
Types for Complexity of Parallel Computation in Pi-Calculus

PATRICKBAILLOT and ALEXIS GHYSELEN,Univ Lyon, CNRS, ENS de Lyon, Universite Claude-Bernard
Lyon 1, LIP, F-69342, Lyon Cedex 07, France

Type systems as a technique to analyse or control programs have been extensively studied for functional programming

languages. In particular some systems allow to extract from a typing derivation a complexity bound on the program. We

explore how to extend such results to parallel complexity in the setting of the pi-calculus, considered as a communication-based

model for parallel computation. Two notions of time complexity are given: the total computation time without parallelism

(the work) and the computation time under maximal parallelism (the span). We deine operational semantics to capture those

two notions, and present two type systems from which one can extract a complexity bound on a process. The type systems

are inspired both by sized types and by input/output types, with additional temporal information about communications.

CCS Concepts: · Theory of computation→ Type structures; Process calculi; · Software and its engineering→ Software

veriication.

Additional Key Words and Phrases: Type Systems, Pi-calculus, Process Calculi, Complexity Analysis, Implicit Computational

Complexity, Sized Types

1 INTRODUCTION

The problem of certifying time complexity bounds for programs is a challenging question, related to the problem of

statically inferring time complexity, and it has been extensively studied in the setting of sequential programming

languages. One particular approach to these questions is that of type systems, which ofers the advantage of

providing an analysis which is formally-grounded, compositional and modular. In the functional framework

several rich type systems have been proposed, such that if a program can be assigned a type, then one can

extract from the type derivation a complexity bound for its execution on any input (see e.g. [4, 9, 23ś25, 28]). The

type system itself thus provides a complexity certiication procedure, and if a type inference algorithm is also

provided one obtains a complexity inference procedure. This research area is also related to implicit computational

complexity, which aims at providing type systems or static criteria to characterize some complexity classes within

a programming language (see e.g. [6, 7, 16, 18, 21, 27, 36]), and which have sometimes in a second step inspired a

complexity certiication or inference procedure.

However, while the topic of complexity certiication has been thoroughly investigated for sequential programs

both for space and time bounds, there only have been a few contributions in the settings of parallel programs

and distributed systems. In these contexts, several notions of cost can be of interest to abstract the computation

time. First one can wish to know what is during a program execution the total cumulated computation time on

all processors. This is called the work of the program. Second, one can wonder if an ininite number of processors

were available, what would be the execution time of the program when it is maximally parallelized. This is called

the span or depth of the program.

Authors’ address: Patrick Baillot; Alexis Ghyselen, Univ Lyon, CNRS, ENS de Lyon, Universite Claude-Bernard Lyon 1, LIP, F-69342, Lyon

Cedex 07, Lyon, France.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst page.

Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires prior speciic permission and/or a fee. Request permissions from

permissions@acm.org.

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

0164-0925/2022/8-ART111 $15.00

https://doi.org/10.1145/3495529

ACM Trans. Program. Lang. Syst.

https://doi.org/10.1145/3495529

111:2 • Patrick Baillot and Alexis Ghyselen

In [26], the authors addressed the problem of analysing the time complexity of programs written in a parallel

irst-order functional language. In this language one can spawn computations in parallel and use the resulting

values in the body of the program. This allows to express a large bunch of classical parallel algorithms. Their

approach is based on amortized complexity and builds on a line of work in the setting of sequential languages

to deine type systems, which allow to derive bounds on the work and the span of the program. However,

the language they are investigating does not allow communication between those computations in parallel.

Our goal is to provide an approach to analyse the time complexity of programs written in a rich language for

communication-based parallel computation, allowing the representation of several synchronization features.

We use for that π -calculus, a process calculus which provides process creation, channel name creation and

name-passing in communication [37, 38]. An alternative approach could be to use a language described with

session types, as in [12, 13]. We will discuss the expressivity of both languages in Section 5.3. We want to propose

methods that, given a parallel program written in π -calculus, allow to derive upper bounds on its work and span.

Let us mention that these notions are not only of theoretical interest. Some classical results provide upper bounds,

expressed by means of the work (w) and span (s), on the evaluation time of a parallel program on a given number

p of processors. For instance such a program can be evaluated on a shared-multiprocessor system (SMP) with p

processors in time O (max(w/p, s)) (see e.g. [22]).

Our goal in this paper is essentially fundamental and methodological, in the sense that we aim at proposing

type systems which are general enough, well-behaved and provide good complexity properties. We also show

intuitively how to relate our type systems to already existing type inference procedures for sized types, as in [4],

but we do not focus on automatization of type inference in this paper.

We want to be able to derive complexity bounds which are parametric in the size of inputs, for instance which

depend on the length of a list. For that it will be useful to have a language of types that can carry information

about sizes, and for this reason we take inspiration from sized types [9, 29]. So data-types will be annotated with

an index which will provide some information on the size of values. Our approach then follows the standard

approach to typing in the π -calculus, namely typing a channel by providing the types of the messages that can

be sent or received through it. Actually a second ingredient will be necessary for us, input/output types. In this

setting a channel is given a set of capabilities: it can be an input, an output, or have both input/output capabilities.

This distinction between outputs and inputs is especially useful for subtyping, a very important notion in sized

types as it gives more lexibility. Indeed, an input channel and an output channel do not have the same behaviour

with regard to subtyping.

Outline of the paper. First, we describe in Section 3 a π -calculus with an explicit tick construction; this

allows to specify several cost models, instead of only counting the number of reduction steps. We then describe

in Section 4 a deinition of the work of a process, we design a type system and establish a soundness theorem: if

a process is well-typed in this type system, then its type provides an expression which, for its execution on any

input, bounds the work. We also provide some hints on a type inference algorithm for this type system. Then, in

Section 5, we give a formal deinition of parallel complexity (span) in π -calculus. Next, we design another type

system and again establish a soundness theorem but for span. Afterwards, we describe in Section 6 an example

of parallel algorithm that can be analysed by this type system for span: bitonic sort. Finally, in Section 7, we

compare our notion of span with the causal complexity from the literature.

This paper is an extended version of the conference paper [5]. With respect to this previous article, we give

two additional results, one result towards type inference for the work type system (Sect. 4.6), and another one

relating our deinition of span to the notion of causal complexity (Sect. 7). We also give more details on the proofs

of lemmas and theorems stated in the conference paper, and more detailed examples to illustrate the notions.

Discussion. Note that even though one of the main usages of π -calculus is to specify and analyse concurrent

systems, the present paper does not aim at analysing the complexity of arbitrary π -calculus concurrent programs.

Indeed, some typical examples of concurrent systems like semaphores will simply not be typable in the system

ACM Trans. Program. Lang. Syst.

Types for Complexity of Parallel Computation in Pi-Calculus • 111:3

for span (see Sect. 5.3), because of linearity conditions. As explained above, our interest here is instead focused

on parallel computation expressed in the π -calculus, which can include some form of cooperative concurrency.

We believe the analysis of complexity bounds for concurrent π -calculus is another challenging question, which

we want to address in future work.

A comparison with related works will be done in Sect. 8.

2 THE PI-CALCULUS AND INFORMAL INTRODUCTION TO SIZED TYPES

In this work, we consider the π -calculus as a model of parallelism. The main points of π -calculus are that processes

can be composed in parallel, communication between processes happens with the use of channels, and channel

names can be created dynamically.

2.1 Syntax of Pi-Calculus

We present here a classical syntax for the asynchronous π -calculus. More details about π -calculus and variants

of the syntax can be found in [38]. We deine the sets of variables, expressions and processes by the following

grammar.

v := x ,y, z | a,b, c e := v | 0 | s(e) | [] | e :: e ′

P ,Q := ⊙ | (P | Q) | !a (̃v).P | a (̃v).P | a⟨̃e⟩ | (νa)P | tick.P

| match e {0 7→ P ; ; s(x) 7→ Q } | match e {[] 7→ P ; ; x :: y 7→ Q }

Variables x ,y, z denote base type variables, they represent integers or lists. Variables a,b, c denote channel

names. The notation ṽ stands for a sequence of variables v1, v2, . . . , vk . In the same way, ẽ is a sequence of

expressions. This syntax relies on binders, for example in a (̃v).P the variables in ṽ are bound in P , and similarly

in match e {[] 7→ P ; ; x :: y 7→ Q }, the variables x and y are bound in Q . We work up to α-renaming (renaming of

bound variables), and we write P [̃v := ẽ] to denote the substitution of the free variables ṽ in P by ẽ .

Intuitively, ⊙ represents the empty process, P | Q stands for the parallel composition of P and Q , a (̃v).P

represents an input: it stands for the reception on the channel a of a tuple of values identiied by the variables ṽ

in the continuation P. The process !a (̃v).P is a replicated version of a (̃v), it behaves like an ininite number of

a (̃v) in parallel. Such a channel a in a replicated input will often be called a server. The process a⟨̃e⟩ represents an

output: it sends a sequence of expressions on the channel a. A process (νa)P dynamically creates a new channel

name a and then proceeds as P . We also have classical pattern matching on data types, and inally, in tick.P , the

tick incurs an additional cost of one, and this process has the same semantic behaviour as P . This constructor is

the source of time complexity in a program. It can represent diferent cost models and it is more general than

only counting the number of reduction steps. For example, by adding a tick after each input, we can count the

number of communications in a process. By adding it after each replicated input on a channel a, we can count

the number of calls to a. If we want to count the number of reduction steps, we can add a tick after each input

and pattern matching.

2.2 Informal Introduction to the Semantics and Type Systems

As for the semantics, we design two semantics depending on the kind of complexity we want to consider. First,

we consider the work of a process, corresponding to the total number of tick in a computation. The important

rules are:

!a(v).P | a⟨̃e⟩ →0 !a(v).P | P [̃v := ẽ] a(v).P | a⟨̃e⟩ →0 P [̃v := ẽ] tick.P →1 P

ACM Trans. Program. Lang. Syst.

111:4 • Patrick Baillot and Alexis Ghyselen

P ≡ ! toyfib (n) . t ick match (n) { 0 7→ ⊙ ; ; s (m) 7→ match (m) {

0 7→ ⊙ ; ;

s (p) 7→ toyib⟨m⟩ | toyib⟨p⟩

} }

Fig. 1. Toy Example Simulating the Fibonnaci Recursive Calls

where the subscript indicates the complexity cost of this reduction step. So removing a tick has complexity

one, and the other reduction steps have complexity zero. With this, we can deine the work as the sum of the

subscripts in a reduction path. As the π -calculus is non-deterministic, we consider a worst-case analysis.

Secondly, we consider another complexity, the span, corresponding to maximum parallel complexity. Informally,

it means that all computations that are put in parallel can be done simultaneously, as if we had an ininite number

of processors. In practice, it means that any number of tick in parallel should be removed simultaneously. So for

example tick.⊙ | tick.⊙ | tick.⊙ should have span complexity 1 (whereas its work is 3).

In order to deine span formally, we introduce annotations in the π -calculus: a new constructor n : P , where n

is an integer. Intuitively, n : P represents the process P with n ticks before, or alternatively, a process P that would

be ready after n units of time. The important rules are:

n: !a(v).P | m : a⟨̃e⟩ ⇒ n: !a(v).P | max(m,n) : P [̃v := ẽ]

n : a(v).P | m : a⟨̃e⟩ ⇒ max(m,n) : P [̃v := ẽ] n : tick.P ⇒ (n+1) : P

So intuitively, we have the same rules as before but with additional information in the annotations. When

doing a communication between an input and an output, in order for the continuation P [̃v := ẽ] to be available,

both the input and the output should be ready. As they take respectively n andm units of time to be ready, the

continuation is available after max(m,n) units of time. As to the last rule, it expresses the fact that the annotations

indeed count the number of tick. From this, the span of a process is deined as the maximal annotation seen in

all reduction paths from 0 : P .

Example 2.1. We illustrate those semantics on a toy example simulating the recursive calls of the Fibonacci

function. This is described in Figure 1.
Intuitively, on an input n, the channel toy f ib behaves in such a way that if n = 0 or n = 1, then the computation

stops (because of the empty process ⊙). Otherwise, the channel does two recursive calls to itself with value n−1
and n−2. In this example, the tick constructor is used to count the number of calls to the server. Let us describe
one possible reduction for work complexity when we do a call to this server with n = 3.

P | toy f ib⟨3⟩ →0 P | tick.match 3 {0 7→ ⊙; ; s(m) 7→ · · ·} →1 P | match 3 {0 7→ ⊙; ; s(m) 7→ · · ·}

→∗0 P | toy f ib⟨2⟩ | toy f ib⟨1⟩ →
∗
0 P | tick.match 2 · · · | tick.match 1 · · ·

→2
1 P | match 2 · · · | match 1 · · · →

∗
0 P | toy f ib⟨1⟩ | toy f ib⟨0⟩ | ⊙

→∗0 P | tick.match 1 · · · | tick.match 0 · · · | ⊙ →
2
1 P | match 1 · · · | match 0 · · · | ⊙ →

∗
0 P | ⊙ | ⊙ | ⊙

All the other reduction sequences are similar, only the order can change. Overall, if we count the number of

→1, we obtain a work of 5, which indeed corresponds to the number of calls to the function in Fibonacci of 3.

As for the span, we again look at a reduction but with annotated processes.

ACM Trans. Program. Lang. Syst.

Types for Complexity of Parallel Computation in Pi-Calculus • 111:5

0 : P | 0 : toyf ib⟨3⟩ ⇒ 0 : P | 0 : tick.match 3 {0 7→ ⊙; ; s(m) 7→ · · · } ⇒ 0 : P | 1 : match 3 {0 7→ ⊙; ; s(m) 7→ · · · }

⇒ 0 : P | 1 : toyf ib⟨2⟩ | 1 : toyf ib⟨1⟩ ⇒∗ 0 : P | 1 : tick.match 2 · · · | 1 : tick.match 1 · · ·

⇒∗ 0 : P | 2 : match 2 · · · | 2 : match 1 · · · ⇒∗ 0 : P | 2 : toyf ib⟨1⟩ | 2 : toyf ib⟨0⟩ | 2 : ⊙

⇒∗ 0 : P | 2 : tick.match 1 · · · | 2 : tick.match 0 · · · | 2 : ⊙ ⇒∗ 0 : P | 3 : match 1 · · · | 3 : match 0 · · · | 2 : ⊙

⇒∗ 0 : P | 3 : ⊙ | 3 : ⊙ | 2 : ⊙

Again, all the other reduction sequences are similar. The span is then 3 because the maximal annotation seen

in this reduction is 3. And it indeed corresponds to the number of calls to the Fibonacci function under maximal

parallelism, that we can also see as the depth of the tree of calls to the function.

To analyse the complexity of processes, we design two type systems, one for work and one for span. Because

the complexity can depend on the size of some values, such as the toy f ib server whose complexity depends on

the value of n, we use sized types to keep track of the sizes of values in a process. We use integer expressions,

called indices, to represent intervals. So, for instance Nat[I , J] represents integers between I and J , where I and J

are indices. As we do not always know the actual size of an integer, we may use index variables. For example, in

the process P we do not know the actual value of n (as it depends on the context), so we will give it the type

Nat[i, i], where i is an index variable representing the (unknown) size of n.

First, we explain the type system for work. A judgement has the shape φ;Φ; Γ w P ◁ K where φ is a set of

index variables, Φ a sef of constraints that we do not detail here, Γ a typing context, P a process and K an index

representing the work complexity of K . The goal is to obtain the following theorem: if φ;Φ; Γ w P ◁K then K is a

bound on the work of P . Some simple rules of this type system are:

φ;Φ; Γ w P ◁ K1 φ;Φ; Γ w Q ◁ K2
(Par)

φ;Φ; Γ w P | Q ◁ K1 + K2

φ;Φ; Γ w P ◁ K
(Tick)

φ;Φ; Γ w tick.P ◁ K+1

The (Par) rule expresses the fact that the work is summed over parallel composition, and the (Tick) rule expresses

the fact that a tick increases complexity by 1.

Let us detail briely this type system on Example 2.1. The toy f ib serverwould be given a type∀i .servF (i) (Nat[i, i]),

expressing that for any index variable i representing the size of the input, the complexity of a call to this server is

F (i), where F (m) for any integerm is the function deined by:

F (0) = F (1) = 1 F (m+2) = 1 + F (m + 1) + F (m)

This equation exactly corresponds to the description of the number of calls to a Fibonacci function, and it can be

obtained in the type system. Formally, we can derive the following judgement:

i; ·; toy f ib : ∀i .servF (i) (Nat[i, i]),n : Nat[i, i] w tick.match n {0 7→ ⊙; ; s(m) 7→ · · ·} ◁ F (i) (1)

And from this, we are able to deduce in particular:

·; ·; toy f ib : ∀i .servF (i) (Nat[i, i]) w P | toy f ib⟨3⟩ ◁ F (3)

As F (3) = 5, it is indeed a precise bound on the work. This typing derivation makes a good use of this unknown

index i . Indeed, in the case where i ≥ 2, the typing derivation for (1) reaches a point where it has to type the

subprocess toy f ib⟨m⟩ | toy f ib⟨p⟩. In this case, the type system relies on the type ∀i .servF (i) (Nat[i, i]) to say

that, asm has size i−1, then the complexity of toy f ib⟨m⟩ is F (i−1) and similarly, the complexity of toy f ib⟨p⟩ is

F (i−2), and we recover the equation on the function F described above.

Now, for span, we also design a similar type system with judgements of the shape φ;Φ; Γ s P ◁ K , with again

the property that if φ;Φ; Γ s P ◁ K then K is a bound on the span of P . Intuitively, this type system corresponds

ACM Trans. Program. Lang. Syst.

111:6 • Patrick Baillot and Alexis Ghyselen

to the previous one with additional information about time in types that we do not detail in this section. Some

simple rules are:

φ;Φ; Γ s P ◁ K1 φ;Φ; Γ s Q ◁ K2
(Par)

φ;Φ; Γ s P | Q ◁max(K1,K2)

φ;Φ; ⟨Γ⟩−1 s P ◁ K
(Tick)

φ;Φ; Γ s tick.P ◁ K+1

This time, the complexity of parallel composition is taken as the maximum, and for the (Tick) rule, we need a

new operator ⟨Γ⟩−1 on context that intuitively corresponds to reducing all time information by one, since the

tick makes time advance by one unit.

Similarly to the work, we can derive the judgement:

i; ·; toy f ib : ∀i .serv
G (i)
0 (Nat[i, i]),n : Nat[i, i] s tick.match n {0 7→ ⊙; ; s(m) 7→ · · ·} ◁G (i) (2)

where 0 is a time information indicating that the server is immediately ready to receive, and G (i) is the function

deined by:

G (0) = G (1) = 1 G (m+2) = 1 +max(G (m+1),G (m)) = 1 +G (m+1) =m+2

As G (3) = 3, we again obtain a precise bound for span. Informally, we have the same main idea than before for

work, but because of the rule for parallel composition, when considering the subprocess toy f ib⟨m⟩ | toy f ib⟨p⟩,

the complexity is the maximum and not the sum.

In practice, this time information needed in the type system for span induces some important diferences

between the type system for work and for span, but this will be described in the body of the paper.

3 SEMANTICS OF PI-CALCULUS

Let us deine formally the semantics for π -calculus in this section. We irst deine on processes a congruence

relation ≡: this is the least congruence relation closed under:

P | ⊙ ≡ P P | Q ≡ Q | P P | (Q | R) ≡ (P | Q) | R

(νa) (νb)P ≡ (νb) (νa)P (νa) (P | Q) ≡ (νa)P | Q (when a is not free in Q)

Note that the last rule can always be applied from right to left by α-renaming. Also, one can see that contrary

to usual congruence relation for the π -calculus, we do not consider the rule for replicated input (!P ≡ !P | P)

as it will be captured by the semantics, and α-conversion is not taken as an explicit rule in the congruence. By

associativity, we will often write parallel composition for any number of processes and not only two. Another

way to see this congruence relation is that, up to congruence, a process is entirely described by a set of channel

names and a multiset of processes. Formally, we can give the following deinition.

Deinition 3.1 (Guarded Processes and Canonical Form). A process G is guarded if it has one of the following

shapes:

G :=!a(v).P | a(v).P | a⟨̃e⟩ | tick.P

| match e {0 7→ P ; ; s(x) 7→ Q } | match e {[] 7→ P ; ; x :: y 7→ Q }

We say that a process is in canonical form if it has the form (νã) (G1 | · · · | Gn) withG1, . . . ,Gn guarded processes.

Formally, we now show that all processes have a somewhat unique canonical form, as in [34], Deinition 4.1.2.

Lemma 3.2 (Existence of Canonical Form). For any process P , there is aQ in canonical form such that P ≡ Q .

ACM Trans. Program. Lang. Syst.

Types for Complexity of Parallel Computation in Pi-Calculus • 111:7

!a(v).P | a⟨̃e⟩ →0!a(v).P | P [̃v := ẽ] a(v).P | a⟨̃e⟩ →0 P [̃v := ẽ]

match 0 {0 7→ P ; ; s(x) 7→ Q } →0 P match s(e) {0 7→ P ; ; s(x) 7→ Q } →0 Q[x := e]

match [] {[] 7→ P ; ; x :: y 7→ Q } →0 P match e :: e ′ {[] 7→ P ; ; x :: y 7→ Q } →0 Q[x ,y := e, e ′]

P →0 Q

P | R →0 Q | R

P →0 Q

(νa)P →0 (νa)Q

P ≡ P ′ P ′ →0 Q
′ Q ′ ≡ Q

P →0 Q

Fig. 2. Standard Reduction Rules

The proof is direct by induction on P .

In order to show the uniqueness of the canonical form, let us irst introduce some notations. Recall that α-

renaming is not a rule of ≡. We deine the set name of channel variables and the multiset gp of guarded processes

by:

• name(⊙) = ∅ and gp(⊙) = ∅.
• name(P | Q) = name(P)

∐
name(Q) and gp(P | Q) = gp(P)+gp(Q).

• name(P) = ∅ and gp(P) = [P], when P is guarded.

