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Abstract: In this study, the value of proxy data was explored for calibrating a conceptual hydrologic model for small 
ungauged basins, i.e. ungauged in terms of runoff. The study site was a 66 ha Austrian experimental catchment 
dominated by agricultural land use, the Hydrological Open Air Laboratory (HOAL). The three modules of a conceptual, 
lumped hydrologic model (snow, soil moisture accounting and runoff generation) were calibrated step-by-step using only 
proxy data, and no runoff observations. Using this stepwise approach, the relative runoff volume errors in the calibration 
and first and second validation periods were –0.04, 0.19 and 0.17, and the monthly Pearson correlation coefficients were 
0.88, 0.71 and 0.64, respectively. By using proxy data, the simulation of state variables improved compared to model 
calibration in one step using only runoff data. Using snow and soil moisture information for model calibration, the runoff 
model performance was comparable to the scenario when the model was calibrated using only runoff data. While the 
runoff simulation performance using only proxy data did not considerably improve compared to a scenario when the 
model was calibrated on runoff data, the more accurately simulated state variables imply that the process consistency 
improved. 
 
Keywords: Hydrologic model; Model calibration; Ungauged basins; Experimental catchment. 
 

INTRODUCTION 
 
Runoff is a reflection of the aggregated hydrologic catch-

ment behavior. Therefore, in most cases, runoff observations 
are used for calibrating hydrologic models. However, in many 
catchments runoff observations are not available (Blöschl et al., 
2013) and therefore, other measurements on the hydrological 
processes, i.e. proxy data, are used to calibrate the model. 

There are only a few studies that used only proxy data for 
parameter estimation in ungauged basins (Parajka et al., 2013). 
These studies were mainly focusing on physically based hydro-
logic models, where model simulations can be explicitly linked 
to field measurements. For instance, Thyer et al. (2004) evalu-
ated the performance of the distributed hydrology soil vegeta-
tion model (DHSVM) using field data. Their study site was a 
high elevated and forested catchment, where they found that the 
simulated runoff was most influenced by snowmelt characteris-
tics (Thyer et al., 2004). While Thyer et al. (2004) focused on 
the micro-meteorological part of the model, in a follow-up 
study, Kuras et al. (2011) completed this evaluation by testing 
the subsurface and surface runoff dynamics. Both studies 
achieved a daily Nash Sutcliffe efficiency for runoff of above 
0.75. Kuppel et al. (2018) performed a similar study in the 
Scottish Highlands with a distributed process-based eco-
hydrological model. They found that the model performance 
was better, when runoff was also used for calibration and they 
also noted that certain state variables can be only well simulat-
ed when the model was calibrated for them. 

If in-situ measurements are unavailable, an alternative could 
be to use remote sensing products for model calibration (López 
et al., 2017; Nijzink et al., 2018; Silvestro et al., 2015). Nijzink 

et al. (2018) tested nine remotely sensed products and found 
that without using runoff data, remotely sensed soil moisture 
products and the GRACE total water storage anomalies con-
strained the most the model parameters. López et al. (2017) 
found that remotely sensed evapotranspiration and remotely 
sensed soil moisture should be used together, and not inde-
pendently, to predict runoff. Generally, due to the coarse spatio-
temporal resolution of these products, they cannot be used for 
small catchments. For small catchments, in-situ observations 
are necessary. 

With or without runoff data an efficient way of model cali-
bration is stepwise parameter estimation which reduces the 
dimensionality of the problem. With runoff data, model param-
eters can be grouped according to which runoff signatures they 
influence (e.g. Fenicia et al., 2007; Gelleszun et al., 2017; 
Hogue et al., 2000), or on which time scales the model parame-
ters are sensitive (e.g. Lu and Li, 2015). Some of the studies 
also used proxy data to perform a step-by-step model calibra-
tion (e.g. Avanzi et al., 2020; Hay et al., 2006; Kuras et al., 
2011; Ning et al., 2015), which is very useful in order to under-
stand possible mismatches between model simulations and 
measurements (Rogger et al., 2012). In a recent study, Széles et 
al. (2020) proposed a stepwise model calibration approach, 
where they aimed to calibrate a conceptual hydrologic model 
according to the simulated processes, such as snow accumula-
tion and snowmelt, soil moisture and evapotranspiration, and 
runoff generation. They linked the simulated processes with a 
variety of in-situ field observations. These proxy data and run-
off data were together used in their study to estimate the pa-
rameters of their conceptual hydrologic model. However, it was 
not yet clear whether this method could be potentially used in 
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ungauged catchments, to predict runoff without using runoff 
observations.  

