
12-Nov Day02 2
13-Nov Day03 2

N5 Probak-G2-DB9-RT2 Novatel, GPS-600-LB
11-Nov Day01 2
12-Nov Day02 2
13-Nov Day03 2

Table 3. Observation dates and equipment used for data collection in experiment #02.

Receiver Info Observation Duration (Hour)PtID Receiver Type RecID
NH1 Trimble R8-2 4651126518

January 9th to 11th, 2008

2
NH2 Trimble R8-2 4629118870 2
NH3 Trimble R8-2 4629118867 2
NH4 Novatel Probak 1017201 2
N5 Novatel Probak 1017062 2

PRDS AOA BENCHMARK ACT 1126 2

Figure 7. Experiment #2 Short baselines at Nose Hill Park.

Figure 8. Experiment #2 longer baseline from NH1 to N5 and PRDS.

Figure 9. Experiment #3 Can-Net stations.

lected from the Cansel VRS network (Can-Net). The Canada Net-
work (Can-Net) consists of 260 GPS receivers across Canada, de-
ployed in 2005 by the Cansel Survey Equipment. Five Can-Net sta-
tions are used in this paper (Figure 9) to cover baselines from23 km
to50 km. EachCan-Net station consists of a Trimble ZephyrGeode-
tic 2 antenna and either Trimble NetR5 or Trimble NetR9 receiver
(Table 4). The data was collected over three days for two hours per
day at one second intervals beginning on May 22nd, 2012.

4.2. Computation of Reference Coordinates

Data collected in the above three experiments was first processed
using Bernese 4.2 (Hugentobler, 2001). Different techniques were
used in Bernese software to compute the coordinates for the data
collected in this research paper. The coordinates shown in Table 5



Journal of Geodetic Science 231

Table 4. Observation dates and equipment used for data collection in experiment #03.

STN Name Receiver/ Antenna type Observation Duration (Hour)Code Receiver Antenna
NCAL Aref TRIMBLE NETR9

Trimble Zephyr Geodetic 2 May 22nd– May 24th, 2012

2
AIR2 Ant1 TRIMBLE NETR9 2

COCH Ant3 TRIMBLE NETR9 2
SBNK Ant7 TRIMBLE NETR5 2
STRA Ant8 TRIMBLE NETR5 2

and Table 6 are computedbasedon the ionosphere-free fixed solu-
tion, 15◦ cut-off angle, IGS precise orbit. The model and mapping
function for troposphere were the Saastamoinen model and the
cos(z) mapping function as recommended by Tait et al., 2008.

Table 5. Reference coordinates for experiment #1 and #2 computed
by Bernese software.

Station X Y Z Baseline
E1 −1641937.391 −3664810.674 4940009.495 92.474
E2 −1641936.566 −3664808.83 4940011.13 94.142
W6 −1641942.081 −3664797.661 4940017.63 108.118

NH01 −1640032.815 −3661204.911 4943430.698 0
N5 −1641890.232 −3664880.419 4939971.243 5378.438

NH02 −1639847.077 −3661067.638 4943584.182 277.342
NH03 −1640076.321 −3661345.647 4943304.394 194.034
NH04 −1640204.237 −3661236.241 4943348.08 192.780
PRDS −1659602.829 −3676725.754 4925493.591 30,750.776

Table 6. Reference coordinates for experiment #3 computed by
Bernese software

Station REFERENCE BASELINEX Y Z
NCAL −1636751 −3666214.588 4940590.545 0.00
AIR2 −1625733 −3651749.881 4954880.696 23,126.57

COCH −1655669 −3646664.28 4949021.922 28,481.19
SBNK −1656244 −3659412.647 4939286.997 20,686.16
STRA −1596479 −3688603.493 4937025.199 46,215.15

Table 7 summarizes thebaselines used in the analysis and thenum-
ber of double difference data for each baseline. The baselines are
divided into two categories according to the baseline length. Cate-
gory I contains short baselines where the length varies from 100m
to 5 km, and Category II covers longer baselines from 20 km to
50 km. The table also shows each baseline reference and rover
station, the number of double differenced data computed in this
baseline and the reference satellite used to compute the double
difference data.