• name((νa)P) = name(P)
∐
{a} and gp((νa)P) = gp(P).

where
∐

denotes the usual disjoint union, + denotes the usual union of multisets and [P] denotes the multiset

corresponding to the singleton P with multiplicity 1. Then, we can easily show the following lemma by deinition

of the congruence relation.

Lemma 3.3. If P ≡ Q then name(P) = name(Q) and if gp(P) = [P1, . . . , Pn] and gp(Q) = [Q1, . . . ,Qm], then

m = n and for some permutation Q ′1, . . . ,Q
′
n of Q1, . . . ,Qn , we have Pi ≡ Q

′
i for all i .

From this lemma, we can easily deduce the uniqueness of canonical form:

Lemma 3.4 (Uniqeness of Canonical Form). If

(νã) (P1 | · · · | Pn) ≡ (νb̃) (Q1 | · · · | Qm)

with P1, . . . , Pn ,Q1, . . . ,Qm guarded processes, thenm = n and ã is a permutation of b̃. Moreover, for some permuta-

tion Q ′1, . . . ,Q
′
n of Q1, . . . ,Qn , we have Pi ≡ Q

′
i for all i .

We now deine the usual reduction relation for the π -calculus, that we denote P →0 Q . It is deined by the rules

given in Figure 2. Remark that substitution should be well-deined in order to do some reduction steps: channel

names must be substituted by other channel names and base type variables can be substituted by any expression

except channel names. However, when we will consider typed processes, this will always yield well-deined

substitutions.

For now, this relation cannot reduce a process of the form tick.P . Therefore, we need to introduce a reduction

rule for tick. From this semantics, we will deine a reduction corresponding to total complexity (work) and

design a type system for this notion of complexity. Then, we will deine parallel complexity (span) by taking an

expansion of the standard reduction.

Let us give an example of process that will be of interest in the following. We express how to encode a usual

recursive function in π -calculus by describing the Fibonacci function. Contrary to the function of Example 2.1,

we use replicated input with a return channel to send the inal value.

ACM Trans. Program. Lang. Syst.

111:8 • Patrick Baillot and Alexis Ghyselen

!add(n ,m, a) . match (n) {

0 7→ a⟨m⟩ ; ;

s (p) 7→ (νb) (add⟨p ,m, b⟩ | b (q) . a⟨s (q) ⟩)

}

! f ib (n , a) . t ick . match (n) {

0 7→ a⟨0⟩ ; ;

s (m) 7→ match (m) {

0 7→ a⟨1⟩ ; ;

s (p) 7→ (νb) (ν c) (ib⟨m, b⟩ | ib⟨p , c ⟩ | c (x) . b (y) . add⟨x ,y , a⟩)

} }

Fig. 3. The Fibonacci Function

tick.P →1 P
P →1 P

′

P | Q →1 P
′ | Q

Q →1 Q
′

P | Q →1 P | Q
′

P →1 P
′

(νa)P →1 (νa)P ′

Fig. 4. Simple Tick Reduction Rules

Example 3.5 (Fibonacci). This representation of the Fibonacci function is described in Figure 3, where the actual

process P corresponds to the parallel composition of those two servers add and ib.

This example is similar to Example 2.1, but the diferences are that we compute and return the value of the

Fibonacci function using the return channel a. And so, when we do the recursive calls, we irst create new channel

names (b and c) and use them to recover the values of the two recursive calls.

Discussion. For the sake of simplicity, we consider only integers and lists as base types in our calculus, but the

results can be generalized to other algebraic data-types. Moreover, we consider very simple expressions with only

base constructors, but we could enrich the set of expressions with functions (such as addition on integers) and

obtain the same results. Indeed, the core of our results lies in the parallel constructs, and the set of expressions

has little impact on the theoretical results.

4 WORK OF A PROCESS

4.1 Semantics for Work

We irst describe a semantics for the work. The one-cost reduction relation→1 is deined in Figure 4. Intuitively,

this reduction removes exactly one tick at the top-level.

Then from any process P , a sequence of reduction steps toQ is just a sequence of one-step reductions with→0

or→1, and the work complexity of this sequence is the number of→1 steps. In this paper, we always consider

the worst-case complexity so the work of a process is deined as the maximal complexity over all such sequences

of reduction steps from this process.

Notice that with this semantics for work, adding tick in a process does not change its behaviour: we do not

create nor erase reduction paths, we only modify the complexity.

Example 4.1 (Fibonacci). If we consider the process P described in Example 3.5, we can see that the work of

(νa) (P | ib⟨10,a⟩) is F (10) where F is deined, as in Section 2 by:

F (0) = 1 F (1) = 1 F (n+2) = 1+F (n+1)+F (n)

ACM Trans. Program. Lang. Syst.

Types for Complexity of Parallel Computation in Pi-Calculus • 111:9

4.2 Sized Input/Output Types

We now deine a type system to bound the work of a process. The goal is to obtain a soundness result: if a process

P is typable then we can derive an integer expression K such that the work of P is bounded by K .

Our type system relies on the deinition of indices to keep track of the size of values in a process. Those indices

were for example used in [9] and are greatly inspired by [29]. The main idea of those types in a sequential setting

is to control recursive calls by ensuring a decreasing in the sizes.

Deinition 4.2. The set of indices, representing natural numbers, is given by the following grammar.

I , J ,K := i, j,k | f (I1, . . . , In)

The variables i, j,k are called index variables. The set of index variables is denoted V . The symbol f is an

element of a given set of function symbols containing addition and multiplication. We also assume that we have

subtraction as a function symbol, with n−m = 0 whenm ≥ n. Each function symbol f of arity ar(f) comes with

an interpretation ⟦ f ⟧ : Nar(f) → N.

Given an index valuation ρ : V → N, we extend the interpretation of function symbols to indices, noted ⟦I⟧ρ
with:

⟦i⟧ρ = ρ (i) ⟦ f (I1, . . . , Iar(f))⟧ρ = ⟦ f ⟧ (⟦I1⟧ρ , . . . , ⟦Iar(f)⟧ρ)

In an index I , the substitution of the occurrences of i in I by J is denoted I {J/i}.

Deinition 4.3 (Constraints on Indices). Let φ ⊂ V be a set of index variables. A constraint C on φ is an expression

with the shape I ▷◁ J where I and J are indices with free variables in φ and ▷◁ denotes a binary relation on integers.

Usually, we take ▷◁ ∈ {≤, <,=,,}. Finite sets of constraints are denoted by Φ.

For a set φ ⊂ V , we say that a valuation ρ : φ → N satisies a constraint I ▷◁ J on φ, noted ρ ⊨ I ▷◁ J when

⟦I⟧ρ ▷◁ ⟦J⟧ρ holds. Similarly, ρ ⊨ Φ holds when ρ ⊨ C for all C ∈ Φ. Likewise, we note φ;Φ ⊨ C when for all

valuations ρ on φ such that ρ ⊨ Φ we have ρ ⊨ C . Remark that the order ≤ in a context φ;Φ is not total in general.

For example, if φ = {i, j}, then φ; · ⊭ i ≤ ij and φ; · ⊭ ij ≤ i . As usual in type systems, we will use a sequence

notation to represent sets, thus the set {i, j,k } could be represented for example by the sequence (i, j,k), where

we can implicitly change the order in the sequence.

Deinition 4.4. The set of types and base types are given by the following grammars.

T := B | ch(T̃) | in(T̃) | out(T̃) | ∀̃i .servK (T̃) | ∀̃i .iservK (T̃) | ∀̃i .oservK (T̃)

B := Nat[I , J] | List[I , J](B)

Intuitively, in the context φ;Φ, an integer n of type Nat[I , J] must be such that φ;Φ ⊨ I ≤ n ≤ J . Likewise, a

list of type List[I , J](B) must have a length between I and J . We may use Nat[I] to denote the type Nat[I , I] in

order to gain some space, especially in examples of type derivations.

For channel types, we would like to allow for some lexibility by using a subtyping relation. For this reason

we choose to use input/output types [38]. Intuitively, in such a system, in addition to the type of expressions

that can be sent and received through it, a channel is also given a set of capabilities: either it is both an input

and output channel, or it has only one of those capabilities. This is especially useful for subtyping, as an input

channel and an output channel do not behave in the same way with regard to subtyping, as we will explain in

Section 4.3. Unlike in usual input/output types, in this work we also distinguish two kinds of channels: the simple

channels (that we will often call channels), and replicated channels (called servers).

ACM Trans. Program. Lang. Syst.

111:10 • Patrick Baillot and Alexis Ghyselen

v :T ∈ Γ
(Ax)

φ;Φ; Γ ⊢ v :T
(Zero)

φ;Φ; Γ ⊢ 0 : Nat[0, 0]
(Nil)

φ;Φ; Γ ⊢ [] : List[0, 0](B)

φ;Φ; Γ ⊢ e : Nat[I , J]
(Succ)

φ;Φ; Γ ⊢ s(e) : Nat[I+1, J+1]

φ;Φ; Γ ⊢ e : B φ;Φ; Γ ⊢ e ′ : List[I , J](B)
(Cons)

φ;Φ; Γ ⊢ e :: e ′ : List[I+1, J+1](B)

φ;Φ;∆ ⊢ e :U φ;Φ ⊢ Γ ⊑ ∆ φ;Φ ⊢ U ⊑ T
(Sub)

φ;Φ; Γ ⊢ e :T

Fig. 5. Typing Rules for Expressions

The three diferent types for channels and servers correspond to the three diferent sets of capabilities. We

note serv when the server has both capabilities, iserv when it only has input and oserv when it only has output.

Then, for servers, we have additional information: there is a quantiication over index variables, and the index

K stands for the complexity of the process spawned by this server. A typical example could be a server taking

as input a list and a channel, and sending to this channel the sorted list, in time k · n where n is the size of the

list: P = !a(x ,b). · · ·b⟨e⟩ where e represents at the end of the computation the list x sorted. Such a server name

a could be given the type ∀i .servk ·i (List[0, i](B), out(List[0, i](B))). This type means that for all integers i , if

given a list of size at most i and an output channel waiting for a list of size at most i , the process spawned by this

server will stop at time at most k · i . Those bounded index variables ĩ are especially useful for replicated input: as

a replicated input is meant to be used several times with diferent values, it is necessary to allow for this kind of

polymorphism on indices. Moreover, if a replicated input is used to encode a recursion, with this polymorphism

we can take into account the diferent recursive calls with diferent values and diferent complexities. This was

briely explained in Section 2 and it will be formally explained in Example 4.5.

We can now present the type system for work. A judgement for an expression has the shape φ;Φ; Γ ⊢ e :T ,

where φ is a set of index variables, Φ a set of constraints, Γ a typing context of the shape v1 :T1, · · · vm :Tm , e is

an expression and T is a type. The set of index variables φ is such that the free index variables in Φ, Γ and T are

included in φ. Intuitively, this typing means that if the constraints in Φ are satisied, then e has type T in the

context Γ. In this work, almost all relations (such as e.g. subtyping, typing relation) depend on a context φ;Φ, and

φ always describes the set of usable free index variables, and Φ a set of constraints on φ. Rules for expressions are

given in Figure 5. We use the notation φ;Φ; Γ ⊢ ẽ : T̃ for a sequence of typing judgements for expressions in the

tuple ẽ . The rules are standard for a sized type system. We have the usual (Ax) rule, then both (Zero) and (Nil)

rules indicate the values with size zero, and both (Succ) and (Cons) rules indicate that those constructors increase

size by one. The (Sub) rule allows to change the typing derivation according to the subtyping relation that will be

deined in Section 4.3.

We now present the typing rules for processes. A judgement has the shape φ;Φ; Γ w P ◁K , where K is an index,

which means that under the constraints Φ, in the context Γ, the process P is typable and its work complexity is

bounded by K . The rules are described in Figure 6a and Figure 6b. Figure 6b describes rules speciic to the work,

whereas rules in Figure 6a will be reused for the span. Thus, we use the notation ⊢ in Figure 6a instead of w to

express that they are not speciic to work.

The rules can be seen as a combination of input/output typing rules with rules found in a size type system for

functional programs. The common rules that are used for both the span and work type systems are the rules for

simple constructors of π -calculus and for sizes in pattern matching. The (Pzero) rule states that the empty process

ACM Trans. Program. Lang. Syst.

Types for Complexity of Parallel Computation in Pi-Calculus • 111:11

(Pzero)
φ;Φ; Γ ⊢ ⊙ ◁ 0

φ;Φ; Γ,a :T ⊢ P ◁ K
(Nu)

φ;Φ; Γ ⊢ (νa)P ◁ K

φ;Φ; Γ ⊢ e : Nat[I , J] φ; (Φ, I ≤ 0); Γ ⊢ P ◁ K φ; (Φ, J ≥ 1); Γ,x : Nat[I−1, J−1] ⊢ Q ◁ K
(Intpm)

φ;Φ; Γ ⊢ match e {0 7→ P ; ; s(x) 7→ Q } ◁ K

φ;Φ; Γ ⊢ e : List[I , J](B)

φ; (Φ, I ≤ 0); Γ ⊢ P ◁ K

φ; (Φ, J ≥ 1); Γ,x : B,y : List[I−1, J−1](B) ⊢ Q ◁ K
(Listpm)

φ;Φ; Γ ⊢ match e {[] 7→ P ; ; x :: y 7→ Q } ◁ K

φ;Φ;∆ ⊢ P ◁ K ′ φ;Φ ⊢ Γ ⊑ ∆ φ;Φ ⊨ K ′ ≤ K
(Sub)

φ;Φ; Γ ⊢ P ◁ K

(a) Common Typing Rules for Processes

φ;Φ; Γ w P ◁ K1 φ;Φ; Γ w Q ◁ K2
(Par)

φ;Φ; Γ w P | Q ◁ K1+K2

φ;Φ; Γ w P ◁ K
(Tick)

φ;Φ; Γ w tick.P ◁ K+1

φ;Φ; Γ ⊢ a : in(T̃) φ;Φ; Γ, ṽ : T̃ w P ◁ K
(In)

φ;Φ; Γ w a (̃v).P ◁ K

φ;Φ; Γ ⊢ a : out(T̃) φ;Φ; Γ ⊢ ẽ : T̃
(Out)

φ;Φ; Γ w a⟨̃e⟩ ◁ 0

φ;Φ; Γ ⊢ a : ∀̃i .iservK (T̃) (φ, ĩ);Φ; Γ, ṽ : T̃ w P ◁ K
(Iserv)

φ;Φ; Γ w !a (̃v).P ◁ 0

φ;Φ; Γ ⊢ a : ∀̃i .oservK (T̃) φ;Φ; Γ ⊢ ẽ : T̃ { J̃ /̃i}
(Oserv)

φ;Φ; Γ w a⟨̃e⟩ ◁ K { J̃ /̃i}

(b) Work Typing Rules for Processes

Fig. 6. Typing Rules for Work

is typable, and it has complexity zero. The (Nu) rules allows to add a new name in the context, without changing

the complexity. The pattern matching rule for integers (Intpm) is a standard rule for sized types [9]. It says that

if an integer e is between I and J , then in the irst branch of the pattern matching, we can assume that I ≥ 0

since e is equal to 0 in this branch. Similarly, in the second branch, we can assume that J ≥ 1 since e should be

greater than 1. In this case, the predecessor x has a size between I−1 and J−1. The rule (Listpm) is similar. Then,

we have again the usual (Sub) rule, which can also arbitrary increase the upper-bound on the complexity. This is

especially important because, if we look back at the (Intpm) rule, it considers that both branches must have the

same complexity K , but in practice they may have diferent complexities K1 and K2. However, thanks to the (Sub)

rule, we can always consider a greater upper bound, in particular max(K1,K2). Thus, even if the branches have

diferent complexities, we can always make them equal by considering the maximum with the (Sub) rule.

Rules that are speciic to the work type system concern important constructors in the π -calculus. The (Par)

rule expresses that the work of a parallel composition is the sum of the work of the two suprocesses. The (Tick)

rules expresses that the tick constructor increases complexity by 1. The (In) rule states that in order to type an

input, the continuation P should be typable in a context where the variables ṽ are given the types T̃ , and the

complexity of this input is the complexity of its continuation. Dually, in the (Out) rule, the expressions that are

ACM Trans. Program. Lang. Syst.

111:12 • Patrick Baillot and Alexis Ghyselen

sent on this channel must have the expected types. As the complexity of a synchronization is already taken into

account in the rule (In), the complexity in the (Out) rule is zero.

Finally, we have the rules for servers. In the rule (Iserv), the continuation P must satisfy the assumption given

in the typing ∀̃i .iservK (T̃): with the new index variables ĩ , in a context where ṽ are given the expected types T̃ ,

the complexity of P must be K . Contrary to the (In) rule, this time the complexity K is captured in the type, but

the bottom judgment has complexity zero. This is because in this case, we do now want a replicated input to have

a non-zero complexity. Indeed, by deinition of the reduction relation→0, a replicated input is never modiied

through a reduction. Thus, if a process has a replicated input, then this replicated input is retained in the normal

form (if it exists). As a consequence, a non-zero complexity on an replicated input would always be an imprecise

estimation of the complexity. Moreover, the complexity of a call to a server depends on the instantiation of ĩ that

is decided by an output to the server. That is why, in the last rule (Oserv), we have to ind an instantiation J̃ of the

index variables ĩ such that the types of expressions correspond to this instantiation. The complexity then depends

on this instantiation. A typical example is if a server represents a function with quadratic complexity in the size

of its argument, with type ∀i .servi
2
(Nat[i, i]), and we call this server with the value 10, then we instantiate i by

10 and the overall complexity of this call to the server is 102 = 100.

4.3 Subtyping

As explained before, with those types comes a notion of subtyping, in order to have some lexibility on bounds.

Subtyping for base types is described by the rules of Figure 7a. Both rules (Nat) and (List) express that we can

always consider less precise bounds on the sizes.

Before explaining formally the rule for channel types, let us irst introduce why input and output have diferent

behaviours with regard to subtyping.

Let us consider, for the sake of the example, a type Nat for integers, and a type Real for real numbers, with

Nat ⊑ Real. Subtyping can be understood in the following way: in any process where a value v is used as a real,

then it is safe to feed this process with an integer. So, if T ⊑ U , then in a process that uses a value of typeU , it is

safe to consider that this value has type T instead.

Let us apply the same reasoning to channels. Consider a channel a that receives a message, in a process a(v).P .

We suppose that the process uses the channel a as a channel working with real numbers. Then, v is used as a real

number in P , so it is safe to use a value v of type Nat instead. Overall, it is thus safe to assume this input is done

on a value of type Nat. So, for an input channel, we should have : in(Nat) ⊑ in(Real).

Now, consider a channel a that sends a message, in a process a⟨e⟩. We suppose that the process uses the channel

a as a channel working with integers. Then, the message e sent on this channel is an integer. In particular, it is

also a real number. So, it is safe to assume that all messages sent on this channel are real numbers, and we should

have out(Real) ⊑ out(Nat).

If we look at the variance of the subtyping relation, for an input channel we have covariance, and for an output

channel we have contravariance. Then, a channel with both capabilities should have invariance. That is why it is

important to make a distinction between input channels and output channels.

Formally, subtyping for server types is described in Figure 7b, the rules for channel types can be deduced from

the rules for servers. The irst two rules (I/O to In) and (I/O to Out) state that we can always remove a capability

from a type. Then, the (I/O) rule states that a type with both capabilities should be invariant in its type. The

(In) rule expresses covariance for types. As for complexity, if the continuation has a complexity bounded by K ′

then it is safe to bound it by K greater than K ′. Dually, the (Out) rule expresses contravariance for types. As for

complexity, it does not harm the typing to consider that all calls to a server take less time than expected. Finally,

the (Trans) rule allows for transitivity of the subtyping relation. This rule is only useful to combine the rules (I/O

to In) and (In) or (I/O to Out) and (Out).

ACM Trans. Program. Lang. Syst.

Types for Complexity of Parallel Computation in Pi-Calculus • 111:13

φ;Φ ⊨ I ′ ≤ I φ;Φ ⊨ J ≤ J ′
(Nat)

φ;Φ ⊢ Nat[I , J] ⊑ Nat[I ′, J ′]

φ;Φ ⊨ I ′ ≤ I φ;Φ ⊨ J ≤ J ′ φ;Φ ⊢ B ⊑ B′
(List)

φ;Φ ⊢ List[I , J](B) ⊑ List[I ′, J ′](B′)

(a) Subtyping Rules for Base Sized Types

(I/O to In)
φ ;Φ ⊢ ∀̃i .servK (T̃) ⊑ ∀̃i .iservK (T̃)

(I/O to Out)
φ ;Φ ⊢ ∀̃i .servK (T̃) ⊑ ∀̃i .oservK (T̃)

(φ, ĩ);Φ ⊢ T̃ ⊑ Ũ (φ, ĩ);Φ ⊢ Ũ ⊑ T̃ (φ, ĩ);Φ ⊨ K = K ′
(I/O)

φ ;Φ ⊢ ∀̃i .servK (T̃) ⊑ ∀̃i .servK
′
(Ũ)

(φ, ĩ);Φ ⊢ T̃ ⊑ Ũ (φ, ĩ);Φ ⊨ K ′ ≤ K
(In)

φ ;Φ ⊢ ∀̃i .iservK (T̃) ⊑ ∀̃i .iservK
′
(Ũ)

(φ, ĩ);Φ ⊢ Ũ ⊑ T̃ (φ, ĩ);Φ ⊨ K ≤ K ′
(Out)

φ ;Φ ⊢ ∀̃i .oservK (T̃) ⊑ ∀̃i .oservK
′
(Ũ)

φ ;Φ ⊢ T ⊑ T ′ φ ;Φ ⊢ T ′ ⊑ T ′′
(Trans)

φ ;Φ ⊢ T ⊑ T ′′

(b) Subtyping Rules for Server Types

Fig. 7. Subtyping

We also extend subtyping to contexts, and we write Γ ⊑ ∆ when Γ and ∆ have the same domain and for each

variable v :T ∈ Γ and v :T ′ ∈ ∆, we have T ⊑ T ′.