The objective of this study was to test whether the stepwise 
model calibration approach proposed by Széles et al. (2020) 
could be used for predicting runoff without using runoff obser-
vations. Without incorporating runoff in the objective func-
tions, we aimed to test how well we can predict runoff and 
various state variables of the model on the annual and seasonal 
time scales. The analysis was performed in the 66 ha Austrian 
Hydrological Open Air Laboratory (HOAL), where long-term 
field observations are available (Blöschl et al., 2016). 

 
STUDY AREA AND DATA 
Study area 

 
The study site was a 66 ha experimental catchment, the Hy-

drological Open Air Laboratory (HOAL) in Petzenkirchen, 
Lower Austria (Figure 1) (Blöschl et al., 2016). The elevation 
of the catchment ranges between 257 and 323 m above sea 
level. The stream is approximately 620 m long (Eder et al., 
2010, 2014; Széles et al., 2018). The climate is humid. Mean 
annual (1991–2017) air temperature, precipitation and runoff 
are 9.6°C, 782 mm/yr and 184 mm/yr, respectively. Air tem-
perature and rainfall amount have a maxima in the summer. 
Mean monthly runoff tends to peak in winter or early spring. 
The geology of the catchment consists of Tertiary fine sedi-
ments and fractured siltstone of the Molasse zone. The domi-
nant soil types are Cambisols (57%), Kolluvisol (16%) and 
Planosols (21%) with moderate to low permeability. Gleysols 
(6%) occur close to the stream (Blöschl et al., 2016). The 
catchment is dominated by agricultural land use (87% of the 
catchment area), the rest of the catchment is forested, paved or 
used as pasture. 
 
Data 
 

In this study, we used the same data presented by Széles et 
al. (2020). The measurements included precipitation amount,  
 

precipitation type, runoff observations and time lapse 
photographs with one-minute temporal resolution. Air 
temperature has been measured at 7, 14, 19h until October 
2012, since then it has been measured with half hourly time 
step. The potential evapotranspiration ETP was calculated with 
the modified Blaney-Criddle method (Parajka et al., 2003; 
Schrödter, 1985). Snow depth, soil moisture and actual 
evapotranspiration have been monitored with half hourly 
temporal resolution. Groundwater levels have been measured 
every five minutes. Details on the instruments, their location 
and spatio-temporal resolution are given in Blöschl et al. (2016) 
and Széles et al. (2020). 

Three time periods were selected for the analysis, a 22-year-
long period when only runoff measurements (1991–2012), and 
a 3-year-long (2013–2015) and a 2-year-long (2016–2017) 
period when runoff measurements and additional sources of 
data were available. The 3-year-long period was used for model 
calibration (Calib), the 22-year-long (Val1) and 2-year-long 
(Val2) periods for model validation. One year proceeding each 
period was used as warm-up period. Snow accumulation was 
simulated with half hourly temporal resolution, while other 
processes were simulated with daily time step. 
 
METHODOLOGY 
Hydrologic model 

 
In this study we used a conceptual hydrologic model, the 

TUWmodel (Parajka et al., 2007), which follows the structure 
of the HBV model (Bergström, 1976; Bergström and 
Lindström, 2015; Lindström et al., 1997). The model has three 
modules (snow, soil moisture accounting and runoff generation) 
and 14 free parameters (Merz and Blöschl, 2004; Parajka et al., 
2007; Széles et al., 2020). The free parameters according to the 
three modules and their calibration ranges are shown in Table 
1. The ranges were specified based on literature values (Merz et 
al., 2011; Viglione et al., 2013), except for field capacity FC, 
which was constrained according to a soil survey (Murer et al., 
2004). 

 

 
 

Fig. 1. Study area: Hydrological Open Air Laboratory (HOAL) in Petzenkirchen, Lower Austria and location of weather station (automatic 
weather station, present weather sensor for precipitation phase measurements, snow sensor, digital camera, one eddy covariance system), 
precipitation gauges, soil moisture sensors, groundwater level measurements by piezometers, and catchment outlet (source of basemap: Esri 
et al., 2020). 
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Table 1. 14 free parameters of the hydrologic model according to the three modules and their calibration range. 
 

