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Sharing data with third parties is essential for advancing science, but it is becoming more and more diicult with the rise of data

protection regulations, ethical restrictions, and growing fear of misuse. Fully synthetic data, which transcends anonymisation,

may be the key to unlocking valuable untapped insights stored away in secured data vaults. This review examines current

synthetic data generation methods and their utility measurement. We found that more traditional generative models such

as Classiication and Regression Tree models alongside Bayesian Networks remain highly relevant and are still capable of

surpassing deep learning alternatives like Generative Adversarial Networks. However, our indings also display the same

lack of agreement on metrics for evaluation, uncovered in earlier reviews, posing a persistent obstacle to advancing the

ield. We propose a tool for evaluating the utility of synthetic data and illustrate how it can be applied to three synthetic

data generation models. By streamlining evaluation and promoting agreement on metrics, researchers can explore novel

methods and generate compelling results that will convince data curators and lawmakers to embrace synthetic data. Our

review emphasises the potential of synthetic data and highlights the need for greater collaboration and standardisation to

unlock its full potential.

CCS Concepts: · General and reference → Surveys and overviews; Evaluation; · Mathematics of computing →
Resampling methods; · Computing methodologies→Machine learning.

Additional Key Words and Phrases: Synthetic Data, Generative Modelling, Tabular Data, Models and Metrics, Utility and

Privacy, Model benchmark, Privacy Enhancing Technologies

1 Introduction

Data are an integral part of how we today conduct our science. Countless examples of data-driven research
opposing dogma have changed our world, and today, new discoveries are made at an unprecedented rate, thanks
to computers, big data, and machine learning, enabling us to gather and analyse data at scales unimaginable to
our predecessors [48, 63].

Authors’ Contact Information: Anton Danholt Lautrup, Department of Mathematics and Computer Science, University of Southern Denmark,

Odense, Denmark; e-mail: lautrup@imada.sdu.dk; Tobias Hyrup, Department of Mathematics and Computer Science, University of Southern

Denmark, Odense, Denmark; e-mail: hyrup@imada.sdu.dk; Arthur Zimek, Department of Mathematics and Computer Science, University of

Southern Denmark, Odense, Denmark; e-mail: zimek@imada.sdu.dk; Peter Schneider-Kamp, Department of Mathematics and Computer

Science, University of Southern Denmark, Odense, Denmark; e-mail: petersk@imada.sdu.dk.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst page.

Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).

© 2024 Copyright held by the owner/author(s).

ACM 1557-7341/2024/11-ART

https://doi.org/10.1145/3704437

ACM Comput. Surv.

HTTPS://ORCID.ORG/0000-0002-9228-2417
HTTPS://ORCID.ORG/0000-0003-4783-9893
HTTPS://ORCID.ORG/0000-0001-7713-4208
HTTPS://ORCID.ORG/0000-0003-4000-5570
https://orcid.org/0000-0002-9228-2417
https://orcid.org/0000-0003-4783-9893
https://orcid.org/0000-0001-7713-4208
https://orcid.org/0000-0003-4000-5570
https://doi.org/10.1145/3704437
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3704437&domain=pdf&date_stamp=2024-11-14


2 • A. D. Lautrup et al.

However, despite an abundance of data, they are by no means freely available in every ield, owing to a
combination of data protection regulations, fear of misuse, and intellectual property rights. These considerations
are valid, and necessary to protect the rights of individuals, but can also slow down research, even stop it in its
tracks, in important ields including healthcare, inance, administration, and governance [1, 7, 10, 16, 35, 58]. These
domains possess datasets that are unlikely to ever become publicly available, however, it is not impossible that
third parties may yet gain valuable insights by studying (pseudo)-anonymised or fully synthetic versions of them
[50, 94, 101, 103]. Although anonymisation techniques have long been the preferred method of disclosure control
when sharing sensitive data, this approach has many laws and is unsuitable for widespread dataset publication
[5, 87, 97, 99, 100]. Instead, researchers have begun exploring the idea of modelling dataset distributions to create
a substitute for real data, so-called synthetic data, that can be sampled independently of the original data, and
therefore has a lower disclosure risk than pseudo anonymisation and anonymisation [88, 96, 123].

This is, however, only true for fully synthetic data, which has no one-to-one correspondence with the original
samples. Partially synthetic data, on the other hand, are essentially full or partial samples of real data that are
mapped into a łsynthetic data spacež using some transformation mechanism. Here, each synthetic sample results
from a real sample, making this approach not much diferent from anonymisation in its resistance to adversarial
attacks [5, 123]. In this work, we focus purely on fully synthetic data and the mechanisms used for making it.

Frameworks thatmodel real data rely on statistics ormachine learning and are generally referred to as generative
models. Generative modelling has broad implications and encompasses image- and text synthesis, technologies
that have made an impression on the general public recently, as well as tools that assist research into subjects like
drug discovery, physics experiments, astronomy, climate modelling, and many others [11, 13, 18, 19, 42]. While
creating synthetic images, text, and music has been largely solved using modern deep learning frameworks such
as difusion, transformers, and LSTMs, a inal challenge on the front of synthetic data remains: structured tabular
data. Tabular data have perhaps the greatest positive potential for developing new predictive models, knowledge
discovery tasks, and decision-making but also present maybe the greatest challenge for privacy, in the case of
highly detailed records [22, 50, 99, 109].
In this review, we investigate the most popular methods for generating fully synthetic tabular data in the

current literature and how they are compared. Furthermore, since synthetic data must provide valid statistical
analyses to be useful, we study how synthetic data utility is quantiied, while also taking note of privacy metrics.
This is done across the computer science literature as well as the multidisciplinary data science literature since
the concept of synthetic data has captured the attention of many areas of research, and we aim to provide a broad
perspective on the ield.

1.1 Motivation

The systematic review of methods for creating and evaluating fully synthetic tabular data is motivated by the vast
positive potential of sharing record-level data in health informatics, inance, and policy-making. The creation
and sharing of synthetic data, which accurately mimics the properties of real sensitive data while preserving
privacy, open up new opportunities for data science in these ields [8, 20, 82, 109]. In healthcare, electronic tabular
health records ofer the opportunity to make better decision-making tools, improve treatments, and explore
previously unknown causal relationships [10, 101, 109, 120]. In inance, open data allows for reinements in fraud
detection, and identiication of sales trends, risks, and opportunities [2, 7, 88]. In governance and administration,
more access to population statistics can help policymakers make more informed decisions and improve public
services, identify areas for improvement, and develop evidence-based policies [14, 31, 108]. Finally, emerging uses
of synthetic data for data ampliication and augmentation are also seeing lots of interest, such as mitigating biases
to make more robust and fair models for downstream tasks, decreased cost, and the possibility of simulating
scenarios not included in the original sample [34, 79, 82, 110].
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Table 1. Diferent features of related works. The table presents an overview of some existing surveys that review synthetic
data, along with information on each paper’s focus. A ł-ž means no, ł✓ž is yes and ł(✓)ž means that the paper does seemingly
fulfil the requirement, but does not explicitly state so. To get the checkmark in the łdetails models (metrics)ž, the paper is
required to dedicate detailed sections to individual models (metrics) or families of models (metrics), and include more than a
single model (metric).

Focused? Restrictions on data? Details: Includes

Year Author on domain on model fully synthetic tabular snapshot models metrics experiment(s)

2021 Bond-Taylor et al. [13] - - - - - ✓ - ✓

2021 Coutinho-Almeida et al. [25] Health GAN (✓) ✓ ✓ - - -

2022 Abedi et al. [1] Health GAN ✓ ✓ ✓ ✓ - ✓

2022 Dankar et al. [28] - - ✓ ✓ ✓ - ✓ ✓

2022 Figueira et al. [41] - GAN (✓) - - ✓ ✓ -

2022 Hernandez et al. [50] Health GAN ✓ ✓ - ✓ - -

2023 Hernandez et al. [51] Health - ✓ ✓ ✓ - ✓ ✓

2023 McDuf et al. [82] Health - (✓) - - - - -

2023 Murtaza et al. [86] Health - - - - ✓ ✓ -

- Lautrup et al. [This study] - - ✓ ✓ ✓ ✓ ✓ ✓

In summary, sharing synthetic data for use in deep learning and data mining can bring signiicant beneits to
society [68, 97]. However, ensuring the quality of synthetic data that meets the expectations of data curators and
lawmakers remains an open question and a challenge due to the potential consequences if privacy guarantees
should prove insuicient [5, 22].

1.2 Contributions

This work is a comprehensive systematic review of the developments in generating and evaluating synthetic
tabular data. Many reviews and surveys of synthetic data generation exist1, with several diferent approaches
(some are outlined in Table 1). However, the ield is in rapid development, and moving in many diferent directions;
a review simultaneously addressing utility metrics and generation methods has to the best of our knowledge
not been done rigorously before and may yield some much-needed insights for newcomers and veterans alike.
In addition, many previous works have domain- or model-focused research questions, which is a limitation in
watching the whole ield develop.

Speciically, this work makes the following contributions;

• Overview of established tools for fully synthetic tabular data generation.
• Discussion and overview of metrics for utility and privacy evaluation of synthetic tabular data, focusing on
metrics that generalise well and therefore can be used for comparing and benchmarking more widely.

• Benchmark of three synthetic data generation models using an evaluation tool based on the discovered
metrics2

In particular, three studies have been of inluence in the creation of this work. A study by Bond-Taylor et al.
[13] already investigates synthetic data generation models but leaves out most quality and utility assessments in
favour of a detailed theoretical presentation of the models themselves and their eiciency. Hernandez et al. [50]
review generation methods and show that Generative Adversarial Network (GAN)-based approaches perform
well in generating synthetic data with good utility and privacy. They name metrics used in the papers they
compare but do not discuss the metrics in a wider context. Finally, Dankar et al. [28] investigate the relationships

1At the time of writing we are aware of at least 30 papers since 2018.
2The tool łSynthEvalž [73] is available for Python from https://github.com/schneiderkamplab/syntheval
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between metrics used in the evaluation of fully synthetic tabular data. They have some quite interesting ideas,
but only thoroughly assess four metrics.

Another recent study by Murtaza et al. [86] details many generative modelling tools that did not make it into
our study for various reasons. Namely, they have much broader restrictions on the type of data that they allow
their generative models to model. Accommodating longitudinal, time-series, and text data, requires diferent
methodological adaptations in the model architecture than just focusing on generating snapshot (or cross-
sectional) records. Finally, some high-level overviews focused on the healthcare domain are worth mentioning,
El Emam [34], Marwala et al. [79], and McDuf et al. [82], provide a good overview of the current narrative in
synthetic data for healthcare applications while highlighting opportunities and pitfalls of the technology.

1.3 Research questions

This paper will analyse the diferent approaches to generating fully synthetic tabular data and evaluating data
quality, as guided by the following research questions:

RQ1: What are the most reliable solutions for generating high-idelity fully synthetic tabular data?
RQ2: What methods are used in the evaluation of synthetic data utility?
RQ3: How can generative models be compared in an objective and universal manner?

1.4 Structure of the paper

The remainder of this paper is structured in the following way; in Section 2 below, we go over the methods of
the systematised review and explain the search strategy. Next in Section 3 the results are displayed in tabular
form, and in the following Sections 4-6, we present the indings relevant to each of the three research questions,
including an empirical experiment. In Section 7 we discuss the various results, implications, and limitations and
provide directions for future research. Finally, we summarise and conclude the review in Section 8.

2 Systematic Review Process

For executing a systematic review, we irst deine a systematic review research protocol. This is done in the
following steps; deine search strategy and search limits, deine inclusion and exclusion criteria, and build a
data synthesis plan (quality assessments of the included studies) [67, 69]. The goal of the research protocol is to
solidify this research in an unambiguous and reproducible manner.