4.4 Example

Example 4.5. Let us take again the process for Fibonacci described in Example 3.5. We irst give a typing for add.
As there is no tick in add, this typing only shows how input/output types and sized types behave. A simpliied
version of this typing is given in Figure 8a, where we ignore the easy premises, in particular for axioms (with
rule (Ax)). For example, in the irst rule (Iserv), there should be a premise

·; ·;add : ∀i, j .serv0 (Nat[i],Nat[j], out(Nat[i+j])) ⊢ add : ∀i, j .iserv0 (Nat[i],Nat[j], out(Nat[i+j]))

But we ignore this as it is a simple derivation with the rules (Sub), (I/O to In) and (Ax). Also, recall that Nat[I]

denotes the typeNat[I , I]. There are several things to notice in this typing. First, we can see a use of polymorphism.

With the irst (Iserv) rule, the variables (n,m,a) are given the types Ũ (i, j), but in the recursive call add⟨p,m,b⟩,

those variables (p,m,b) have the the types Ũ (i−1, j), expressing that the size of the irst argument decreases

by one. Moreover, constraints on indices are important to this typing. Indeed, in order to prove the following

subtyping relations:

φ; (i ≤ 0) ⊢ Nat[j] ⊑ Nat[i+j] φ; (i ≥ 1) ⊢ Nat[(i−1)+j+1] ⊑ Nat[i+j]

we have to prove

φ; (i ≤ 0) ⊨ j = i+j φ; (i ≥ 1) ⊨ (i−1)+j+1 = i+j

The irst equality relies on the fact that i ≤ 0 and so i = 0, and the second equality relies on i ≥ 1 because

otherwise we cannot deduce that (i−1)+1 = i , since 0−1 = 0 by deinition. This behaviour of sizes in a type

derivation is similar to the one in [9] for functional programs.

We now describe the typing for the Fibonacci function. A simpliied type derivation is given in Figure 8b, and

we detail here the important steps of this derivation. We use the Fibonacci function in indices, denoted Fib (I),

and we also use the function F deined in Example 4.1.

To begin with, we start with an (Iserv) rule, and we must prove that the continuation of the ib server has the

expected complexity F (i). As F (i) is always greater than 1, we have i; · ⊨ (F (i)−1)+1 = F (i), and thus after the

ACM Trans. Program. Lang. Syst.

111:14 • Patrick Baillot and Alexis Ghyselen

φ ; (i ≤ 0) ⊨ j = i+j
(Nat)

φ ; (i ≤ 0) ⊢ Nat[j] ⊑ Nat[i+j]
(Sub)

φ ; (i ≤ 0); Γ ⊢m : Nat[i+j]
(Out)

(i, j); (i ≤ 0); Γ w a⟨m⟩ ◁ 0

(Ax)
φ ;Φ;∆ ⊢ (p,m, b) : Ũ (i−1, j)

(Oserv)
φ ;Φ;∆ w add⟨p,m, b⟩ ◁ 0

(Ax)
φ ;Φ;∆′ ⊢ q : Nat[(i−1)+j]

(Suc)
φ ;Φ;∆′ ⊢ s(q) : Nat[(i−1)+j+1]

φ ;Φ ⊨ (i−1)+j+1 = i+j
(Nat)

φ ;Φ ⊢ Nat[(i−1)+j+1] ⊑ Nat[i+j]
(Sub)

φ ;Φ;∆′ ⊢ s(q) : Nat[i+j]
(Out)

φ ;Φ;∆, q : Nat[(i−1)+j] w a⟨s(q)⟩ ◁ 0
(In)

φ ;Φ;∆ w b (q).a⟨s(q)⟩ ◁ 0
(Par)

φ ;Φ; Γ, p : Nat[i−1], b : out(Nat[(i−1)+j]) w add⟨p,m, b⟩ | b (q).a⟨s(q)⟩ ◁ 0
(Nu)

(i, j); (i ≥ 1); Γ, p : Nat[i−1] w (νb) · · · ◁ 0
(Intpm)

(i, j); ·; add :T , n : Nat[i],m : Nat[j], a : out(Nat[i+j]) w match n {0 7→ a⟨m⟩; ; s(p) 7→ · · · } ◁ 0
(Iserv)

·; ·; add : ∀i, j .serv0 (Nat[i], Nat[j], out(Nat[i+j])) w !add(n,m, a). · · · ◁ 0

Ũ (i, j) := Nat[i], Nat[j], out(Nat[i+j]) T := ∀i, j .serv0 (Ũ (i, j)) φ := (i, j) Φ := (i ≥ 1)

Γ := add :T , n : Nat[i],m : Nat[j], a : out(Nat[i+j]) ∆ := Γ, p : Nat[i−1], b : out(Nat[(i−1)+j]) ∆′ := ∆, q : Nat[(i−1)+j]

(a) A Typing Without Complexity for Addition

(Ax)
i ;Φ;∆ ⊢ (m, b) : Ṽ (i−1)

(Oserv)
i ;Φ;∆ w ib⟨m, b⟩ ◁ F (i−1)

(Ax)
i ;Φ;∆ ⊢ (p, c) : Ṽ (i−2)

(Oserv)
i ;Φ;∆ w ib⟨p, c⟩ ◁ F (i−2)

i ;Φ; ⊨ F ib (i−1)+F ib (i−2) = F ib (i)

i ;Φ;∆′′ ⊢ (x, y, a) : Ũ (F ib (i−1), F ib (i−2))
(Oserv)

i ;Φ;∆′′ w add⟨x, y, a⟩ ◁ 0
(In)

i ;Φ;∆′ w b (y).add⟨x, y, a⟩ ◁ 0
(In)

i ;Φ;∆ w c (x).b (y).add⟨x, y, a⟩ ◁ 0
(Par)

i ;Φ;∆ w ib⟨m, b⟩ | ib⟨p, c⟩ | c (x).b (y).add⟨x, y, a⟩ ◁ F (i−1)+F (i−2)+0 i ;Φ ⊨ F (i−1)+F (i−2)+0 ≤ F (i)−1
(Sub)

i ;Φ;∆ w ib⟨m, b⟩ | ib⟨p, c⟩ | c (x).b (y).add⟨x, y, a⟩ ◁ F (i)−1
(Nu)

i ; (i ≥ 1, i−1 ≥ 1); Γ,m : Nat[i−1], p : Nat[i−2], b : out(Nat[F ib (i−1)]) w (νc) · · · ◁ F (i)−1
(Nu)

i ; (i ≥ 1, i−1 ≥ 1); Γ,m : Nat[i−1], p : Nat[i−2] w (νb) (νc) · · · ◁ F (i)−1
(Intpm)

i ; (i ≥ 1); Γ,m : Nat[i−1] w matchm {0 7→ a⟨1⟩; ; s(p) 7→ · · · } ◁ F (i)−1
(Intpm)

i ; ·; Γ w match n {0 7→ a⟨0⟩; ; s(m) 7→ · · · } ◁ F (i)−1
(Tick)

i ; ·; Γ w tick.match n {0 7→ a⟨0⟩; ; s(m) 7→ · · · } ◁ (F (i)−1)+1 i ; · ⊨ (F (i)−1)+1 ≤ F (i)
(Sub)

i ; ·; add :T , ib : S, n : Nat[i], a : out(Nat[F ib (i)]) w tick.match n {0 7→ a⟨0⟩; ; s(m) 7→ · · · } ◁ F (i)
(Iserv)

·; ·; add :T , ib : ∀i .servF (i) (Nat[i], out(Nat[F ib (i)])) w !ib(n, a).tick. · · · ◁ 0

Ũ (i, j) := Nat[i], Nat[j], out(Nat[i+j]) T := ∀i, j .serv0 (Ũ (i, j)) Ṽ (i) := Nat[i], out(Nat[F ib (i)]) S := ∀i .servF (i) (Ṽ (i))

Γ := add :T , ib : S, n : Nat[i], a : out(Nat[F ib (i)]) ∆ := Γ,m : Nat[i−1], p : Nat[i−2], b : out(Nat[F ib (i−1)]), c : out(Nat[F ib (i−2)])

∆′ := ∆, x : Nat[F ib (i−2)] ∆′′ := ∆′, y : Nat[F ib (i−1)] Φ := (i ≥ 1, i−1 ≥ 1)

(b) A Typing for Fibonacci (Work)

Fig. 8. Work Typing of Fibonacci

(Tick) rule, we have to prove that the remaining subprocess has complexity F (i)−1. We have then two pattern

matchings. We ignore the case for zero and one but they are very similar to derivation for add: we can use the

information (i ≤ 0) or (i ≥ 1, i−1 ≤ 0) to show that the output to server has the expected type. In the main

branch of pattern matching, we have the constraints Φ := (i ≥ 1, i−1 ≥ 1), which are equivalent to (i ≥ 2), stating

that the size of n is greater than 2.

ACM Trans. Program. Lang. Syst.

Types for Complexity of Parallel Computation in Pi-Calculus • 111:15

Then, an important step is for the judgement

i;Φ;∆ w ib⟨m,b⟩ | ib⟨p, c⟩ | c (x).b (y).add⟨x ,y,a⟩ ◁ F (i)−1

We would like to use a (Par) rule but to do that we need a complexity with the shape of a sum. So, we use a (Sub)

rule before to transform this complexity F (i)−1 into F (i−1) + F (i−2) + 0, which comes from the deinition of F

given in Example 4.1. Now that we have a sum, with the (Par) rule, we obtain three independent premises. The

irst two premises correspond to a recursive call to ib, and we again use polymorphism: we show that as we took

(n,a) of types Ṽ (i), then we have (m,b) of types Ṽ (i−1) and (p, c) of types Ṽ (i−2). Thus, the irst recursive call

ib⟨m,b⟩ is a call to ib with size i−1, and it has then complexity F (i−1) and the second call ib⟨p, c⟩ is a call to ib

with size i−2 and it has then complexity F (i−2).

Finally, the third premise corresponds to adding the results of the previous recursive calls. We irst recover those

results with two (In) rules, and then we have to show that add⟨x ,y,a⟩ is a well-typed call to add. Again we use

polymorphism and we show that (x ,y,a) has type Ũ (Fib (i−1), Fib (i−2)). Indeed, x has type Nat[Fib (i−1)], y has

type Nat[Fib (i−2)], and so we only have to show that a has type out(Nat[Fib (i−1)+Fib (i−2)]). As in ∆′, we have

the hypothesis a :out(Nat[Fib (i)]), we obtain this with subtyping, using the fact i;Φ; ⊨ Fib (i−1)+Fib (i−2) = Fib (i).

4.5 Soundness of the Type System

We now state the properties of this typing system. We do not detail the proofs as all proofs are a simpler version

than the one for span that will be described in later sections. In this type system for work, we can easily obtain

some properties such as weakening and strengthening and that index variables can be substituted by any index

in a typing derivation. Finally, we have that substitution in processes preserves typing. With those properties, we

obtain the usual subject reduction.

Theorem 4.6 (Subject Reduction). If φ;Φ; Γ w P ◁ K and P →0 Q then φ;Φ; Γ w Q ◁ K .

Then, we also obtain the following theorem.

Theorem 4.7 (uantitative Subject Reduction). If P →1 Q and φ;Φ; Γ w P ◁K then we have φ;Φ; Γ w Q ◁K ′

with φ;Φ ⊨ K ′+1 ≤ K .

Proof. By induction on P →1 Q . All the cases are direct, since the rule for parallel composition is the sum

of complexity and the rule for ν does not change the complexity. Finally, the rule for tick gives directly this

property. □

As a consequence we almost immediately obtain that K is indeed a bound on the work of P if we have

φ;Φ; Γ w P ◁ K . Formally, we have:

Theorem 4.8 (Work Complexity Bound). If φ;Φ; Γ w P ◁ K then, if we call n the work complexity of P , we

have φ;Φ ⊨ K ≥ n. In particular, for any ρ : φ → N such that ρ ⊨ Φ, we have ⟦K⟧ρ ≥ n.

This complexity bound only makes sense if the set of constraint Φ is satisiable.

Discussion. We emphasize on the fact that this soundness result is easily adaptable to similar processes and type

systems for work. As stated before, we can enrich processes with other algebraic data-types and the proof can

easily be adapted. An interesting consequence of this soundness theorem is that it immediately gives soundness

for any subsystem. In particular, we detail in the next section a (slightly) weaker typing system where the shape

of types are restricted in order to have an inference procedure close to the one in [4].

Also note that additionally to complexity information, the type system also guarantees bounds on the size of

values. For instance if Γ contains a : ch(Nat[I , J]), then any term transmitted through the channel a during an

ACM Trans. Program. Lang. Syst.

111:16 • Patrick Baillot and Alexis Ghyselen

execution will be of integer type and of size between I and J . If one was not interested in the work but only by

bounds on the sizes of values, one could consider a type system whose rules are obtained by dropping K in all

rules of Figure 6a and Figure 6b.

Moreover, there is an asymmetry between servers and simple channels in our type system: for servers,

complexity comes from output and thus an index to keep track of the complexity is needed in the type, whereas

for simple channels, complexity comes from input. However, this asymmetry is not necessary for the work type

system. Indeed, servers need to have those typing rules, as explained before because of polymorphism, but for

simple channels we have a choice: we can either keep the current type system or modify simple channel types

such that they are similar to servers types (with polymorphism over indexes and an index for complexity in the

type). We chose to present the current type system irst because this way we can show this alternative choice of

typing for simple channels instead of mimicking servers, and because this asymmetry is essential for the span

type system because of the way we use time information. This alternative choice of typing is presented in the

next section, in Figure 9.

Another interesting type system would be a non-syntax directed type-system for which we have the choice

between those two typing behaviours for simple channels. For the sake of simplicity, we avoid presenting this

type system, but in fact the two choices have advantages and disadvantages and so allowing two diferent choices

of typing can increase expressivity.

4.6 A Hint for Type Inference for Work

In order to infer a sized type for a process, we reduce the problem of inding a type derivation to that of satisfying

a set of constraints on integers expressions. This idea has already been applied to sized type systems for functional

languages [4, 29, 39] and has led to interesting results. Intuitively, this type inference procedure can be seen as a

size reconstruction problem: we start from a type derivation without any size annotations, and we try to annotate

it with sizes. We introduce for that variables for integer expressions, generate constraints on those variables and

inally solve this set of constraints by inding an appropriate expression for each variable. Here is a very simple

and informal example in π -calculus:

Γ ⊢ a : ch(Nat)

Γ, n : Nat ⊢ b : ch(Nat)

Γ, n : Nat ⊢ n : Nat

Γ, n : Nat ⊢ s(n) : Nat

Γ, n : Nat ⊢ b⟨s(n)⟩

Γ ⊢ a (n).b⟨s(n)⟩

with Γ := a : ch(Nat),b : ch(Nat). We then reproduce this type derivation with additional variables for sizes, and

some inferred constraints (for the sake of simplicity, we only consider upper bounds):

∆ ⊢ a : ch(Nat[0, I])

∆, n : Nat[0, I] ⊢ b : ch(Nat[0, J])

∆, n : Nat[0, I] ⊢ n : Nat[0, I] · ⊨ J = I+1

∆, n : Nat[0, I] ⊢ s(n) : Nat[0, J]

∆, n : Nat[0, I] ⊢ b⟨s(n)⟩

∆ ⊢ a (n).b⟨s(n)⟩

with ∆ := a : ch(Nat[0, I]),b : ch(Nat[0, J]). So, we only have one constraint in this typing, J = I+1. Thus by

substituting the variable J by the expression I+1 we obtain a valid typing for any expression I . Of course, in

practice, constraints will be more complex, including for example recursive equations for an expression I when

we consider servers.

In this section, we do not present the procedure for our type system, but we introduce a new system (that we

call the intermediate type system) that is weaker that the previous one, but for which constraints inference will

be simpler. Moreover, with this new system, we will obtain simpler constraints, essentially replacing constraints

of the shape φ;Φ ⊨ I ▷◁ J by φ ′; · ⊨ I ′ ▷◁ J ′, by removing the need for a set of constraints Φ in hypothesis.

ACM Trans. Program. Lang. Syst.

Types for Complexity of Parallel Computation in Pi-Calculus • 111:17

φ;Φ; Γ w

alt
P ◁ K1 φ;Φ; Γ w

alt
Q ◁ K2

(Par)
φ;Φ; Γ w

alt
P | Q ◁ K1+K2

φ;Φ; Γ w

alt
P ◁ K

(Tick)
φ;Φ; Γ w

alt
tick.P ◁ K+1

φ;Φ; Γ ⊢ a : ∀̃i .inK (T̃) (φ, ĩ);Φ; Γ, ṽ : T̃ w

alt
P ◁ K

(Rin)
φ;Φ; Γ w

alt
!a (̃v).P ◁ 0

φ;Φ; Γ ⊢ a : ∀̃i .inK (T̃) (φ, ĩ);Φ; Γ, ṽ : T̃ w

alt
P ◁ K

(In)
φ;Φ; Γ w

alt
a (̃v).P ◁ 0

φ;Φ; Γ ⊢ a : ∀̃i .outK (T̃) φ;Φ; Γ ⊢ ẽ : T̃ { J̃ /̃i}
(Out)

φ;Φ; Γ w

alt
a⟨̃e⟩ ◁ K { J̃ /̃i}

Fig. 9. Typing Rules for Processes for Work Inference

To do this, we will mimic the work of [4] for functional programs. In this work, usual types for functional

programs are annotated with sizes, and in particular the arrow type T → U is given a type ∀̃i .T → U , with a

polymorphism similar to the one we have for server types. After deining a restriction of those arrow types (called

canonical types), this paper describes a sound and complete inference procedure for this type system. Intuitively,

in [4], the canonical form of a type forces the input of functions to have the shape Nat[0, i] (or List[0, i](B)) for

some new fresh variable i . Then more complex indices (such as e.g. i2+j or other expressions) can occur in types

at positions that correspond to outputs.

Our intermediate type system will use those canonical forms. Then, we show that this system is a restriction of

a more general system for work so that we automatically deduce the soundness of the intermediate type system

(with regard to work complexity). We can then use a similar inference procedure as [4], that we will not detail

here. To sum up, we irst generate constraints from a process such that if this set of constraints is satisiable,

then the process is typable (soundness). In order to show expressivity, we also want that if a process is typable,

then the generated set of constraints is indeed satisiable (completeness). With this, we know that we do not

lose expressivity with the reduction to a constraint satisfaction problem. Then the second step is to give those

constraints to a SMT solver and hope that it can solve it (recall that this is undecidable in general).

We begin by designing an alternative type system for work, by changing the behaviour of channels, in order to

have a quantiication for channel variables even for channel types, then we merge server and channel together.

This way, we obtain a type for channel very close to the arrow type in [4].

Deinition 4.9. The set of types and base types for the intermediate type system are given by the following

grammar.

B := Nat[I , J] | List[I , J](B) T := B | ∀̃i .chK (T̃) | ∀̃i .inK (T̃) | ∀̃i .outK (T̃)

We consider as subtyping rules the ones from Figure 7a and Figure 7b where serv is replaced by ch. The typing

rules are given by Figure 5, Figure 6a and Figure 9. Thus, the only modiication with regard to the system we

presented before is that channel types and server types are not distinct anymore. We then obtain the following

theorem, by a proof similar to the one from the previous section:

Theorem 4.10. If φ;Φ; Γ w

alt
P ◁ K then, if we call n the work complexity of P , we have φ;Φ ⊨ K ≥ n.

ACM Trans. Program. Lang. Syst.

111:18 • Patrick Baillot and Alexis Ghyselen

4.6.1 The Intermediate Type System. A natural way to design a type inference procedure for our system is to start

with a standard algorithm that, given a process P , produces a classical type for it, and then devise a procedure

that decorates this classical type derivation with sizes and complexity information, in order to obtain a valid

derivation.

For now, we only have a type system that gives a sound bound on the complexity, described in Figure 9.

However, this type system relies on constraints of the shape φ;Φ ⊨ I ▷◁ J . As explained before, we would like to

have simpliied constraints, without hypotheses Φ, so that we can use for example the solver of [4]. Thus, we

restrict the type system it in order to obtain a system very close to [4] allowing us to mimic the type inference

procedure of this paper. We call this type system the intermediate type system.

Deinition 4.11. For this intermediate type system, we consider the following grammar.

Bi := Nat[0, I] | List[0, I] | α , β , . . . Ti := Bi | ∀̃i .ch
K (T̃i) | A,B, . . .

Where α , β are base type variables and A,B are type variables, that we use in the type inference procedure

when the type of a value is unknown. Then, we deine types in canonical form, as in [4].

Deinition 4.12 (Canonical Intermediate Types). A canonical intermediate type is a type of this shape:

Bc := Nat[0, i+n] | List[0, i+n](Bc) | α , β , . . . Tc := Bc | ∀i1, . . . , im .ch
K (T̃c) | A,B, . . .

Where i is an index variable, n an integer and in the channel type, the index variables of K belong to {i1, . . . , im }

andm is equal to the number of base type index occurrences in T̃c , denoted btocc(T̃c), and deined by:

• btocc(T 1
c , · · · ,T

k
c) = btocc(T 1

c)+ · · · +btocc(T
k
c)

• btocc(Nat[0, i]) = 1

• btocc(List[0, i](Bc)) = 1+btocc(Bc)

• btocc(∀i1, . . . , im .ch
K (T̃c)) = btocc(A) = btocc(α) = 0

Then, we also ask that for a canonical intermediate channel type, all the indices for base types corresponding to

the base type index occurences are an actual index variable (thus n = 0), that they are all distinct, and in the left

to right order (thus, we use all the diferent index variable names exactly once in base types, and in a speciic

order). Moreover, as we are interested in an implementable procedure, a special focus is given to names of binding

variables. We ask explicitly that in a canonical type, a binding name is never used twice in a type.

Example 4.13. The following type is a canonical channel type:

∀i11, i
1
2, i

1
3 .ch

(i11+i
1
3) (Nat[0, i11],∀i

2
1 .ch

0 (Nat[0, i21], ch
3 ()), List[0, i12](List[0, i

1
3](α)),A)

The irst quantiication is over 3 index variables because there are exactly 3 positions in this type in which we

can put an index variable without crossing another quantiier. Then, those 3 variables are indeed ordered from

left to right. All the subtypes are also canonical, and notice that base type variables (A) and type variables (α) are

not taken into account in the counting of index variables.