The total number of baselines in these data sets is 13 with seven
baselines in Category I, and six baselines in Category II. In this re-
search case study the double difference measurements are com-
puted in L1 GPS signal and ionosphere-free linear combination.
Datawas collected over three days for approximately two hours for
each baseline. It is worth mentioning that three successive days
of GPS observations for each baseline were used in this paper to
identify correlated errors. Moreover, only the satellites available
through the 7200 epochs were used to generate double difference
measurements in this paper.

Table 7. Baselines and double difference data.

Category Ref Rover Baseline No. of DDs. Ref. Sat.

I

N5 E1 92.5 13 2
N5 E2 94.1 13 2
N5 W6 108.1 12 2

NH1 NH2 277.3 13 30
NH1 NH3 194.0 13 30
NH1 NH4 192.8 13 30
NH1 N05 5,378.4 11 30

II

NCAL SBNK 20,686.2 7 28
NCAL AIR2 23,126.6 7 28
N05 PRDS 25,756.3 7 17

NCAL COCH 28,481.2 7 17
NH1 PRDS 30,750.8 6 30
NCAL STRA 46,215.2 6 28

Total 128

4.3. Wavelets multipath mitigation

4.3.1. Wavelet base function and vanishing moment

Thirty-seven wavelet base functions are used to decompose the
double difference data into their details and approximation coeffi-
cients (Table 8). Each of the 128 double difference measurements
mentioned in Table 7 is decomposed to its approximation and de-
tails at levels of decomposition from one to 12. The criteria for se-
lecting thebestwavelets base candidate are basedon a correlation
between days. This is explained in the following steps:

1) Compute the correlation for each baseline over the three
days of data collection using Eq. (13). There should be



Journal of Geodetic Science232

three reference correlation values for each baseline reflect-
ing the correlation between Day1 and Day2, Day1 and
Day3, and Day2 and Day3 for this baseline, which are
C12, C13 andC23 .

cXY = E [(X −mX ) (Y −mY )]√
E

[
(X −mX )2

]
E

[
(Y −mY )2

] (12)

Where,E [] is the expectation operator,X is a state variable
(double difference data on Day1), Y is another state vari-
able (double difference data on Day2), mX is the mean of
state variableX , andmY is the mean of state variable Y .

2) Decompose each of the 128 double difference data for day
one,two and three to approximation and details at Level
one. The total number of double differencedata in this step
is calculated as: 128 double difference data x three days =
384 double difference data.

3) At this level of decomposition set the details coefficients to
zero, this step will delete all the high-frequency data at this
level.

4) Reconstruct the double difference data from the modified
details and approximations.

5) Re-compute the correlation based on Eq. (13) for each
modified double difference which areC12‘, C13‘andC23‘.

6) Compute the correlation reduction for each baseline over
two days as follows:

cred = C ′ − C
C (13)

7) Repeat steps 2 through 6 for levels of decomposition 2 to
12.

At this point there should be 128modified double differences over
three days with 12 levels of decomposition. This equals 4608 cor-
relation values. The wavelet base function that reports the highest
correlation reduction in these 4608 correlation values is considered
the best candidate for this analysis. This is because the wavelet
base function that reports the highest correlation reduction is the
one that can most efficiently isolate the correlated signals at the
wavelets bandwidth to its original details.
Table 9 shows the wavelet base function and the number of times
that it reported the maximum correlation reduction. It also shows
the frequency with which each wavelet base function reports a
maximum correlation reduction for each baseline category in L1
and ionosphere-free measurement in L3. It can be seen from the
table that a biorthogonal wavelets family achieved the highest de-
gree of correlation reduction (60% – 70%). The closest family is the

Daubechies family (25% – 30%). It is evident from the figure that
the bior2.2 in the biorthogonal wavelets family performed better
than all the other wavelets functions for short baselines in Cate-
gory I, while bior3.3 performed better for longer baselines in Cat-
egory II. Coiflets and Symlet performed the worst in detecting the
correlated signal as they only show around 1% for Coiflets and 8%
for Symlet.
Moreover, the effect of the base function on both L1 and L3 mea-
surements is almost the same except for longer baselines (Cate-
gory II). This is the result of ionosphere-free linear combination,
which removes the first order ionospheric (uncorrelated errors) er-
rors and makes the correlated error more clear. Consequently, the
L3 Category has a higher percentage than the L1 Category, partic-
ularly at the biorthogonal family.
Based on this analysis, the use of Coiflets or Symlet is not rec-
ommended for correlated error detection of GPS double differ-
encemeasurements. However, the biorthogonalmethod is recom-
mended to isolate the correlated error, especially bior2.2 for short
baseline and bior3.3 for longer baselines.

