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Type systems as a technique to analyse or control programs have been extensively studied for functional programming
languages. In particular some systems allow to extract from a typing derivation a complexity bound on the program. We
explore how to extend such results to parallel complexity in the setting of the pi-calculus, considered as a communication-based
model for parallel computation. Two notions of time complexity are given: the total computation time without parallelism
(the work) and the computation time under maximal parallelism (the span). We define operational semantics to capture those
two notions, and present two type systems from which one can extract a complexity bound on a process. The type systems
are inspired both by sized types and by input/output types, with additional temporal information about communications.
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1 INTRODUCTION

The problem of certifying time complexity bounds for programs is a challenging question, related to the problem of
statically inferring time complexity, and it has been extensively studied in the setting of sequential programming
languages. One particular approach to these questions is that of type systems, which offers the advantage of
providing an analysis which is formally-grounded, compositional and modular. In the functional framework
several rich type systems have been proposed, such that if a program can be assigned a type, then one can
extract from the type derivation a complexity bound for its execution on any input (see e.g. [4, 9, 23-25, 28]). The
type system itself thus provides a complexity certification procedure, and if a type inference algorithm is also
provided one obtains a complexity inference procedure. This research area is also related to implicit computational
complexity, which aims at providing type systems or static criteria to characterize some complexity classes within
a programming language (see e.g. [6, 7, 16, 18,21, 27, 36]), and which have sometimes in a second step inspired a
complexity certification or inference procedure.

However, while the topic of complexity certification has been thoroughly investigated for sequential programs
both for space and time bounds, there only have been a few contributions in the settings of parallel programs
and distributed systems. In these contexts, several notions of cost can be of interest to abstract the computation
time. First one can wish to know what is during a program execution the total cumulated computation time on
all processors. This is called the work of the program. Second, one can wonder if an infinite number of processors
were available, what would be the execution time of the program when it is maximally parallelized. This is called
the span or depth of the program.
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In [26], the authors addressed the problem of analysing the time complexity of programs written in a parallel
first-order functional language. In this language one can spawn computations in parallel and use the resulting
values in the body of the program. This allows to express a large bunch of classical parallel algorithms. Their
approach is based on amortized complexity and builds on a line of work in the setting of sequential languages
to define type systems, which allow to derive bounds on the work and the span of the program. However,
the language they are investigating does not allow communication between those computations in parallel.
Our goal is to provide an approach to analyse the time complexity of programs written in a rich language for
communication-based parallel computation, allowing the representation of several synchronization features.
We use for that z-calculus, a process calculus which provides process creation, channel name creation and
name-passing in communication [37, 38]. An alternative approach could be to use a language described with
session types, as in [12, 13]. We will discuss the expressivity of both languages in Section 5.3. We want to propose
methods that, given a parallel program written in 7-calculus, allow to derive upper bounds on its work and span.
Let us mention that these notions are not only of theoretical interest. Some classical results provide upper bounds,
expressed by means of the work (w) and span (s), on the evaluation time of a parallel program on a given number
p of processors. For instance such a program can be evaluated on a shared-multiprocessor system (SMP) with p
processors in time O(max(w/p, s)) (see e.g. [22]).

Our goal in this paper is essentially fundamental and methodological, in the sense that we aim at proposing
type systems which are general enough, well-behaved and provide good complexity properties. We also show
intuitively how to relate our type systems to already existing type inference procedures for sized types, as in [4],
but we do not focus on automatization of type inference in this paper.

We want to be able to derive complexity bounds which are parametric in the size of inputs, for instance which
depend on the length of a list. For that it will be useful to have a language of types that can carry information
about sizes, and for this reason we take inspiration from sized types [9, 29]. So data-types will be annotated with
an index which will provide some information on the size of values. Our approach then follows the standard
approach to typing in the z-calculus, namely typing a channel by providing the types of the messages that can
be sent or received through it. Actually a second ingredient will be necessary for us, input/output types. In this
setting a channel is given a set of capabilities: it can be an input, an output, or have both input/output capabilities.
This distinction between outputs and inputs is especially useful for subtyping, a very important notion in sized
types as it gives more flexibility. Indeed, an input channel and an output channel do not have the same behaviour
with regard to subtyping.