2.1 Search strategy

For searching the vast literature in a manageable way, we elected to limit ourselves to searching four databases3.
We included Scopus and Web of Science since they were the databases with the most unique papers in previous
studies [41, 50]. In addition, we picked the IEEE Xplore, and the ACM Digital Library databases, since they show
up in many of the related literature surveys and cover a wide range of applied ields.

From our pre-investigation, we identiied relevant keywords for searching literature on synthetic data genera-
tion and limited our search to papers matching the following search string;

TITLE((synthe* OR generat*) AND (data OR model*)) AND

TITLE-ABS(("synthetic data" OR "generative model")

AND (utility OR usability OR efficiency OR resemblance)

AND (evaluat* OR metric* OR statistic*))

In Figure 1 we show the number of papers from each year that show up in the selected databases using these key
phrases. To further limit the results, we looked for papers published from 1st of January 2020 to the 1st of April

3https://www.scopus.com/, https://www.webofscience.com/, https://ieeexplore.ieee.org/, https://dl.acm.org/
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Figure 3: UpSet plot [24] showing database intersections. Many of the papers included in the

Fig. 1. Literature search results. Let: The histogram shows the growth of the field of synthetic data generation, based on
the number of papers showing up using our search string. Our search was last conducted on the 1st of April 2023, why the
results are cut short for 2023. Right: UpSet plot [23] showing database intersections: many of the papers included in the
study show up in multiple databases, with some found only in one. This UpSet plot shows the distribution of unique papers
identified in each database and those that appeared more than once.

2023 (the date of conducting the latest search). We chose this interval to focus on actively used (state-of-the-art)
and matured ideas, but also to gain some semblance of development of diferent ield directions. Also, we required
our results to be written in English and be from a peer-reviewed journal or conference.

2.2 Inclusion and Exclusion criteria

The criteria used for selecting the papers were as listed below. First, papers are selected for inclusion if they
are deemed helpful for answering at least one of the proposed research questions. That is, a retrieved paper
should either present a method to create synthetic tabular data (RQ1), cover evaluation tools (RQ2), or discuss
comparison methodologies (RQ3). To ensure this requirement, papers are only included if they satisfy one or
more of the following inclusion criteria:

IC1: The paper presents tools for generating synthetic tabular data.
IC2: The paper discusses how to evaluate the utility of synthetic tabular data.
IC3: The paper compares existing generative frameworks for tabular data.

This judgement was most often done based on title and abstract, but in cases of doubt, the full paper was retrieved.
Next, to ensure no irrelevant papers are retrieved, we formulate a series of exclusion criteria which we apply to
the included papers. Papers were removed if they violated at least one of the following exclusion criteria:

EC1: The study does not discuss the evaluation or generation of synthetic data.
EC2: The study deals with data that are not mainly tabular.
EC3: The study does not include empirical results or measures of utility.
EC4: The mechanism for generating synthetic data requires real data as input.
EC5: The paper is removed for another reason.

Each record was assessed by a primary reviewer, who conferred with at least one secondary reviewer in all
non-trivial cases. The inal set of selected papers was validated by all co-authors. The exclusion criteria were
motivated as follows: Papers should detail workable models and metrics. Thus, we excluded works that did not
evaluate primary model results and papers that proposed metrics which were not shown to be applied. Moreover,
we required the main body of work in the paper to be about tabular data because detailing models that work on
diferent or multi-modal data would obfuscate the primary objective of this review. Additionally, after training or
itting the generation mechanism in a paper, the resulting model had to be able to generate data exclusively from
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397 papers identified from databases search.
• 179 from ACM
• 113 from Scopus
• 79 from WoS
• 21 from IEEE

Search

Screening
310 unique papers when removing duplicates.

183 papers were not included.

Reading
79 papers for full text review.

47 papers meeting inclusion criteria.

32 papers removed.

48 papers were excluded here.

EC1: no metrics/models. 10
EC2: not tabular data. 28
EC3: no empirical work. 5
EC4: not fully synthetic. 3
EC5: other reason. 2

EC1: no metrics/models. 5
EC2: not tabular data. 13
EC3: no empirical work. 8
EC4: not fully synthetic. 6

Exclusions

Fig. 2. Overview of paper selection procedure. The flowchart illustrates how the 397 papers collected from the database
searches are sited down to the 47 papers selected for review. The primary cause for not being included and/or excluded
was that many of the papers consider synthetic data generation in the context of image, text, sound, and graph data. In
terms of exclusion, only the primary (first) reason for exclusion is shown (papers may be subject to more than one reason for
exclusion).

the model parameters without using the training data as input Ð that is, retrieved papers should concern fully

synthetic data only and papers on methods that merely perturb or otherwise transform the existing data should
be excluded. Exclusion criterion EC5 was invoked two times to remove a journal news article and a conference
poster.

2.3 Data collection process

The data were collected by reading through the included papers. Information about the domain, stated purpose,
and datatypes used was gathered in a spreadsheet; we also noted information on the median number of entries
and attributes of the datasets used in a paper. The details on utility and privacy metrics were collected, and for
generative models, we also noted the types, names, and ranking (if the paper performed a ranking), and whether
the model was the one proposed by the paper. The results are presented below.

3 Overview of selected publications

Here, we present the results of the systematic review process, a breakdown of the paper selection process can be
seen in Figure 2. In total, from conducting the search on the 1st of April 2023, we identiied 397 papers in the
four databases (179 on ACM, 113 in Scopus, 79 in WoS, and 21 on IEEE, an overview of the search results can
be seen in Figure 1 on the right). When duplicates were removed, we were left with 310 unique papers, from
which we selected 47 papers for review. We include a brief characterisation of each paper in Tables 2 and 3. We
made a division of the papers since about a third of them did not try out diferent approaches for synthetic data
generation, which makes it more diicult to make objective conclusions based on their recommendations. Thus,
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Table 2 shows all the papers that only discussed a single method for generating synthetic data, whereas Table 3
shows all the papers where at least two methods are compared. The latter allows for a basic comparison to be
carried out.

In the tables, we present authors, the domain of the paper along with their stated purpose. We indicate if the
papers work on discrete, numerical, or mixed datatypes, and of what scales. The inal two columns contain the
paper’s method(s) for generating synthetic data and the evaluation metrics chosen. In Table 3 we assign the
letter (W) to the model that was reported to be the most successful within the paper, while we assign (L) to
the worst-performing model. We also let the letter (p) signify which model the authors reported was the most
private. The letters in front of the metrics Q, R, U, and P signify which family we assign it to; quality, resemblance,
usability and privacy (see Section 5).

* The Wang 2021 [113] paper is included in Table 2 because the two SDG approaches they use, are not
compared or used in the same context in the study.

** In the Yale 2020b [118] study, the winning model was actually one of their baseline models; the KDE Parzen
window approach, which had better overall utility, but the authors handed the win to HealthGAN since
KDE had an unacceptable footprint.

4 RQ1: Reliable methods for generating high fidelity synthetic data

In this section, we look at the many synthetic data generation approaches explored by the selected papers. Our
primary focus lies in identifying proven methods that are currently being applied and have received appraisal
from many authors for their ability to generate useful and private synthetic data. We intentionally emphasise
scientiically established approaches to provide a composed narrative for new researchers, excluding highly
experimental methods and legacy techniques. As we shall see in later sections, comparing and evaluating
generative methods is far from trivial and since the models and evaluations across the selected papers difered
signiicantly (e.g., diferent datasets used, no common baseline, structural variations of models, and diferences in
hyperparameters), we were unable to perform a proper meta-analysis. Instead, we will rely on a simple count of
łbest/worst performancež of models from across papers that make comparisons/rankings. The intention is not to
select an indisputable best model, but to uncover kinds of models that are often successful at arbitrary tasks, and
therefore notable to new researchers in the ield.
To begin, we tally up the number of papers looking into each method, not counting multiple occurrences

within a paper (this count is based on the łSDG approachesž columns in Tables 2 and 3 Ð references for GAN,
BN, and CART methods are provided further down):

21 Generative adversarial network (GAN)

18 Bayesian network (BN)

18 Classiication and regression trees (CART)

8 Variationel Autoencoder (VAE) [39, 40, 44, 75, 106, 107, 112, 124]

7 Copula technique [27, 28, 39, 78, 81, 112, 113]

4 Multiple imputation (MI) [75, 102, 118, 121]

3 Multivariate probability densities (PDF) [76, 92, 118]

2 DP Group Fields [15, 43]

1 Poisson saturated counts [62]

1 Deep Boltzmann machines (DBM) [75]

1 Graphical model [15]

1 Probabilistic database framework (KAMINO)

[44]

1 Diferentially Private Mean Embeddings with

Random Features (DP-MERF) [49]

Based on the list, some models receive a lot of attention, while others are yet to establish themselves within the
community. The methods on the right-hand side each deserves an honourable mention, but will not be treated
further here, since we do not have enough unbiased evidence in their support to recommend them over more
well-established frameworks.

To proceed from here, we restrict our count to the appearances within Table 3, this time allowing for duplicates
internally. Looking at only this group of papers and models, we can get a general picture of each model’s success

ACM Comput. Surv.
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Table 2. Selected papers with only a single synthetic data generation approach. Since the papers in this table only
present a single tool for generating synthetic data, it is dificult to assert how well the models perform outside of that specific
context. The papers are still useful in other regards. For the number of entries: small datasets with < 1000 entries are denoted
with a single #, intermediate datasets with ##, and datasets with ≥ 10000 entries with ###. For atributes, the categories are:
small (#) < 20, medium (##), 60 ≤ large (###). In the cases where more than one dataset is tried, we take the median number
of entries/atributes.

Author Year Domain Stated purpose Datatype #ents #atts SDG approach Evaluation metrics

Bowen 2020 [14] Economics make synthetic data
to protect sensitive
data

mixed ### # CART (synthpop) (R) visual, (R) pMSE (synthpop),
(Q) correlation (matrix), (P) Hit.
rate (rare items), (P) cloning sever-
ity

Chen 2020 [21] Genomics propose new model
(data augmentation)

discrete ## ### GAN (PG-cGAN)
(proposed)

(R) PCA, (R) MSE, (U) domain-
speciic metrics

Deeva 2020 [30] Comp. Sci. make synthetic
data for education
purposes

mixed ### # BN (generic) (R) visual, (R) SRMSE

Ho 2020 [53] Comp. Sci. propose new model
(privacy protection)

num. # # GAN (DP-GAN)
(proposed)

(R) RMSE

Holmes 2020 [54] Comp. Sci. evaluate synthetic
data for unknown
future use

mixed ### ## BN (PrivBayes) (Q) mutual information,
(Q) JensenśShannon divergence,
(U) ML-accuracy (Acc, F1-dif (%))

Taub 2020 [108] Comp. Sci. evaluate feasibility
of synthetic data

mixed ### # CART (synthpop) (R) CIO (number), (U) ML-accuracy
(RoE), (U) reproducibility test

Yale 2020a [116] Health HealthGAN tutorial mixed ## ### GAN (Health-
GAN)

(R) NNAA, (U) reproducibility test,
(P) ADR, (P) MDR

Azizi 2021 [8] Health evaluate feasibility
of synthetic data

mixed ## ### CART (rpart) (R) KL-divergence, (R) CIO (inter-
vals), (U) domain-speciic metrics,
(U) reproducibility test

El Emam 2021a [37] Health evaluate feasibility
of synthetic data

mixed ### # CART (generic) (R) CIO (number, intervals),
(R) pMSE, (U) variable importance,
(U) reproducibility test, (P) ADR,
(P) MDR

El Emam 2021b [38] Health evaluate sensitivity
of model to per-
muted data

mixed ### # CART (generic) (R) Hellinger distance, (R) pMSE,
(U) ML-accuracy (AUROC)