4.3.2. Level of decomposition

In this section the level of decomposition that achieves the maxi-
mum correlation between days is considered best level of decom-
position to be used throughout this paper. Each of the 128 double
difference measurements mentioned in Table 7 is decomposed to
approximation and details at levels of decompositions from one to
12 using a the bior3.3 base function. The criterion for selecting the
best level of decomposition is the same as described in the previ-
ous section with the exception of bior3.3, which is the only base
function used in this section. There were 128 double difference
data sets over three days (a total of 384) that were decomposed
using a bior3.3 wavelet base function. Each of these 384 double
difference data sets were processed as described in the following
steps:

1) Decompose each of the 384 double difference data sets to
approximation and details at levels of decomposition from
1 to 12.

2) At each level of decomposition, set the details coefficients
to zero. This step will delete all the high-frequency data at
this level.

3) Reconstruct the double difference data from the modified
details and approximations.

4) Re-compute the correlation based on Eq. (13) for each
modified double difference which areC12‘, C13‘ andC23‘.

5) Compute the correlation reduction for each baseline be-
tween twodaysusing the reference correlationvalues com-
puted in the previous section.

6) For each baseline at each day, record the level of decompo-
sition that provides the maximum correlation reduction.
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Table 8. Candidates wavelet base function.

Base Base Base Base Base Base Base Base
1 Db2 6 Db7 11 Sym3 16 Sym8 21 Coif4 26 Bior2.2 31 Bior3.3 36 Bior5.5
2 Db3 7 Db8 12 Sym4 17 Sym9 22 Coif5 27 Bior2.4 32 Bior3.5 37 Bior6.8
3 Db4 8 Db9 13 Sym5 18 Sym10 23 Bior1.1 28 Bior2.6 33 Bior3.7
4 Db5 9 Db10 14 Sym6 19 Coif2 24 Bior1.3 29 Bior2.8 34 Bior3.9
5 Db6 10 Sym2 15 Sym7 20 Coif3 25 Bior1.5 30 Bior3.1 35 Bior4.4

Table 9. Wavelet base function and the number of times it recorded the maxiumuin Correlation reduction.

L1_Category I L1_Category II L3_Category I L3_Category II
N % Total N % Total N % Total N % Total

db2 432 13.6

30.2

161 11.2

24.0

442 14.0

28.4

182 12.6

23.1

db3 101 3.2 23 1.6 67 2.1 32 2.2
db4 105 3.3 48 3.3 107 3.4 45 3.1
db5 69 2.2 19 1.3 66 2.1 11 0.8
db6 54 1.7 17 1.2 42 1.3 15 1.0
db7 47 1.5 15 1.0 40 1.3 13 0.9
db8 51 1.6 23 1.6 48 1.5 14 1.0
db9 44 1.4 19 1.3 35 1.1 10 0.7
db10 54 1.7 21 1.5 53 1.7 11 0.8
sym4 78 2.5

8.5

26 1.8

5.6

66 2.1

6.8

21 1.5

3.8

sym5 43 1.4 10 0.7 38 1.2 11 0.8
sym6 24 0.8 5 0.3 13 0.4 3 0.2
sym7 54 1.7 16 1.1 48 1.5 13 0.9
sym8 10 0.3 5 0.3 2 0.1 2 0.1
sym9 34 1.1 11 0.8 24 0.8 2 0.1
sym10 25 0.8 7 0.5 23 0.7 2 0.1
coif2 14 0.4