Module Parameter (unit) Parameter name 
Calibration 
range: 
min÷max 

Snow 

SCF (–) Snow correction factor 0.9÷1.5 
DDF (mm/°C/d) Degree day factor 0.0÷5.0 
Twb (°C) Wet bulb temperature, i.e. threshold temperature below which precipitation is snow –3.0÷1.0 
Tm (°C) Threshold temperature above which melt starts –2.0÷2.0 

Soil  
moisture  
accounting 

LPrat (–) Limit for potential evapotranspiration 0.0÷1.0 
FC (mm) Field capacity 0.0÷450.0 
β (–) Non-linear parameter for runoff production 0.0÷20.0 

Runoff  
generation 

k0 (d) Storage time for very fast response  0.0÷2.0 
k1 (d) Storage time for fast response  2.0÷30.0 
k2 (d) Storage time for slow response  30.0÷250.0 
LSUZ (mm) Threshold storage state for very fast runoff 1.0÷100.0 
cP (mm/d) Constant percolation rate 0.0÷8.0 
BMAX (d) Maximum base at low flows 0.0÷30.0 
cR (d2/mm) Free scaling parameter 0.0÷50.0 

 
 
 
 

 
In this study, we followed the stepwise calibration approach 

from Széles et al. (2020) but without using runoff in the optimi-
zation steps. The results were compared to a scenario, when the 
model was calibrated in one step, using only runoff data. 
 
Model calibration without runoff data 

 
The three modules of the model were calibrated step-by-

step. The separate steps focused on the rainfall-runoff pro-
cesses, which were calibrated using field measurements. In this 
way, the free parameters were step-by-step fixed, according to 
the modules of the model. The scenarios are listed in Table 2 
and the calibrated model parameters for each scenario are 
shown in Table 3. 
 
Calibration of snow module 

 
First, all the model parameters were calibrated and the tem-

perature threshold parameter (wet bulb temperature Twb) was 
fixed (Scenario Sim-Snowacc, Table 2) by fitting the modelled 
phase of the precipitation to the observed one. The precipitation 
phase was measured by a present weather sensor at the weather 
station (Figure 1). The number of half hours with false precipi-
tation phase simulations was minimized using the DEoptim R 
package for parameter optimization (Ardia et al., 2010a, 2010b, 
2016; Mullen et al., 2011). The wet bulb temperature parameter 
was fixed. 

In the next step, the remaining three snowmelt parameters 
(scenario Sim-Snowmelt, Table 2) were fixed. A daily snow 
cover index was created (showing 1 if there was snow in the 
catchment, otherwise 0) using 3 types of measurements. First, 
time lapse photos were checked to decide if there was snow in 
the catchment. If these were unavailable, daily MODIS Norma-
lized Difference Snow Index images were analyzed (Hall and 
Riggs, 2016a, 2016b). Finally, if the MODIS images were also 
unavailable, the snow sensor measurements were examined. 
The modelled snow cover index was chosen to be 1, if the snow 
water equivalent exceeded 2 mm. The modelled snow cover 
index was fitted to the observed one by minimizing the number 
of days with false snow cover index simulations and using the 
DEoptim R package for parameter optimization. Out of the 13 

calibrated parameters, the three snowmelt parameters were fixed. 
 
Calibration of the soil moisture accounting module 

 
In scenarios Sim-ET+SM (Table 2), the soil moisture ac-

counting module parameters were fixed. For soil moisture, in-
situ soil moisture measurements were used (Figure 1). In order 
to describe the temporal dynamics of soil moisture in the 
catchment, measurements of all stations over all depths (0.05, 
0.10, 0.20 and 0.50 m depths) were averaged. To compare 
measured and modelled soil moisture, which might be represen-
tative for different depths, we compared standardized soil mois-
ture values according to Equation (1) 

 

SM

SM SMSMs
σ

−=      (1) 

 
where SMs (–) is the simulated standardized soil moisture, SM 

(mm) is the simulated soil moisture,  (mm) and σSM (mm) 
are the average and the standard deviation of the simulated soil 
moisture. Observed soil moisture was standardized in a similar 
way to Equation (1). For actual evapotranspiration, average 
evapotranspiration was calculated over the catchment based on 
measurements of three eddy covariance stations. According to 
the land use types, an area weighted evapotranspiration was 
calculated using the measurements of an eddy covariance sys-
tem at the weather station (representing grass evapotranspira-
tion) and two mobile systems (representing different crop 
evapotranspiration). To estimate the evapotranspiration from 
the riparian forest next to the stream, crop coefficients were 
introduced. A multi-objective function Z1 (–) according to 
Equation (2) was maximized by optimizing the remaining 10 
model parameters with the help of the DEoptim R package. Z1 
consisted of the daily Nash Sutcliffe efficiency for standardized 
soil moisture ZSM and evapotranspiration ZET with different 
weights 
 