Harder 2021 [49] Comp. Sci. propose new model
(privacy protection)

mixed ### ## DP-MERF (pro-
posed)

(Q) Negative LL, (U) ML-accuracy
(F1-dif, AUROC)

Hornby 2021 [55] Comp. Sci. present new tools
for evaluating
privacy

mixed ## # CART (synthpop) (R) pMSE, (P) Hit. rate

Montevechi 2021 [84] Comp. Sci. make synthetic data
to model input data

num. ## # GAN (generic) (R) visual, (R) pMSE (C2S variant),
(R) CIO (intervals)

Park 2021 [88] Economics make synthetic
data for education
purposes

mixed ### ## GAN (generic) (R) visual, (Q) mutual information,
(U) ML-accuracy (Pr, Re, F1)

Wang 2021 [113]* Health propose evaluation
framework

mixed # ## Copula (generic)
BN (unknown)

(Q) KS-test (dist), (Q) correlation
(matrix), (R) Consult Experts,
(U) ML-accuracy (AUROC), (U) re-
producibility test, (P) Hit. rate (rare
items)

Chandra 2022 [20] Health evaluate feasibility
of synthetic data

mixed ## ## CART (synthpop) (R) visual, (Q) correlation (ma-
trix), (Q) mutual information,
(Q) attribute entropy, (Q) KS-test
(p-values), (U) ML-accuracy (F1, Pr,
Re)

Jackson 2022 [62] Admin. propose new model
(access private data)

discrete ### # Saturated counts
(proposed)

(R) CIO (number)

Lenatti 2023 [74] Health assert if XAI can
be used to evaluate
synthetic data

mixed # # GAN (DR-GAN) (Q) correlation (number),
(R) Hellinger distance, (R) MMD,
(R) pMSE (C2S variant), (U) XAI
rule similarity

Montevechi 2023 [85] Comp. Sci. assert if GANs can
be used to evaluate
synthetic data

mixed ## # GAN (generic) (R) pMSE (C2S variant), (Q) Equiva-
lence test (Power)

Quick 2022 [92] Health propose new model
(improve utility)

mixed ### # multivariate PDF
(proposed)

(R) visual, (U) domain-speciic
metrics

Tai 2022 [106] Comp. Sci. evaluate feasibility
of privacy frame-
work

mixed ### # VAE (generic) (R) visual, (U) ML-accuracy
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Table 3. Selected papers with multiple synthetic data generation approaches. This table characterises the papers
that allow for some degree of comparison or consistent ranking between the models presented. For entries: small (#) < 1000,
medium (##), 10000 ≤ large (###); for atributes: small (#) < 20, medium (##), 60 ≤ large (###). Again, in the case of multiple
datasets compared: we take the median number. The signifying leters W, L and p, indicate the winning-, losing- and most
private model within each paper. The leters Q, R, U, and P in front of the evaluation metrics indicate which category of
utility, that we assign it to (see section 5)

Author Year Domain Stated purpose Datatype #ents #atts SDG approachs Evaluation metrics

Alharbi 2020 [3] Comp. Sci. propose new model
(data imputation)

num. # # (W) GAN (randomGAN) (proposed)
(L) GAN (mesh-GAN) (proposed)

(U) MAE, (R) RMSE

Fan 2020 [40] Comp. Sci. conduct experimen-
tal study of GAN
architectures

mixed ### ## (W) GAN (generic)
(p) GAN (DPGAN)
(p) BN (PrivBayes)
(L) VAE (generic)

(U) ML-accuracy (F1-
dif.), (P) Hit. rate,
(P) DCR

Galloni 2020 [43] Comp. Sci. propose new evalua-
tion methodology

mixed ### # (Wp) BN (PrivBayes)
(Lp) DPGroupFields

(U) ML-accuracy,
(Q) Pearson test

Mayer 2020 [81] Economics evaluate synthetic
data for anomaly
detection

mixed ### ## (W) CART (synthpop)
(p) BN-DP (DataSynthesizer)
BN (DataSynthesizer)
(L) Copula (Synthetic data vault)

(U) ML-accuracy (Pr,
Re, F2)

Rankin 2020 [96] Health evaluate feasibility
of synthetic data

mixed # # (W) CART non-param. (synthpop)
CART param. (synthpop)
(Lp) BN (DataSynthesizer)

(Q) mutual information,
(U) ML-accuracy,
(U) ML-accuracy (F1-
dif.)

Yale 2020b [118] Health propose new model
(protect privacy)

mixed ### ### (Wp) GAN (HealthGAN) (proposed)
KDE (Parzen Windows)**
Multiple imputation
(L) Gaussian multivariate

(R) NNAA, (R) PCA,
(R) CIO (intervals),
(U) ML-accuracy (AU-
ROC), (U) reproducibil-
ity test, (P) Privacy loss

Bowen 2021 [15] Comp. Sci. evaluation of syn-
thetic data and
generators

mixed ### ## (Wp) Graphical model
(p) BN (PrivBayes)
(p) GAN (Team UCLANESL)
(Lp) DPGroupFields

(R) pMSE, (Q) KS-test
(dist), (R) CIO (number)

Dankar 2021 [27] Comp. Sci. evaluate efect of
user settings on data
quality

mixed # ### (W) CART non-param. (synthpop)
Copula (Synthetic data vault)
BN (DataSynthesizer)
(L) CART param. (synthpop)

(R) pMSE, (U) ML-
accuracy

Ge 2021 [44] Comp. Sci. propose new model
(protect privacy)

mixed ### # (Wp) KAMINO (proposed)
(p) BN (PrivBayes)
(p) GAN (PATE-GAN)
(Lp) VAE (DP-VAE)

(U) ML-accuracy,
(U) Var. dist.

Kaur 2021 [66] Health evaluate feasibility
of methods

discrete ### ### (Wp) BN (bnlearn)
(L) GAN (medBGAN)

(Q) KS-test (p-values),
(U) association rules,
(U) ML-accuracy (Pr,
Re), (Q) correlation
(matrix), (R) pMSE,
(Q) rare results,
(P) ADR

Lenz 2021 [75] Genomics implement model in
federated learning
setting

binary # ## (Wp) DBM (DataSHIELD) (proposed)
GAN (generic)
VAE (generic)
(L) Multiple imputation

(R) RMSE, (U) repro-
ducibility test, (P) MDR,
(P) privacy loss

Takagi 2021 [107] Comp. Sci. propose new model
(protect privacy)

mixed ### ### (Wp) VAE (P3GM) (proposed)
VAE (generic)
(p) BN (PrivBayes)
(Lp) VAE (DP-GM)

(U) ML-accuracy
(AUROC), (R) L1-dist

Branddon 2022 [16] Health evaluate feasibility
of synthetic data

mixed ### ## (W) CART non-param. (synthpop)
(Lp) CART param. (synthpop)

(R) visual, (R) CIO
(intervals), (U) ML-
params., (P) Hit. rate
(normal, rare items)

Dankar 2022 [28] Comp. Sci. comparison of
synthetic data
generators

mixed # ### (W) CART non-param. (synthpop)
Copula (Synthetic data vault)
BN (DataSynthesizer)
(L) CART param. (synthpop)

(R) Hellinger distance,
(R) pMSE, (U) ML-
accuracy (F1), (Q) corre-
lation (number)

El Emam 2022 [36] Health evaluate efec-
tiveness of utility
metrics

mixed # ## (W) CART (generic)
GAN (generic)
(Lp) BN-DP (DataSynthesizer)

(R) MMD, (R) Hellinger
distance, (R) Wasser-
stein distance, (U) clus-
tering metric, (U) ML-
accuracy (AUROC),
(R) pMSE (C2S variant)

Endres 2022 [39] Comp. Sci. identify most ef-
fective generation
method

mixed ### ## (W) CART non-param. (synthpop)
BN (DataSynthesizer)
GAN (generic)
GAN (synthetic data vault)
Copula (synthetic data vault)
(L) VAE (generic)

(Q) correlation (matrix),
(U) SD metrics (SDV
metric)
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Table 3. Selected papers with multiple synthetic data generation approaches (cont.)

Author Year Domain Stated purpose Datatype #ents #atts SDG approachs Evaluation metrics

Llugiqi 2022 [78] Comp. Sci. evaluate synthetic
data for anomaly
detection

mixed ### ## (W) CART (synthpop)
Copula (synthetic data vault)
(L) BN (DataSynthesizer)

(U) ML-accuracy (F1, F2)

Pezoulas 2022 [89] Health propose extension of
synthetic data gener-
ator

mixed # ## (W) BN (BGMM-OCE) (proposed)
BN (generic)
(L) CART (generic)

(Q) correlation (num-
ber), (Q) KS-test (GoF),
(Q) coeicient varia-
tions, (R) KL-divergence

Venugopal 2022 [111] Health propose new model
(protect privacy)

mixed ## # (W) GAN (HealthGAN)
(p) GAN (pGAN) (proposed)
(L) GAN (CTGAN)

(R) PCA, (R) cos-sim.,
(R) NNAA, (U) ML-
accuracy (F1), (P) pri-
vacy loss

Visani 2022 [112] Comp. Sci. propose new evalua-
tion framework

mixed ### # (W) GAN (CTGAN)
GAN (CopGAN)
VAE (TVAE)
(Lp) Copula (Synthetic data vault)

(Q) correlation (num-
ber), (Q) �2-test,
(R) MMD, (R) pMSE,
(U) ML-accuracy (AU-
ROC), (U) information
value, (P) Hit. rate,
(P) ADR, (P) MDR

Yan 2022 [119] Health propose new bench-
marking framework

mixed ### ### (W) GAN (EMR-WGAN)
GAN (medWGAN)
GAN (medBGAN)
GAN (medGAN)
(Lp) GAN (DPGAN)

(R) NNAA, (R) Wasser-
stein distance, (Q) cor-
relation (number),
(U) clustering metric,
(U) ML-accuracy (AU-
ROC), (U) important
features, (U) domain-
speciic metrics, (P) Hit.
rate, (P) ADR, (P) MDR,
(P) privact loss

Yu 2022 [121] Math. propose new model
(protect privacy)

mixed ### ### (W) Multiple imputation (proposed)
CART (synthpop)
(L) CART (IVEware)

(R) pMSE, (Q) CIO (inter-
vals, number), (Q) coei-
cient variations

Zhu 2022 [124] Comp. Sci. evaluate sensitivity
of model to permuted
data

mixed ### ### (W) GAN (CTAB-GAN)
GAN (AE-GAN) (proposed)
GAN (CTGAN)
VAE (TVAE)
(L) GAN (table-GAN)

(R) Wasserstein distance,
(Q) correlation (number),
(U) ML-accuracy (acc-
dif)

Duan 2023 [32] Comp. Sci. propose federated
learning framework

mixed ### ## (Wp) GAN (HT-Fed-GAN) (proposed)
(L) GAN (DP-FedAvg-GAN)

(R) visual, (U) ML-
accuracy (F1, MAE)
(P) MDR

Li 2023 [76] Comp. Sci. propose new model
(protect privacy)

mixed ### # (Wp) GMM (MC-GEN) (proposed)
BN (PrivBayes)
GMM (NoIFS)
(L) GMM (RonGauss)

(U) ML-accuracy

Smith 2023 [102] Admin. evaluate feasibility of
synthetic data

mixed ### # (W) CART (synthpop)
(L) Multiple imputation

(R) Wasserstein distance,
(Q) mutual information,
(P) Hit. rate

rate by counting the number of times authors rank a model as the best, worst, and most private. In Table 4 the
results are shown. It is seen that across the 26 papers that include ranking aspects, GAN and CART models
were attributed the most success (best in 8/27 and 8/16 cases respectively). It is worth noting that GAN models
were often only compared to other deep-learning approaches, including other GANs. BN models were rarely
a top-ranking framework in terms of utility, however, for privacy, BN were often the recommended model.
Additionally, BN was only ranked as the worst model in 2/17 papers, which is the lowest łfailure ratež across the
table. While GAN, BN, and CART show an indication of being consistently average or above average models, it is
more diicult to make fair recommendations on behalf of the other models based on the fewer occurrences. In
the following parts, we provide a brief summary of GANs, BNs, and CART techniques.
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Table 4. Models’ performances in comparisons. The table provides an overview of the seven most investigated generative
model families in the papers retrieved (Table 3). We show the number of times a model type was evaluated as the best, worst,
and most private in the included papers.