The use of canonical types is mainly to simplify the inference procedure. First, by ixing the number of variables

after a quantiication, we avoid having to guess the number of variables. Then, we try to put those variables at

strategic locations, such that all variables give some useful information (i.e the size of one base type). Moreover,

with a canonical type, all unknown sizes are just a unique variable i and not a possibly convoluted expression, so

that we can change the pattern matching rule to get rid of the constraints Φ of the previous type system, and we

obtain in general simpler constraints.

Obviously, a canonical intermediate type is an intermediate type. In our intermediate type system, we will ask

that all channel names have a canonical type. Moreover, in a context Γ, we will require all types to be canonical.

ACM Trans. Program. Lang. Syst.

Types for Complexity of Parallel Computation in Pi-Calculus • 111:19

Formally, a typing judgment has the shape φ; Γ w

int
P ◁ K where Γ contains only canonical types, and there is

no set of constraints Φ. Subtyping is deined as a restriction of the previous subtyping relation to intermediate

types, and the type system is given by Figure 10a and Figure 10b. One can see that the invariants described above

on canonical types are respected. Also, there are no subtyping rules in this type system, as canonical types do

not need subtyping, and the modiication on the complexity bound are internalized in the useful rules. This

way, all rules are syntax-directed, which simpliies the inference procedure. Moreover, in this typing, and for the

following of this section, we only consider processes with well written pattern matching, meaning that pattern

matching can only be done on base type variables (otherwise, the pattern matching is not useful...). Thanks to

this restriction, we can consider that the base type element in a pattern matching is a canonical type, and this

helps us to get rid of the previous rule for pattern matching where we needed to add constraints in the branches.

The idea is that instead of adding the constraint i ≥ 1 to the typing judgement, we perform a substitution of i by

an index of the shape i+1. Thus i now becomes the size of the predecessor (or the tail for a list). Without this set

of constraints Φ in a typing, we obtain a type system closer to the one of [4]. To sum up, the rules are similar to

the one for w

alt
, but subtyping is internalized in the rules, and pattern matching is modiied in order to get rid of

the constraints Φ.

Now, let us show that if a process is typable with w

int
, then it is typable with w

alt
.

Theorem 4.14. If a process P is such that φ; Γ w

int
P ◁K , then for any Γsub obtained from Γ by substituting all type

variables by actual types, we have φ; ·; Γsub w

alt
P ◁ K .

From this, a direct corollary is that if φ; Γ w

int
P ◁ K , then K is a bound on the work of P .

Proof. The proof is done by induction on φ; Γ w

int
P ◁K . The type variables do not cause any problem, since in

a intermediate typing, if we can use a type variable then it means that this type is never really inspected. When

typing an expression, this is rather straightforward, using subtyping for expressions. Again, for typing rules for

processes, many cases are straightforward just by using the subtyping rule of Figure 6a. Thus, we only detail the

interesting case.

If the typing is

φ ; Γ w

int
v : Nat[0, i] φ ; Γ w

int
P ◁ K1 φ ; · ⊨ K1 ≤ K φ ; Γ {i+1/i }, x : Nat[0, i] w

int
Q ◁ K2 φ ; · ⊨ K2 ≤ K {i+1/i }

φ ; Γ w

int
match v {0 7→ P ; ; s(x) 7→ Q } ◁ K

Then, we would like to give the following type:

φ ; ·; Γsub w

alt
v : Nat[0, i] φ ; (0 ≤ 0); Γsub w

alt
P ◁ K φ ; (i ≥ 1); Γsub, x : Nat[0−1, i−1] w

alt
Q ◁ K

φ ; ·; Γsub w

alt
match v {0 7→ P ; ; s(x) 7→ Q } ◁ K

From the typing φ; Γ w

int
P ◁ K1, obtaining φ; (0 ≤ 0); Γsub w

alt
P ◁ K is direct by induction hypothesis. Now, by

induction hypothesis we also obtain

φ; ·; Γsub {i+1/i},x : Nat[0, i] w

alt
Q ◁ K2 φ; · ⊨ K2 ≤ K {i+1/i}

Then, by index substitution, we have

φ; ·; Γsub {i+1/i}{i−1/i},x : Nat[0, i−1] w

alt
Q ◁ K2{i−1/i} φ; · ⊨ K2{i−1/i} ≤ K {i+1/i}{i−1/i}

Thus, by weakening we obtain:

φ; (i ≥ 1); Γsub {i+1/i}{i−1/i},x : Nat[0, i−1] w

alt
Q ◁ K2{i−1/i}

φ; (i ≥ 1) ⊨ K2{i−1/i} ≤ K {i+1/i}{i−1/i}

ACM Trans. Program. Lang. Syst.

111:20 • Patrick Baillot and Alexis Ghyselen

v :Tc ∈ Γ

φ; Γ w

int
v :Tc

φ; Γ w

int
0 : Nat[0, 0]

φ; Γ w

int
e : Nat[0, I]

φ; Γ w

int
s(e) : Nat[0, I+1]

φ; Γ w

int
[] : List[0, 0]

φ; Γ w

int
e : B1

i φ; Γ w

int
e ′ : List[0, I](B2

i) φ; · w

int
B1
i ,B

2
i ⊑ Bi

φ; Γ w

int
e :: e ′ : List[0, I+1](Bi)

(a) Intermediate Typing Rules for Expressions

φ ; Γ w

int ⊙ ◁ 0
φ ; Γ w

int
P ◁ K1 φ ; Γ w

int
Q ◁ K2 φ ; · ⊨ K1+K2 ≤ K

φ ; Γ w

int
P | Q ◁ K

φ ; Γ, a :Tc w

int
P ◁ K

φ ; Γ w

int
(νa)P ◁ K

φ ; Γ w

int
a : ∀̃i .chK (T̃c) (φ, ĩ); Γ, ṽ : T̃c w

int
P ◁ K ′ (φ, ĩ); · ⊨ K ′ ≤ K

φ ; Γ w

int
!a (̃v).P ◁ 0

φ ; Γ w

int
a : ∀̃i .chK (T̃c) (φ, ĩ); Γ, ṽ : T̃c w

int
P ◁ K ′ (φ, ĩ); · ⊨ K ′ ≤ K

φ ; Γ w

int
a (̃v).P ◁ 0

φ ; Γ w

int
a : ∀̃i .chK (T̃c) φ ; Γ w

int
ẽ : T̃c { J̃ /ĩ } φ ; · ⊨ K { J̃ /ĩ } ≤ K ′

φ ; Γ w

int
a⟨ẽ⟩ ◁ K ′

φ ; Γ w

int
P ◁ K

φ ; Γ w

int
tick.P ◁ K+1

φ ; Γ w

int
v : Nat[0, i] φ ; Γ w

int
P ◁ K1 φ ; · ⊨ K1 ≤ K φ ; Γ {i+1/i }, x : Nat[0, i] w

int
Q ◁ K2 φ ; · ⊨ K2 ≤ K {i+1/i }

φ ; Γ w

int
match v {0 7→ P ; ; s(x) 7→ Q } ◁ K

φ ; Γ w

int
v : Nat[0, i+n+1] φ ; Γ w

int
P ◁ K1 φ ; · ⊨ K1 ≤ K φ ; Γ, x : Nat[0, i+n] w

int
Q ◁ K2 φ ; · ⊨ K2 ≤ K

φ ; Γ w

int
match v {0 7→ P ; ; s(x) 7→ Q } ◁ K

φ ; Γ w

int
v : List[0, i](Bi) φ ; Γ w

int
P ◁ K1 φ ; Γ {i+1/i }, x : Bi , y : List[0, i](Bi) w

int
Q ◁ K2 φ ⊨ K1 ≤ K ;K2 ≤ K {i+1/i }

φ ; Γ w

int
match v {[] 7→ P ; ; x :: y 7→ Q } ◁ K

φ ; Γ w

int
v : List[0, i+n+1](Bi) φ ; Γ w

int
P ◁ K1 φ ; · ⊨ K1 ≤ K φ ; Γ, x : Bi , y : List[0, i+n](Bi) w

int
Q ◁ K2 φ ; · ⊨ K2 ≤ K

φ ; Γ w

int
match v {[] 7→ P ; ; x :: y 7→ Q } ◁ K

(b) Intermediate Typing Rules for Processes

Fig. 10. Intermediate Typing Rules

Then, as we have i ≥ 1, we obtain (i−1)+1 = i . Moreover, 0−1 = 0 by deinition. So, by subtyping we obtain

φ; (i ≥ 1); Γsub ,x : Nat[0−1, i−1] w

alt
Q ◁ K

We can conclude the proof as the typing above can be obtained.

The other case of pattern matching with n > 0 is easier. □

Thus, if we have a correct and complete procedure for this intermediate type system, we obtain indeed a bound

on the complexity thanks to the soundness result of the previous type system. Moreover, this new type system

does not seem too restrictive in practice. The main problem is that we cannot have too much information about

the input. For example in order to have a more understandable type, we might like to assume that an input list

has a length 2i for some i . With this type system, this kind of assumption is not possible anymore, thus we would

need to use the logarithm in order to obtain a similar reasoning. In general, we can lose some information about

the input of a function that could have been useful. Subtyping also becomes very restrained, we no longer have

input/output types and subtyping between canonical forms is not really useful, this is just equality everywhere.

ACM Trans. Program. Lang. Syst.

Types for Complexity of Parallel Computation in Pi-Calculus • 111:21

Note that in practice, because of canonical types, checking type equality is easy, since canonical forms drastically

simplify the problems of α-renaming and reordering of quantiiers.

Still, with this intermediate type system, we can mimic the work in [4], and we obtain a procedure that is

sound and complete for this intermediate type system, and such that the inferred constraints can be fed to the

solver of [4]. We have not explored yet a procedure that would work directly for our original type system and be

complete with regard to this system. Moreover, we do not know if the inferred constraints would be solvable in

practice.

5 TYPE SYSTEM FOR PARALLEL COMPLEXITY

5.1 Definition of Span

We now deine another notion of complexity taking into account parallelism. Before formally presenting the

semantics, we show with some simple examples what kind of properties we would like for this parallel complexity.

First, we want a parallel complexity that works as if we had an ininite number of processors. For instance, on

the process tick.⊙ | tick.⊙ | tick.⊙ | · · · | tick.⊙ we want the complexity to be 1, no matter the number of

tick in parallel.

Moreover, reductions with a zero-cost complexity (in our setting, this should mean all reductions except when

we reduce a tick) should not harm this maximal parallelism. For example a().tick.⊙ | a⟨⟩ | tick.⊙ should also

have complexity one, because intuitively this synchronization between the input and the output can be done

independently of the tick on the right, and then the tick on the left can be reduced in parallel with the tick on

the right.

Finally, as before for the work, adding a tick should not change the behaviour of a process. For instance,

consider the process tick.a().P0 | a().tick.P1 | a⟨⟩, where a is not used in P0 and P1. This process should have

the complexitymax (1+C0, 1+C1), where Ci is the cost of Pi . Indeed, there are two possible reductions, either we

reduce the tick, and then we synchronize the left input with the output, and continue with P0, or we irst do the

synchronization with the right input and the output, we then reduces the ticks and inally we continue as P1.
A possible way to deine such a parallel complexity would be to adapt causal complexity [14ś16], however we

believe there is a simpler presentation for our case. We will show in Section 7 the equivalence between our notion
and a kind of causal complexity. The idea for deining span has been proposed by Naoki Kobayashi (private
communication). It consists in introducing a new construction for processes,m : P , wherem is an integer. A
process using this constructor will be called an annotated process. Intuitively, this annotated process has the
meaning P withm ticks before. We can then enrich the congruence relation ≡ with the following rules:

m : (P | Q) ≡ (m : P) | (m : Q) m : (νa)P ≡ (νa) (m : P) m : (n : P) ≡ (m+n) : P 0 : P ≡ P

This intuitively means that the ticks can be distributed over parallel composition, name creation can be done

before or after ticks without changing the semantics, ticks can be grouped together, and inally zero tick is

equivalent to nothing.

With this congruence relation and this new constructor, we can give a new shape to the canonical form

presented in Deinition 3.1.

Deinition 5.1 (Canonical Form for Annotated Processes). An annotated process is in canonical form if it has the

shape:

(νã) (n1 : G1 | · · · | nm : Gm)

with G1, . . . ,Gm guarded annotated processes.

Note that the congruence relation above allows to obtain this canonical form from any annotated processes.

With this intuition in mind, we can then deine a reduction relation⇒ for annotated processes. The rules are

given in Figure 11. We do not detail the rules for integers as they are deducible from the ones for lists. Intuitively,

ACM Trans. Program. Lang. Syst.

111:22 • Patrick Baillot and Alexis Ghyselen

(n : a (̃v).P) | (m : a⟨̃e⟩) ⇒ (max(n,m) : P [̃v := ẽ]) tick.P ⇒ 1 : P

(n :!a (̃v).P) | (m : a⟨̃e⟩) ⇒ (n :!a (̃v).P) | (max(n,m) : P [̃v := ẽ])

match [] {[] 7→ P ; ; x :: y 7→ Q } ⇒ P

match e :: e ′ {[] 7→ P ; ; x :: y 7→ Q } ⇒ Q[x ,y := e, e ′]

P ⇒ Q

P | R ⇒ Q | R

P ⇒ Q

(νa)P ⇒ (νa)Q

P ⇒ Q

(n : P) ⇒ (n : Q)

P ≡ P ′ P ′ ⇒ Q ′ Q ′ ≡ Q

P ⇒ Q

Fig. 11. Reduction Rules

this semantics works as the usual semantics for π -calculus, but when doing a synchronization, we keep the

maximal annotation, and ticks are memorized in the annotations.

We then deine the parallel complexity of an annotated process.

Deinition 5.2 (Span). Let P be an annotated process. We deine its local complexity Cℓ (P) by:

• Cℓ (n : P) = n+Cℓ (P)

• Cℓ (P | Q) = max(Cℓ (P),Cℓ (Q))

• Cℓ ((νa)P) = Cℓ (P)

• Cℓ (G) = 0 if G is a guarded process

Equivalently, Cℓ (P) is the maximal integer that appears in the canonical form of P . Then, for an annotated

process P , its span is given by span(P) := max{n | P ⇒∗ Q ∧ Cℓ (Q) = n} where⇒∗ is the relexive and transitive

closure of⇒.

To show that this parallel complexity is well-behaved, we give the following lemmas.

Lemma 5.3 (Congruence and Local Complexity). Let P ,Q be annotated processes such that P ≡ Q . Then, we

have Cℓ (P) = Cℓ (Q).

Lemma 5.4 (Reduction and Local Complexity). Let P , P ′ be annotated processes such that P ⇒ P ′. Then, we

have Cℓ (P
′) ≥ Cℓ (P).

Those lemmas are proved by induction. The main point for the second lemma is that guarded processes have a

local complexity equal to zero, thus doing a reduction will always increase this local complexity. That is why, in

order to bound the complexity of an annotated process, we need to reduce it with⇒, and then we have to take

the maximum local complexity over all normal forms. Moreover, this semantics respects the conditions given in

the beginning of this section.

Let us now present a type system for span. We want as previously a type system such that typing a process

gives us a bound on its span.

5.2 Sized Types with Time

The type system is an extension of the previous one for work. In order to take into account parallelism, we need

a way to synchronize the time between processes in parallel, thus we will add some time information in types, as

ACM Trans. Program. Lang. Syst.

Types for Complexity of Parallel Computation in Pi-Calculus • 111:23

in [30] or [12]. Formally, we start with the types for work and we decorate channels with an index I indicating

time. Recall that in our calculus, we consider that one unit of time corresponds to the time expressed by a tick.

Deinition 5.5. The set of types and base types are given by the grammar:

B := Nat[I , J] | List[I , J](B)

T := B | chI (T̃) | inI (T̃) | outI (T̃) | ∀̃i .serv
K
I (T̃) | ∀̃i .iserv

K
I (T̃) | ∀̃i .oserv

K
I (T̃)

As before, we have channel types, server types, and input/output capabilities in those types. For a channel type

or a server type, the index I is called the time of this type. Giving a channel name the type chI (T̃) ensures that

communication on this channel should happen at a time t such that 0 ≤ t ≤ I . For example, a channel name of

type ch0 (T̃) should be used to communicate before any tick occurs. With this information, we have a bound on

when the continuation P of an input a (̃v).P will be available. A server name of type ∀̃i .iservKI (T̃) has a slightly

diferent meaning: it means that the inputs for this server should all be ready to receive for any time greater than

I . For instance, a process tick.!a(v).P enforces that the type of a is ∀̃i .servKI (T̃) with I greater than one, as the

replicated input is not ready to receive at time zero. About the free variables in a server types, ∀̃i .servKI (T̃), we

emphasize the fact that ĩ can appear in K and T̃ but not in I . Indeed, the time that a server takes to become ready

does not depend on the values sent to this server. However, in order to harmonize notations with channels, this

time I is written after the quantiication over ĩ even if it does not depend on it.

As before, we deine a notion of subtyping on those types. The rules are essentially the same as the ones in

Figures 7a and 7b. The only diference is that we enforce the time of a type to be invariant in subtyping.

In order to write the typing rules, we need some other deinitions to work with time in types. The irst thing we

need is a way to advance time. Indeed, consider the simple example tick.a() | tick.a⟨⟩, when we consider the

left branch, then after the tick (i.e. after one time unit), both the input and the output should be ready (contrary

to work where we would still have to wait one time unit). Thus, we have to express that the time advances in all

the parallel branches simultaneously, and this is done by the operator we will introduce.

Deinition 5.6 (Advancing Time in Types). Given a set of index variables φ, a set of constraints Φ, a type T and

an index I , we deine T after I time units, denoted ⟨T ⟩
φ ;Φ

−I by:

• ⟨B⟩
φ ;Φ

−I = B

• ⟨chJ (T̃)⟩
φ ;Φ

−I = ch(J−I) (T̃) if φ;Φ ⊨ J ≥ I . It is undeined otherwise.

Other channel types follow exactly the same pattern.

• ⟨∀̃i .servKJ (T̃)⟩
φ ;Φ

−I = ∀̃i .serv
K
J−I (T̃) if φ;Φ ⊨ J ≥ I .

Otherwise, ⟨∀̃i .servKJ (T̃)⟩
φ ;Φ

−I = ∀̃i .oserv
K
J−I (T̃)

• ⟨∀̃i .iservKJ (T̃)⟩
φ ;Φ

−I = ∀̃i .iserv
K
J−I (T̃) if φ;Φ ⊨ J ≥ I .

It is undeined otherwise.

• ⟨∀̃i .oservKJ (T̃)⟩
φ ;Φ

−I = ∀̃i .oserv
K
J−I (T̃).

This deinition can be extended to contexts, with ⟨v :T , Γ⟩
φ ;Φ

−I = v : ⟨T ⟩
φ ;Φ

−I , ⟨Γ⟩
φ ;Φ

−I if ⟨T ⟩
φ ;Φ

−I is deined. Otherwise,

⟨v :T , Γ⟩
φ ;Φ

−I = ⟨Γ⟩
φ ;Φ

−I . We will often omit φ;Φ in the notation when it is clear from the context. Recall that as the

order ≤ on indexes is not total, φ;Φ ⊭ J ≥ I does not mean that φ;Φ ⊨ J < I .

Let us explain a bit the deinition here. For base types, there is no time indication thus nothing happens. For

simple channel types, there are two cases. Either the bound J on the time was greater than I , and we only have to

ACM Trans. Program. Lang. Syst.

111:24 • Patrick Baillot and Alexis Ghyselen

φ ;Φ; Γ s P ◁ K φ ;Φ; Γ s Q ◁ K
(Par)

φ ;Φ; Γ s P | Q ◁ K

φ ;Φ; ⟨Γ⟩−1 s P ◁ K
(Tick)

φ ;Φ; Γ s tick.P ◁ K+1

φ ;Φ; Γ, ∆ ⊢ a : ∀̃i .iservK
I
(T̃) φ ;Φ ⊢ ⟨Γ⟩

φ ;Φ

−I ⊑ Γ′ Γ′ time invariant (φ, ĩ);Φ; Γ′, ṽ : T̃ s P ◁ K
(Iserv)

φ ;Φ; Γ, ∆ s !a (̃v).P ◁ I

φ ;Φ; Γ ⊢ a : inI (T̃) φ ;Φ; ⟨Γ⟩−I , ṽ : T̃ s P ◁ K
(In)

φ ;Φ; Γ s a (̃v).P ◁ K+I

φ ;Φ; Γ ⊢ a : outI (T̃) φ ;Φ; ⟨Γ⟩−I ⊢ ẽ : T̃
(Out)

φ ;Φ; Γ s a⟨ẽ⟩ ◁ I

φ ;Φ; Γ ⊢ a : ∀̃i .oservK
I
(T̃) φ ;Φ; ⟨Γ⟩−I ⊢ ẽ : T̃ { J̃ /ĩ }

(Oserv)
φ ;Φ; Γ s a⟨ẽ⟩ ◁ K { J̃ /ĩ }+I

Fig. 12. Span Typing Rules for Processes

subtract I from J to make time pass. Or the bound J was not greater than I , and this channel cannot be used any

more after I units of time, thus we erase this channel from the context.

In order to understand server types, let us again look at a simple example tick.!a().P | a⟨⟩ | tick.tick.a⟨⟩.

As explained before, the time of a server only corresponds to the time it takes for the input to be ready, thus the

time I of this server should be one. The second branch a⟨⟩ should have this information because it means it has

to wait one unit of time, and the third branch tick.tick.a⟨⟩ should only know that the corresponding input is

already ready after two time units. Moreover, by deinition, after at least two time units, it should not be possible

any more to redeine an input for this server, as it would break the invariant "all inputs are ready before I time

units".

If we formalize this intuition, we obtain a dissymmetry between the input and output capabilities for servers.