Outline of the paper. First, we describe in Section 3 a 7-calculus with an explicit tick construction; this
allows to specify several cost models, instead of only counting the number of reduction steps. We then describe
in Section 4 a definition of the work of a process, we design a type system and establish a soundness theorem: if
a process is well-typed in this type system, then its type provides an expression which, for its execution on any
input, bounds the work. We also provide some hints on a type inference algorithm for this type system. Then, in
Section'5, we give a formal definition of parallel complexity (span) in 7z-calculus. Next, we design another type
system and again establish a soundness theorem but for span. Afterwards, we describe in Section 6 an example
of parallel algorithm that can be analysed by this type system for span: bitonic sort. Finally, in Section 7, we
compare our-notion of span with the causal complexity from the literature.

This paper is an extended version of the conference paper [5]. With respect to this previous article, we give
two additional results, one result towards type inference for the work type system (Sect. 4.6 ), and another one
relating our definition of span to the notion of causal complexity (Sect. 7 ). We also give more details on the proofs
of lemmas and theorems stated in the conference paper, and more detailed examples to illustrate the notions.

Discussion. Note that even though one of the main usages of 7-calculus is to specify and analyse concurrent
systems, the present paper does not aim at analysing the complexity of arbitrary z-calculus concurrent programs.
Indeed, some typical examples of concurrent systems like semaphores will simply not be typable in the system
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for span (see Sect. 5.3), because of linearity conditions. As explained above, our interest here is instead focused
on parallel computation expressed in the x-calculus, which can include some form of cooperative concurrency.
We believe the analysis of complexity bounds for concurrent 7z-calculus is another challenging question, which
we want to address in future work.

A comparison with related works will be done in Sect. 8.

2 THE PI-CALCULUS AND INFORMAL INTRODUCTION TO SIZED TYPES

In this work, we consider the 7-calculus as a model of parallelism. The main points of 7-calculus are that processes
can be composed in parallel, communication between processes happens with the use of channels, and channel
names can be created dynamically.

2.1 Syntax of Pi-Calculus

We present here a classical syntax for the asynchronous z-calculus. More details about 7-calculus and variants
of the syntax can be found in [38]. We define the sets of variables, expressions and processes by the following
grammar.

v:i=x,y,z | a,b,c e=v|0]|s(e)]|[]]ex=e
P,O:=0|(®|Q)|'a®.P|a(®.P|ae)| (va)P | tick.P
| match e {0 > P;; s(x) = Q} | match e{[] = P;; x =: y — Q}

Variables x, y, z denote base type variables, they represent integers or lists. Variables a, b, ¢ denote channel
names. The notation v stands for a sequence of variables v;, vy, . .., V. In the same way, e is a sequence of
expressions. This syntax relies on binders, for example in a(v).P the variables in v are bound in P, and similarly
inmatch e {[] — P;; x :: y — Q}, the variables x and y are bound in Q. We work up to a-renaming (renaming of
bound variables), and we write P[v := €] to denote the substitution of the free variables vin P by e.

Intuitively, O represents the empty process, P | Q stands for the parallel composition of P and Q, a(v).P
represents an input: it stands for the reception on the channel a of a tuple of values identified by the variables v
in the continuation P. The process !a(v).P is a replicated version of a(v), it behaves like an infinite number of
a(v) in parallel. Such a channel a in a replicated input will often be called a server. The process a(e) represents an
output: it sends a sequence of expressions on the channel a. A process (va)P dynamically creates a new channel
name a and then proceeds as P. We also have classical pattern matching on data types, and finally, in tick.P, the
tick incurs an additional cost of one, and this process has the same semantic behaviour as P. This constructor is
the source of time complexity in a program. It can represent different cost models and it is more general than
only counting the number of reduction steps. For example, by adding a tick after each input, we can count the
number of communications in a process. By adding it after each replicated input on a channel a, we can count
the number of calls to a. If we want to count the number of reduction steps, we can add a tick after each input
and pattern matching.