GAN BN CART VAE Copula PDF MI

Total count 27 17 16 9 6 5 4

Best model 8 3 8 1 0 1 1
Worst model 6 2 5 4 2 2 2
Neither 13 12 3 4 4 2 1

Most private 7 9 1 2 1 1 0

Generator

Discriminator

Training data

Noise

Binary prediction
{0, 1}

Fig. 3. Sketch of generative adversarial network structure. In the figure is seen how the generator learns to produce
acceptable samples from noise by observing feedback from the discriminator, which simultaneously trains to classify real and
fake samples. In principle, the boxes need not be neural networks but can be represented by any constellation of learners.

4.1 Generative adversarial networks (GAN)

Generative adversarial network models, as introduced by Goodfellow et al. [46], describe a zero-sum game
between two neural networks; a generator and a discriminator, in which one model’s gain is the other’s loss.
The discriminator, a classiier, trains to distinguish between real data samples and fake samples proposed by the
generator model. The generator, on the other hand, takes noise as input and uses it to produce sample proposals.
By observing the feedback from the discriminator, the generator gradually improves its ability to imitate the real
samples without ever seeing them (see Figure 3).
Numerous adjustments and add-ons exist for this framework, many of which aim to control the training

process, which can be challenging due to issues such as mode collapse, convergence failure, vanishing gradients
and catastrophic forgetting [13, 42, 45]. One of the most widespread modiications is the Wasserstein GAN
(WGAN) model, which replaces the training objective (commonly the binary cross-entropy) with the Wasserstein
loss. Consequently, the objective of the discriminator is changed from labelling samples as either real or fake into
assigning a łcritic scorež of the perceived authenticity. In efect, training is stabilised by more reliable gradients,
and a loss metric that follows convergence and correlates with sample quality [6]. Many of the popular GAN
tools seen in the literature use this approach (e.g. [115, 118]). In cases of classed or highly imbalanced data, one
can use the conditional version of GAN, which adds labels to the generator and discriminator [83]. This allows
specifying which samples we want to be generated, making it especially useful for oversampling of minority
classes [1, 40], and encouraging more stable representations to be learnt [13].

Although GAN-based approaches have been largely replaced for image generation and manipulation in favour
of the more malleable methods such as vision transformers and difusion, they remain very relevant for high-
dimensional tabular data [41, 50, 111, 124], with apt modiications for accommodating mixed and discrete data
[13, 115]. In terms of privacy, diferentially private versions of GAN (e.g. DPGAN [114]) exist, however, their
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privacy guarantee often signiicantly compromises on utility [44, 114]. Regular GAN models, if trained properly,
should have similarly low disclosure risks compared to other methods discussed below [40].

Retrieved papers onGANs: [3, 15, 21, 32, 36, 39, 40, 44, 53, 66, 74, 75, 84, 85, 88, 111, 112, 116, 118, 119, 124].
Notable adaptations: HealthGAN [118], ADS-GAN [120], CTGAN [115], DPGAN [114].

4.2 Bayesian Networks (BN)

Bayesian networks are a class of probabilistic graphical models consisting of interconnected nodes, where each
node represents a feature of the data, and edges deine conditional relationships. Speciically, they are based on
directed acyclic graphs (DAGs) where the direction of conditional relationships is only in one direction (similar
to a decision tree). For sampling, the nodes in BNs can take on speciic values or represent a stochastic decision
based on inputs and learned conditional probability distributions (see Figure 4) [31, 66].

BNs are particularly well-suited for datasets with a limited number of features and high dependencies among
them. However, for larger high-dimensional datasets, optimising the DAG structure using meta-heuristics can be
exceedingly taxing on computational resources. Possible solutions are breaking down the dataset into smaller
chunks and discretising numerical variables [30, 105].
Despite being challenged by the combinatorial explosion with increasing dimensionality of the data, BNs

remain a valid and recommended option in datasets with fewer features, an option worth considering before
turning towards larger machine-learning frameworks [113]. This is because BNs are highly interpretable and can
be ine-tuned using domain knowledge, which makes them particularly useful in ields such as the medical domain,
where they have been employed for a considerable time [72, 113]. Furthermore, BNs have also been proposed
as a solution for preserving privacy, as they are only trained to model conditional probabilities stochastically
[30, 105, 109]. Additionally, BNs can also be made to satisfy provable diferential privacy constraints, while
retaining an acceptable degree of utility [54, 122].
In summary, BNs are a lexible and eicient method for generating synthetic datasets with fewer features,

capturing dependencies in an interpretable fashion, and with a decent option for privacy.

Retrieved papers on BNs: [15, 27, 28, 30, 36, 39, 40, 43, 44, 54, 66, 76, 78, 81, 89, 96, 107, 113].
Notable adaptations: DataSynthesizer [90], PrivBayes [122].

4.3 Classification and regression trees (CART)

In this study, CART models demonstrated the most success among the models included, being ranked the best
model in half of the cases where it was compared to others. Originally proposed for synthetic data generation
in Reiter et al. [98], the method involves creating a chain of simple classiication and regression trees where
each tree feeds into the next, and makes a stochastic prediction of a feature conditioned on the previously found

�0
�0
�1

�0
�0 �1

��1
�2

�0 �1 ��−2

��−1
�2�0

�3

�0 �1 �2

Directed Acyclic Graph Conditional Probability Tables�1 �2�3
�4

�1 �2�3
�4

�1 �2�3
�4

Pr(�1) Pr(�2)
Pr(�3|�1) Pr(�4|�3,�2)optimisation

using meta-heuristic 

training by counting 

Fig. 4. Sketch of Bayesian network structure. The figure illustrates the two parts of Bayesian network training, on the
let is seen a directed acyclic graph optimisation step by some meta-heuristic (e.g. hill climb). On the right, the final Bayesian
network is seen with conditional probability tables defined for each node in the network. Sampling is done stochastically
from the BN’s joint probability distribution.
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variables (see Figure 5). Since the design can be lexible in choosing between classiication and regression trees as
required by the datatypes, this design has shown impressive results for high-dimensional datasets with mixed
datatypes and missing values [8, 16]. It is worth mentioning, that there appears to be some variability in result
quality dependent on the synthesis order of features [38]. However, since individual trees can be relatively
simple, modelling conditional distributions can be done eiciently and at a lower cost than with artiicial neural
networks [20, 108], making order optimisation of the trees a possibility.
Privacy-preserving mechanisms have not been extensively explored for CART models, and outside of the

stochastic nature of the predictions, most privacy is introduced by tree hyperparameters such as pruning of
leaves with few records. However, it has been suggested by El Emam et al. [35, 37] that CART models can have
an acceptably low risk to privacy, which can be further minimised by the addition of data sanitation prior to
training [39].
CART models have several diferent implementations, including parametric and non-parametric versions,

where the latter are generally considered superior [16, 28, 39]. In the literature, the CART functionality of
the R package synthpop [87] is particularly noteworthy and held in high esteem by the generative modelling
community.

…
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Fig. 5. Sketch of classification and regression model structure. The figure shows how the first atribute is sampled from
its prior probability. Subsequent atributes are found by decision/regression tree models, using the already created variables
as possible predictors. Randomness is introduced in the decision- and terminal nodes to alleviate overfiting/disclosure risk.

In summary, CART models have proven to be an efective and eicient choice for synthetic data generation,
especially for small, high-dimensional datasets. With its lexibility and low privacy risk, it is a valuable model for
future research.

Retrieved papers on CART: [8, 14, 16, 20, 27, 28, 36–39, 55, 78, 81, 89, 96, 102, 108, 121].
Notable adaptations: Synthpop [87], IVEware [95], Conditional inference trees [57].

5 RQ2: Methods for evaluating synthetic data

As evidenced by Tables 2 and 3, a multitude of metrics is used to evaluate synthetic data. A key takeaway is that
no evaluation framework seems universally accepted, making it diicult to compare and rank existing synthetic
data generation models across diferent contexts [22, 28, 50, 61]. This is problematic for research, since it spawns
duplicate science, and heightens the barrier of entry for newly proposed generative methods.

Utility and privacy are the two key concepts in the evaluation of synthetic data4. Striking the correct balance is
what allows synthetic data to serve as a beneicial alternative to sensitive real-world data [94]. Without privacy,
sensitive data may be compromised, and without utility, synthetic data may not accurately model the real world.

4Some would argue that eiciency is equally important, but since it relates to the models themselves rather than the data, and is only treated

in a few of the reviewed papers, we will not treat it explicitly. For considerations on GANs, VAE, and more deep learning approaches we refer

the reader to Bond-Taylor et al. [13].
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 Adelie
 Chinstrap
 Gentoo

Training Data Synthetic Data Dimension-wise Means (95% conf. intervals)

Fig. 6. Early utility analysis figures. Let: Scaters of real and synthetic records projected onto the first two principal
components of the real Palmer penguins dataset [56]. Right: shows dimension-wise means of synthetic data compared to
real data; in this case, the white wine dataset [24].

In the following, we will irst review the methods used for quantifying utility, and next dedicate a part to the
discussion of the collected privacy metrics.

5.1 Utility evaluation

The categorisation of utility metrics is a common practice in the ield, with Hernandez et al. [50, 51] dividing them
into utility, resemblance and performance dimensions, and Coutinho et al. [25] grouping them into ‘dimension-
wise probability’, ‘cross-testing’, and ‘distance metrics’. Others, like Hu et al. [59], Guo et al. [47], and Chandra et
al. [20] have simpliied their categorisation into two groups; analysis-speciic and global utility while Dankar et
al. [28] introduce further subdivisions of these, i.e., attribute-, bivariate-, population- and application idelity.
In this study, we ind it natural based on the indings to group utility into three larger categories: Quality,

which assesses how well the statistical relationships are preserved in the synthetic data, Resemblance, which
measures how hard it is to distinguish the synthetic data from real data, and Usability, which evaluates how well
the synthetic data can serve as a substitute for real data in various tasks. In Table 5 all the utility metrics we
identiied are presented and roughly categorised into these three categories. Below, instead of merely promoting
the most widely used metrics, we will highlight some of the more practical metrics from each category, with a
focus on lexibility and popularity.

5.1.1 Early utility analysis. In many branches of generative modelling, especially those using models that are
taxing to train, having good preliminary tools to gauge utility can save time during ine-tuning and training.
Although these metrics may not be prominently featured in academic papers, they serve an important role in
sanity-checking the results. One obvious choice is to compare the dimension-wise means and variances of the
synthetic data with those of the training data, this can even bemade into informative igures [41, 66, 103]. However,
it is always recommended to supplement summary statistics with visual inspections of the synthetic data, if
feasible, by utilising techniques such as histograms, 2D embeddings, and PCA components; summary statistics
can sometimes show a good result for the wrong reasons [4, 80]. Some examples of early utility visualisation
techniques are provided in Figure 6. Ultimately, if synthetic data are not even visually convincing, they are
unlikely to be of much further use.
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Table 5. Table of identified utility metrics. Presentation of the utility metrics found in the review. Not all of them can be
applied to every situation, and some of them may be slightly overlapping. Examples of domain-specific metrics are minor
allele frequency used in genomics [21] and clinical knowledge violation [119].