SM SM ET ETZ1 w Z w Z= +     (2) 
 
where wSM (–) is the weight on the soil moisture objective,  
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between 0 and 1. The weight on the evapotranspiration 
objective wET (–) is the difference between 1 and wSM. This 
optimization step was repeated ten times for each wSM weight to 
check the stability of the optimized model parameters. The 
results were examined on two time scales, annual and seasonal. 
On the annual time scale, the volumes of observed and 
simulated actual evapotranspiration were compared and the 
relative volume error VEET (–) was calculated (Criss and 
Winston, 2008). On the seasonal time scale, monthly average 
simulated daily actual evapotranspiration and standardized soil 
moisture were compared and the monthly Pearson correlation 
coefficient for evapotranspiration rET,m (–) and standardized soil 
moisture rSMs,m (–) were calculated. Three main scenarios were 
chosen and the soil moisture accounting module parameters 
were fixed according to these. In these scenarios wSM was 
chosen to be 0, 0.8 (where the relative volume error for ET was 
the smallest during the second validation period), and 1.0 
(scenarios Sim-ET, Sim-ET20-SM80, and Sim-SM, 
respectively, Table 2). 
 
Calibration of the runoff generation module 

 
In order to optimize the very fast runoff q0 simulations, we 

identified saturation excess runoff events according to Silasari 
et al. (2017). The days with very fast runoff simulations were 
calibrated to the days when saturation excess runoff events 
were observed. Storage change in the lower zone dSLZ 
(mm/month) was calibrated using piezometer measurements 
(Figure 1). Based on the observed groundwater levels monthly 
storage change values dSo (mm/month) were calculated for each 
piezometer. A catchment average storage change was calcula-
ted from spatially interpolated storage change values. The sto-
rage change values were standardized, and the simulated mon-
thly average standardized storage change dSs (–) was fitted to 
the observed one dSso (–). A multi-objective function Z2 (–) 
according to Equation (3) was maximized for calibrating the  
 

remaining 7 model parameters with the help of the DEoptim R 
package. Z2 consisted of the relative number of days with 
correctly modelled very fast runoff ZOF (–) and the relative 
number of months with correctly modelled sign of the standar-
dized storage change ZdS (–) with different weights 
 

OF OF dS dSZ 2 w Z w Z= +     (3) 
 
where wOF (–) is the weight on the overland flow OF objective, 
ranging between 0 and 1. The weight on the storage change 
objective wdS (–) is the difference between 1 and wOF. This 
optimization step was repeated 10 times for each wOF weight to 
check the stability of the optimized model parameters. The 
modelling results were evaluated on a daily time scale for over-
land flow, by analyzing ZOF as a function of wOF. The modelling 
results for storage change simulations were assessed on the 
monthly time scale, by analyzing ZdSs as a function of wOF. For 
the selected scenarios (scenarios Sim-ET+G, Sim-SM+G, Sim-
ET20+SM80+G, Table 2), wOF was chosen to be 0.5. 

The modelling efficiency in terms of simulating runoff was 
evaluated on annual and monthly time scales. On the annual 
time scale, the volumes of observed and simulated runoff were 
compared and the relative volume error for runoff VEQ (–) was 
calculated. On the seasonal time scale, monthly average obser-
ved and simulated runoff time series were compared and the 
monthly Pearson correlation coefficient for runoff rQ,m (–) was 
calculated. 
 
Model calibration with runoff data 

 
Simulation results were compared with a scenario, when 

only runoff was used for model calibration and the model pa-
rameters were estimated in one step (Scenario Sim-R, Table 2). 
The model was calibrated to observed runoff by minimizing the 
daily root mean square error between observed and simulated 
runoff using the DEoptim R package. 

 
Table 2. Scenarios presented in the study. 
 