2.2 Informal Introduction to the Semantics and Type Systems

As for the semantics, we design two semantics depending on the kind of complexity we want to consider. First,
we consider the work of a process, corresponding to the total number of tick in a computation. The important
rules are:

la(v).P | a(e) —¢ la(v).P | P[v:=¢] a(v).P | a{e) —¢ P[v:=¢] tick.P - P
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P = !toyfib(n). tick match(n) { @ = 0 ;; s(m) — match(m) {
0~ 0
s(p) + toyfib{m) | toyfib(p)
1

Fig. 1. Toy Example Simulating the Fibonnaci Recursive Calls

where the subscript indicates the complexity cost of this reduction step. So removing a tick has complexity
one, and the other reduction steps have complexity zero. With this, we can define the work as the sum of the
subscripts in a reduction path. As the z-calculus is non-deterministic, we consider a worst-case analysis.

Secondly, we consider another complexity, the span, corresponding to maximum parallel complexity. Informally,
it means that all computations that are put in parallel can be done simultaneously, as if we had an infinite number
of processors. In practice, it means that any number of tick in parallel should be removed simultaneously. So for
example tick.0 | tick.0 | tick.0 should have span complexity 1 (whereas its work is 3).

In order to define span formally, we introduce annotations in the z-calculus: a new constructor n : P, where n
is an integer. Intuitively, n : P represents the process P with n ticks before, or alternatively, a process P that would
be ready after n units of time. The important rules are:

n:la(v).P | m:a{e) = n:!a(v).P_| max(m,n): P[v:=e]

n:a(v).P | m:a(e) = max(m,n) : P[v:=¢e] n:tick.P = (n+1) : P

So intuitively, we have the same rules as before but with additional information in the annotations. When
doing a communication between an input and an output, in order for the continuation P[v := e] to be available,
both the input and the output should be ready. As they take respectively n and m units of time to be ready, the
continuation is available after max(m, n) units of time. As to the last rule, it expresses the fact that the annotations
indeed count the number of tick. From this, the span of a process is defined as the maximal annotation seen in
all reduction paths from 0 : P.

Example 2.1. We illustrate those semantics on a toy example simulating the recursive calls of the Fibonacci
function. This is described in Figure 1.

Intuitively, on an input n, the channel toy fib behaves in such a way that if n = @ or n = 1, then the computation
stops (because of the empty process 0). Otherwise, the channel does two recursive calls to itself with value n-1
and n-2. In this example, the tick constructor is used to count the number of calls to the server. Let us describe
one possible reduction for work complexity when we do a call to this server with n = 3.

P | toyfib(3) —¢ P | tick.match3 {0 - 0;; s(m) +— ---} =1 P | match3 {0 0;; s(m) > -}

—g P toyfib(2) | toyfib(1y —5 P | tick.match2 --- | tick.match1 ---
—>%P | match 2 --- | match 1 -~—>3P | toyfib(1) | toyfib{0) | ©
—o P | tick.match1 --- | tick.match@ --- | O—>fP | match1 --- | match@ --- |0 =3P |0]0]0

All the other reduction sequences are similar, only the order can change. Overall, if we count the number of
—1, we obtain a work of 5, which indeed corresponds to the number of calls to the function in Fibonacci of 3.
As for the span, we again look at a reduction but with annotated processes.
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0:P | 0:toyfib(3)=0:P | 0:tick.match3 {0+ O;; s(m)+> ---} =0:P | 1:match3 {0 0;; s(m) > ---}

=0:P | 1:toyfib(2) | 1:toyfib{1) =" 0:P | 1:tick.match2 --- | 1:tick.match1 ---
="0:P | 2:match2 --- | 2:match1 --- =% 0:P | 2:toyfib{l) | 2: toyfib{0) | 2:0
=%0:P | 2:tick.match1 --- | 2:tick.match® --- | 2:0="0:P | 3:match1 --- | 3:match® --- | 2:0

="0:P|3:03:0]2:0

Again, all the other reduction sequences are similar. The span is then 3 because the maximal annotation seen
in this reduction is 3. And it indeed corresponds to the number of calls to the Fibonacci function under maximal
parallelism, that we can also see as the depth of the tree of calls to the function.