2.6

0 0.0

0.8

12 0.4

2.1

3 0.2

0.8
coif3 12 0.4 0 0.0 8 0.3 2 0.1
coif4 19 0.6 0 0.0 22 0.7 3 0.2
coif5 38 1.2 12 0.8 23 0.7 3 0.2

bior1.1 0 0.0

58.7

0 0.0

69.6

0 0.0

62.8

0 0.0

72.4

bior1.3 249 7.9 4 0.3 211 6.7 120 8.3
bior1.5 82 2.6 106 7.4 62 2.0 35 2.4
bior2.2 492 15.5 33 2.3 539 17.0 273 19.0
bior2.4 62 2.0 264 18.3 50 1.6 16 1.1
bior2.6 26 0.8 21 1.5 16 0.5 7 0.5
bior2.8 27 0.9 8 0.6 21 0.7 5 0.3
bior3.1 294 9.3 7 0.5 497 15.7 340 23.6
bior3.3 383 12.1 298 20.7 365 11.5 177 12.3
bior3.5 100 3.2 192 13.3 114 3.6 36 2.5
bior3.7 49 1.5 28 1.9 32 1.0 7 0.5
bior3.9 30 0.9 12 0.8 34 1.1 8 0.6
bior4.4 25 0.8 12 0.8 16 0.5 7 0.5
bior5.5 31 1.0 11 0.8 21 0.7 6 0.4
bior6.8 10 0.3 6 0.4 11 0.3 5 0.3
Total 3168 100.0 1440 100.0 3168 100.0 1440 100.0

Table 10 shows the frequency with which the maximum correla-
tion reduction is achieved for each level of decomposition. It can
be seen from the table that Level 1 and 2 are not shown in the ta-
ble as theynever indicate anymaximumcorrelation reduction. This
is because Level 1 and 2 contain mostly uncorrelated white noise.
From Level 3 to Level 5, there is only 1% – 2% of themaximum cor-

relation detected, which is a strong indication that the correlated
signal did not appear until Level 5. Levels 6 and 7 indicate a maxi-
mum correlation of 10% of the time. Most of the correlated signal
appearedat Levels 8, 9 and10. ForCategory I baselines (short base-
lines), Levels 8 and 9 have the most correlated signal, while Cate-
gory II baselines (longer baselines) indicatemost of the correlation
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at Levels 9 and 10. The results from L1measurements are identical
to the results from L3 measurements, which is a strong indication
that the level of decomposition is acting the same in both L1 and
L3 measurements.

4.3.3. Threshold type and threshold estimator

Each of the 128 double difference measurements mentioned in
Table 7 were decomposed to approximation and details at lev-
els of decomposition from one to 12 using bior3.3. The crite-
rion for selecting the best wavelets base candidate is described
in the wavelet base function and vanishing moment section. The
difference in this section is that only one base function (bior3.3)
was used. Table 11 shows the frequency with which the max-
imum correlation reduction is achieved for each thresholding
type/estimator. It canbe seen from the table thatMedian _s, where
s stands for soft and h for hard thresholding, shows approximately
50% of the maximum correlation reduction and the second best
type/estimator Minimax_s with around 30%. These results were
for baselines for categories I and II and for L1 and L3.

4.4. Results

4.4.1. Short Baselines

The first category of baselines, of a few hundredmeters to five kilo-
metres, was used to compute the coordinates for E1, E2, W6, NH2,
NH3, NH4 and NH5. Table 12 shows the coordinate differences
(bias) and the rootmean square error of these coordinates with re-
spect to the reference coordinates by employing the Bernese soft-
ware. The results for the short baseline match the reference co-
ordinates within 5 – 15 mm and RMS within 10 mm. In this cate-
gory, the L1 fixed solution is used, as the correlated errors are either
eliminated or radically removed in the short baselines. Wavelets
Multi-Resolution is applied to the L1 measurement using both the
median thresholdestimator and the kill approximation techniques.
The bior 3.3 wavelet base function is used to decompose each
double difference measurement to eight levels of decomposition.
The proposed wavelet de-trending technique is then used to sep-
arate and differentiate different frequencies from high to low, cor-
responding with GPS errors. This produced a corrected double dif-
ference data as explained in the previous section. In addition, the
performance of thewavelet de-trending technique is compared to
the traditional wavelet de-noisingmethod using amedian estima-
tor.