Quality: preserving statistical relationships

General statistics

Visualisations [14, 16, 20, 30, 32, 84, 88, 92, 106], Coeicient variation [89, 121], Attribute entropy [20].

Pairwise statistics

Correlation matrix diference (matrix: [14, 20, 39, 66, 113], number: [28, 74, 89, 112, 119, 124]), Mutual infor-
mation diference [20, 54, 88, 96, 102], JensenśShannon divergence [54].

Statistical likelihoods

KolmogorovśSmirnov test (test: [20, 66, 89], dist: [15, 113]), Pearson’s independence test [43], �2-test [112],
Negative log-likelihood [49], Equivalence test power [85], Variation distance [44, 107].

Resemblance: distinguishability

Distance metrics

RMSE [3, 53, 75], SRMSE [30], MSE [21], Cosine similarity [111].

Distribution similarity

Conidence interval overlap (number: [15, 37, 62, 108, 121], intervals: [8, 16, 37, 84, 118, 121]), Hellinger-
distance [28, 36, 38, 74], Wasserstein distance [36, 102, 119, 124], Maximum mean discrepancy [36, 74, 112],
KL-divergence [8, 89].

Distinguishability

Propensity MSE score (regular: [14, 15, 27, 28, 37, 38, 55, 66, 112, 121], C2S variant: [36, 74, 84, 85]), Compare
PCA [21, 111, 118], Nearest-neighbour adversarial accuracy [111, 116, 118, 119], experts try to discrimi-
nate [113].

Usability: using synthetic data

ML-accuracy

Prediction accuracy / F1-score [20, 27, 28, 32, 43, 44, 54, 76, 78, 88, 96, 106, 111], AUROC [36, 38, 49, 107, 112,
113, 118, 119], F1-diference [40, 49, 54, 96, 124], Precision & Recall [20, 66, 81, 88], Clustering metric [36, 119],
F2-score [78, 81], MAE [3, 32], Ratio of estimates [108].

analysis specific

Reproduce results of previousworks [8, 37, 75, 108, 113, 116, 118], Domain-speciic utilitymetrics [8, 21, 92, 119],
Feature importance [37, 112, 119], Association rule mining [66], ML it parameters comparison [16], Rare
results analysis [66], XAI rule similarity [74].

5.1.2 uality metrics. Conducting a full-quality analysis requires the assessment of pairwise statistics to de-
termine if the relationships between variables are preserved in the synthetic data. What makes this especially
challenging, is the requirement to accommodate the mixed datatypes of most real-world tabular data.

Correlation matrix. With the issue of heterogeneity in mind, correlation matrices may not seem like an optimal
solution, as Spearman’s � is only deined for numerical variables. Nevertheless, correlation matrices have been
adopted to accommodate mixed datatypes, as is demonstrated in papers [66, 112, 113, 124]. The methods involved
are using diferent łcorrelation-likež measures (Kendall’s � , Goodman and Kruskal’s � , or signiicance testing)
and combining them into a single matrix [60]. On the other hand, if the dataset has only a few nominal attributes,
constructing a correlation matrix from scraps may not be altogether productive. It may be more sensible in this
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Correlation Matrix Difference Mutual Information Matrix Difference
(Palmer Penguins Dataset)(White Wine Quality Dataset)

Fig. 7. Examples of matrix diference heatmaps. LHS: correlation matrix diference of the white wine data [24] with
synthetic data. RHS: mutual information matrix diference of the palmer penguin data [56] minus synthetic version.

case to omit the nominal attributes from this calculation [20]. In any case, calculating the matrix diference like

Corr. dif . = Corr(real) − Corr(synth.), (1)

provides an indication of which pairwise relationships are modelled accurately / poorly (an example is provided
in Figure 7). Alternatively, the Frobenius norm can be utilised to condense the matrix diferences into a single
number [28].

Mutual information matrix diference. A potential alternative metric that addresses the challenge of varying
data types is the pairwise mutual information matrix. Mutual information measures the shared information
between two distributions and, thus, the extent to which the occurrence of one variable helps in predicting the
other variable. In information theory mutual information between two discrete5 random variables � and � can
be computed as follows:

� (�,� ) = ��� (��,� (�,�) | |�� (�) ⊗ �� (�)), (2)

=

︁

�∈�,�∈�
��,� (�,�) log

��,� (�,�)
�� (�)�� (�)

, (3)

where ��� denotes the KL-divergence and ��,� (�,�), �� (�), and �� (�) represent joint and marginal probability
distributions respectively [26]. Therefore, the mutual information is essentially the relative entropy of the two
marginal PMF/PDFs with the joint distribution, (or alternatively, the entropy of the intersection � (� ∩ � ) [20]).
The mutual information score implemented in scikit-learn, which is employed in papers [54, 96], is an

empirical approximation of the above formula. Given two sets of observations� and� , their mutual information
can be calculated6:

�� (� ,� ) =
|� |︁

�=1

|� |︁

�=1

|�� ∩�� |
�

log
� |�� ∩�� |
|�� | |�� |

. (4)

5For numerical variables upgrade sums to integrals.
6The full documentation is available at; https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mutual_info_score.html
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a) b) c)

KS statistic: 0.24
KS p-value : 0.02 

CIO: 0%

CIO: 32%

H-dist : 0.76
KL-div : 0.51
W-dist : 0.06

Fig. 8. Illustrations of empirical distribution metrics. a) Shows empirical cumulative distribution functions of samples
from two random variables. The doted line is at the point of maximum separation, which is the KS statistic. In this case, this
diference is enough to reject the null hypothesis that the samples are from the same distribution. b) Shows histograms of
the same samples on top of each other. Diferent distributional distance measures are calculated. c) 95% confidence intervals
of the two previous random variables (they do not overlap), and a new one that overlaps with both.

where |� | and |� | represent the sizes of � and � , respectively, and � is the total number of observations.
Similarly, to the correlation matrix diference, the pairwise mutual information matrix diference can be shown
as a heatmap (see Figure 7) or reduced to a scalar value using the Frobenius norm. Alternatively, in the papers by
Chandra et al. [20] and Smith et al. [102], they simply declare that no notable diferences in the individual values
were observed.

KolmogorovśSmirnov test. Hypothesis testing is a commonly used technique to assess the statistical alignment
of datasets. The pairwise KolmogorovśSmirnov test (KS-test) is the most popular test used in synthetic data
evaluation and tests whether two one-dimensional distributions are signiicantly diferent. Although multivariate
versions of the KS-test are available [9, 12], the pairwise test is more commonly used to compare the marginal
distributions of attributes (see Figure 8a). P-values can be used as the metric value, or the fraction/number of
signiicant tests can double as a higher level metric [66, 112]. Others prefer to avoid the often inconclusive p-value,
and instead use the test statistic as a distance measure or a goodness-of-it indicator [15, 89, 113]. The marginal
two-sample KS-test statistic is found using:

��,� = sup
�

|�1,� (�) − �2,� (�) |, (5)

where �1,�, �2,� are the empirical cumulative distribution functions. Intuitively the KS statistic is the height of
the largest separation between the eCDFs (see Figure 8). To reject the null hypothesis the statistic must satisfy:

��,� >

︃

− ln
(

�
2

)

·
(

1 + �
�

)

· 1
2� , (6)

where � and � are the sizes of the samples being tested, and � is the signiicance level. To better capture
categoricals, the KS test can be combined with analysis of total variation distance and permutation testing
[29, 44, 73, 107].

5.1.3 Resemblance metrics. Resemblance metrics quantify how easily we can distinguish two distributions.
Obvious measures are distances, distributional overlap, and population overlap metrics. One major challenge is
to reliably measure distances for heterogeneous data without favouring either numerical or categorical values. In
the papers we selected, there was little innovation on this issue, and most authors tended to ignore the issue or
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altered the data to it the metric. Other ways for measuring resemblance were calculating distributional distance
of the marginal distributions, or quantifying overlap between the multivariate distributions in a diferent way,
e.g., by using a discriminative model to see if distinguishing the datasets is possible.

Conidence interval overlap. Measuring the overlap of conidence intervals practically involves comparing the
estimates of means and the 95% conidence intervals, as outlined in Karr et al. [64] (an example is provided in
Figure 8c). This only makes sense for numerical variables, however, making this another metric that is not as
lexible as we would like but still too useful to disregard entirely. The conidence interval for an attribute may be
calculated using:

CIO =

1

2

(

min(�� ,�� ) −max(�� , �� )
�� − ��

+ min(�� ,�� ) −max(�� , �� )
�� − ��

)

, (7)

where� and � denote the upper and lower bound of the conidence interval for the real � and synthetic � data,
respectively. A single number that may be used as a summary metric can be obtained by taking the average across
all variables, while recording how many and which non-overlaps are found may also give valuable insights [108].

Hellinger-distance. In recent studies of utility measures, the univariate similarity or attribute idelity is measured
using the Hellinger distance [28, 36, 74]. The authors of these studies prefer the Hellinger due to its interpretability
being constrained to the unit interval. Hellinger distance is calculated in the following way:

� (�, � ′) = 1
√
2

︄

︁

�

(√
�� −

√
��
)2
, (8)

where �� and �� are the probabilities of every distinct result in � and � ′ variable spaces, respectively. A Hellinger
distance of zero indicates fully overlapping distributions, while a Hellinger distance of one indicates disjoint
distributions. This is unlike other options such as the KullbackśLeibler divergence, which measures relative
entropy, or Wasserstein distance, which quantiies the amount of distribution weight that must be moved and
how far. The Hellinger distance reads out much clearer and averages nicely across multiple attributes. An example
of the three measures is shown in Figure 8b.

Propensity mean square error. The fundamental concept of this metric involves assessing if a classiier can
distinguish real from synthetic samples. This has some similarities to how the discriminator works in a GAN
but is usually done using a simple classiier post-training. The score is calculated using mean square error, as
indicated below:

pMSE =

1

�

︁

�

(�� − 0.5)2, (9)

where �� is the prediction indicator. This metric, which ranges from 0 (best) to 0.25 (worst), is regarded by some
as the most practical and expressive utility measure [28, 93, 103]. However, the use of pMSE as a metric is subject
to some limitations: Namely there is no convention for which classiier to use, though the logistic regression
classiier seems to be the most common [55, 93, 103]. In extreme cases, deicient classiiers or targeted examples
can show artiicially good or bad results (e.g., a lattice of alternating samples cannot be discriminated efectively
by a simple KNN classiier). However, in most typical use scenarios with proper validation, artiicially good
results should be improbable.
Some authors use a similar approach to a discriminatory classiier but do not calculate a propensity score;

instead, they use the base classiier accuracy which is perhaps easier to interpret. This variant is sometimes
referred to as the C2S (classiier two-samples) test [74, 85].
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NNAA: 0.0

pMSE: 0.012 

NNAA: 0.49

pMSE: 0.061 

NNAA: 0.76

pMSE: 0.15 

NNAA: 0.98

pMSE: 0.22 

Fig. 9. Dataset distinguishability metrics examples. The row of images shows two copies of the same dataset being
translated (they are min-max normalised as directed by the paper where NNAA is proposed [118], but we added in a single
outlier point in each set to force the translation) from fully overlapping to mostly disentangled. In this case with uniform
data, the NNAA score closely mirrors the overlapping percentage. The pMSE also behaves mostly as expected, being smallest
when the sets fully overlap and approaching 0.25 for disjoint sets.