To analyse the complexity of processes, we design two type systems, one for work and one for span. Because
the complexity can depend on the size of some values, such as the toy fib server whose complexity depends on
the value of n, we use sized types to keep track of the sizes of values in a process. We use integer expressions,
called indices, to represent intervals. So, for instance Nat[I, J] represents integers between I and J, where I and J
are indices. As we do not always know the actual size of an integer, we may use index variables. For example, in
the process P we do not know the actual value of n (as it depends on the context), so we will give it the type
Nat[i, i], where i is an index variable representing the (unknown) size of n.

First, we explain the type system for work. A judgement has the shape ¢; ®; T lT P <« K where ¢ is a set of
index variables, ® a sef of constraints that we do not detail here, I a typing context, P a process and K an index
representing the work complexity of K. The goal is to obtain the following theorem: if ¢; ®; T lT P<KthenKisa
bound on the work of P. Some simple rules of this type system are:

GO P<K TR QK Drici) ¢:®:T v P<K
ic
¢ BT P | Q<K + K, 0;®;T | tick.P <« K+1
The (Par) rule expresses the fact that the work is summed over parallel composition, and the (Tick) rule expresses
the fact that a tick increases complexity by 1.
Let us detail briefly this type system on Example 2.1. The toy fib server would be given a type Vi.serv’ () (Nat[i, i]),

expressing that for any index variable i representing the size of the input, the complexity of a call to this server is
F(i), where F(m) for any integer m is the function defined by:

F(0)=F(1) =1 F(m+2) =1+ F(m+1) + F(m)

(Par)

This equation exactly corresponds to the description of the number of calls to a Fibonacci function, and it can be
obtained in the type system. Formally, we can derive the following judgement:

is - toyfib : Vi.serviD(Nat[i, i]), n : Nat[i, i] = tick.match n {0 — 0;; s(m) — ---} < F(i) (1)
And from this, we are able to deduce in particular:
s toy fib: Vi.servP D (Nat[i, i]) |+ P | toyfib(3) < F(3)

As F(3) = 5, it is indeed a precise bound on the work. This typing derivation makes a good use of this unknown
index i. Indeed, in the case where i > 2, the typing derivation for (1) reaches a point where it has to type the
subprocess toy fib(m) | toy fib(p). In this case, the type system relies on the type Vi.serv’® (Nat[i, i]) to say
that, as m has size i-1, then the complexity of toy fib(m) is F(i-1) and similarly, the complexity of toy fib{p) is
F(i-2), and we recover the equation on the function F described above.

Now, for span, we also design a similar type system with judgements of the shape ¢; ®; T’ l? P < K, with again

the property that if ¢; ®; T l? P <K then K is a bound on the span of P. Intuitively, this type system corresponds
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to the previous one with additional information about time in types that we do not detail in this section. Some
simple rules are:

pOTRPaKi  g®TR Q<K, g0 (0)_, [ P<K
¢;®;T | P | Q <max(Ky, Ky) 0; ;T |5 tick.P <K+1

This time, the complexity of parallel composition is taken as the maximum, and for the (Tick) rule, we need a
new operator (I')_, on context that intuitively corresponds to reducing all time information by one, since the
tick makes time advance by one unit.

Similarly to the work, we can derive the judgement:

(Par)

(Tick)

i; - toy fib : Yi.serve " (Nat[i, i), n : Nat[i, ] |y tick.match n {0 > 0;; s(m) > - -} <G(i) ()

where 0 is a time information indicating that the server is immediately ready to receive, and G(i) is the function
defined by:

G(0)=G(1)=1 G(m+2) = 1 + max(G(m+1),G(m)) = 1 + G(m+1) = m+2

As G(3) = 3, we again obtain a precise bound for span. Informally, we have the same main idea than before for
work, but because of the rule for parallel composition, when considering the subprocess toy fib{m) | toyfib{p),
the complexity is the maximum and not the sum.

In practice, this time information needed in the type system for span induces some important differences
between the type system for work and for span, but this will be described in the body of the paper.