Scenario name Details 

Sim-Snowacc Calibration of all model parameters and fixing the temperature threshold parameter (wet bulb temperature Twb) 
using snow accumulation data 

Sim-Snowmelt Calibration of all model parameters except Twb and fixing the snowmelt parameters (snow correction factor 
SCF, degree day factor DDF, snowmelt temperature Tm) using snow cover data 

Sim-ET+SM 
Calibration of soil moisture accounting and runoff generation parameters and fixing the soil moisture account-
ing module parameters (field capacity FC, nonlinear parameter for runoff production β, limit for potential 
evapotranspiration LPrat) using evapotranspiration and soil moisture objectives 

Sim-ET Calibration of soil moisture accounting and runoff generation parameters and fixing the soil moisture account-
ing module parameters (see scenario Sim-ET+SM) using only evapotranspiration objective 

Sim-SM Calibration of soil moisture accounting and runoff generation parameters and fixing the soil moisture account-
ing module parameters (see scenario Sim-ET+SM) using only soil moisture objective 

Sim-ET20+SM80 
Calibration of soil moisture accounting and runoff generation parameters and fixing the soil moisture account-
ing module parameters (see scenario Sim-ET+SM) using a combination of wET = 20% evapotranspiration and 
wSM = 80% soil moisture objectives 

Sim-ET+G Calibration of runoff generation parameters, the soil moisture accounting module parameters were fixed in 
scenario Sim-ET 

Sim-SM+G Calibration of runoff generation parameters, the soil moisture accounting module parameters were fixed in 
scenario Sim-SM 

Sim-ET20+SM80+G Calibration of runoff generation parameters, the soil moisture accounting module parameters were fixed in 
scenario Sim-ET20+SM80 

Sim-R Calibration of all model parameters in one step using only runoff observations 
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Table 3. Calibrated model parameters for each scenario. Parameters which were fixed at a certain scenario (according to Table 2) are 
shown in bold. 
 

Scenario name 
Parameters 

SCF DDF Twb Tm LPrat FC β k0 k1 k2 LSUZ cP BMAX cR 
Sim-R 1.3 4.3 –0.1 0.0 0.0 319.4 0.6 1.1 4.7 84.7 9.2 1.5 5.3 20.0 
Sim-Snowacc 0.9 2.6 0.6 0.4 0.0 587.8 6.5 1.2 20.2 164.6 33.3 3.0 15.1 5.7 
Sim-Snowmelt 1.0 3.2 0.6 –0.3 0.7 223.8 6.7 1.9 15.6 88.9 74.4 4.4 29.0 12.6 
Sim-ET 1.0 3.2 0.6 –0.3 1.0 480.0 1.7 0.9 9.3 53.0 25.6 7.5 27.2 10.7 
Sim-SM 1.0 3.2 0.6 –0.3 0.9 153.6 20.0 1.0 14.3 131.1 47.8 1.2 22.0 15.3 
Sim-ET20+SM80 1.0 3.2 0.6 –0.3 1.0 168.7 4.6 0.8 6.1 143.9 17.6 4.2 7.4 6.8 
Sim-ET+G 1.0 3.2 0.6 –0.3 1.0 480.0 1.7 0.1 18.8 189.2 4.2 0.2 11.3 16.0 
Sim-SM+G 1.0 3.2 0.6 –0.3 0.9 153.6 20.0 0.2 4.9 30.4 1.0 0.2 20.1 24.8 
Sim-ET20+SM80+G 1.0 3.2 0.6 –0.3 1.0 168.7 4.6 0.5 12.6 31.6 1.1 0.3 13.3 6.5 

 
Table 4. Performance of snow accumulation and snowmelt simulations for three scenarios (Sim-R, Sim-Snowacc, Sim-Snowmelt) in the 
calibration and validation periods. Snow simulation efficiency is described by the number of time steps with poor (i.e. when the simulated 
phase of the precipitation and simulated snow cover index, respectively, mismatched the observed one) snow accumulation and snowmelt 
simulations relative to the number of time steps with observations. Scenarios are described in Table 2. 

 

 

 
 

Fig. 2. Performance of model simulations in terms of relative volume error for actual evapotranspiration VEET as a function weight on soil 
moisture objective wSM (panels a and b) and cumulative actual evapotranspiration ƩET for 4 scenarios (panels c and d) in the calibration 
(panels a and c) and validation periods (panels b and d). Scenarios are described in Table 2. 

 
RESULTS 
Snow module simulations 

 
Calibrating the wet bulb temperature Twb, to the observations 

from the present weather sensor (Scenario Sim-Snowacc) gave 
0.31 and 0.40% of poor simulation times steps in the calibration 
and validation periods, respectively. This was slightly better 

than the simulations that used only runoff for calibration (Sce-
nario Sim-R) (Table 4). Using observations from the present 
weather sensor, the calibrated wet bulb temperature Twb pa-
rameter became closer to 1°C, which was the observed wet bulb 
temperature in the catchment according to Széles et al. (2020). 