Nearest neighbour adversarial accuracy. Another option for assessing the distinguishability of data is using
metrics such as the nearest neighbour adversarial accuracy (NNAA), irst proposed by Yale et al. [117]. This metric
aims to capture how well a highly competent classiier could perceivably diferentiate the data, by summarising
the possible true positive and true negative rates:

NNAA =

1

2

[

1

�

�︁

�

� (��� (�) > ��� (�)) +
1

�

�︁

�

� (��� (�) > ��� (�))
]

, (10)

where � (·) is the unit step function, ��� (�) is the distance from real data point � to its nearest synthetic neighbour,
and ��� (�), ��� (�) are distances (using some measure of distance) to the closest neighbour internally in the real
or synthetic data [111, 118]. Intuitively, NNAA quantiies how much of the parameter space has łareasž in which
either synthetic or real samples are overrepresented (hence summarising the possible true positive and true
negative rates). Examples are shown above in Figure 9. Since the data in the top row is uniform, NNAA resembles
the fraction of points outside of the mixed region. In the original paper, the data is min-max normalised prior to
calculating NNAA.
It is worth noting that there seems to be some confusion over the ideal value of this metric in the original

paper [117] and many of the follow-ups [50, 111, 118, 119]. The original paper considers a value of NNAA = 0.5

as indicative of two indistinguishable datasets, while sometimes writing that NNAA = 0 is good resemblance and
NNAA = 0.5 is poor resemblance. In our experiments (see Figure 9), we ind that a lower value indicates higher
resemblance, but too low shows that the model is overitting. A value of NNAA = 0.5 is however by no means
indicative of indistinguishable datasets as evidenced by the igure.

5.1.4 Usability metrics. In determining if synthetic data suits the purpose for which it was created, most
studies employ empirical validation techniques [41, 96]. These techniques often involve generic classiication
tasks or clustering, with accuracy measures or area under the receiver operating characteristic curve (AUROC)
being used as evaluation metrics, and represents perhaps the most important aspect of the utility evaluation.
Researchers commonly employ a selection of scikit-learn classiiers and generate several synthetic datasets to
average out empirical luctuations. Some studies use hold-out sets for validation (e.g. [40, 81, 119]), while others
prefer �-fold cross-validation on the training set [27, 38, 49], and some use both techniques (e.g. [20, 28, 36]).
Additionally, researchers working within speciic scientiic disciplines often introduce domain-speciic metrics to
assess the quality, resemblance or usability of the synthetic samples for their intended purpose [1, 8, 21, 92, 119].
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Table 6. Table of identified privacy metrics. Overview of the privacy metrics used in the retrieved literature. We found
two major categories; membership disclosure metrics and metrics that quantified overfiting.

Privacy: measuring disclosure risk of private information

Membership disclosure

Hitting rate (normal: [16, 40, 55, 102, 112, 119], sensitive items: [14, 16, 113]), Attribute disclosure risk (ADR)
[37, 66, 112, 116, 119], Membership disclosure risk (MDR) [32, 37, 75, 112, 116, 119].

Overfitting characteristica

Privacy Loss [75, 111, 116, 118, 119], Row-wise square inverse frequency (cloning severity) [14], Distance to
closest record (DCR) [40].

Because domain-speciic metrics are so descriptive of the intended use of the data, we highly recommend using
them wherever appropriate.

In principle, domain- and context-speciic metrics can be considered the most practically relevant utility metrics.
After all, if synthetic data proves useful for downstream tasks, other considerations, aside from privacy, are of
little signiicance. This dilemma likely contributes to the lack of a universally accepted evaluation framework
[51] and supports the division into łanalysis-speciicž and łglobalž utility proposed in previous studies [20, 28].
However, to provide a convincing and transparent presentation of results and to verify the statistical validity of
the data, especially in the case of data augmentation and ampliication to avoid propagating biases [110], it is still
important to employ resemblance and utility metrics alongside use-case relevant metrics.

5.2 Privacy evaluation

While this survey is mainly concerned with utility of synthetic data, several metrics for measuring privacy
were also uncovered in the literature (see Table 6). This selection is likely not representative of the whole ield
of privacy evaluation in synthetic data, as privacy was not included in the search strategy. Still, in this part,
we summarise our indings since the tradeof between utility and privacy is fundamental to the application of
synthetic data [34, 86, 120].
In the papers selected for this study, most put an efort in addressing privacy: only a small proportion of

the retrieved papers has little to no mention of the matter [3, 39, 74, 85, 89, 121, 124] ś which is a shame since,
those papers have some real interesting contents, and a small discussion of privacy implications would have
elevated the work further. An even smaller fraction goes as far as assuming that privacy is a self-evident feature of
synthetic data [21, 81, 96]. While non-overit fully synthetic data has no one-to-one correspondence with real data
and has shown to be resistant to adversarial attacks [35, 88, 123], it is inadvisable to assume this holds without
solid evidence. Being overenthusiastic about the privacy of synthetic data, without evidence, may dissuade data
curators and lawmakers from cooperating with synthetic data researchers. The survey by Murtaza et al. [86], in
contrast, found close to half of their included articles assumed that their models protected privacy without any
evaluation applied.
The most prominent methods used for estimating privacy are attempts to gauge how much information an

adversary could possibly gain from the synthetic dataset by evaluating the risk of membership- or attribute
disclosure through diferent methods. These range from simple hitting rate (or identical match share) and
analysis of outliers and rare results, to more complex predictive models trying to infer membership of individuals
(membership inference attacks) or recover missing attributes (attribute disclosure risk) from looking at the
synthetic data [104, 112]. The second category of privacy metrics we found was concerned with measuring
the degree of overitting. This is often achieved through a łprivacy lossž metric which measures some dataset
characteristics (such as NNAA) between training and synthetic data, and again between test and synthetic data Ð
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if the data conform better with the training data than the test data, the generative model is likely overitted to
the training data [117].

Another common measure in the synthetic data literature is diferential privacy Ð a well-established privacy
enhancing method [33]. Although not an evaluation metric per se, we will still discuss this type of disclosure
control, as many papers use the control parameters in conjunction with quantifying the privacy-utility tradeof.
Essentially, diferential privacy is a mechanism that can be incorporated into generative models to provide
formal privacy guarantees. Given two neighbouring datasets that difer by only one record, �-diferential privacy
guarantees that any outcome distribution of a corresponding �-DP algorithm cannot difer by more than a factor of
exp(�) [15, 33, 94]. In other words, the participation of a single individual in a dataset will have a negligible impact
on any analysis performed on the data [107]. To achieve this, models inject noise into themodel training in diferent
controlledmanners [122], and outlier analysis or cleaningmay be required prior to training [109]. The noise budget
is carefully managed since diferential privacy would otherwise require a prohibitive amount of noise compared to
the signal in data with many attributes [122]. Close to one-third of the selected papers mention diferential privacy
as their main implementation of privacy, namely [15, 40, 43, 44, 49, 53, 54, 62, 66, 76, 92, 106, 107]. At the same
time, only ive emphasise limitations and suggest using empirical privacy evaluation in addition to theoretical
guarantees [32, 36, 75, 92, 116].
While the identiied metrics provide a starting point for privacy evaluation, the treatment here is by no

means complete. Many additional metrics are used outside of the utility-focused papers we reviewed. These
include �-identiiability [120], re-identiication risk [35, 99], and adversarial accuracy using precision, recall,
and F1-scores [66, 88]. In order to provide a comprehensive benchmark of the idelity of synthetic data, reliable
privacy metrics and utility tools are needed to provide a transparent and reproducible analysis. Additionally,
further legislative action is needed in order to guide the ield in a more constructive direction [61, 79].

6 RQ3: Methods for comparing generative models

The inal research question on how generative models can be compared objectively and universally, is answered
in two parts. First, we discuss the approaches considered in the retrieved literature and related works. Second,
since very few of the considered approaches were general or robust enough, we will illustrate how a larger
multifaceted benchmark of diferent models can be conducted through an example.

6.1 Approaches for comparing generative models

Comparing and ranking generative models is a generalisation of comparing and ranking synthetic datasets. In
particular, for one model to be generally recommendable over another, it has to surpass the other in a comparison
or ranking of some measurable performance dimension (e.g., privacy and utility) not only on one dataset but
across a diverse selection of datasets. In the general case, the datasets should have varied characteristics, and for
context-speciic models, they should cover enough examples to demonstrate domain eicacy. Either way, it can
be diicult to be certain of a model’s excellence, but with more (diverse) datasets we can improve our conidence.
Among the retrieved papers in Table 3, are several approaches to comparing synthetic datasets and models.

Many primarily focus on selecting the best dataset for a particular downstream task and, as a result, use only a
limited selection of metrics and/or datasets in their comparisons (e.g., [16, 78, 81]). Others propose new generative
models or attempt to compare the models in general to provide recommendations on which models to use.
However, in many of these cases, too few metrics and datasets are tested (e.g., [3, 76, 121]).
On the other hand, some papers include many metrics and datasets and thoroughly motivate the choice of

metrics (e.g., [28, 36]). One drawback to many of these papers is the tendency to look for models which performed
the best across a lot of diferent datasets with diferent compositions of categorical and numerical datatypes.
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Table 7. Benchmark datasets. Table shows the datasets we use in the experiment part. We divided them into 6 subgroups
to test model capabilities at diferent scales. The number of entries is reduced, compared to the values listed on the dataset
documentation, because we remove entries with missing values. Free text fields and unique keys were removed from the
columns.

scale name #ents. #atts. total #atts. cat. source

small, few atts.

[D1] diabetes 768 9 1 kaggle

[D2] penguins 344 7 3 kaggle

[D3] titanic 712 8 5 kaggle

small, some atts.

[D4] dermatology 358 34 33 UCI

[D5] cervical cancer 668 34 24 UCI

[D6] spect 267 45 1 UCI

small, many atts.

[D7] spectrometer 531 100 1 OpenML

[D8] diabetic mellitus 281 97 92 OpenML

[D9] mice protein 552 81 4 UCI

large, few atts.

[D10] stroke 4909 11 8 kaggle

[D11] spaceship titanic 6923 11 5 kaggle

[D12] white whine quality 4898 12 1 UCI

large, some atts.

[D13] cardiotocography 2126 36 15 OpenML

[D14] steel plates faults 1941 34 10 OpenML

[D15] one hundred plants 1600 65 1 OpenML

large, many atts.

[D16] speed dating 8242 121 62 OpenML

[D17] Taiwanese bankruptcy 6819 96 2 UCI

[D18] yeast-ml8 2417 117 14 OpenML

While this, in principle, allows for identifying generalist models, this also forfeits the opportunity for having
hyper-specialised models, i.e., models that may do better on small datasets or on purely categorical data.
As seen in the previous section, a wide range of metrics are used to check the quality of synthetic data. In

particular, machine learning accuracy, pMSE, and Hellinger distance for utility and matching risk, adversarial
attacks, and distance-based approaches for privacy are used in the papers comparing models and are deemed
descriptive for this task. Some papers also experiment with making aggregate metrics [15, 36, 39, 43, 112, 118, 119],
to make comparisons at a glance easy. However, this also comes with the threat of suppressing important
information [31, 80].

Some evaluation frameworks were also uncovered: DAISYnt framework [112] and synthetic EHR benchmarking
framework [119]. DAISYnt only have a demo on PyPI7 and EHR benchmarking is a hardcoded paper supplement8,
though the main article has some interesting ideas. Another evaluation methodology that we are aware of is
STDG evaluation metrics by Hernandez et al. [51]. Again the ideas are interesting, but the supplied code9 is mainly
a paper supplement. Existing synthetic data evaluation frameworks we are aware of, with practically usable
code, are SynthCity [91], SynthEval [73], SDMetrics [29], and Table Evaluator [17], each with their strengths and
limitations.