3 SEMANTICS OF PI-CALCULUS

Let us define formally the semantics for z-calculus in this section. We first define on processes a congruence
relation =: this is the least congruence relation closed under:

plo=P P|Q=Q|P PIQIR={PIQIR

(va)(vb)P = (vb)(va)P (va)(P | Q) = (va)P | Q (when a is not free in Q)

Note that the last rule can always be applied from right to left by a-renaming. Also, one can see that contrary
to usual congruence relation for the 7-calculus, we do not consider the rule for replicated input (!P = !P | P)
as it will be captured by the semantics, and a-conversion is not taken as an explicit rule in the congruence. By
associativity, we will often write parallel composition for any number of processes and not only two. Another
way to see this congruence relation is that, up to congruence, a process is entirely described by a set of channel
names and a multiset of processes. Formally, we can give the following definition.

Definition 3.1 (Guarded Processes and Canonical Form). A process G is guarded if it has one of the following
shapes:

G :=la(v).P | a(v).P | a(e) | tick.P
| matche {0 — P;; s(x) = Q} | matche{[]— P;; x =y > Q)

We say that a process is in canonical form if it has the form (va)(G; | - - - | G,) with Gy, . . ., G, guarded processes.

Formally, we now show that all processes have a somewhat unique canonical form, as in [34], Definition 4.1.2.

LEmMA 3.2 (Ex1sSTENCE OoF CANONICAL Form). For any process P, there is a Q in canonical form such that P = Q.
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la(v).P | a(e) —ola(v).P | P[v:=c¢] a(v).P | a(e) = P[v:=c¢e]
match @ {0 — P;; s(x) — Q} —¢ P match s(e) {0 — P;; s(x) = Q} —¢ Q[x :=e]
match [J{[] - P;; x =y > Q} = P matche e’ {[] = P;; x =y = Q) =0 Qlx,y := e, e’]
P —Q P—0Q p=P P’ —y Q' Q"=0
PIR—9Q IR (va)P —¢ (va)Q P—0Q

Fig. 2. Standard Reduction Rules

The proof is direct by induction on P.

In order to show the uniqueness of the canonical form, let us first introduce some notations. Recall that a-
renaming is not a rule of =. We define the set name of channel variables and the multiset gp of guarded processes
by:
name(0) = 0 and gp(0) =
name(P | Q) = name(P) L[ name(Q) and gp(P | Q) = gp(P)+gp(Q).
name(P) = 0 and gp(P) = [P], when P is guarded.
name((va)P) = name(P) [ [{a} and gp((va)P) = gp(P).
where [] denotes the usual disjoint union, + denotes the usual union of multisets and [P] denotes the multiset
corresponding to the singleton P with multiplicity 1. Then, we can easily show the following lemma by definition
of the congruence relation.

LEMMA 3.3. If P = Q then name(P) = name(Q) and if gp(P) = [Py, ..., Py] and gp(Q) = [Q1,...,Qm], then
m = n and for some permutation Qy, ..., Q;, of O1,...,Qn, we have P; = Q; for all i.

From this lemma, we can easily deduce the uniqueness of canonical form:

LEMMA 3.4 (UNIQUENESS OF CANONICAL Form). If

(va)(Py | =+ | Pp) = (vB)(Q1 | -+- | Om)
with Py, ..., Pp, Q1,...,QOm guarded processes, then m = n and a is a permutation ofE Moreover, for some permuta-

tion Q,...,Q;, of O1,...,0Opn, we have P; = Q; for all i.

We now define the usual reduction relation for the z-calculus, that we denote P —¢ Q. It is defined by the rules
given in Figure 2. Remark that substitution should be well-defined in order to do some reduction steps: channel
names must be substituted by other channel names and base type variables can be substituted by any expression
except channel names. However, when we will consider typed processes, this will always yield well-defined
substitutions.

For now, this relation cannot reduce a process of the form tick.P. Therefore, we need to introduce a reduction
rule for tick. From this semantics, we will define a reduction corresponding to total complexity (work) and
design a type system for this notion of complexity. Then, we will define parallel complexity (span) by taking an
expansion of the standard reduction.

Let us give an example of process that will be of interest in the following. We express how to encode a usual
recursive function in z-calculus by describing the Fibonacci function. Contrary to the function of Example 2.1,
we use replicated input with a return channel to send the final value.