Fixing the snowmelt parameters, such as snowmelt tempera-
ture Tm, degree day factor DDF and snow correction factor 

Scenario 

Relative number of time steps with poor 
snow accumulation simulations (%) Scenario 

Relative number of time steps with poor 
snowmelt simulations (%) 

Calibration period 
2013–2015 

Validation period 2 
2016–2017 

Calibration period 
2013–2015 

Validation period 2 
2016–2017 

Sim-R 0.45 0.52 Sim-R 4.66 7.25 
Sim-Snowacc 0.31 0.40 Sim-Snowmelt 4.38 6.29 
Number of half 
hourly time steps 35626 23972 Number of daily 

time steps 1095 731 
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SCF, to the observed snow cover index (Scenario Sim-
Snowmelt) gave 4.38 and 6.29% of poor simulation time steps 
which, again, was better than the Sim-R scenario (Table 4). By 
using information on snowmelt for model calibration, the cali-
brated snow correction factor SCF became closer to 1.0, which 
was closer to the expected value on a lowland catchment (Table 
3). In scenario Sim-R, the larger amount of snow as a conse-
quence of the higher SCF was then compensated by more in-
tense snowmelt, i.e. higher degree day factor DDF, which was 
not realistic in Austrian flatland catchments (Merz et al., 2011; 
Sleziak et al., 2020). 

 
Soil moisture accounting module simulations 

 
The relative volume error and the cumulative values of actu-

al evapotranspiration calculated for 4 scenarios (Table 2) are 
compared in Figure 2. The smallest relative volume errors of  
 

actual evapotranspiration were achieved for soil moisture 
weights of wSM = 0.3 and wSM = 0.8 in the calibration and vali-
dation periods based on the average of 10 model runs (Figure 
2a and b). The model tended to overestimate evapotranspiration 
significantly (Sim-ET, Figure 2c and d), except when evapo-
transpiration was used in the objective function with a higher 
weight. Compared to the Sim-R scenario, the annual perfor-
mance of actual evapotranspiration simulations improved for all 
wSM weights, except for wSM = 1 during validation. 

The monthly correlation coefficient for evapotranspiration 
was above 0.75 both during model calibration and validation 
(Figure 3). While the monthly correlation coefficient for stand-
ardized soil moisture was low if only evapotranspiration was 
used in the objective function, the monthly correlation for 
evapotranspiration was almost constant independently from the 
weight on the evapotranspiration objective (Figure 3a–d). When 
both evapotranspiration and soil moisture objectives were  
 

 

 
 
Fig. 3. Performance of model simulations in terms of monthly Pearson correlation coefficients for evapotranspiration (ET) and standardized 
soil moisture (SMs) as a function of weight on soil moisture objective wSM (panels a–d) and monthly averages for ET and SMs for different 
scenarios according to Table 2 (panels e–h). 
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involved in the objective function, the proposed approach gen-
erally outperformed the Sim-R scenario (Figure 3a–d). Among 
the analyzed scenarios for the proposed step-by-step model 
calibration, the monthly average evapotranspiration rates and 
the standardized soil moisture could be best simulated, when 
both evapotranspiration and soil moisture were involved in the 
objective function (Figure 3e–h). 

By using information on actual evapotranspiration and/or 
soil moisture, the limit for potential evapotranspiration LPrat 
became closer to 1.0, i.e. more wetness in the soils was needed 
to reach the potential value of evapotranspiration, which was 
more realistic than the close to zero value for scenario Sim-R 
(Table 3). The nonlinear parameter for runoff production β 
became larger if actual evapotranspiration and/or soil moisture 
were used for model calibration, which was again more realistic 
considering that the catchment is characterized by clayish soils, 
where the runoff generation can be more nonlinear (Table 3). 
When only runoff was used for model calibration (Sim-R sce-
nario), the soil often completely dried out in the model, the 
moisture content became zero, therefore actual evapotranspira-
tion became water limited and the evapotranspiration rates 
dropped (Figure 3f). 

For further analysis, three main scenarios were chosen, when 
a weight of wSM = 0.0 (Sim-ET), wSM = 1.0 (Sim-SM), and  
wSM = 0.8 (Sim-ET20-SM80) was used on the soil moisture 
objective in the objective function when calibrating the soil 
moisture accounting module. 