The input capability behaves like a simple channel, if the time J is too small, we erase this capability since we

cannot deine any more an input. However, the output capability is never erased, even if the time J is too small,

but we still need this information (when I ≥ 0) to estimate the time of waiting for the input to be available.

We remark that this deinition of time advancing generates constraints in a type derivation. Indeed, if we want

⟨a : chJ (T̃)⟩
φ ;Φ

−1 = a : chJ−1 (T̃), then we must have φ;Φ ⊨ J ≥ 1. This will be useful to see what constraints the

complexity of a process should satisfy, as we will see in examples.

We also need another deinition on time information.

Deinition 5.7 (Time Invariant Context). Given a set of index variables φ and a set of constraints Φ, a context Γ

is said to be time invariant when it only contains base type variables or output server types ∀̃i .oservKI (T̃) with

φ;Φ ⊨ I = 0.

Such a context is thus invariant by the operator ⟨·⟩−I for any I . This is typically the kind of context that we

need to deine a server, as a server should not be dependent on the time it is called. We can now present the

type system. Typing rules for expressions and some processes do not change, they can be found in Figure 5 and

Figure 6a. In Figure 12, we present the remaining rules in this type system that difer from the ones in Figure 6b.

As before, a typing judgement φ;Φ; Γ s P ◁ K intuitively means that under the constraints Φ, in a context Γ, a

process P is typable and its span complexity is bounded by K . The rule (Par) means that the parallel complexity

is the maximum between the two processes instead of the sum (as explained in Section 4 for the (Intpm) rule,

asking for the same complexity K is equivalent to taking the maximum because of the (Sub) rule). The (Tick) rule

again says that complexity increases by 1, but it also decreases all time information in types by one.

ACM Trans. Program. Lang. Syst.

Types for Complexity of Parallel Computation in Pi-Calculus • 111:25

Then, the (In) rule, the (Out) rule and the (Oserv) rule are very similar to the ones for work. The only diference is

this time information I . Indeed, in the span type system, as explained before, time should advance simultaneously

in all parallel branches, however when we consider a process of the shape a (̃v).P this process is not reduced

immediately as it has to wait for a corresponding output to be ready. Thus, we have to estimate the time of

waiting. This is estimated by this index I , and so we consider that I time units should pass before proceeding to

type the continuation, as we can see with the ⟨Γ⟩−I operation.

Finally, the (Iserv) rules is far more complex that the previous one for work. Again, we have to wait those I

units of time in order to synchronize time for all subprocesses. An important diference between input server and

all the other processes is that, if an input server is ready to receive a message at time t , it should always be ready

to receive a message at time t ′ ≥ t , so that we can always be able to make a recursive call. Because of this, we ask

that the context Γ′ in the continuation is time invariant, so that this continuation does not depend on current

time. So, in order to have this time invariant context, we integrate some weakening on context (with ∆) and an

explicit subtyping rule in the premises. This is because ⟨Γ⟩
φ ;Φ

−I is not time invariant in general, since the type of a

contains the input capability. However, if this server has both input and output capabilities, we can give a time

invariant type for a (or other servers) just by removing the input capability, which can be done by subtyping.

Finally, notice that because of the advance of time in a context, some channels name could disappear (because

their time is up), thus there is a kind of žtime uniquenessž for channels, contrary to the previous section on work.

This will be detailed later in Section 5.3.4.

Before moving to examples, let us show what results we expect from this type system.

Theorem 5.8 (Typing and Complexity). Let P be a process such that φ;Φ; Γ s P ◁K , then φ;Φ ⊨ K ≥ span(P).

Note that this theorem talks about open processes. However, our notion of span does not behave well with

open processes. For example the process match v {0 7→ P ; ; s(x) 7→ Q } is in normal form for a variable v, thus

this process has span zero. However, with the type system, we will not give it a zero complexity. This is because

we will also obtain the following corollary:

Corollary 5.9 (Complexity and Open Processes). We have:

• If φ;Φ; Γ, ṽ : T̃ s P ◁ K , then for any sequence of expressions ẽ such that φ;Φ; Γ s ẽ : T̃ , then φ;Φ ⊨ K ≥

span(P [̃v := ẽ]).

• If φ;Φ; Γ s P ◁ K , then for any other annotated process Q such that φ;Φ; Γ s Q ◁ K ′, we have φ;Φ ⊨

max (K ,K ′) ≥ span(P | Q).

So, when we have a typing φ;Φ; Γ s P ◁ K for an open process, one should not see K as a bound on the

actual complexity on P , but rather as a bound on the complexity of this particular process in an environment

respecting the type of Γ. So, in φ;Φ;v :Nat[2, 10] s match v {0 7→ P ; ; s(x) 7→ Q } ◁K , this index K is a bound on

the complexity of this pattern matching under the assumption that the environment gives to v an integer value

between 2 and 10.

We can then for example understand the rule for input by taking the judgement φ;Φ;a : ch3 () s a().tick.⊙ ◁ 4.
This expresses that with an environment providing a message on a within 3 time units, this process terminates in

4 time units.

Discussion. We observe that if we remove all size annotations and merge server types and channel types

together, we get back the classical input/output types, and all the rules described here are admissible in the

classical input/output type system for the π -calculus.

5.3 Examples

ACM Trans. Program. Lang. Syst.

111:26 • Patrick Baillot and Alexis Ghyselen

5.3.1 Input, Time and Complexity. We irst illustrate the time system on a simple generic example that will be

very useful for other concrete examples. Let us consider the process P = c ().b ().a⟨⟩. We have the following typing

for P :

φ;Φ;a : outIa (),b : inIb (), c : inIc () s P ◁ Ia

if and only if φ;Φ ⊨ Ia ≥ Ib ≥ Ic . Indeed, the typing derivation has the shape:

φ;Φ;a : out(Ia−Ic)−(Ib−Ic) (),b : in0 () s a⟨⟩ ◁ (Ia−Ic)−(Ib−Ic)

φ;Φ; ⟨(a : outIa−Ic (),b : inIb−Ic (), c : in0 ())⟩−(Ib−Ic) s a⟨⟩ ◁ (Ia−Ic)−(Ib−Ic)

φ;Φ;a : outIa−Ic (),b : inIb−Ic (), c : in0 () s b ().a⟨⟩ ◁ Ia−Ic

φ;Φ; ⟨(a : outIa (),b : inIb (), c : inIc ())⟩−Ic s b ().a⟨⟩ ◁ Ia−Ic

φ;Φ;a : outIa (),b : inIb (), c : inIc () s c ().b ().a⟨⟩ ◁ Ia

The constraints φ;Φ ⊨ Ia ≥ Ib ≥ Ic are necessary in order for the various ⟨·⟩−I to be deined. So, to sum up, the

complexity of such a sequence of input/output is given by the time of the last channel, and the constraints that

appear are that the order of time should correspond to the order of the process sequence.

Another interesting case of this is when a is a server type and not a simple channel type: let us take a :oservKa
Ia

()

in the example above. As an output capability for a server type is never erased by ⟨·⟩−I , we have fewer restrictions.

In particular, we only need φ;Φ ⊨ Ib ≥ Ic and the complexity becomes Ka+Ib+(Ia−Ib). Recall that this is not

always equal to Ka+Ia by deinition of subtraction, for example if Ia = 0, then we have the complexity Ka+Ib in

the end.

Finally, one can remark that if we add a tick constructor to this process, then the only thing it does is changing

the shape of constraints. For example, if P = tick.c ().tick.b ().a⟨⟩ and a is a simple channel, then the total

complexity is still Ia but the constraints on Ia , Ib and Ic become:

φ;Φ ⊨ Ic ≥ 1 φ;Φ ⊨ Ib ≥ Ic+1 φ;Φ ⊨ Ia ≥ Ib

5.3.2 Fibonacci. Let us consider again the process P described in Figure 3.We setG (n) = max(1,n), corresponding

to the function deined in Section 2, and we want to show that the server ib has a span G (n). In order to do this,

we give the typing described in Figure 13, that we detail here. This typing is similar to the one of Figure 8b, so we

detail especially the diferences.

The irst rule of this typing is already quite diferent. Indeed, in the span type system, the (Iserv) rules has

a condition of time invariance on the context of the continuation. Because of this, we have to transform (with

subtyping) the initial context Θ deining the servers add and ib into the time invariant context Θ′, where those

two servers only have output capabilities. Then, as before, we use the fact that i; · ⊨ G (i) ≥ 1 for all i to rewrite it

G (i)−1+1 in order to do the (Tick) rule. Then, the (Tick) rule make the time advance in the context Γ. We obtain:

⟨Γ⟩−1 = Θ′,n : Nat[i],a : outG (i)−1 (Nat[Fib (i)])

again relying on the fact that i; · ⊨ G (i) ≥ 1. Afterwards, we have the two pattern matchings, and we do not detail

the zero cases, as they are simple. Intuitively, with the constraints (i ≤ 0) or (i ≥ 1, i−1 ≤ 0), we haveG (i)−1 = 0,

so the type of a says that the channel has to send immediately, which it does. We can then focus on the main

branch, where we have the constraints Φ equivalent to i ≥ 2.

Then, after some (Nu) rules and the (Par) rule, we have to type the three premises, and all with the same

complexity G (i)−1. For the irst premise, we use i;Φ ⊨ G (i−1) ≤ G (i)−1 to change the complexity with a (Sub)

rule. Then, we use polymorphism to show that this recursive call f ib⟨m,b⟩ is done on a size i−1 to obtain the

complexity G (i−1). We have a similar behaviour for the second recursive call, with size i−2. Finally, the third

ACM Trans. Program. Lang. Syst.

Types for Complexity of Parallel Computation in Pi-Calculus • 111:27

(Ax)
i ;Φ;∆ ⊢ (m, b) : Ṽ (i−1)

(Oserv)
i ;Φ;∆ s ib⟨m, b⟩ ◁ G (i−1)

(Sub)
i ;Φ;∆ s ib⟨m, b⟩ ◁ G (i)−1

(Ax)
i ;Φ;∆ ⊢ (p, c) : Ṽ (i−2)

(Oserv)
i ;Φ;∆ s ib⟨p, c⟩ ◁ G (i−2)

(Sub)
i ;Φ;∆ s ib⟨p, c⟩ ◁ G (i)−1

see Section 5.3.1

i ;Φ;∆ s c (x).b (y).add⟨x, y, a⟩ ◁ G (i−1)
(Sub)

i ;Φ;∆ s c (x).b (y).add⟨x, y, a⟩ ◁ G (i)−1
(Par)

i ;Φ;∆ s ib⟨m, b⟩ | ib⟨p, c⟩ | c (x).b (y).add⟨x, y, a⟩ ◁ G (i)−1
(Nu)

i ;Φ; ⟨Γ⟩−1,m : Nat[i−1], p : Nat[i−2], b : outG (i−1) (Nat[F ib (i−1)]) s (νc) · · · ◁ G (i)−1
(Nu)

i ; (i ≥ 1, i−1 ≥ 1); ⟨Γ⟩−1,m : Nat[i−1], p : Nat[i−2] s (νb) (νc) · · · ◁ G (i)−1
(Intpm)

i ; (i ≥ 1); ⟨Γ⟩−1,m : Nat[i−1] s matchm {0 7→ a⟨1⟩; ; s(p) 7→ · · · } ◁ G (i)−1
(Intpm)

i ; ·; ⟨Γ⟩−1 s match n {0 7→ a⟨0⟩; ; s(m) 7→ · · · } ◁ G (i)−1
(Tick)

i ; ·; Γ s tick.match n {0 7→ a⟨0⟩; ; s(m) 7→ · · · } ◁ (G (i)−1)+1 i ; · ⊨ (G (i)−1)+1 ≤ G (i)
(Sub)

·; · ⊢ ⟨Θ⟩−0 ⊑ Θ′ Θ′ time invariant i ; ·;Θ′, n : Nat[i], a : outG (i) (Nat[F ib (i)]) s tick.match n {0 7→ a⟨0⟩; ; s(m) 7→ · · · } ◁ G (i)
(Iserv)

·; ·;Θ s !ib(n, a).tick. · · · ◁ 0

Ũ (i, j) := Nat[i], Nat[j], out0 (Nat[i+j]) Ṽ (i) := Nat[i], outG (i) (Nat[F ib (i)]) Φ := (i ≥ 1, i−1 ≥ 1)

Θ := add : ∀i, j .serv00 (Ũ (i, j)), ib : ∀i .serv
G (i)
0 (Ṽ (i)) Θ′ := add : ∀i, j .oserv00 (Ũ (i, j)), ib : ∀i .oserv

G (i)
0 (Ṽ (i))

Γ := Θ′, n : Nat[i], a : outG (i) (Nat[F ib (i)]) ∆ := ⟨Γ⟩−1,m : Nat[i−1], p : Nat[i−2], b : outG (i−1) (Nat[F ib (i−1)]), c : outG (i−2) (Nat[F ib (i−2)])

Fig. 13. A Typing for Fibonacci (Span)

premise corresponds to a usual pattern described in Section 5.3.1: the complexity of this subprocess is the time of

b, which is G (i−1). And the condition i;Φ;G (i−1) ≥ G (i−2) is satisied.

5.3.3 An Example to Justify the Use of Time. In order to justify the use of time in types for span, and to show how

we could ind the time of a channel, we present here three examples of recursive calls with diferent behaviour.

Usually, type inference for a size system reduces to satisfying a set of constraints on indices. We believe that even

with time indexes on channels, type inference is still reducible to satisfying such a set of constraints. So, for the

sake of simplicity, we will describe this example with constraints. We deine three processes P1, P2 and P3 by:

Pl ≡!a(n, r).tick.match n {0 7→ r ⟨⟩; ; s(m) 7→ (νr ′) (νr ′′) (Ql)}

for the following deinition of Ql :

Q1 ≡ a⟨m, r ′⟩ | a⟨m, r ′′⟩ | r ′().r ′′().r ⟨⟩

Q2 ≡ a⟨m, r ′⟩ | r ′().a⟨m, r ′′⟩ | r ′′().r ⟨⟩

Q3 ≡ a⟨m, r ′⟩ | r ′().(a⟨m, r ′′⟩ | r ⟨⟩) | r ′′().⊙

Intuitively, for P1 the two recursive calls are done after one unit of time in parallel, and the return signal on r

is done when both processes have done their return signal on r ′ and r ′′. So, this is total parallelism for the two

recursive calls (the span is linear in n). For P2, a irst recursive call is done, and then the process waits for the

return signal on r ′, and when it receives it, the second recursive call begins. So, this is totally sequential (the

span is exponential in n). Finally, for P3 we have an intermediate situation between totally parallel and totally

sequential. The process starts with a recursive call. Then, it waits for the return signal on r ′. When this signal

arrives, it immediately starts the second recursive call and immediately does the return signal on r . So, intuitively,

the second recursive call starts when all the "left" calls have been done. Note that those three servers have the

same work, which is exponential in n.

So, let us type the three examples with the type system for span. For the sake of simplicity, we omit the typing

of expressions, we only consider the diicult branch for the match constructors, and we focus on complexity and

ACM Trans. Program. Lang. Syst.

111:28 • Patrick Baillot and Alexis Ghyselen

φ ;Φ;∆ ⊢ r ′ : chд (i−1) ()

φ ;Φ;∆ ⊢m : Nat[0, i−1]
(Oserv)

φ ;Φ;∆ s a⟨m, r ′⟩ ◁ f (i−1)
(Sub)

φ ;Φ;∆ s a⟨m, r ′⟩ ◁ f (i)−1

φ ;Φ; ⟨∆⟩
−д′ (i)

⊢ r ′′ : chд (i−1) ()

φ ;Φ; ⟨∆⟩
−д′ (i)

⊢m : Nat[0, i−1]

(Oserv)
φ ;Φ; ⟨∆⟩

−д′ (i) s a⟨m, r ′′⟩ ◁ f (i−1)

(Sub)
φ ;Φ; ⟨∆⟩

−д′ (i) s a⟨m, r ′′⟩ ◁ f (i)−1−д′ (i)

(In)
φ ;Φ;∆ s r

′ ().a⟨m, r ′′⟩ ◁ f (i)−1

see Section 5.3.1

φ ;Φ;∆ s r
′′ ().r ⟨⟩ ◁ д (i)−1

(Sub)
φ ;Φ;∆ s r

′′ ().r ⟨⟩ ◁ f (i)−1
(Par)

i ; (i ≥ 1);∆ s a⟨m, r ′⟩ | r ′ ().a⟨m, r ′′⟩ | r ′′ ().r ⟨⟩ ◁ f (i)−1

Fig. 14. A Typing for Q2

time. We consider the following context that is used for the three processes:

Γ ≡ a : ∀i .oserv
f (i)
0 (Nat[0, i], chд (i) ()),n : Nat[0, i], r : chд (i) ()

We have two unknown function symbols: f , that represents the complexity of the server, and д, the time for the

return channel. We also use this second context:

∆ ≡ ⟨Γ⟩−1,m : Nat[0, i−1], r ′ : chд′ (i) (), r
′′ : chд′′ (i) ()

This gives two more unknown functions, д′ and д′′ corresponding respectively to the time of r ′ and r ′′ when

deined. The three processes start with the same typing:

i; · ⊨ f (i) ≥ д(i)

i; ·; ⟨Γ⟩−1 s r ⟨⟩ ◁ f (i)−1 i; i ≥ 1;∆ s Ql ◁ f (i)−1
(Intpm)

i; ·; ⟨Γ⟩−1 s match n {0 7→ r ⟨⟩; ; s(m) 7→ (νr ′) (νr ′′) (Ql)} ◁ f (i)−1
(Tick)

i; ·; Γ s tick.match n {0 7→ r ⟨⟩; ; s(m) 7→ (νr ′) (νr ′′) (Ql)} ◁ f (i)
(Iserv)

·; ·;a : ∀i .serv
f (i)
0 (Nat[0, i], chд (i) ()) s Pl ◁ 0

Because of the tick, we know that the complexity on the line above the root should have the shape K+1 for

some K , so here we obtain immediately that f (i) ≥ 1. In the same way, r should still be deined in ⟨Γ⟩−1, hence

we obtain д(i) ≥ 1.
We now describe the various constraints obtained on the three processes, under the assumption that i ≥ 1. For

Q1, we obtain a typing similar to Figure 13 for Fibonacci, and we derive the constraints:

f (i)−1 ≥ f (i−1) д′(i) = д(i−1) д′′(i) = д(i−1) д(i)−1 ≥ д′′(i) ≥ д′(i) f (i)−1 ≥ д(i)−1

The irst constraint is because the total complexity f (i)−1 must be greater than the complexity of the two recursive

calls f (i−1). Then, r ′ and r ′′ must have a time equal to д(i−1) in order to correspond to the type of a in the outputs

a⟨m, r ′⟩ and a⟨m, r ′′⟩. Finally, the last two constraints correspond to the constraints of Section 5.3.1 and the fact

that the complexity bound f (i)−1 should be greater that the complexity of this subprocess which is д(i)−1 again

as in Section 5.3.1. So, we can satisfy the conditions with the following choice:

f (i) ≡ i+1 д(i) ≡ i+1 д′(i) ≡ д′′(i) ≡ i

So, as expected, the span, represented by the function f , is indeed linear.

Then, for Q2, we describe the typing in Figure 14, where φ;Φ ≡ i; (i ≥ 1). Thus, we obtain the following

constraints:

f (i)−1 ≥ f (i−1) д′(i) = д(i−1) f (i)−1−д′(i) ≥ f (i−1)

д′′(i)−д′(i) = д(i−1) д(i)−1 ≥ д′′(i) f (i)−1 ≥ д(i)−1

ACM Trans. Program. Lang. Syst.

Types for Complexity of Parallel Computation in Pi-Calculus • 111:29

· · ·

· · ·

(Out)
φ ;Φ; ⟨∆⟩−д′ (i) s r ⟨⟩ ◁ д (i)−1−д

′(i)
(Sub)

φ ;Φ; ⟨∆⟩−д′ (i) s r ⟨⟩ ◁ f (i)−1−д
′(i)

(Par)
φ ;Φ; ⟨∆⟩−д′ (i) s a⟨m, r ′′⟩ | r ⟨⟩ ◁ f (i)−1−д′(i)

(In)
φ ;Φ;∆ s r

′().(a⟨m, r ′′⟩ | r ⟨⟩) ◁ f (i)−1

(Pzero)
φ ;Φ; ⟨∆⟩−д′′ (i) s ⊙ ◁ 0

(In)
φ ;Φ;∆ s r

′′().⊙ ◁ д′′(i)
(Sub)

φ ;Φ;∆ s r
′′().⊙ ◁ f (i)−1

(Par)
i ; (i ≥ 1);∆ s a⟨m, r ′⟩ | r ′().(a⟨m, r ′′⟩ | r ⟨⟩) | r ′′().⊙ ◁ f (i)−1

Fig. 15. A Typing for Q3

The constraints on f (i) are obtained because of the subtyping rules, expressed by the double lines in the type

derivation. The equality constraints are obtained because we need both r ′ and r ′′ to have the type chд (i−1) (), and

inally the constraint д(i)−1 ≥ д′′(i) is as in Section 5.3.1. Thus, we can take:

f (i) ≡ 2i+1−1 д(i) ≡ 2i+1−1

So, we indeed obtain the exponential complexity.

However, with those two examples, the time of the channel r is always equal to the complexity of the server a

and we cannot really see the usefulness of time. Still, with the next example we obtain something more interesting.

A type derivation for Q3 is given in Figure 15.

We obtain the constraints:

f (i)−1 ≥ f (i−1) д′(i) = д(i−1) f (i)−1−д′(i) ≥ f (i−1)

д′′(i)−д′(i) = д(i−1) д(i)−1 ≥ д′(i) f (i)−1−д′(i) ≥ д(i)−1−д′(i) f (i)−1 ≥ д′′(i)

The irst four constraints are exactly the same as before, because there are the same typing derivation (represented

by · · ·). Then, the constraint on д(i)−1 is because of ⟨·⟩−д′ (i) , and the other constraints come from subtyping rules.