ACM Trans. Program. Lang. Syst.
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ladd(n,m,a). match(n) {
0 - a(m ;;
s(p) = (vb) (add(p,mb) | b(q). @(s(q)))
!
'fib(n,a). tick. match(n) {
0 — a(0) ;;
s(m) — match(m) {
0 - a(l) ;;
s(p) — (vb)(ve) (Bb(mb) | fib(p,c) | c(x).b(y). add(x,y,a))
H

Fig. 3. The Fibonacci Function

P—>1P' Q—)lQ/ P—)lp,
P1Q—-1P' |Q PlQ—-P|Q (va)P —1 (va)P’

tick.P -1 P

Fig. 4. Simple Tick Reduction Rules

Example 3.5 (Fibonacci). This representation of the Fibonacci function is described in Figure 3, where the actual
process P corresponds to the parallel composition of those two servers-add and fib.

This example is similar to Example 2.1, but the differences are that we compute and return the value of the
Fibonacci function using the return channel a. And so, when we do the recursive calls, we first create new channel
names (b and c) and use them to recover the values of the two recursive calls.

Discussion. For the sake of simplicity, we consider only integers and lists as base types in our calculus, but the
results can be generalized to other algebraic data-types. Moreover, we consider very simple expressions with only
base constructors, but we could enrich the set of expressions with functions (such as addition on integers) and
obtain the same results. Indeed, the core of our results lies in the parallel constructs, and the set of expressions
has little impact on the theoretical results.

4 WORK OF A PROCESS
4.1  Semantics for Work

We first describe a semantics for the work. The one-cost reduction relation —; is defined in Figure 4. Intuitively,
this reduction removes exactly one tick at the top-level.

Then from any process P, a sequence of reduction steps to Q is just a sequence of one-step reductions with —
or —1, and the work complexity of this sequence is the number of — steps. In this paper, we always consider
the worst-case complexity so the work of a process is defined as the maximal complexity over all such sequences
of reduction steps from this process.

Notice that with this semantics for work, adding tick in a process does not change its behaviour: we do not
create nor erase reduction paths, we only modify the complexity.

Example 4.1 (Fibonacci). If we consider the process P described in Example 3.5, we can see that the work of
(va)(P | fib{10, a)) is F(10) where F is defined, as in Section 2 by:

F(0) =1 F(1) =1 F(n+2) = 1+F(n+1)+F(n)

ACM Trans. Program. Lang. Syst.
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4.2 Sized Input/Output Types

We now define a type system to bound the work of a process. The goal is to obtain a soundness result: if a process
P is typable then we can derive an integer expression K such that the work of P is bounded by K.

Our type system relies on the definition of indices to keep track of the size of values in a process. Those indices
were for example used in [9] and are greatly inspired by [29]. The main idea of those types in a sequential setting
is to control recursive calls by ensuring a decreasing in the sizes.

Definition 4.2. The set of indices, representing natural numbers, is given by the following grammar.
LILK:=ijk| f(L,...,I,)

The variables i, j, k are called index variables. The set of index variables is denoted V. The symbol f is an
element of a given set of function symbols containing addition and multiplication. We also assume that we have
subtraction as a function symbol, with n-m = 0 when m > n. Each function symbol f of arity ar(f) comes with
an interpretation [ f] : No"() — N,

Given an index valuation p : V — N, we extend the interpretation of function symbols to indices, noted [I],
with:
[il, = p(i) Lf(L, ... ’Iar(f))]]p = [[f]]([[Il]]p, cees [[Iar(f)]]p)

In an index I, the substitution of the occurrences of i in I by J is denoted I{J/i}.

Definition 4.3 (Constraints on Indices). Let ¢ C V be a set of index variables. A constraint C on ¢ is an expression
with the shape I >« J where I and J are indices with free variables in ¢ and =< denotes a binary relation on integers.
Usually, we take < € {<, <, =, #}. Finite sets of constraints are denoted by ®.

For a set ¢ C V, we say that a valuation p : ¢ — N satisfies a constraint I > J on ¢, noted p k I >« | when
[I1, »< [J1, holds. Similarly, p £ ® holds when p £ C for all C € ®. Likewise, we note ¢; ® £ C when for all
valuations p on ¢ such that p £ ® we have p £ C. Remark that the order < in a context ¢; ® is not total in general.
For example, if ¢ = {i,j}, then ¢;- # i < ij and ¢;- ¥ ij < i. As usual in type systems, we will use a sequence
notation to represent sets, thus the set {i, j, k} could be represented for example by the sequence (i, j, k), where
we can implicitly change the order in the sequence.