 
Runoff generation module simulations 

 
The performance of the runoff generation module simula-

tions in terms of the overland flow ZOF and storage change ZdSs 
objectives as a function of weight on the overland flow objecti-
ve are shown in Figure 4. The median of the relative number of 
days with good overland flow simulations immediately excee-
ded 0.6 as soon as the weight on the overland flow part in the  
 

compound objective function was larger than zero (Figure 4a). 
The standardized groundwater storage change objective gradu-
ally deteriorated as the weight on the overland flow objective 
increased. Generally, the results outperformed the Sim-R scena-
rio, except for standardized monthly average storage change 
during validation (Figure 4d). 

By using runoff generation information for model calibra-
tion, the calibrated very fast storage time k0 became smaller 
compared to scenario Sim-R, which was more realistic conside-
ring that overland flow events usually last a few hours in the 
catchment (Table 3). The fast and slow storage times, k1 and k2, 
which are expected to be several months long, increased only 
for scenario Sim-ET+G (Table 3). 

For further analysis, the subsurface module parameters of 
the three main scenarios (Sim-ET+G, Sim-SM+G and  
Sim-ET20+SM80+G) were calibrated by choosing the weight 
on the overland flow objective as wOF = 0.5. 
 
Runoff simulation 

 
The final step was to evaluate the different scenarios in 

terms of simulating runoff on annual and seasonal time scales 
(Figure 5 and Table 5). On the annual time scale, the perfor-
mance of the proposed step-by-step approach was similar to the 
performance of the traditional Sim-R scenario. The proposed 
method (scenario Sim-SM) even outperformed the Sim-R sce-
nario during the shorter validation period (Val2, 2016–2017). 
For all periods, the model performance was the best, when only 
soil moisture was used in the optimization of the soil moisture 
accounting module and the runoff generation module was not 
optimized (Sim-SM). 

Similarly, on the seasonal time scale, the proposed method 
could efficiently model runoff. In terms of the monthly correla-
tion coefficients (Table 5), the Sim-SM scenario performed the 
best during the validation periods by slightly outperforming the 
Sim-R scenario. 

 
 

 
 

Fig. 4. Performance of model simulations in terms of the relative number of days with good overland flow simulations ZOF (when the mo-
del simulated very fast runoff simultaneously with the observed overland flow events) as a function of weight on overland flow part wOF 
(panels a and b) and the relative number of months with correctly simulated sign of the standardized groundwater storage change as a fun-
ction of weight on overland flow part wOF (panels c and d) during model calibration (panels a and c) and validation (panels b and d). Scena-
rios are described in Table 2. 
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Fig. 5. Performance of model simulations in terms of cumulative runoff (panels a–c) and monthly average runoff Qm (panels d–f). Scenarios 
are shown in Table 2. 
 
Table 5. Performance of runoff simulations in terms of relative volume error VE and monthly Pearson correlation coefficient rm for runoff 
(as in Figure 5) for model calibration and validation periods. Best performing scenario for the proposed approach is shown in bold. 
 

 
 
 
 
 
 
 
 

Scenario 
Calibration period 

2013–2015 
Validation period 1 

1991–2012 
Validation period 2 

2016–2017 
VE (–) rm (–) VE (–) rm (–) VE (–) rm (–) 

Sim-R 0.00 0.98 0.18 0.75 0.15 0.75 
Sim-Snowacc –0.97 0.00 –0.71 0.28 –0.99 –0.03 
Sim-Snowmelt –0.23 0.78 –0.03 0.62 –0.31 0.43 
Sim-ET 0.65 0.81 0.79 0.53 1.09 –0.02 
Sim-SM 0.00 0.93 0.19 0.76 0.00 0.79 
Sim-ET20+SM80 0.31 0.96 0.50 0.73 0.50 0.68 
Sim-ET+G 0.62 0.82 0.80 0.58 1.15 0.16 
Sim-SM+G –0.04 0.88 0.19 0.71 0.17 0.64 
Sim- ET20+SM80+G 0.27 0.91 0.52 0.74 0.70 0.69 
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DISCUSSION 
 
In this study, we followed the stepwise model calibration 

approach proposed by Széles et al. (2020) but without using 
runoff observations. The aim was to test if their method could 
be efficiently used in a quasi ungauged catchment case, i.e. 
ungauged in terms of runoff. We aimed to investigate how 
accurately we could simulate runoff and other state variables, 
whether there might be a tradeoff between these. Our results 
showed that additional measurements can help to efficiently 
predict runoff on the annual and seasonal time scales. This 
finding suggests that there is room for expanding the usual 
focus on runoff predictions (Blöschl et al., 2013; Hrachowitz et 
al., 2013) to other components of the hydrologic cycle. For 
instance, if snow, soil moisture and actual evapotranspiration 
observations are available, these can significantly help to con-
strain hydrologic models and to improve the process consisten-
cy, if no runoff measurements exist. This is useful, because this 
implies that the model simulates runoff well for the right rea-
sons and the model indeed represents reality (Beven and Freer, 
2001; Rogger et al., 2012; Savenije, 2001; Viglione et al., 
2018). Although a limitation of this method might be that such 
field observations and well-equipped experimental catchments 
are rare (Blöschl et al., 2016). 