So, using the equalities, and by removing redundant inequalities, we obtain for f and д:

f (i) ≥ 1+д(i−1)+f (i−1) д(i) ≥ 1+д(i−1) f (i) ≥ 1+2 · д(i−1)

Thus, we can take:

д(i) ≡ i+1 f (i) ≡
(i+1) (i+2)

2

The complexity is quadratic in n. Note that for this example, the complexity f depends directly on д, and д is

given by a recursive equation independent of f . In a sense, to ind the complexity, we need to ind irst the delay

of the second recursive call. Without time indications on channel, it would not be possible to track and obtain

this recurrence relation on д and thus we could not deduce the complexity.

Note that the two irst examples used channels as a return signal for a parallel computation, whereas for the

last example, channels are used as a synchronization point in the middle of a computation. We believe that this

lexibility of channels justiies the use of π -calculus to reason about parallel computation. Moreover, this work is

a step to a more expressive type system inspired by [30], taking in account concurrent behaviour. Indeed, as we

will show, the current type system fails to capture some simple concurrency.

5.3.4 Limitations of the Type System. Our current type system enforces some kind of time uniqueness in channels.

Indeed, take the process a().tick.a⟨⟩. When trying to type this process, we obtain:

ACM Trans. Program. Lang. Syst.

111:30 • Patrick Baillot and Alexis Ghyselen

·; · ⊢ chI () ⊑ inI ()
(Sub)

·; ·;a : chI () ⊢ a : inI ()

Error

·; ·; ⟨a : ch0 ()⟩−1 s a⟨⟩ ◁ 0
(Tick)

·; ·;a : ch0 () s tick.a⟨⟩ ◁ 1
(In)

·; ·;a : chI () s a().tick.a⟨⟩ ◁ I+1

As by deinition ⟨a : ch0 ()⟩−1 is ∅, we cannot type the output on a. So, channels have strong constraints on the

time they can be used. This is true especially when channels are not used linearly. Still, note that we can type

a process of the shape a().⊙ | a⟨⟩ | tick.a⟨⟩, thus it is better than plain linearity on channels. This restriction

limits examples of concurrent behaviours. For example, take two processes P1 and P2 that should be executed but

not simultaneously. In order to do that in a concurrent setting, we can use semaphores. In π -calculus, we could

consider the process (νa) (a().P ′1 | a().P
′
2 | a⟨⟩), where P

′
1 is P1 with an output a⟨⟩ at the end, likewise for P ′2. This

is a way to simulate a semaphore in π -calculus. Now, we can see that this example has the same problem as the

example given above if for instance P1 contains a tick, thus we cannot type this kind of processes. Formally, this

is because of our parallel composition rule:

φ;Φ; Γ s P ◁ K φ;Φ; Γ s Q ◁ K
(Par)

φ;Φ; Γ s P | Q ◁ K

If we take Q equal to P , we then obtain, from a typing φ;Φ; Γ s P ◁K a typing φ;Φ; Γ s P | P ◁K . So, the type

system considers that P and P | P are equivalent, and this is obviously not true in general, especially with the

example described above. However, in a linear setting, this is not a problem.

Still, we believe that for parallel computation, our type system should be quite expressive in practice. Indeed,

as stated above, the restriction appears especially when channels are not used linearly. However, it is known

that linear π -calculus in itself is expressive for parallel computation [34]. For example, classical encodings of

functional programs in a parallel setting rely on the use of linear return signals, as we will see in the example for

bitonic sort in Sect. 6. Moreover, session types can also be encoded in linear π -calculus in the presence of variant

types [11, 31]. Note that in order to encode a calculus as the one in [12], we would also need recursive types. Our

calculus and its proof of soundness could be extended to variant types, but not straightforwardly to recursive

types. However, we believe the results on the linear π -calculus we cited suggest that the restriction given above

should not be too harmful for parallel computation.

5.4 Complexity Results

In this section, we show how to prove that our type system indeed gives a bound on the number of time reduction

steps of a process. As we work with the reduction relation ⇒ of Figure 11, we need to consider annotated

processes instead of simple processes. So, we need to enrich our type system with a rule for the constructor n : P .

φ;Φ; ⟨Γ⟩−n s P ◁ K

φ;Φ; Γ s n : P ◁ K+n

As the intuition suggested, this rule is equivalent to n times the typing rule for tick. We can now work on the

properties of our type system on annotated processes.

The procedure to prove the subject reduction for⇒ in this type system is intrinsically more diicult than the

one for Theorem 4.6. So, from the proof of subject reduction for span, one could deduce the proof of subject

reduction for work, just by forgetting the considerations with time and the constructor n : P in the following

proof.

5.4.1 Intermediate Lemmas. We irst show some intermediate lemmas on the typing system. To begin with, we

give a lemma on the link between subtyping and time advance.

ACM Trans. Program. Lang. Syst.

Types for Complexity of Parallel Computation in Pi-Calculus • 111:31

Lemma 5.10. If φ;Φ ⊢ T ⊑ U then for any I , either ⟨U ⟩−I is undeined, or both ⟨U ⟩−I and ⟨T ⟩−I are deined, and

φ;Φ ⊢ ⟨T ⟩−I ⊑ ⟨U ⟩−I .

Proof. The proof is by induction on the subtyping derivation. First, transitivity is direct by induction hypothesis.

For non-channel type, this is direct because time advancing does not do anything. Then, for channels that are not

servers, time is invariant by subtyping, thus time advancing is either undeined for both types, either deined for

both types, with the same time. For a server type, again time is invariant by subtyping, so either both types lose

their input capability, either they both keep the same capabilities. The case where ⟨U ⟩−I is undeined and not

⟨T ⟩−I is when T is an input/output server that loses its input capability, andU is an input server. □

Now, for the usual properties of typing systems, we have irst weakening and strengthening.

Lemma 5.11 (Weakening). Let φ,φ ′ be disjoint sets of index variables, Φ be a set of constraints on φ, Φ′ be a set

of constraints on (φ,φ ′), Γ and Γ′ be contexts on disjoint set of variables.

(1) If φ;Φ ⊨ C then (φ,φ ′); (Φ,Φ′) ⊨ C .

(2) If φ;Φ ⊢ T ⊑ U then (φ,φ ′); (Φ,Φ′) ⊢ T ⊑ U .

(3) If φ;Φ; Γ ⊢ e :T then (φ,φ ′); (Φ,Φ′); Γ, Γ′ ⊢ e :T .

(4) ⟨Γ⟩
(φ,φ′);(Φ,Φ′)

−I = ∆,∆′ for some ∆,∆′ with (φ;φ ′); (Φ;Φ′) ⊢ ∆ ⊑ ⟨Γ⟩
φ ;Φ

−I .

(5) If φ;Φ; Γ s P ◁ K then (φ,φ ′); (Φ,Φ′); Γ, Γ′ s P ◁ K .

Proof. Point 1 is a direct consequence of the deinition of φ;Φ ⊨ C . Point 2 is proved by induction on the

subtyping derivation, and it uses explicitly Point 1. Point 4 is a consequence of Point 1: everything that is deined

in ⟨Γ⟩
ϕ ;Φ

−I is also deined in ⟨Γ⟩
(ϕ,ϕ′);(Φ,Φ′)

−I , and the subtyping condition is here since with more constraints, a server

may not be changed into an output server by the advance of time. Point 3 and Point 5 are proved by induction on

the typing derivation, and each point uses crucially the previous ones. Note that the weakening integrated in the

rule for input servers is necessary to obtain Point 5. Note also that when the advance time operator is used, the

weakened typing is obtained with the use of a subtyping rule. □

Formally, all lemmas should be presented in the same way, in the sense that a property such as weakening

should hold irst on constraints, then we can deduce it for subtyping, and inally we can deduce it for typing.

However, for the sake of simplicity, we chose for the following lemmas to only present the interesting points.

Lemma 5.12 (Strengthening). Let φ be a set of index variables, Φ be a set of constraints on φ, andC a constraint

on φ such that φ;Φ ⊨ C .

(1) ⟨Γ⟩
φ ;(Φ,C)

−I = ⟨Γ⟩
φ ;Φ

−I .

(2) If φ; (Φ,C); Γ, Γ′ s P ◁ K and the variables in Γ′ are not free in P , then φ;Φ; Γ s P ◁ K .

We also have a property speciic to size type systems, expressing that an index variable can be substituted by

any index.

Lemma 5.13 (Index Substitution). Let φ be a set of index variables and i < φ. Let J be an index with free

variables in φ. Then,

(1) ⟦I {J/i}⟧ρ = ⟦I⟧ρ[i 7→⟦ J ⟧ρ].

(2) If (φ, i);Φ; Γ s P ◁ K then φ;Φ{J/i}; Γ{J/i} s P ◁ K {J/i}.

We also need a lemma speciic to the notion of time.

ACM Trans. Program. Lang. Syst.

111:32 • Patrick Baillot and Alexis Ghyselen

Deinition 5.14 (Delaying). Given a typeT and an index I , we deine the delaying ofT by I units of time, denoted

⟨T ⟩+I :

⟨B⟩+I = B ⟨chJ (T̃)⟩+I = chJ+I (T̃)

and for other channel and server types, the deinition is in correspondence with the one on the right above. This

deinition can be extended to contexts.

Lemma 5.15 (Delaying). For any index I , we have:

(1) ⟨⟨Γ⟩+I ⟩−J = ∆,∆′ with φ;Φ ⊢ ∆ ⊑ ⟨⟨Γ⟩−J ⟩+I .

(2) ⟨⟨Γ⟩+I ⟩−(J+I) = ⟨Γ⟩−J .

(3) If φ;Φ; Γ s P ◁ K then φ;Φ; ⟨Γ⟩+I s P ◁ K+I .

With this lemma, we can see that if we add a delay of I time units in the contexts for all channels, it increases

the complexity by I time units, thus we see the link between time in types and the complexity. Then, we can

show the usual substitution lemma.

Lemma 5.16 (Substitution). We have:

(1) If φ;Φ; Γ, v :T ⊢ e ′ :U and φ;Φ; Γ ⊢ e :T then φ;Φ; Γ ⊢ e ′[v := e] :U .

(2) If φ;Φ; Γ, v :T s P ◁ K and φ;Φ; Γ ⊢ e :T then φ;Φ; Γ s P[v := e] ◁ K .

The proof is standard.

5.4.2 Subject Reduction. We now present the core theorem in order to have the complexity soundness: subject

reduction. First, we need to show that typing is invariant by congruence.

Lemma 5.17 (Congruence and Typing). Let P andQ be annotated processes such that P ≡ Q . Then,φ;Φ; Γ s P◁K

if and only if φ;Φ; Γ s Q ◁ K .

Proof. We prove this by induction on P ≡ Q . Note that for a process P , the typing system is not syntax-directed

because of the subtyping rule. However, by relexivity and transitivity of subtyping, we can always assume

that a proof has exactly one subtyping rule before any syntax-directed rule. Moreover, it is suicient to prove

this theorem for type derivations that do not start with a subtyping rule. Indeed, the irst subtyping rule in a

derivation for P can always be mimicked as it is in the derivation for Q . We show the essential base cases and the

inductive steps follow directly from induction hypothesis.

• Case (νa)P | Q ≡ (νa) (P | Q) with a not free in Q .

Suppose φ;Φ; Γ s (νa) (P | Q) ◁ K . Then the proof has the shape:

πP

φ ;Φ;∆, a :T ′ s P ◁ K ′

πQ

φ ;Φ;∆, a :T ′ s Q ◁ K ′

φ ;Φ;∆, a :T ′ s P | Q ◁ K ′ φ ;Φ ⊢ Γ ⊑ ∆ φ ;Φ ⊢ T ⊑ T ′ φ ;Φ ⊨ K ′ ≤ K

φ ;Φ; Γ, a :T s P | Q ◁ K

φ ;Φ; Γ s (νa) (P | Q) ◁ K

Since a is not free in Q , by Lemma 5.12, from πQ we obtain a proof π ′Q of φ;Φ;∆ s Q ◁ K ′. We can then

derive the following typing:

ACM Trans. Program. Lang. Syst.

Types for Complexity of Parallel Computation in Pi-Calculus • 111:33

πP

φ ;Φ;∆, a :T ′ s P ◁ K ′ φ ;Φ ⊢ T ⊑ T ′

φ ;Φ;∆, a :T s P ◁ K ′

φ ;Φ;∆ s (νa)P ◁ K ′

π ′
Q

φ ;Φ;∆ s Q ◁ K ′

φ ;Φ;∆ s (νa)P | Q ◁ K ′ φ ;Φ ⊢ Γ ⊑ ∆ φ ;Φ ⊨ K ′ ≤ K

φ ;Φ; Γ s (νa)P | Q ◁ K

For the converse, the proof is direct by induction hypothesis and weakening.

• Casem : (P | Q) ≡m : P | m : Q . Suppose φ;Φ; Γ s m : (P | Q) ◁ K+m. Then we have:

πP

φ ;Φ;∆ s P ◁ K ′

πQ

φ ;Φ;∆ s Q ◁ K ′

φ ;Φ;∆ s P | Q ◁ K ′ φ ;Φ ⊢ ⟨Γ⟩−m ⊑ ∆ φ ;Φ ⊨ K ′ ≤ K

φ ;Φ; ⟨Γ⟩−m s P | Q ◁ K

φ ;Φ; Γ s m : (P | Q) ◁ K+m

So, we can give the following derivation:

πP

φ ;Φ;∆ s P ◁ K ′ φ ;Φ ⊢ ⟨Γ⟩−m ⊑ ∆ φ ;Φ ⊨ K ′ ≤ K

φ ;Φ; ⟨Γ⟩−m s P ◁ K

φ ;Φ; Γ s m : P ◁ K+m

πQ

φ ;Φ;∆ s Q ◁ K ′

φ ;Φ; ⟨Γ⟩−m s ◁K

φ ;Φ; Γ s m : Q ◁ K+m

φ ;Φ; Γ s m : P | m : Q ◁ K+m

Now, suppose we have a typing φ;Φ; Γ s m : P | m : Q ◁ K . The typing has the shape:

πP

φ ;Φ; ⟨∆1⟩−m s P ◁ K1

φ ;Φ;∆1 s m : P ◁ K1+m

πQ

φ ;Φ; ⟨∆2⟩−m s Q ◁ K2

φ ;Φ;∆2 s m : Q ◁ K2+m φ ;Φ ⊢ Γ ⊑ ∆1; Γ ⊑ ∆2;K1+m ≤ K ;K2+m ≤ K

φ ;Φ; Γ s m : P ◁ K φ ;Φ; Γ s m : Q ◁ K

φ ;Φ; Γ s m : P | m : Q ◁ K

By Lemma 5.10, from Γ ⊑ ∆1, we obtain Γ = Θ0,Θ1 with ⟨Θ1⟩−m ⊑ ⟨∆1⟩−m . In the same way, Γ = Θ′0,Θ
′
1

with ⟨Θ′1⟩−m ⊑ ⟨∆2⟩−m . Moreover, we have easily φ;Φ ⊨ K ≥ m. Thus, by the Lemma 5.11 (weakening) for

πP and πQ , we obtain:

πw
P

φ ;Φ; ⟨Θ0⟩−m, ⟨∆1⟩−m s P ◁ K1

φ ;Φ; ⟨Γ⟩−m s P ◁ K−m

πw
Q

φ ;Φ; ⟨Θ′0⟩−m, ⟨∆2⟩−m s Q ◁ K2

φ ;Φ; ⟨Γ⟩−m s Q ◁ K−m

φ ;Φ; ⟨Γ⟩−m s P | Q ◁ K−m

φ ;Φ; Γ s m : (P | Q) ◁ K

This concludes this case.

• Casem : (νa)P ≡ (νa) (m : P).

Suppose that φ;Φ; Γ s m : (νa)P ◁ K+m. Then, the proof has the shape:

ACM Trans. Program. Lang. Syst.

111:34 • Patrick Baillot and Alexis Ghyselen

πP

φ ;Φ;∆, a :T s P ◁ K ′

φ ;Φ;∆ s (νa)P ◁ K ′ φ ;Φ ⊢ ⟨Γ⟩−m ⊑ ∆ φ ;Φ ⊨ K ′ ≤ K

φ ;Φ; ⟨Γ⟩−m s (νa)P ◁ K

φ ;Φ; Γ s m : (νa)P ◁ K+m

Recall that, by Lemma 5.15, ⟨⟨T ⟩+m⟩−m = ⟨T ⟩−0 = T . So, we have:

πP

φ ;Φ;∆, a :T s P ◁ K ′ φ ;Φ ⊢ ⟨Γ⟩−m ⊑ ∆ φ ;Φ ⊨ K ′ ≤ K φ ;Φ ⊢ T ⊑ T

φ ;Φ; ⟨Γ⟩−m, a :T s P ◁ K

φ ;Φ; Γ, a : ⟨T ⟩+m s m : P ◁ K+m

φ ;Φ; Γ s (νa) (m : P) ◁ K+m

For the converse, suppose that φ;Φ; Γ s (νa)m : P ◁ K . Then the typing has the shape:

πP

φ ;Φ; ⟨(∆, a :T ′)⟩−m s P ◁ K ′

φ ;Φ;∆, a :T ′ s m : P ◁ K ′+m φ ;Φ ⊢ Γ ⊑ ∆ φ ;Φ ⊢ T ⊑ T ′ φ ;Φ ⊨ K ′+m ≤ K

φ ;Φ; Γ, a :T s m : P ◁ K

φ ;Φ; Γ s (νa)m : P ◁ K

By an abuse of notation, let us write ⟨T ′⟩−m to denote ⟨T ′⟩−m if it is deined, and any other type otherwise.

Then, we have the derivation (with possibly a weakened version of πP):

πw
P

φ ;Φ; ⟨∆⟩−m, a : ⟨T ′⟩−m s P ◁ K ′

φ ;Φ; ⟨∆⟩−m s (νa)P ◁ K ′

φ ;Φ;∆ s m : (νa)P ◁ K ′+m φ ;Φ ⊢ Γ ⊑ ∆ φ ;Φ ⊨ K ′+m ≤ K

φ ;Φ; Γ s m : (νa)P ◁ K

This concludes all the base cases. We can then prove the lemma by considering the remaining cases for P ≡ Q .

Symmetry, transitivity and contextual congruence are direct by induction hypothesis. □

Now that we have Lemma 5.17, we can work up to the congruence relation. So, we proceed to show subject

reduction.

Theorem 5.18 (Subject Reduction). If φ;Φ; Γ s P ◁ K and P ⇒ Q then φ;Φ; Γ s Q ◁ K .

Let us show this Theorem. We do this by induction on P ⇒ Q . Let us irst remark that when considering the

typing of P , again the irst subtyping rule has no importance since we can always start the typing of Q with the

exact same subtyping rule. We now proceed by doing the case analysis on the rules of Figure 11. Again, we only

present the interesting cases.

• Case (n :!a (̃v).P) | (m : a⟨̃e⟩) ⇒ (n :!a (̃v).P) | (max(n,m) : P [̃v := ẽ]). Consider the typing φ;Φ; Γ s (n :

!a (̃v).P) | (m : a⟨̃e⟩) ◁ K . The irst rule is the rule for parallel composition, then the proof is split into the

two following subtrees:

ACM Trans. Program. Lang. Syst.

Types for Complexity of Parallel Computation in Pi-Calculus • 111:35

φ ;Φ;∆0, ∆
′
0 ⊢ a : ∀̃i .iserv

K ′0
I0

(T̃0)

πP

(φ, ĩ);Φ;Θ0, ṽ : T̃0 s P ◁ K ′0 φ ;Φ ⊢ ⟨∆0⟩−I0
⊑ Θ0, time invariant

φ ;Φ;∆0, ∆
′
0 s !a (̃v).P ◁ I0 φ ;Φ ⊢ ⟨Γ0⟩−n ⊑ ∆0, ∆

′
0; I0 ≤ K0

φ ;Φ; ⟨Γ0⟩−n s !a (̃v).P ◁ K0

φ ;Φ; Γ0 s n :!a (̃v).P ◁ K0+n φ ;Φ ⊢ Γ ⊑ Γ0;K0+n ≤ K

φ ;Φ; Γ s n :!a (̃v).P ◁ K

φ ;Φ;∆1 ⊢ a : ∀̃i .oserv
K ′1
I1

(T̃1)

πe

φ ;Φ; ⟨∆1⟩−I1
⊢ ẽ : T̃1 { J̃ /ĩ }

φ ;Φ;∆1 s a⟨ẽ⟩ ◁ I1+K
′
1 { J̃ /ĩ } φ ;Φ ⊢ ⟨Γ1⟩−m ⊑ ∆1; I1+K

′
1 { J̃ /ĩ } ≤ K1

φ ;Φ; ⟨Γ1⟩−m s a⟨ẽ⟩ ◁ K1

φ ;Φ; Γ1 s m : a⟨ẽ⟩ ◁ K1+m φ ;Φ ⊢ Γ ⊑ Γ1;K1+m ≤ K

φ ;Φ; Γ s m : a⟨ẽ⟩ ◁ K

The irst subtree can be used exactly as it is to type the server in the right part of the reduction relation.

Furthermore, as the name a is used as an input and as an output, the original type in Γ for this name must

be a server type ∀̃i .servKa
I

(T̃). As this server does not lose its input capacity after the time decrease, we

also know that φ;Φ ⊨ I ≥ n. So, by subtyping, we have:

φ;Φ ⊨ I0 = I−n (φ, ĩ);Φ ⊢ T̃ ⊑ T̃0 (φ, ĩ);Φ ⊨ K ′0 ≤ Ka

φ;Φ ⊨ I1 = I−m (φ, ĩ);Φ ⊢ T̃1 ⊑ T̃ (φ, ĩ);Φ ⊨ Ka ≤ K ′1
There are now two cases to consider: Either φ;Φ ⊨ I ≥ m or φ;Φ ⊭ I ≥ m. The most diicult case between

the two is φ;Φ ⊭ I ≥ m, hence we only detail this case.