Definition 4.4. The set of types and base types are given by the following grammars.
T := B| ch(D) | in(T) | out(T) | ¥i.servK(T) | Vi.iservK(T) | Vi.oservK(T)
B := Nat[I, J]| List[I, J](B)

Intuitively, in the context ¢; @, an integer n of type Nat[I, J]] must be such that ¢;® £ I < n < J. Likewise, a
list of type List[[, J](8) must have a length between I and J. We may use Nat[I] to denote the type Nat[I,I] in
order to gain-some space, especially in examples of type derivations.

For channel types, we would like to allow for some flexibility by using a subtyping relation. For this reason
we choose to use input/output types [38]. Intuitively, in such a system, in addition to the type of expressions
that can be sent and received through it, a channel is also given a set of capabilities: either it is both an input
and output channel, or it has only one of those capabilities. This is especially useful for subtyping, as an input
channel and an output channel do not behave in the same way with regard to subtyping, as we will explain in
Section 4.3. Unlike in usual input/output types, in this work we also distinguish two kinds of channels: the simple
channels (that we will often call channels), and replicated channels (called servers).
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(Nil)

(AX) v:TeT (Zero)

GO Fv:T ©; O;T + 0: Nat[0, 0] @; ®; T + [] : List[0,0](B)

¢;D;T + e: Nat[l, ]]
@; D;T + s(e) : Nat[I+1, J+1]

(Succ)

;0 TrHe: B 0;D;T + e : List[1, J](B)
@; D; T + e e’ : List[I+1, J+1](B)

(Cons)

;DA ke U e;O+FTC A ;@ ULCT
;O TFe:T

(Sub)

Fig. 5. Typing Rules for Expressions

The three different types for channels and servers correspond to the three different sets of capabilities. We
note serv when the server has both capabilities, iserv when it only has input and oserv when it only has output.
Then, for servers, we have additional information: there is a quantification over index variables, and the index
K stands for the complexity of the process spawned by this server. A typical example could be a server taking
as input a list and a channel, and sending to this channel the sorted list, in time k - n where n is the size of the
list: P = la(x, b). - - - b(e) where e represents at the end of the computation the list x sorted. Such a server name
a could be given the type ¥i.serv¥i(List[0, i](8), out(List[0, {](8))). This type means that for all integers i, if
given a list of size at most i and an output channel waiting for a list of size at most i, the process spawned by this
server will stop at time at most k - i. Those bounded index variables 7 are especially useful for replicated input: as
a replicated input is meant to be used several times with different values, it is necessary to allow for this kind of
polymorphism on indices. Moreover, if a replicated input is used to encode a recursion, with this polymorphism
we can take into account the different recursive calls with different values and different complexities. This was
briefly explained in Section 2 and it will be formally explained in Example 4.5.

We can now present the type system for work. A judgement for an expression has the shape ¢; ®;T' e : T,
where ¢ is a set of index variables, ® a set of constraints, I' a typing context of the shape vi : Ty, -+ - vy, : Tppyy € is
an expression and T is a type. The set of index variables ¢ is such that the free index variables in ®, I' and T are
included in ¢. Intuitively, this typing means that if the constraints in ® are satisfied, then e has type T in the
context I'. In this work, almost all relations (such as e.g. subtyping, typing relation) depend on a context ¢; ®, and
¢ always describes the set of usable free index variables, and ® a set of constraints on ¢. Rules for expressions are
given in Figure 5. We use the notation ¢; ®;T + e: T fora sequence of typing judgements for expressions in the
tuple e. The rules are standard for a sized type system. We have the usual (Ax) rule, then both (Zero) and (Nil)
rules indicate the values with size zero, and both (Succ) and (Cons) rules indicate that those constructors increase
size by one. The (Sub) rule allows to change the typing derivation according to the subtyping relation that will be
defined in Section 4.3.