The corrected double difference measurements from both de-
noising and de-trending techniques are usedwith the least square
adjustment to produce a fixed GPS solution. The Least-squares
AMBiguity Decorrelation Adjustment (LAMBDA) method was used
to fix the ambiguity (Teunissen, 1993) in addition to the Saasta-
moinen model for troposphere error modeling. Figure 10 and Fig-
ure 11 show the bias and RMS reduction in the final solution (X, Y
and Z components). The double difference measurements were
corrected using both de-trending and de-noising techniques. It

Figure 10. Coordinate bias when computed with raw data (L1 Fixed),
De-Noising and De-Trending techniques for short base-
lines.

can be seen from Figure 10 that the de-noising technique reduced
the bias for short baselines from5%at X-Bias for NH1-NH2baseline
(from 8 mm to 7.6 mm) to 40% at X-Bias for N5-E2 baseline (from
5 mm to 3 mm). The RMS improvements for short baselines vary
between 16%at Y-RMS frombaselineN5-E1 (from8mmto6.7mm)
to 44% at X-RMS for baseline NH1-N5 (from 7 mm to 3.9 mm). The
average bias reduction for all the X, Y and Z components is 23%,
while the averageRMS reduction is 30%whenusing thede-noising
technique (Figure 11). The de-trending technique reduces the bias
and RMS as shown in Figure 10 and Figure 11. The bias for short
baselines is reduced from53%atZ-Bias forNH1-NH2baseline (from
11 mm to 5.2 mm) to 84% at X-Bias for N5-E2 baseline (from 5 mm
to 0.8 mm). The RMS reductions for short baselines vary between
51% at Y-RMS from baseline N5-W6 (from 13 mm to 6.3 mm) to
82.5% at Y-RMS for baseline N5-E2 (from 8 mm to 1.4 mm). The
average bias reduction for all the X, Y and Z components is 74%,
while the averageRMS reduction is 69%whenusing thede-noising
technique.
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Table 10. level of decomposition and the number of times it recorded the maximum Correlation reduction.

L1_Category I L1_Category II L3_Category I L3_Category II
N % N % N % N %

3 2 0.8 0 0.0 2 0.8 0 0.0
4 5 1.9 0 0.0 5 1.9 0 0.0
5 4 1.5 0 0.0 4 1.5 0 0.0
6 32 12.1 4 3.3 32 12.1 4 3.3
7 22 8.3 0 0.0 22 8.3 0 0.0
8 99 37.5 12 10.0 99 37.5 12 10.0
9 72 27.3 42 35.0 72 27.3 42 35.0
10 28 10.6 62 51.7 28 10.6 62 51.7

Total 264 120 264 120

Table 11. Threshold type/estimator and the number of times it recorded the maximum Correlation reduction.

L1_Category I L1_Category II L3_Category I L3_Category II
N % N % N % N %

Heuristic _h 126 4.0 101 7.0 145 4.6 88 6.1
Heuristic _s 75 2.4 89 6.2 72 2.3 91 6.3
Minimax _h 71 2.2 57 4.0 89 2.8 40 2.8
Minimax _s 1090 34.4 526 36.5 1152 36.4 564 39.2
Median _h 38 1.2 19 1.3 59 1.9 30 2.1
Median _s 1630 51.5 599 41.6 1566 49.4 588 40.8
Rigrsure _h 38 1.2 17 1.2 39 1.2 14 1.0
Rigrsure _s 100 3.2 32 2.2 46 1.5 25 1.7

Total 3168 1440 3168 1440

Table 12. Coordinates difference and RMS in mm for short baseline with respect to the coordinates computed using Bernese.

Ref Rover Baseline M Sol X Bias Y Bias H Bias Z Bias X RMS Y RMS H RMS Z RMS
N5 E1 92.5 Fixed 3.0 4.0 5.0 4.0 4.0 8.0 8.9 6.0
N5 E2 94.1 Fixed 5.0 7.0 8.6 5.0 8.0 8.0 11.3 8.0
N5 W6 108.1 Fixed 4.0 3.0 5.0 9.0 11.0 13.0 17.0 13.0

NH1 NH2 277.3 Fixed 4.0 8.0 8.9 11.0 3.0 5.0 5.8 5.0
NH1 NH3 194.0 Fixed 7.0 7.0 9.9 18.0 5.0 9.0 10.3 9.0
NH1 NH4 192.8 Fixed 6.0 9.0 10.8 12.0 4.0 6.0 7.2 6.0
NH1 N05 5378.4 Fixed 11.0 15.0 18.6 9.0 7.0 12.0 13.9 13.0

Table 13. Coordinates difference and RMS in mm for long baseline with respect to the coordinates computed using Bernese.