Suppose that φ;Φ ⊭ I ≥ m. Note that as we know φ;Φ ⊨ I ≥ n, it means that m > n. Moreover, as

φ;Φ ⊨ I1 = I −m, then φ;Φ ⊨ I1+m = max(I ,m). We still have:

(φ, ĩ);Φ ⊢ T̃1 ⊑ T̃0 (φ, ĩ);Φ ⊨ K ′0 ≤ K ′1

Thus, by subtyping, from πP we can obtain a proof of (φ, ĩ);Φ;Θ0, ṽ : T̃1 s P ◁ K ′1. By Lemma 5.13, we have

a proof of φ;Φ{ J̃ /̃i};Θ0{ J̃ /̃i}, ṽ : T̃1{ J̃ /̃i} s P ◁ K ′1{ J̃ /̃i}. As ĩ only appears in T̃1 and K
′
1, we obtain a proof of

φ;Φ;Θ0, ṽ : T̃1{ J̃ /̃i} s P ◁ K ′1{ J̃ /̃i}.

Now, by using several times Lemma 5.10, we have:

φ;Φ ⊢ ⟨Γ⟩−(n+I0) ⊑ ϵ0, ⟨∆0⟩−I0 ⊑ ϵ0,Θ0 φ;Φ ⊢ ⟨Γ⟩−(m+I1) ⊑ ϵ1, ⟨∆1⟩−I1

for some ϵ0, ϵ1. Moreover, we know that Θ0 is time invariant. let us call J =max (I0+n, I1+m), we have by

again decreasing in the irst subtyping relation:

φ;Φ ⊢ ⟨Γ⟩−J ⊑ ϵ2,Θ0

for some ϵ2. Note that we have φ;Φ ⊨ J = max (I ,m) = I1+m since φ;Φ ⊨ I0+n = I and φ;Φ ⊨ I1+m =

max (I ,m).

By Lemma 5.11, we can obtain two proofs, with the subtyping rule,

φ;Φ; ⟨Γ⟩−J , ṽ : T̃1{ J̃ /̃i} s P ◁ K1{ J̃ /̃i} φ;Φ; ⟨Γ⟩−J ⊢ ẽ : T̃1{ J̃ /̃i}

Thus, by the substitution lemma (Lemma 5.16), we have φ;Φ; ⟨Γ⟩−J s P [̃v := ẽ] ◁ K1{ J̃ /̃i}. Recall that in

this case, max(n,m) =m. We can obtain the following typing using the associated typing rule:

φ;Φ; ⟨Γ⟩−(J−m) s m : P [̃v := ẽ] ◁m+K1{ J̃ /̃i}.

ACM Trans. Program. Lang. Syst.

111:36 • Patrick Baillot and Alexis Ghyselen

Then, by delaying (Lemma 5.15), we have φ;Φ; ⟨⟨Γ⟩−(J−m)
⟩+(J−m) s m : P [̃v := ẽ] ◁ J+K1{ J̃ /̃i}, and Γ = ϵ ′0, ϵ

′
1

with φ;Φ ⊢ ϵ ′1 ⊑ ⟨⟨Γ⟩−(J−m)
⟩+(J−m) . Recall that φ;Φ ⊨ J = I1+m and φ;Φ ⊨ I1+m+K1{ J̃ /̃i} ≤ K . Thus, again

by subtyping and weakening, we obtain

φ;Φ; Γ s max(n,m) : P [̃v := ẽ] ◁ K

This concludes this case. Note that many notations in this case are somewhat complicated because we only

know that φ;Φ ⊨ I ≥ m is false, but it does not immediately mean that φ;Φ ⊨m > I because the relation on

indexes is not complete. So, we have to take that into account when writing substraction.

The case of simple channel synchronization works in the same way.

• Case match e :: e ′ {[] 7→ P ; ; x :: y 7→ Q } ⇒ Q[x ,y := e, e ′]. This case is more diicult than its

counterpart for integers, thus we only detail this case and the one for integers can easily be deduced

from this one. Moreover, this case is also more diicult than the case for ∋. Assume given a derivation

φ;Φ; Γ s match e :: e ′ {[] 7→ P ; ; x :: y 7→ Q } ◁ K . Then the proof has the shape:

πe

φ ;Φ;∆ ⊢ e : B′
πe′

φ ;Φ;∆ ⊢ e′ : List[I ′, J ′](B′)

φ ;Φ;∆ ⊢ e :: e′ : List[I ′+1, J ′+1](B′) φ ;Φ ⊢ Γ ⊑ ∆; List[I ′+1, J ′+1](B′) ⊑ List[I, J](B)

φ ;Φ; Γ ⊢ e :: e′ : List[I, J](B) πQ

φ ;Φ; Γ s match e :: e′ {[] 7→ P ; ; x :: y 7→ Q } ◁ K

Where we ignore the branch for P and πQ proves φ; (Φ, J ≥ 1); Γ,x : B,y : List[I−1, J−1](B) s Q ◁ K .

Subtyping gives us the following information:

φ;Φ ⊨ I ≤ I ′+1 φ;Φ ⊨ J ′+1 ≤ J φ;Φ ⊢ B ′ ⊑ B

From this, we can deduce the following constraints:

φ;Φ ⊨ J ≥ 1 φ;Φ ⊨ I−1 ≤ I ′ φ;Φ ⊨ J ′ ≤ J − 1

Thus, with the subtyping rule and the proofs πe and πe ′ we obtain:

φ;Φ; Γ ⊢ e : B φ;Φ; Γ ⊢ e ′ : List[I−1, J−1](B)

Then, by Lemma 5.12, from πQ we obtain a proof of φ;Φ; Γ,x : B,y : List[I−1, J−1](B) s Q ◁ K . By the

substitution lemma (Lemma 5.16), we obtain φ;Φ; Γ s Q[x ,y := e, e ′] ◁ K . This concludes this case.

• Case P ⇒ Q with P ≡ P ′, P ′ ⇒ Q ′ and Q ≡ Q ′. Suppose that φ;Φ; Γ s P ◁ K . By Lemma 5.17, we have

φ;Φ; Γ s P ′ ◁ K . By induction hypothesis, we obtain φ;Φ; Γ s Q ′ ◁ K . Then, again by Lemma 5.17, we have

φ;Φ; Γ s Q ◁ K . This concludes this case.

This concludes the proof of Theorem 5.18.

Now that we have the subject reduction for⇒, we can easily deduce a more generic form of Theorem 5.8.

Theorem 5.19. Let P be an annotated process such that φ;Φ; Γ s P ◁ K . Then, φ;Φ ⊨ K ≥ span(P).

Proof. By Theorem 5.18, all reductions from P using⇒ preserve the typing. Moreover, for any process Q , if

we have a typing φ;Φ; Γ s Q ◁ K , then φ;Φ ⊨ K ≥ Cℓ (Q). Indeed, a constructor n : P incurs an increment of the

complexity of n both in typing and in the deinition of Cℓ (Q), and for parallel composition the typing imposes a

complexity greater than the maximum as in the deinition for Cℓ (Q). Thus, for any process Q reachable from P ,

we have φ;Φ ⊨ K ≥ Cℓ (Q), and K is indeed a bound on the span. □

Corollary 5.9, which has been stated before, is then obtained with the substitution lemma and the rule for

parallel composition.

ACM Trans. Program. Lang. Syst.

Types for Complexity of Parallel Computation in Pi-Calculus • 111:37

6 AN EXAMPLE: BITONIC SORT

As an example for this type system, we show how to obtain the bound on a common parallel algorithm: bitonic

sort [1]. The particularity of this sorting algorithm is that it admits a parallel complexity in O (loд(n)2). We will

show here that our type system allows to derive this bound for the algorithm, just as the paper-and-pen analysis.

Actually we consider here a version for lists, which is not optimal for the number of operations, but we obtain

the usual number of comparisons. For the sake of simplicity we consider the case of lists of size a power of 2. Let

us briely sketch the ideas of this algorithm. For a formal description see [1].

• A bitonic sequence is either a sequence composed of an increasing sequence followed by a decreasing

sequence (e.g. [2, 7, 23, 19, 8, 5]), or a cyclic rotation of such a sequence (e.g. [8, 5, 2, 7, 23, 19]).

• The algorithm uses 2 main functions, bmerge and bsort.

• bmerge takes a bitonic sequence and recursively sorts it, as follows:

Assume s = [a0, . . . ,an−1] is a bitonic sequence such that [a0, . . . ,an/2−1] is increasing and [an/2 . . . ,an−1]

is decreasing, then we consider:

s1 = [min(a0,an/2),min(a1,an/2+1) . . . ,min(an/2−1,an−1)] the list of minima and

s2 = [max(a0,an/2),max(a1,an/2+1) . . . ,max(an/2−1,an−1)] the list of maxima.

Then we have: s1 and s2 are bitonic and satisfy: ∀x ∈ s1,∀y ∈ s2,x ≤ y.

bmerge then applies recursively to s1 and s2 to produce a sorted sequence.

• bsort takes a sequence and recursively sorts it. It starts by separating the sequence in two. Then, it

recursively sorts the irst sequence in increasing order, and the second sequence in decreasing order. With

this, we obtain a bitonic sequence that can be sorted with bmerge.

We will encode this algorithm in π -calculus with a boolean type. As said before, our results can easily be extended

to support boolean with a conditional constructor.

First, we suppose that a server for comparison lessthan is already implemented. We start with bcompare such

that given two lists of same length, it creates the list of minimum and the list of maximum (s2 and s1 described

above). The process is given in Figure 16 and intuitively, it compares the two top elements of the lists, puts the

minimum in the left list and the maximum in the right list, and then proceeds recursively.

Then, to present the processes for bitonic sort, let us use the macro let ṽ = f (ẽ) in P to represent (νa) (f ⟨̃e,a⟩ |

a (̃v).P), with the meaning that if f is a server representing a function f , then this process indeed corresponds

to computing f on ẽ , and putting the output in the variables ṽ in the continuation P . We will only use it with

f that has complexity 0, then the associated typing rule corresponds to adding ṽ in the context with types

corresponding to the outputs of the function f . We also use a generalized pattern matching, allowing to match

on a list with one element, which could formally be done by two successive pattern matching. We also assume

that we have a function for concatenation of lists and a function partition taking a list of size 2n, and giving

two lists corresponding to the irst n elements and the last n elements. Then, the process for bitonic sort is given

in Figure 16. The server bmerge takes a list, splits it into two lists l1 and l2, computes the list of minima p1 and the

list of maxima p2, applies recursively to those lists, and then concatenates them in increasing order if up is true,

and in decreasing order otherwise. And inally, bsort takes a list, separates it into two lists, sorts the irst one in

increasing order and the second one in decreasing order, and then merges them using the previous function.

We present here intuitively the typing. To begin with, we suppose that lessthan is given the server type

oserv00 (B,B, ch0 (Bool)), saying that this is a server ready to be called, and it takes in input a channel that is

used to return the boolean value. With this, we can give to bcompare the following server type:

∀i .serv10 (List[0, i](B), List[0, i](B), out1 (List[0, i](B), List[0, i](B)))

The important things to notice are that this server has complexity 1, and the channel taken in input has a time 1.

A sketch of this typing is given in Figure 17a, where we use abbreviations for the name of server (lt for lessthan,

ACM Trans. Program. Lang. Syst.

111:38 • Patrick Baillot and Alexis Ghyselen

!bcompare(l1 ,l2 ,a) . match (l1) {

[] 7→ a⟨l1 ,l2 ⟩ ; ;

x :: l ′1 7→ match (l2) {

[] 7→ a⟨l1 ,l2 ⟩ ; ;

y :: l ′2 7→ (νb) (ν c) (

bcompare⟨l ′1 ,l
′
2 ,b⟩ | tick.lessthan⟨x ,y , c ⟩

| b (lm ,lM) . c (z) .if z then a⟨x :: lm ,y :: lM ⟩ else a⟨y :: lm ,x :: lM ⟩

)

}

}

!bmerge(up , l , a) . match (l) {

[] 7→ a⟨ l ⟩ ; ;

[y] 7→ a⟨ l ⟩ ; ;

_ 7→ let (l1 ,l2) = partit ion (l) in (νb) (ν c) (νd) (

bcompare⟨l1 ,l2 ,b⟩ | b (p1 ,p2) . (bmerge⟨up ,p1 , c ⟩ | bmerge⟨up ,p2 ,d⟩)

| c (q1) .d (q2) . if up then let l ′ = q1 @ q2 in a⟨l ′⟩ else let l ′ = q2 @ q1 in a⟨l ′⟩

)

}

!bsort (up , l , a) . match (l) {

[] 7→ a⟨ l ⟩ ; ;

[y] 7→ a⟨ l ⟩ ; ;

_ 7→ let (l1 ,l2) = partit ion (l) in (νb) (ν c) (νd) (

bsort⟨tt ,l1 ,b⟩ | bsort⟨ff ,l2 , c ⟩

| b (q1) . c (q2) .let q = q1 @ q2 in bmerge⟨up ,q ,d⟩ | d (p) .a⟨p⟩

)

}

Fig. 16. Bitonic Sort

bc for bcompare ...) The cases of empty lists are not detailed, but they are easy. In the non-empty case, for the ν

constructor, we must give a type to the channels b and c . We use:

b : ch1 (List[0, i−1](B), List[0, i−1](B)) c : ch1 (Bool)

And we can then type the various processes in parallel.

• For the call to bcompare, the arguments have the expected type, and this call has complexity 1 because of

the type of bcompare.

• For the process tick.lessthan⟨x ,y, c⟩, the tick enforces a decreasing of time 1 in the context. This modiies

in particular the time of c , that becomes 0. Thus, we can do the call to lessthan as everything is well-typed.

• Finally, for the last process, we have in the two branches a shape b (· · ·).c (· · ·).a⟨· · ·⟩. So, by Section 5.3.1,

as all those three channels b, c and a have a time equal to 1, we have a complexity 1 for this typing.

So, we can indeed give this server type to bcompare, and thus we can call this server and it generates a complexity

of 1.

ACM Trans. Program. Lang. Syst.

Types for Complexity of Parallel Computation in Pi-Calculus • 111:39

(Ax)
i ; i ≥ 1;∆ ⊢ (l ′1, l

′
2, b) : T̃ (i−1)

(Oserv)
i ; i ≥ 1;∆ s bc⟨l

′
1, l
′
2, b⟩ ◁ 1

(Ax)
i ; i ≥ 1; ⟨∆⟩−1 ⊢ (x, y, c) : (B, B, ch0 (Bool))

(Oserv)
i ; i ≥ 1; ⟨∆⟩−1 s l t ⟨x, y, c⟩ ◁ 0

(Tick)
i ; i ≥ 1;∆ s tick.l t ⟨x, y, c⟩ ◁ 1

See Section 5.3.1

i ; i ≥ 1;∆ s b (lm, lM).c (z).if · · · ◁ 1
(Par)

i ; i ≥ 1;∆ s bc⟨l
′
1, l
′
2, b⟩ | tick.l t ⟨x, y, c⟩ | c (z).if · · · ◁ 1

(Nu)
i ; i ≥ 1; Γ′, (l1, l2, a) : T̃ (i), x : B, y : B, l ′1 : List[0, i−1], l

′
2 : List[0, i−1](B) s (νb) (νc) · · · ◁ 1

(Listpm)
i ; i ≥ 1; Γ′, (l1, l2, a) : T̃ (i), x : B, l ′1 : List[0, i−1](B) s match l2 {[] 7→ · · · ; ; y :: l ′2 7→ · · · } ◁ 1

(Listpm)
i ; ·; Γ′, (l1, l2, a) : T̃ (i) s match l1 {[] 7→ · · · ; ; x :: l ′1 7→ · · · } ◁ 1 Γ′ time invariant ·; ·; ⊢ ⟨Γ⟩−0 ⊑ Γ′

(Iserv)
·; ·; Γ s !bc (l1, l2, a). . . . ◁ 0

T̃ (i) := List[0, i](B), List[0, i](B), out1 (List[0, i](B), List[0, i](B))

Γ := l t : oserv00 (B, B, ch0 (Bool)), bc : ∀i .serv
1
0 (T̃ (i)) Γ′ := l t : oserv00 (B, B, ch0 (Bool)), bc : ∀i .oserv

1
0 (T̃ (i))

∆ := Γ′, (l1, l2, a) : T̃ (i), x : B, y : B, l ′1 : List[0, i−1], l
′
2 : List[0, i−1](B), b : out1 (List[0, i−1](B), List[0, i−1](B)), c : ch1 (Bool)

(a) Type Derivation for Bitonic Comparison.

(Ax)
i ;Φ;∆ ⊢ (l1, l2, b) : T̃ (2i−1)

(Oserv)
i ;Φ;∆ s bc⟨l1, l2, b⟩ ◁ 1

(Sub)
i ;Φ;∆ s bc⟨l1, l2, b⟩ ◁ f (i)

See Section 5.3.1

i ;Φ;∆ s b (p1, p2). · · · ◁ 1+f (i−1)
(Sub)

i ;Φ;∆ s b (p1, p2). · · · ◁ f (i)

see Section 5.3.1

i ;Φ;∆ s c (q1). · · · ◁ f (i)
(Par)

i ;Φ;∆ s bc⟨l1, l2, b⟩ | b (p1, p2). · · · | c (q1). · · · ◁ f (i)
(Nu)

i ;Φ; Γ′, (up, l, a) : Ũ (i), l1 : List[0, 2
i−1](B), l2 : List[0, 2

i−1](B) s (νb) (νc) (νd) · · · ◁ f (i)
(Let)

i ; 2i ≥ 2; Γ′, (up, l, a) : Ũ (i) s let (l1, l2) = partition(l) in · · · ◁ f (i)
(Listpm)

i ; ·; Γ′, (up, l, a) : Ũ (i) s match l { · · · } ◁ f (i) Γ′ time invariant ·; ·; ⊢ ⟨Γ⟩−0 ⊑ Γ′

(Iserv)
·; ·; Γ s !bm (up, l, a). . . . ◁ 0

T̃ (i) := List[0, i](B), List[0, i](B), out1 (List[0, i](B), List[0, i](B)) Ũ (i) := Bool, List[0, 2i](B), outf (i) (List[0, 2
i](B))

Γ := bc : ∀i .oserv10 (T̃ (i)), bm : ∀i .serv
f (i)
0 (Ũ (i)) Γ′ := bc : ∀i .oserv10 (T̃ (i)), bm : ∀i .oserv

f (i)
0 (Ũ (i)) Φ := 2i ≥ 2

∆ := Γ′, (up, l, a) : Ũ (i), l1 : List[0, 2
i−1](B), l2 : List[0, 2

i−1](B), b : out1 (List[0, 2
i−1](B), List[0, 2i−1](B)), c, d : outf (i−1) (List[0, 2

i−1](B))

(b) Type Derivation for Bitonic Merge

(Ax)
i ;Φ;∆ ⊢ (tt, l1, b) : Ṽ (i−1)

(Oserv)
i ;Φ;∆ s bs⟨tt, l1, b⟩ ◁ д (i−1)

(Sub)
i ;Φ;∆ s bs⟨tt, l1, b⟩ ◁ д (i)

See Section 5.3.1

i ;Φ;∆ s b (q1). · · · ◁ д (i−1)+f (i)
(Sub)

i ; i ≥ 1;∆ s b (q1). · · · ◁ д (i)

See Section 5.3.1

i ; i ≥ 1;∆ s d (p).a⟨p⟩ ◁ д (i)
(Par)

i ;Φ;∆ s bs⟨tt, l1, b⟩ | bs⟨ff, l2, c⟩ | b (q1). · · · | d (p).a⟨p⟩ ◁ д (i)
(Nu)

i ;Φ; Γ′, (up, l, a) : Ṽ (i), l1 : List[0, 2
i−1](B), l2 : List[0, 2

i−1](B) s (νb) (νc) (νd) · · · ◁ д (i)
(Let)

i ; 2i ≥ 2; Γ′, (up, l, a) : Ṽ (i) s let (l1, l2) = partition(l) in · · · ◁ д (i)
(Listpm)

i ; ·; Γ′, (up, l, a) : Ṽ (i) s match l { · · · } ◁ д (i) Γ′ time invariant ·; ·; ⊢ ⟨Γ⟩−0 ⊑ Γ′

(Iserv)
·; ·; Γ s !bs (up, l, a). . . . ◁ 0

Ũ (i) := Bool, List[0, 2i](B), outf (i) (List[0, 2
i](B)) Ṽ (i) := Bool, List[0, 2i](B), outд (i) (List[0, 2

i](B))

Γ := bm : ∀i .oserv
f (i)
0 (Ũ (i)), bs : ∀i .serv

д (i)
0 (Ṽ (i)) Γ′ := bm : ∀i .oserv

f (i)
0 (Ũ (i)), bs : ∀i .oserv

д (i)
0 (Ṽ (i)) Φ := 2i ≥ 2

∆ := Γ′, (up, l, a) : Ṽ (i), l1 : List[0, 2
i−1](B), l2 : List[0, 2

i−1](B), b, c : outд (i−1) (List[0, 2
i−1]) (B), d : out(д (i−1)+f (i)) (List[0, 2

i]) (B)

(c) Type Derivation for Bitonic Sort

Fig. 17. Bitonic Sort
ACM Trans. Program. Lang. Syst.

111:40 • Patrick Baillot and Alexis Ghyselen

Then, the main point in the typing of the two remaining servers is to ind a solution to a recurrence relation

for the complexity of server types. In the typing of bmerge, we suppose given a list of size smaller than 2i and we

choose both the complexity of this type and the time of the channel a equal to an index f (i) as in Section 5.3.3.

So, it means we choose for bmerge the type:

∀i .serv
f (i)
0 (Bool, List[0, 2i](B), outf (i) (List[0, 2

i](B)))

Then, the typing given in Figure 17b gives us the following conditions, for the three branches, when 2i ≥ 2 (or

equivalently, i ≥ 1):

f (i) ≥ 1 f (i) ≥ 1+f (i−1) f (i) ≥ f (i−1) ≥ f (i−1)

The irst inequality comes from the (Sub) rule for the irst branch, the second inequality comes from the (Sub)

rule for the second branch, and the third inequality comes from the condition that the time of a should be greater

than the time of d , which should be greater than the time of c in the third branch, as explained in Section 5.3.1.