We now present the typing rules for processes. A judgement has the shape ¢; ®;T lv P <K, where K is an index,
which means that under the constraints @, in the context I, the process P is typable and its work complexity is
bounded by K. The rules are described in Figure 6a and Figure 6b. Figure 6b describes rules specific to the work,
whereas rules in Figure 6a will be reused for the span. Thus, we use the notation + in Figure 6a instead of [+ to
express that they are not specific to work.

The rules can be seen as a combination of input/output typing rules with rules found in a size type system for
functional programs. The common rules that are used for both the span and work type systems are the rules for
simple constructors of 7-calculus and for sizes in pattern matching. The (Pzero) rule states that the empty process
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(Pzero) —————— N ¢;O;T,a:TrP<K
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(a) Common Typing Rules for Processes
GOTP<Ki ;T QKp (T ¢:;®:T |+ P <K
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(Par)
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o;®;Tra: Vi.iservK(T) (¢,0); BT, V: T}‘w‘P<‘K
0;®;T | la(@).P <0

¢; ;T Fa: VZoservK(T) ;T e T{J/i}
0:®:T |5 a(@) <K{J/i}

(Iserv)

(Oserv)

(b) Work Typing Rules for Processes

Fig. 6. Typing Rules for Work

is typable, and it has complexity zero. The (Nu) rules allows to add a new name in the context, without changing
the complexity. The pattern matching rule for integers (Intpm) is a standard rule for sized types [9]. It says that
if an integer e is between I and J, then in the first branch of the pattern matching, we can assume that I > 0
since e is equal to 0 in this branch. Similarly, in the second branch, we can assume that J > 1 since e should be
greater than 1. In this case, the predecessor x has a size between I-1 and J-1. The rule (Listpm) is similar. Then,
we have again the usual (Sub) rule, which can also arbitrary increase the upper-bound on the complexity. This is
especially important because, if we look back at the (Intpm) rule, it considers that both branches must have the
same complexity K, but in practice they may have different complexities K; and K,. However, thanks to the (Sub)
rule, we can always consider a greater upper bound, in particular max(Kj, K3). Thus, even if the branches have
different complexities, we can always make them equal by considering the maximum with the (Sub) rule.
Rules that are specific to the work type system concern important constructors in the z-calculus. The (Par)
rule expresses that the work of a parallel composition is the sum of the work of the two suprocesses. The (Tick)
rules expresses that the tick constructor increases complexity by 1. The (In) rule states that in order to type an
input, the continuation P should be typable in a context where the variables ¥ are given the types T, and the
complexity of this input is the complexity of its continuation. Dually, in the (Out) rule, the expressions that are
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sent on this channel must have the expected types. As the complexity of a synchronization is already taken into
account in the rule (In), the complexity in the (Out) rule is zero.

Finally, we have the rules for servers. In the rule (Iserv), the continuation P must satisfy the assumption given
in the typing Vi.iservKk (T): with the new index variables 7, in a context where ¥ are given the expected types T,
the complexity of P must be K. Contrary to the (In) rule, this time the complexity K is captured in the type, but
the bottom judgment has complexity zero. This is because in this case, we do now want a replicated input to have
a non-zero complexity. Indeed, by definition of the reduction relation —, a replicated input is never modified
through a reduction. Thus, if a process has a replicated input, then this replicated input is retained in the normal
form (if it exists). As a consequence, a non-zero complexity on an replicated input would always be an imprecise
estimation of the complexity. Moreover, the complexity of a call to a server depends on the instantiation of i that
is decided by an output to the server. That is why, in the last rule (Oserv), we have to find an instantiation J of the
index variables i such that the types of expressions correspond to this instantiation. The complexity then depends
on this instantiation. A typical example is if a server represents a function with quadratic complexity in the size
of its argument, with type Vi.servi’ (Nat[i, i]), and we call this server with the value 10, then we instantiate i by
10 and the overall complexity of this call to the server is 102 = 100.

4.3 Subtyping

As explained before, with those types comes a notion of subtyping, in order to have some flexibility on bounds.
Subtyping for base types is described by the rules of Figure 7a. Both rules (Nat) and (List) express that we can
always consider less precise bounds on the sizes.

Before explaining formally the rule for channel types, let us first introduce