Ref Rover Baseline m Sol X Bias Y Bias H Bias Z Bias X RMS Y RMS H RMS Z RMS
NCAL SBNK 20686.2 Float L1 19.0 22.0 29.1 24.0 32.0 28.0 42.5 28.0
NCAL AIR2 23126.6 Float L1 22.0 25.0 33.3 33.0 41.0 49.0 63.9 41.0
N05 PRDS 25756.3 Float L1 32.0 28.0 42.5 35.0 43.0 58.0 72.2 81.0

NCAL COCH 28481.2 Float L1 15.0 18.0 23.4 28.0 53.0 32.0 61.9 45.0
NH1 PRDS 30750.8 Float L1 28.0 23.0 36.2 37.0 44.0 35.0 56.2 63.0
NCAL STRA 46215.2 Float L1 35.0 42.0 54.7 48.0 28.0 52.0 59.1 77.0
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Table 14. Coordinates difference and RMS in mm for long baseline with respect to the coordinates computed using Bernese.

Ref Rover Baseline m Sol X Bias Y Bias H Bias Z Bias X RMS Y RMS H RMS Z RMS
NCAL SBNK 20686.2 Float IF 4.0 3.0 5.0 9.0 12.0 14.0 18.4 8.0
NCAL AIR2 23126.6 Float IF 2.0 3.0 3.6 12.0 10.0 9.0 13.5 16.0
N05 PRDS 25756.3 Float IF 5.0 4.0 6.4 11.0 14.0 11.0 17.8 18.0

NCAL COCH 28481.2 Float IF 8.0 10.0 12.8 8.0 17.0 20.0 26.2 20.0
NH1 PRDS 30750.8 Float IF 6.0 7.0 9.2 15.0 11.0 17.0 20.2 63.0
NCAL STRA 46215.2 Float IF 12.0 9.0 15.0 14.0 21.0 19.0 28.3 23.0

Figure 11. Coordinate RMS when computed with raw data (L1
Fixed), De-Noising and De-Trending techniques for short
baselines.

4.4.2. Long Baselines

The second category baselines range from 20 to 50 kilometres.
They are used to compute the coordinates for SBNK, AIR2, PRDS,
COCH and STRA. Figure 12 and Figure 13 show the coordinate dif-
ference (bias) and the root mean square error of these coordinates
with respect to the reference coordinates using the Bernese soft-
ware.

In this category L1 float and ionospheric free solutions are used.
The results for the long baselines L1 float solution match the ref-
erence coordinates within 19-50 mm and RMS within 50 mm.
Wavelets Multi-Resolution is applied to the L1 measurement us-
ing Bior 3.3 with both the median threshold estimator and the de-
trending techniques to the eight levels of decomposition. The es-
timated error is used to correct each double difference measure-
ment before the estimation process begins again. In addition, the
performance of the wavelets de-trending technique is compared
with the traditional wavelets de-noising using amedian estimator.
Figure 12 and Figure 13 show the bias and RMS reduction in the
final solution (X, Y and Z components) after correcting the double
difference measurements using both de-trending and de-noising
techniques. It can be seen from Figure 12 that the de-noising tech-
nique reduced the bias for long baselines from 15% at Y-Bias for
NCAL-COCH baseline (from 18 mm to 15 mm) to 42% at X-Bias for
NCAL-COCH baseline (from 15 mm to 8.7 mm). The RMS reduc-
tions for long baselines (Figure 13) vary between 25% at Z-RMS
from baseline N5-PRDS (from 81 mm to 60 mm) to 49% at Y-RMS
for baseline N5-PRDS (from 58 mm to 29.8 mm). The average bias
reduction for all the X, Y and Z components is 30%, while the aver-
age RMS reduction is 36% when using the de-noising technique.