6.2 Experiments with a multifaceted model benchmark

Now that we have highlighted models, metrics, and comparison methodologies, we are ready to investigate how
a thorough multifaceted model benchmark might be conducted as objectively and universally as possible. In this

7https://pypi.org/project/daisynt/
8https://github.com/yy6linda/synthetic-ehr-benchmarking
9https://github.com/Vicomtech/STDG-evaluation-metrics
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Table 8. Summary scores of model benchmarks. Shows the combined utility (see Eq. 11) and privacy scores (see Eq. 12)
of three specific implementations of BN, GAN and CART models averaged at the diferent scales of datasets. The propagated
error is reported to two significant figures.

model small, few atts. small, some atts. small, many atts. large, few atts. large, some atts. large, many atts.

u
ti
li
ty

CTGAN (GAN) 0.717(50) 0.625(62) 0.724(40) 0.719(31) 0.606(26) 0.528(62)

DataSynthesizer (BN) 0.864(18) 0.814(23) 0.818(31) 0.774(61) 0.735(96) 0.613(59)

synthpop (CART) 0.917(13) 0.837(30) 0.886(21) 0.8718(47) 0.823(30) 0.743(69)

p
ri
v
ac
y CTGAN (GAN) 0.717(77) 0.7312(53) 0.754(61) 0.703(65) 0.774(45) 0.824(60)

DataSynthesizer (BN) 0.604(46) 0.684(19) 0.72(12) 0.667(72) 0.748(39) 0.865(72)

synthpop (CART) 0.515(70) 0.729(11) 0.605(32) 0.55(11) 0.704(24) 0.6858(27)

example, we compare three freely available models Ð DataSynthesizer [90] (BN), synthpop [87] (CART), and
CTGAN [115] (GAN) Ð since such a comparison may reveal interesting insights about the three most popular
model families. Endres et al. [39] and El Emam et al. [36] previously investigated this combination of model
families, but the former uses only a few datasets, and the latter focuses more on evaluating metrics rather than
the models themselves.

For our benchmark, we select 18 datasets of varying sizes and numbers of attributes, as well as with diferent
compositions of numerical and categorical data (as seen in Table 7). This allows for subcategorisation of the
results, to see if a model performs better in certain regimes. Next, we deine the comparison paradigm, by
selecting 14 metrics among the most descriptive and popular metrics for both utility and privacy. Our goal is not
eiciency, but to make as fair of a scoring as possible. For utility, we pick correlation- and mutual information
matrix diferences, KS statistic and fraction of signiicant tests, CIO, NNAA, pMSE, Hellinger distance, and
the average classiication F1 diference across four diferent types of classiiers on both training and test set.
For privacy, we measure privacy loss as the diference in NNAA value between training and test set, hitting
rate, epsilon identiiability risk, and membership inference risk. All the metrics are implemented in our open-
source evaluation framework, SynthEval10 [73], where we also direct the reader for implementation details. A
Codebook for recreating all results and igures in this section is available in the supplementary repository at
https://github.com/schneiderkamplab/syntheval-model-benchmark-example.
We use the oicial implementations of DataSynthesizer in Python and synthpop in R, and CTGAN through

the SynthCity [91] library11. In all three cases, we run the model implementations with default hyperparameter
settings on a machine with an NVIDIA Tesla V100-PCIE-32Gb GPU and a 2.4GHz AMD EPYC 7501 32-Core
Processor CPU.
We run the full selection of metrics on the synthetic datasets produced by each of the three synthetic data

generators. The detailed results are left in the data ile in the supplement repository, but an overview of high-level
results in the form of summary utility and privacy scores are presented in Table 8. The score is calculated as an
average of the metrics we test; accordingly, we map the diferent metrics to the zero-one interval where zero
is the worst performance and one is the best. The correlation and mutual information matrix diferences were
somewhat of a challenge since they are not bounded from above. To solve this problem we apply the hyperbolic
tangent function. We also considered the logistic function and error function. However, we ultimately chose tanh
since we preferred its behaviour for small values.

10https://github.com/schneiderkamplab/syntheval
11Available from: https://github.com/DataResponsibly/DataSynthesizer, https://synthpop.org.uk, and https://github.com/vanderschaarlab/

synthcity
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Fig. 10. Histograms of experiment results. The results of applying the fourteen metrics described in the text to synthetic
data modelled on 18 benchmark datasets, generated by three diferent generative processes. All metrics save for CIO (e)
should be as close to zero as possible, CIO on the other hand should ideally be close to 1. We note that the synthpop CART
model excessively outperforms the other two on nearly every dataset. Histograms (k-n) show privacy metrics.
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Fig. 11. Privacy-utility trade-of behaviour. a) Scater plot showing all the 54 pairs of utility and privacy scores from
across all the synthetic datasets, coloured by the model used to create it, illustrating the privacy-utility tradeof. Convex hulls
show an indication of diferent behaviour of the models. A grey line in the botom let illustrates where a direct proportional
trade-of would lie. b-e) Minor scater plots showing how the constituent privacy metric results behave when ploted against
their utility ranking. Primitive linear trendlines are ploted to help discern inclination.

UTIL =

1

10
[(1 − tanh corr. dif .) + (1 − tanhMI dif .) + (1 − KS dist.) + (1 − KS sig.frac.) + CIO

+ (1 − H dist.) +
(

1 − pMSE

0.25

)

+ (1 − NNAA) + (1 − train F1 dif .) + (1 − test F1 dif .)] (11)

PRIV =

1

4
[(1 − |priv. loss|) + (1 − hit rate) + (1 − eps. risk) + (1 −memb. inf . risk)] (12)

The overall scores show good performances of all three models in terms of utility across all subdivisions of the
data considered. The CART model places in the top in terms of the overall scores, and also performs the best
across most metrics and datasets when looking at the detailed results in Figure 10. The GANmodel underperforms
on the default settings, underlining the issues with GAN training being inicky, i.e., requiring hyperparameter
tuning and lots of patience. Especially on D6, D7, and D9, datasets with few categorical features, the results
stand out as much worse than those produced by the other models, e.g., see (g) and (i-j) in Figure 10. The BN
model follows close to the CART model on the small datasets and falls more in-between on the larger ones. For
datasets with mainly numerical values like D7 and D15 the BN model fails at reproducing some of the pairwise
relationships faithfully (a-b in 10).

On privacy, the GAN model performs better and quite consistently, the BN model performs best on the large
datasets with many attributes. The CART model sufers on the datasets with few attributes (e.g., D1, D3, D10,
and D11) but seems to do better when more attributes are available. On the individual metrics, (k-n) in Figure
10, the GAN model almost always does better than the other two models. Largely, the tradeof between privacy
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Fig. 12. Time to train vs. the number of atributes. In the figure, each dot indicates the training time of a model being fit
to a dataset of some number of atributes. The circles are the smaller datasets while the crosses are the larger ones. The
trend seems to be that the CART model is by far the most eficient, by several orders of magnitude compared with BN and
the GAN model. Note how the BN model seems to scale poorer at higher dimensions than the GAN.

and utility is as expected; with increasing utility Ð privacy is negatively impacted. In Figure 11 we show all the
privacy and utility scores collected in the benchmark plotted against one another. According to this empirical
presentation, no datasets are placed below a direct proportionality line, and the population bulge toward the
upper right. This is perhaps one of the most uplifting observations of this comparison since it suggests that up to
a point an increase in privacy results in a negligible decrease in utility. In addition, diferent generative models
may have diferent tradeofs as suggested by primitive trendlines and convex hulls on Figure 11a. The synthpop
(CART) generative model, for example, has lower variation in terms of utility than in privacy score (convex
hull is an elongated shape in the lower right). On the other hand, CTGAN produces datasets that are closer in
privacy than in utility. DataSynthesizer (BN) achieve a more balanced collection of results. The individual metric
results in Figure 11 (b-e) also indicate a diference in model behaviours. Privacy loss (b)12 indicates a tendency
for overitting in datasets with higher utility. Hitting rate and epsilon identiiability both check for synthetic
data points that are too close to real records. Compared with Figure 10, it seems that larger datasets with more
attributes are safer, still, these metrics generally worsen with growing utility. Finally, membership inference risk
reveals that even in large datasets it is possible to determine if a record was used for training if we use machine
learning rather than distance considerations.
In terms of eiciency, we mainly look at how the number of attributes inluences the training time (see

Figure 12). Here, the trends seem to be the same; itting the GAN model on low-dimensional data is consistently
ineicient compared with the other models, the BN model does well on low-dimensional data, but eiciency
drops faster than that of the GAN as we add more attributes to it. Finally, the CART model trains fastest on
every dataset by several orders of magnitude. However, considering the limitations of such experiments [71],
knowing how the models behave outside of the chosen range is diicult, but extrapolating the trends beyond
120 attributes indicates that all models scale at least exponentially, if not superexponentially, with the BN model
being the worst on many attributes.

6.3 Analysis of the connectedness of the metrics

After the initial experiment, the data we gathered allowed us to run some basic data mining operations to assess
the evaluation metrics we included. In Figure 13, the correlations obtained for the metrics across the 54 table

12Seemingly Yale et al. [116] do not suggest taking the absolute value, so privacy loss can also be negative if the NNAA on test samples is

smaller than the NNAA of the training set.
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Fig. 13. Matrix of metrics correlations. The heatmap shows the correlations between the values produced by the metrics
across the full experiment. The tree hierarchy shows which metrics are most similar. The metrics have been normalised in
such a way that a higher value is good. Shorthands: Corr ś Correlation Matrix Diference, MInf ś Mutual Information Matrix
Diference, KS ś Kolmogorov Smirnov, CIO ś Confidence Interval Overlap, NNAA ś Nearest Neighbour Adversarial Accuracy,
pMSE ś propensity Mean Squared Error, H ś Hellinger, PrivL ś Privacy Loss (NNAA dif.), HR ś Hiting Rate, EpsR ś Epsilon
Identification Risk, MIR ś Membership Inference Risk.

rows of the full data are shown, with hierarchical clustering to indicate similarity. While many of the results are
more or less expected, there are some interesting observations in there.
Probably the most noteworthy observation is that the test and train F1-diference are the two most closely

associated metrics we tried, i.e., having both does not necessarily reveal much new information. Thus, saving
data for testing may not be merited to the degree often portrayed in the literature, which can be a crucial
observation for those projects where data are scarce. Similarly, the fraction of signiicant KS-test in the data
has very similar correlations to the average KS distance Ð though the former seems slightly stronger correlated
with metrics outside of its own local neighbourhood. The next addition to the group is the conidence interval
overlap (note that the scales have been normalised to make them read the same way, i.e., a higher value is better).
The relationship between CIO and the KS statistic seems obvious: the further apart the conidence intervals, the
bigger the gap between the empirical cumulative distribution functions. Propensity MSE and NNAA are added
next, which is perhaps more diicult to explain. However, both measure populations overlap in some sense. If the
real and the synthetic datasets occupy diferent regions of the joint data space, both metrics give of bad values
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(no real records for nearest neighbours or easily detectable diferences from the pMSE model). The same dataset
behaviours would in turn admit a big diference in cumulative distribution functions which is likely why they
attach to the KS and CIO grouping.

In a neighbouring group, we ind the correlation and mutual information matrix diference coeicients. They
are not too closely associated, yet they are each other’s closest neighbours, and we can see that they share
many similar correlation relationships. Of the two, correlation diference stands out the most, with many weak
correlations, indicating that we learn slightly more by including it than by the mutual information diference
metric.
In the leftmost grouping, we have the privacy metrics together with the Hellinger distance. This grouping

consists of the metrics that were furthest away from the main group and each other, in particular, Hellinger
distance may be the most unique utility metric, indicating that it is quite a valuable addition to the benchmark,
i.e., the knowledge it contributes is not available from other sources (this result is also seen in Dankar et al. [28]).
The privacy metrics, as we have already established above, connect oppositely to good utility values, so it is no
surprise that they would have a signiicant number of negative correlations and that they would group together.
Epsilon identiiability couples the strongest to the utility metrics, in particular NNAA which is also based on
nearest neighbour comparisons.