In our study we found that in iterative model calibration, soil 
moisture measurements were the most important to obtain 
runoff efficiency comparable to runoff efficiency achieved with 
a model calibrated to runoff only. This result might be expected 
considering that the most sensitive parameter of the model was 
the field capacity in this catchment (Széles et al., 2010), which 
was influenced by the soil moisture and actual evapotranspira-
tion measurements during model calibration. The soil moisture 
dynamics in this catchment followed better the runoff dynamics 
compared to actual evapotranspiration, therefore soil moisture 
proved to be a better proxy to predict runoff. At the annual and 
seasonal time scales runoff model performance was similar in 
the 22-year-long validation period and even slightly larger in 
the 2-year-long validation period. These results are consistent 
with the results of Thyer et al. (2004) and Kuras et al. (2011) 
who reported similarly good results on the annual (relative 
volume error below 13% and 23%, respectively) and on the 
daily time scales for a physically-based eco-hydrologic model. 

Results from other studies in terms of whether soil moisture 
and/or evapotranspiration measurements improve runoff simu-
lations are less conclusive. Similarly to our results, Nijzink et 
al. (2018) also found that soil moisture satellite products were 
more effective than evaporation products for deriving more 
constrained parameter distributions. On the other hand, López 
et al. (2017) showed that estimating runoff was more efficient, 
if both soil moisture and evapotranspiration satellite products 
were involved in the model calibration. Bergström and 
Lindström (2015) and Baroni et al. (2019) pointed out that the 
relative importance of the measurements is influenced by the 
time step of the model considering that more water is stored in 
the unsaturated zone compared to the evapotranspired volumes. 
Furthermore, the changes in the different processes depend on 
how much they are decoupled from the atmosphere. For 
example, storage in the unsaturated and saturated zones chan-
ges more slowly than evapotranspiration which is coupled to 
the atmosphere. 

In our study actual evapotranspiration, overland flow and 
groundwater level measurements did not help much to constrain 
the conceptual hydrologic model. Possible explanation why this 
was the case is an apparent mismatch between field observa-
tions and the HBV type, soil moisture dependent evapotranspi-

ration calculations. For example, during precipitation events 
measured evapotranspiration drops to zero, while model simu-
lations increase due to the higher moisture content in the soil. 
Another issue is the possible overestimation of actual evapo-
transpiration considering that the Nash Sutcliffe efficiency was 
used during calibration. This means that actual evapotranspira-
tion was fitted to the higher values and not the lower ones. The 
third possibility is the difficulty in upscaling evapotranspiration 
to the catchment scale using point measurements. The aim of 
the three different eddy covariance stations was to capture the 
difference between crop types, which could be used for an area-
based upscaling. Still, what the model sees as a “catchment 
average” evapotranspiration rate might be different from the 
upscaled values. Finally, a fourth explanation might be that 
water for evapotranspiration especially in the summer months 
might be extracted from deeper soil layers, and not the layers 
which are monitored by the soil moisture sensors. Using over-
land flow and groundwater observations generally did not im-
prove runoff simulations. Although, simulation of runoff gene-
ration processes improved, the runoff simulation efficiencies 
deteriorated. Several studies also found that runoff can no lon-
ger be simulated that efficiently, if additional data (e.g. snow, 
evapotranspiration, groundwater levels) were also used for 
model calibration besides runoff (e.g. Gui et al., 2019; Parajka 
et al., 2007; Seibert, 2000). This is the cost of improving model 
consistency. 
 
CONCLUSIONS 

 
In this study, we calibrated the parameters of a conceptual 

hydrologic model step-by-step using all the available field 
observations except runoff. We investigated the value of proxy 
data for predicting runoff in a small agricultural catchment. Our 
results showed that: 
- Using only snow and soil moisture information for calibra-
tion, the runoff model performance was comparable to the 
scenario when the model was calibrated in one step, using only 
runoff measurements. 
- By using proxy data for model calibration, the simulation of 
state variables and therefore the process consistency improved, 
implying that the model represents reality better than the scena-
rio when only runoff was used for model calibration. 
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