The de-trending technique reduction to bias and RMS can be seen
in the same figures. The bias for short baselines was reduced from
2% at Z-Bias for NCAL-AIR2 baseline (from 33 mm to 32.2 mm) to
25% at X-Bias for NCAL-COCH baseline (from 15 mm to 11 mm).
The RMS improvements for the long baseline L1 float solution

vary from 56% at X-RMS from baseline NCAL-SBNK (from 32 mm
to 14 mm) to 89% at Z-RMS for baseline NCAL-COCH (from 45 mm
to 5 mm). The average bias reduction for all the X, Y and Z com-
ponents is 14%, while the average RMS reduction when using the
de-noising technique is 75%.

Figure 14 and Figure 15 show the bias and RMS reduction in the
final solution (X, Y and Z Cartesian components) after correcting
the double difference measurements using both de-trending and
de-noising techniques. It can be seen from Figure 14 that the de-
noising technique reduced the bias for long baselines from 17.5%
at Y-Bias for NCAL-COCH baseline (from 10 mm to 8.3 mm) to 60%
at X-Bias for N05-PRDS baseline (from 5 mm to 2 mm). The RMS
reductions for long baselines (Figure 15) vary between 22% at Z-
RMS from baseline NH1-PRDS (from 63 mm to 48 mm) to 42% at
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Figure 12. Coordinate bias when computed with raw data (L1 float),
De-Noising and De-Trending techniques for long base-
lines.

X-RMS for baseline NCAL-STRA (from 21 mm to 12.2 mm). The av-
eragebias reduction for all the X, Y andZ components is 20%,while
the average RMS reduction when using the de-noising technique
is 33%. The de-trending technique reduction to bias and RMS can
be seen in the same figures. The bias for the long baselines was
reduced from 3% at Y-Bias for NCAL-AIR2 baseline (from 3 mm to
2.9 mm) to 35% at X-Bias for NCAL-COCH baseline (from 8 mm to
5.2mm). The RMS reductions, for the longbaseline IF solution, vary
between 54% at Z-RMS from baseline NCAL-AIR2 (from 18 mm to
8.3 mm) to 86% at X-RMS for baseline NH1-PRDS (from 11 mm to
1.5 mm). The average bias reduction for all the X, Y and Z com-
ponents is 15%, while the average RMS reduction when using the
de-trending technique is 73%.

4.5. Conclusion

Table 15 shows the summary of the analysis made in the previ-
ous sections. It can be seen from the table that the de-noising
technique gives consistent results for both short and long base-
lines. The averagebias reduction that canbe achieved from thede-

Figure 13. Coordinate RMS when computed with raw data (L1
Float), De-Noising and De-Trending techniques for long
baselines.

noising technique is around 20-30% and the average RMS reduc-
tion is around 30-40%. Moreover, the de-trending technique out-
performs the de-noising technique for RMS improvement in short
and longbaselines. Theperformance in the de-trending technique
is almost three times better than the traditional de-noising tech-
nique for bias and RMS reduction.

Although the de-trending technique out-performs the de-noising
technique in the RMS reduction, it does produce inconsistent re-
sults for the bias reduction. The de-trending methodology per-
formed impressively for short baselines in RMS and bias reduction
as the averageRMSandbias reductionwere around80%. However,
for longer baselines the bias reduction is minimal although the
RMS reduction is still in the range of 70 – 80%. It can be concluded
that the de-trending technique can reduce the double difference
errors dramatically for short baselines. Conversely, the de-trending
technique can cause a biased solution for long baselines depend-
ing on the low frequency part of the error (ionosphere, low multi-
path), as it will enhance the RMS value and indicate good statistics
for the solution but not enhance the bias to the same level. There-
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Figure 14. Coordinate bias when computed with raw data (IF), De-
Noising and De-Trending techniques for long baselines.

Table 15. average bias and RMS reduction in percentage for fixed
short baseline solution and long baseline float and IF so-
lution.

Fixed L1 De-Noising De-Trending
Average Bias 23.0 73.3
Average RMS 29.4 68.5

Float L1 De-Noising De-Trending
Average Bias 29.5 13.7
Average RMS 35.4 74.1

Float IF De-Noising De-Trending
Average Bias 28.9 14.6
Average RMS 32.7 72.8

fore, it is important to isolate ionospheric error by modeling (and
not spectrum filtering) before dealing with multipath, as it is hard
to separate between both errors in the spectral domain.

Figure 15. Coordinate RMS when computed with raw data (IF), De-
Noising and De-Trending techniques for long baselines.
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