Using a correlation map such as Figure 13 can help make eicient selections of metrics that complement and
support each other. In the future, we hope to continue gathering data on metrics and models so the clustering of
metrics can become more precise and insightful.

7 Discussion

In this systematic review, we analysed the recent advances in synthetic data generation techniques and their
corresponding utility evaluation. The review showed that many diferent approaches are still worth considering
in the generation of high-idelity synthetic data and that new ideas are challenging to promote in the absence
of a universal evaluation framework. Our indings should provide researchers new to the ield an indication of
noteworthy directions in generation approaches while informing newcomers and veterans alike about evaluation
tools that may prove useful for their research. This paper set out to answer three key research questions in a
reproducible manner. Above, we explained our process to do so. In the following, we discuss our indings for
each of the three research questions.

7.1 RQ1: What are the most reliable solutions to generating high-fidelity fully synthetic tabular data?

In the review of the 47 diferent papers, we identiied a total of 13 diferent larger model families. Generative
Adversarial Networks, Bayesian Networks, and Classiication And Regression Trees were found to be the most
successful and well-documented methods for generating synthetic tabular data. Contrary to previous indings that
have been rather GAN-centric, CART methods and BNs were found to be on par with GANs, even outperforming
them in many cases. In general, our indings suggest that CART models should ofer a strong start for most tasks,
being both eicient and able to handle heterogeneous data. BN models also seem like a decent choice with an
aptitude for acceptable utility-privacy balance, however, eiciency decreases with an increase in dimensionality.
For large high-dimensional datasets, GANs may yet be a strong suit, knowing that they require lots of computation
and ine-tuning to contend, but with the added beneit of more control on the privacy side. Our recommendation
based on our review indings is presented in Table 9. The table was created by examining the results in Table 3
and comparing the data scales to the winning models. However, most authors aim to ind models that perform
well across multiple dataset scales instead of identifying which models work better at individual scales. Below,
we discuss our empirical indings (from Section 6) where we conducted a non-exhaustive benchmark speciically
for each of these scales.
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Table 9. Most likely efective models overview. The table is based on the generalised dataset sizes, seen in Table 3, and is
also in agreement with our non-exhaustive experiment of Section 6.

#atts. few some many

small dataset BN BN / CART CART
large dataset BN / CART CART CART / GAN

Apart from the scales where the models perform well, other noteworthy observations can be made regarding
the models. One beneit of BN and CART models is their transparency compared to deep learning approaches
like GANs. While interpretability decreases with the increase of attributes, it is still possible to follow the process,
such as how certain attributes are decided based on priors, or how conditional probabilities look for diferent
classes [66, 72, 113]. Additionally, CART models are versatile in accepting various datatypes, inherently enabling
switching between classiication and regression tree models for categorical and numerical data respectively. In
contrast, BNs and GANs need some tweaking to adjust them to diferent datatypes, potentially compromising the
utility of the data unless the model is speciically adapted for the particular dataset. Moreover, BNs and GANs
show to be less eicient than basic CART models, at the scales we investigate.
Another signiicant aspect in contrasting generative models is how well they preserve privacy. GAN models

are the most lexible model on this part with numerous possible alterations that allow improved privacy control
such as ADS-GAN [120] which changes the cost function to include a privacy term or DPGAN [114] which adds
diferential privacy constraints. Bayesian networks can also be made to satisfy diferential privacy (e.g. [122]) but
the concept seems less explored for CART models. Some papers suggest that BN and CART models are naturally
more private [30, 37, 105], but it is uncertain whether this is a suicient assurance for the sharing of sensitive
data.

7.2 RQ2: What methods are used in the evaluation of synthetic data utility?

The most striking inding of the literature review is the wealth of diferent evaluation metrics that are used in
evaluating the utility of synthetic data. This is in and of itself not a new discovery [41, 50, 82], but an important
one nonetheless. Why no universal metrics are used remains an open question, and several factors may contribute
to this, including a lack of agreement on the best evaluation methods, challenges in accommodating mixed data
types, the need for metrics speciic to particular applications, and the tendency in research to publish new and
novel approaches. In particular, pressure to publish results that surpass or tie the state-of-the-art may drive
authors to focus on developing new metrics that highlight the strengths of their proposed model rather than
using established metrics that may be more appropriate.
This lack of direction is muddling the waters of this active research ield. While we should never shy away

from a diversity of metrics, researchers should at least agree on a selection of metrics (and how to use them) that
should be present throughout the literature, so that indings are somewhat comparable across diferent studies13

[36, 79]. A recognised tool or benchmark would better enable new model architectures to demonstrate their
competitiveness on an equal footing and, thereby, increase their trustworthiness and adoption rate. We should be
careful with summary scores which may show a skewed representation of utility (or privacy), and may result in
loss of important information [31, 80]. Inspecting granular results can help alleviate this issue, and work like
Dankar et al. [28] and the analysis of the correlation matrix presented above (Figure 13) provide some foundation,
with beginnings of indications of redundant metrics, as well as metrics that provide most unique information.

13Similar to how the Fréchet inception distance (FID) [52] is widely used within image synthesis [65].
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Another aspect that can improve transparency and trust, but which was remarkably absent in most of the
retrieved literature, was having baselines/controls to compare with. Arguably, some papers used other generative
models as their baselines (e.g., [66, 107, 111]), but this becomes a circular argument in favour of using synthetic
data, overlooking how other data augmentation and/or anonymisation techniques perform on the same task.
Since specialised uses of generating synthetic data may be unsuitable for employing general benchmarks, using
proper baselines become even more important. Some works that did use baselines which can be reviewed for
inspiration are [39, 89, 118].

All evaluation of synthetic data should aim to include general evaluation metrics that are widely used, as well
as domain-speciic metrics recognised within the particular area of research in order to maximise trust. Novel or
obscure metrics should be avoided or only used with careful consideration and proper justiication. Additionally,
validation should include basic privacy metrics, regardless of provable privacy guarantees of the generative model
such as diferential privacy. This will help convey transparency and provide values to compare with, improving
credibility and reproducibility. Our evaluation framework, SynthEval14, integrates many of the metrics discussed
above, making them easy to apply in evaluating synthetic data.

7.3 RQ3: How can generative models be compared in an objective and universal manner?

Of the papers retrieved in this survey, more than half attempted to compare synthetic datasets or the models that
generate them in some way. Many attempted to show that a proposed model could outperform the state-of-the-art,
at some task, and some tested existing models to identify the most efective generation method. In the former
case, objectivity and universality may remain unconsidered, few metrics and datasets may be used, and positive
results may be optimistically extended without proper analysis of the degree to which results are generalisable. In
the latter case, papers are more objective, and some propose quite solid methodologies including many datasets
and metrics. Building on these previous works, we show how a model benchmark study can be conducted using
the identiied metrics from above, for a total of 14 points of comparisons across 18 datasets. We subdivide the
results based on the size and number of attributes of the analysed datasets, which reveal granular results that are
overlooked in previous research. Notably, this treatment is non-exhaustive, and future works could look into
mixture-fractions of numerical and categorical attributes or, for example, investigate eicacy on domains such as
bioinformatics or inance data.

Since comparing all the synthetic data generation methods uncovered in this review quantitatively is beyond the
scope of this publication, we selected one representative for each of the three most promising model architecture
families: GAN, CART, and BN. The most exciting inding of this experiment was that the Synthpop CART model
[87], used by the majority of the CART papers, is highly eicient and performs well on utility even without
ine-tuning. We also found that the DataSynthesizer BN model, used in slightly less than half of the BN papers,
worked impressively, although its eiciency dropped the fastest with increasing problem size. Finally, the GAN
model that we used, CTGAN, also showed good results for utility albeit the worst of the three. Fine-tuning of
the hyper-parameters for each dataset is likely to increase performance, however, in our experiments, we kept
to the default settings. On privacy the rankings were inverted, the CART model did worse, especially on the
datasets with few attributes, the BN, on the other hand, performed well on datasets with many attributes, and the
GAN model did the best overall. By illustrating the utility-privacy tradeof in Figure 11, we observe that a decent
balance of utility and privacy could be realistically achievable.

7.4 Limitations

While we believe to have provided a solid foundation for new researchers, through the narrative of this systematic
review, we have to acknowledge certain limitations. In particular, our focus on the major model architectures

14Available at: https://github.com/schneiderkamplab/syntheval
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excluded more recent works from the discussion (e.g., difusion and graph neural networks [70, 77]). Novelty is
important, but this work has illustrated a problem with evaluation that makes appraising recent works diicult.
Additionally, this survey focused only on tabular data, and not other modalities often contained in patient, citizen,
or customer records. During this survey, we did not ind any works considering multimodal generation with
tabular data, and models and metrics for time series, image, and text data, would be suiciently diferent to
warrant separate treatment. Moreover, our literature selection process was focused on the utility of synthetic
data, which likely provided a skewed perspective on privacy-preserving technologies.

Additionally, considering that the methodology employed in our example model benchmark can be foundational
for future work, it is worth pointing out some limitations that need to be addressed in future iterations. First, one
might argue, that a comparison should be based on ine-tuned models that achieve their best possible performance
on each dataset. This might have provided a more optimistic assessment of the model performances. Parameter
optimisation would result in considerably more complex experiments that would have been less controlled and
reproducible as they would have heavily depended on the ine-tuning choices made by the authors. That is,
objective criteria for ine-tuning might not be available in all cases and, more importantly, this would obfuscate
the major focus on the evaluation measures. Second, more datasets could lead to more insightful results in the
dataset-size/scale discussion, and it would have been interesting to include more metrics although this would
also easily render the discussion too long and complex. Finally, the scores produced by the metrics should also be
viewed with a certain scepticism, and not taken as a deinitive assessment outside of context. In particular, they
are biased by the metrics chosen and the implementation, e.g., including both test and train F1 diferences likely
inlates the average even for a mediocre result. Many metrics are correlated, as evidenced in Figure 13, and future
benchmarks could choose a more compressed set of metrics, with a smaller descriptive overlap.

8 Conclusion

Generating analytically valid substitutes for sensitive datasets is a crucial step towards preserving privacy and
conidentiality while still enabling research, analysis, and model development in a multitude of domains. This
anticipated beneit is the main motivation for the recent explosion in synthetic data research. Enhancing the
accessibility of data can enable a wider range of organizations and researchers to access and beneit from data-
driven insights, ultimately leading to better decision-making and improved outcomes. Therefore, ensuring that
synthetic data conforms to privacy constraints while it also simultaneously models the real data accurately is of
paramount importance.

The primary objective of this systematic review was to explore the currently used generative modelling tools
and evaluation methods used to create high-idelity fully synthetic tabular data. Many methods for generating
synthetic data have been proposed. We found that BNs and CART models that were previously dismissed as
obsolete remain very relevant alongside deep learning models such as GANs. Many other models were also
considered, but it is these three that have the largest presence in the reviewed literature.
Validation of synthetic data is probably the most important open problem in the ield. Too many tools and

metrics are used haphazardly across the literature; researchers are hesitant to unify behind a framework or
benchmark. In the review, we identiied relevant metrics, some of which seem more lexible and less contentious
than others, and compiled them into a Python library for anyone interested to use. The solution to the evaluation
crisis is likely more nuanced, but our proposal should provide a sturdier onset for making the next generation of
synthetic data evaluation tools.

If nothing else, we hope to have provided the reader with a starting point for delving into the important ield
of synthetic data generation. While we have put a great emphasis on the lack of standardisation of validation
apparent in the literature, we also believe this to be the most important open question, blocking the way for novel
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generative model designs to gain traction. If this challenge can be overcome, it will be an important milestone for
synthetic data.
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