So, we can take f (i) = i , and thus bmerge has logarithmic complexity.

In the same way, for bsort we chose the type:

∀i .serv
д (i)
0 (Bool, List[0, 2i](B), outд (i) (List[0, 2

i](B)))

The typing is given in Figure 17c, which gives us the following conditions, again for the three parallel branches,

when 2i ≥ 2 (equivalently, i ≥ 1):

д(i) ≥ д(i−1) д(i) ≥ д(i−1)+f (i) д(i) ≥ д(i−1)+f (i)

The irst inequality comes from the (Sub) rule for the irst branch, the second inequality comes from the (Sub)

rule for the second branch, where д(i−1)+f (i) is the complexity of b (q1). · · · (time of b and c summed with the

call to bmerge), and the last inequality comes from the third branch, as the time of a should be greater than the

time of d . So, if we take f (i) = i as previously, we have:

i ≥ 1 implies д(i) ≥ д(i−1)+i

Thus, we can take д(i) in O (i2), and we obtain in the end that bitonic sort is indeed in O (loд(n)2) on a list of size

n.

Note that in this example, the type system gives recurrence relations corresponding to the usual recurrence

relations we would obtain with a complexity analysis by hand. Here, the recurrence relation is only on f or д

because channel names are only used as return channels, hence their time is always equal to the complexity of

the server that uses them. In general this is not the case as we saw before in Section 5.3.3, we can obtain mutually

recurrent relations when deining a server.

7 SPAN AND CAUSAL COMPLEXITY

In this section, we present how our notion of span can be linked with the causal complexity of the literature, as

we believe it can be of interest to show that both annotated processes and causal complexity are well-behaved

notions of parallel complexity in the π -calculus.

7.1 Presentation of Causal Complexity

We present here a notion of causal complexity inspired by other works [14ś16]. We explained before with the
canonical form in Deinition 3.1 that a process can be described by a set of names and a multiset of guarded
processes, when working up to congruence. For causal complexity, we consider more structure for processes. The
idea is to see a process as a set of names and a binary tree where leaves are guarded processes and a node means

ACM Trans. Program. Lang. Syst.

Types for Complexity of Parallel Computation in Pi-Calculus • 111:41

parallel composition. Formally, instead of using the previous congruence relation, we use the tree congruence.
This is deined as the least congruence relation ≡t closed under:

(νa) (νb)P ≡t (νb) (νa)P

(νa) (P | Q) ≡t (νa)P | Q (when a is not free in Q) (νa) (P | Q) ≡t P | (νa)Q (when a is not free in P)

This tree congruence can indeed move names as before, but it preserves the tree-shape of a process. With this

intuition, we can redeine the semantics in order to preserve this tree structure. For this, we annotate the reduction

relation by a location.

Deinition 7.1 (Locations and Positions). The sets of positions and locations are given by the following grammars:

p := ϵ | 0 · p | 1 · p ℓ := p; tick | p; pm | τ ⟨p,p ′⟩

The intuition is that a reduction P
p ;tick
−→ P ′ removed the top tick of the guarded process of P at position p

in the tree. A reduction P
τ ⟨p,p′⟩
−→ P ′ is a communication between the input process at position p and the output

process at position p ′. Finally, the action p; pm is for the position of a pattern-matching reduction.

The rules are described in Figure 18. For example, from a process P seen as a tree with at position p a replicated

input !a (̃v).Q and at position p ′ an output a⟨̃e⟩, we obtain the process P ′, the same tree as P , with at position p

the same replicated input but at position p ′ we have the tree corresponding to the processQ [̃v := ẽ]. The location

τ ⟨p,p ′⟩ indicates at which positions the modiication happened, and what was the action performed. In the same

way, we can deine a reduction annotated by a tick, or a match. An alternative presentation of this semantics,

closer to the one in [16], with a labelled transition system, is also possible. As for the standard reduction in

π -calculus, both semantics (the one with the congruence and the one with the labelled transition system) are

equivalent. We chose to present this one because it is easier to use in proofs.

The goal of this semantics is irst to preserve the tree structure in a reduction step, and second to remember

when doing a reduction step where the modiication occurs exactly in the tree. Then, we can deine a causality

relation between locations. The idea is that a location ℓ causes a location ℓ′ (denoted ℓ ≺c ℓ
′) when the reduction

step at location ℓ′ could not have happened without the reduction step at location ℓ.

Deinition 7.2. The causality relation ℓ ≺c ℓ
′ between locations is deined by:

• p; tick ≺c p
′; tick when p is a preix of p ′

• p; tick ≺c τ ⟨p0,p1⟩ when p is a preix of p0 or p1
• τ ⟨p0,p1⟩ ≺c p; tick when p1 is a preix of p

• τ ⟨p0,p1⟩ ≺c τ ⟨p
′
0,p
′
1⟩ when p1 is a preix of p

′
0 or p

′
1.

As for pm locations, they behave as a tick location. By extension, we will sometime say that a location ℓ ≺c p

when ℓ ≺c p; tick. Intuitively, this deinition comes from where the continuation of a reduction is. For example,

for the subprocess tick.Q at position p, the continuation Q after a reduction is a subtree with its root at position

p. Thus, any position in this tree for Q has p as a preix, and so any reduction happening in Q has p as a preix in

its location.

The main interest of causal complexity is that this notion of causality can be adapted to account for diferent

behaviours. For example, in [16], the causality relation is diferent. For instance, they consider that linear

communications (on non replicated input) do not propagate causality in their work. Here, we chose this causality

relation to show the equivalence with annotated processes, and in this sense, our notion of span is a particular

case of causal complexity with this choice of causality relation.

The important point in this causality relation we deine is that a τ location causes another location ℓ when the

output position is a preix of the positions in ℓ. Indeed, for a communication with a non-replicated input, the

input position becomes a ⊙ thus it cannot cause anything, and for a communication with a replicated input, we

ACM Trans. Program. Lang. Syst.

111:42 • Patrick Baillot and Alexis Ghyselen

P

!a (̃v).Q

p

a⟨̃e⟩

p′

τ ⟨p,p ′⟩

P ′

!a (̃v).Q Q [̃v := ẽ]

p p′

P

a (̃v).Q

p

a⟨̃e⟩

p′

τ ⟨p,p ′⟩

P ′

⊙ Q [̃v := ẽ]

p p′

P

tick.Q

p

p; tick

P ′

Q

p

P

match [] {[] 7→ Q ; ; x :: y 7→ R}

p

p; pm

P ′

Q

p

P

match a :: q {[] 7→ Q ; ; x :: y 7→ R}

p

p; pm

P ′

R[x ,y := a,q]

p

Fig. 18. Semantics for Causal Complexity

consider that two calls to the same replicated input are independent one from the other. Then, the important

point is that two reductions with independent locations could be done in any order, it would not change the inal

tree.

With this deinition of causality, intuitively we can deine causal complexity of a computation as the maximal

number of tick in all the chains of causality in this computation.

Deinition 7.3 (Computation). A computation from a process P is a sequence (Pi , ℓi)i≤N such that P0 = P and

Pi
ℓi
−→ Pi+1 for i < N .

Deinition 7.4 (Chain of Causality). In a computation (Pi , ℓi)i≤N , we say that ℓi depends on ℓj , noted ℓi ≺ ℓj
when i < j and ℓi ≺c ℓj . Then a chain of causality in this computation is a chain ℓi1 < ℓi2 < · · · < ℓim .

ACM Trans. Program. Lang. Syst.

Types for Complexity of Parallel Computation in Pi-Calculus • 111:43

Deinition 7.5 (Causal Complexity). The causal complexity of a computation (Pi , ℓi)i≤N is given by the maximal

number of tick locations in all the chains of causality. Finally, the causal complexity of a process P , denoted

CausC(P) is deined as the maximal causal complexity over all computations from P .

We can now prove the equivalence between the notions of parallel with annotated processes complexity and

causal complexity for this particular causality relation.

7.2 span(P) ≥ CausC(P)

In this section, we show that span is an upper bound on causal complexity. Formally, we prove the following

lemma.

Lemma 7.6. Let P be a process. Let (Pi , ℓi)i≤N be a computation from P with causal complexityK . Then, span(P) ≥

K .

In order to do that, we show that we can do the same computation with our semantics with annotated processes.

Let us take a process P seen as a tree. By deinition, each leaf of P is a guarded process G. For each leaf, we

replace the guarded processG by 0 : G , and we call P ′ this annotated process. By the deinition of congruence for

annotated processes, we have P ≡ P ′. Then, we will work with this tree representation for annotated processes.

Deinition 7.7 (Tree Representation of Annotated Processes). We consider annotated trees such that a set of names

is given at the beginning, nodes represent parallel composition and leaves are processes of the shape n : G with

G guarded. Such a tree indeed represents an annotated process.

Then, we say that an annotated process P ′ seen as a tree is an annotation of a process P seen as a tree if P ′ and

P have exactly the same shape, and each leaf G of P is a leaf n : G for P ′.

So, by deinition P ′ is an annotation of P . We can then prove the following lemma:

Lemma 7.8 (Causal Reduction and Annotation). Suppose that P
ℓ
−→ Q . Then, for any P ′ annotation of P , we

have P ′ ⇒ Q ′ where Q ′ is an annotation of Q .

Moreover, we have:

• If ℓ = p; tick then Q ′ has the same annotation as P ′ for all leaves at a position p ′ such that p is not a preix of

p ′. For all the other leaves,Q ′ has the annotation n + 1 where n is the annotation for the leaf at position p in P ′

• If ℓ = p; pm then Q ′ has the same annotation as P ′ for all leaves at a position p ′ such that p is not a preix of

p ′. For all the other leaves, Q ′ has the annotation n where n is the annotation for the leaf at position p in P ′

• If ℓ = τ ⟨p,p ′⟩ thenQ ′ has the same annotation as P ′ for all leaves at position q such that p ′ is not a preix of q.

For all the other leaves, Q ′ has the annotation max(n,m) where n is the annotation for the leaf at position p in

P ′ andm is the annotation for the leaf at position p ′ in P ′.

Proof. The proof is done by case analysis on the rules of Figure 18. All cases are rather direct. The idea is to

always keep the same tree shape in the reduction⇒, and then to make the names go up and the annotations go

down after doing this reduction using the congruence rules. Formally, the names can go up with ((νa)P) | Q ≡

(νa) (P | Q) (always possible by α-renaming) and n : ((νa)P) ≡ (νa) (n : P), and then the annotations can go

down with n : (P | Q) ≡ n : P | n : Q . Then, with the shape of the reduction relation⇒ we can indeed see that

the annotations indeed correspond to the one given in this lemma. □

With this lemma, we can start from the annotation P ′ of P , and simulate the computation. Now we only need

to show that the annotations correspond to the number of ticks in a chain of causality. Formally, we prove the

following lemma.

ACM Trans. Program. Lang. Syst.

111:44 • Patrick Baillot and Alexis Ghyselen

Lemma 7.9. Let (P ′i , ℓi)i≤N be the computation given by the previous lemma from an original computation

(Pi , ℓi)i≤N . Then, for all i ≤ N , the annotation of a guarded processG at position p in P ′i is an upper bound of the

maximal number of tick locations in all chains of causality for the locations ℓ0, . . . , ℓi−1 such that the last location

ℓ of this chain satisies ℓ ≺c p

We prove this by induction on i .

• This is true for i = 0 since P ′ is P annotated with zeros everywhere.

• Let i < N . Suppose that this is true for P ′i , the annotation of Pi . Let us look at the reduction Pi
ℓi
−→ Pi+1.

– If ℓi = p; tick. Then by induction hypothesis, the annotation n for the tick corresponds to the maximal

number of tick locations in all chains of causality for the locations ℓ0, . . . , ℓi−1 that are also in causality

≺c with p. Let us look at P ′i+1 given by lemma 7.8. For all the positions in P ′i+1 with p not a preix,

dependency did not change since ℓi = p; pm does not cause those positions. As annotations did not

change either, the hypothesis is still correct. For the new positions in the tree with p as a preix, all

the annotations are n. All chains of causality with the locations ℓ0, . . . , ℓi are either chains that do not

contain ℓi and that caused p and so n + 1 is a bound because n is a bound by induction hypothesis, either

they contain ℓi and in this case it was a chain in causal relation with p, thus n + 1 is a bound as n is a

bound on the causality between ℓ0 and ℓi−1 and the last location ℓi adds one to the complexity. The case

for pattern matching is a simpler version of this case.

– If ℓi = τ ⟨p,p
′⟩. By induction hypothesis, the annotation n for the input andm for the output are bounds

on some chains of causality on ℓ0, . . . , ℓi−1. Let us look at P ′i+1 given by Lemma 7.8. The only interesting

positions are the one with p ′ as a preix. All the annotations for those positions are max(n,m). The only

new chain of causality on ℓ0, . . . , ℓi that end with a location that causes those positions are the ones that

inish with ℓi . In this case, either they cause ℓi because they cause p or because they cause p ′. In both

cases, n orm was a bound on the number of ticks by induction hypothesis. So, max(n,m) is indeed a

bound on the number of ticks for all those chains.

This concludes the proof. In the end, the annotation in position p in PN is a bound on chains of causality

that also cause p. Moreover, for any chain of causality, this chain causes its last position (or output position

by deinition of causality). Thus, all chains of causality are bounded by at least one of the annotations, so the

maximum over all annotations is a bound on the causal complexity. This directly gives us that span is an upper

bound on causal complexity.

7.3 CausC(P) ≥ span(P)

Let us work on the converse. In order to do that, we will restrict a bit the congruence ≡ for annotated processes
and expand the semantics ⇒ in order to work with trees. As before, we can deine a tree congruence ≡t for
annotated processes, with the base rules

(νa) (νb)P ≡t (νb) (νa)P

(νa) (P | Q) ≡t (νa)P | Q (when a is not free in Q) (νa) (P | Q) ≡t P | (νa)Q (when a is not free in P)

n : (P | Q) ≡ n : P | n : Q n : (m : P) ≡ (n +m) : P (νa) (n : P) ≡ n : ((νa)P) 0 : P ≡ P

Then we deine the semantics⇒t exactly as before but with trees instead of simple processes in parallel. An

example is given in Figure 19.

As before, any annotated process can be written in a tree representation as in Deinition 7.7 using the tree

congruence rule ≡t for annotated processes. So, from this, it is rather direct that this semantics deined with

tree⇒t is equivalent to the previously deined⇒, in the sense that they give the same complexity. (It relies

in particular on the fact that congruence does not change the span). Now, we can work on this span with tree

representation. Formally, we want to prove:

ACM Trans. Program. Lang. Syst.

Types for Complexity of Parallel Computation in Pi-Calculus • 111:45

P

n : a (̃v).Q

p

m : a⟨̃e⟩

p′ t

P ′

n : ⊙

max (n,m) : Q [̃v := ẽ]

p p′

Fig. 19. Tree Semantics for Span

Lemma 7.10. If P is a process without annotation, with P (⇒t)
∗Q and Cℓ (Q) = K , then there is a computation

(Pi , ℓi)i≤N from P with causal complexity greater than K .

So, by deinition of causal complexity and span, this will indeed show that CausC(P) ≥ span(P)

As we only need to prove this lemma for processes without annotation, we can take an additional hypothesis

on annotated processes: we consider in the following that annotations appear exclusively at the "top-level" of

a process, so there is no annotation in the subprocess P in a (̃v).P , in tick.P , in !a (̃v).P or in the subprocesses

of a pattern matching. We can take this hypothesis because if a process P satisies this hypothesis and P ⇒t Q

then Q also satisies this hypothesis. Of course, processes without annotation satisfy this hypothesis. Still, in this

deinition, we do not consider 0 : P as a real annotation since it can be removed by congruence. We start by the

following deinition.

Deinition 7.11 (Removing Annotations). Let P be a tree representation of an annotated process. We deine

forget(P) as the tree P where leaves n : G are replaced by G.

Note that this deinition only makes sense because of the previous hypothesis, otherwise we would need to

apply recursively the forgetful function to G. We then easily show the following lemma.

Lemma 7.12 (Forget Reductions). Suppose that P ⇒t Q . Then, we have forget(P)
ℓ
−→ forget(Q) for some

location ℓ.

Proof. This is a direct consequence of our deinition of⇒t . Note that the reduction tick.P ⇒t 1 : P , or more

generally n : tick.P ⇒t (n + 1) : P here corresponds indeed to removing a tick with the forgetful function. □

With this lemma, we can start from forget(P) and simulate the reduction (⇒t)
∗. Now we only need to show

that the annotations are bounded by the number of ticks in a chain of dependency. We show the following lemma:

Lemma 7.13. If P is a process without annotation, and if P (⇒t)
∗Q , then there is a computation (Pi , ℓi)i≤N from

P = forget(P) to forget(Q). Moreover, for each leaf n : G at position p inQ , there is a chain of causality with at least

n ticks that ends with a location ℓ such that ℓ ≺c p.

Note that from this lemma we can immediately deduce Lemma 7.10. We prove this by induction on P (⇒t)
∗Q

• If this relation is the relexive one, and P = Q , this is direct because all annotations are equal to 0.

• Now suppose we have P (⇒t)
∗R ⇒t Q . By induction hypothesis, there is a computation (Pi , ℓi)i≤N from

forget(P) to forget(R), with the expected chains of causality. We now proceed by case analysis on R ⇒ Q .

– If this reduction is a tick reduction at position p. Then, we have forget(R)
p ;tick
−→ forget(Q). Let us take

a leaf n : G at position p ′ of Q . If p is not a preix of p ′, then this leaf was also in R. So, by induction

hypothesis, we obtain the desired chain of causality. If p is a preix of p ′, then n−1 was the annotation for

ACM Trans. Program. Lang. Syst.

111:46 • Patrick Baillot and Alexis Ghyselen

the position p in R. So, by induction hypothesis for R, there is a chain of causality with at least n−1 ticks

that ends with a location ℓ such that ℓ ≺c p. By deinition, it means that this last location ℓ ≺c p; tick.

So, this gives us a chain of causality with at least n ticks that ends with a location that causes p ′ in Q .

This concludes this case. The case of pattern matching is a simpler version of this case.

– If this reduction is a synchronization with input at position p and output at position p ′. Then, we have

forget(R)
τ ⟨p,p′⟩
−→ forget(Q). Let us take a leaf n : G at position q of Q . We only consider the interesting

case: p ′ is a preix of q. Then, we have n = max(n0,n1) with n0 the annotation for the input position p in

R and n1 the annotation for the output position p ′ in R. Let us say, by symmetry, that n0 is the maximum

between those two. So, by induction hypothesis for R, there is a chain of causality with at least n0 ticks

that ends with a location ℓ such that ℓ ≺c p. By deinition, it means that this last location ℓ ≺c τ ⟨p,p
′⟩.

So, this gives us a chain of causality with at least n0 ticks that ends with a location that causes q in Q .

This concludes this case.

This concludes the proof.

We have indeed obtained that causal complexity is an upper bound of span. From this, we have the equivalence

between causal complexity and our deinition of span.

8 RELATED WORK

An analysis of the complexity of parallel functional programs based on types has been carried out in [26]. Their

system can analyse the work and the span (called depth in this paper), and makes use of amortized complexity

analysis, which allows to obtain sharp bounds. However, the kind of parallelism they analyse is limited to parallel

composition. So on the one hand we are considering a more general model of parallelism, and on the other hand

we are not taking advantage of amortized analysis as they do. The paper [20] proposes a complexity analysis of

parallel functional programs written in interaction nets, a graph-based language derived from linear logic. Their

analysis is based on sized types. However, their model is also quite diferent from ours as interaction nets do not

provide name-passing.

Other works like [2] tackle the problem of analysing the parallel complexity of a distributed system by building

a distributed low graph and searching for a path of maximal cost in this graph. Another approach to analyse

loops with concurrency in an actor-based language is done by rely-guarantee reasoning [3]. Those approaches

give interesting results on some classes of systems, but they cannot be directly applied to the π -calculus language

we are considering, with dynamic creation of processes and channels. Moreover, they do not ofer the same

compositionality as analysis based on type systems. The paper [19] studies distributed systems that are comparable

to those of [2], and analyses their complexity by means of a behaviour type system. In a second step the types

are used to run an analysis that returns complexity bounds. Thus, this approach is more compositional than that

of [2], but still does not apply to our π -calculus language.

Let us now turn to related works in the setting of π -calculus or process calculi. To our knowledge, the irst

work to study parallel complexity in π -calculus by types was given by Kobayashi [30], as another application

of his type system for deadlock freedom, further developed in other papers [33]. In his setting, channels are

typed with usages, which are simple CCS-like processes to describe the behaviour of a channel. In order to carry

out complexity analysis, those usages are annotated by two time informations, obligation and capability. The

obligation level is the time at which a channel is ready to perform an action, and the capability level is the time

at which it successfully inds a communication partner. We believe that when they are not ininite, the sum of

those levels is related to our own time annotation of channels. The deinition of parallel complexity in this work

difers from ours, as it loses some non-deterministic paths and the extension with dependent types is suggested

but not detailed. It is not clear to us if everything can be adapted to reason only about our parallel complexity,

but we plan to study it in future work. More recently Das et al. in [12, 13] proposed a type system with temporal

ACM Trans. Program. Lang. Syst.

Types for Complexity of Parallel Computation in Pi-Calculus • 111:47

session types to capture several parallel cost models with the use of a tick constructor. Our usage of time was

inspired by their types with the usual next modality of temporal logic, but in this paper they also use the always

and eventually modalities to gain expressivity. We believe that because our usage of time is more permissive,

those modalities would not be useful in our calculus. Because of session-types, they have linearity for the use

of data-types such as lists, but they obtain deadlock-freedom contrary to our calculus. Moreover, they provide

decidable operations to simplify the use of their types, such as subtyping, but they do not deine dependent types

nor sized types that are useful to treat data-types. Still, they provide a signiicant number of examples to show

the expressivity of their type system. In a recent paper [8] a framework was introduced for the cost analysis in

multiparty session types. It shares with our approach the use of sized types but it is targeted at communication

protocols, which is slightly diferent from our problematic. It would be interesting however to carry out a closer

comparison with our setting.

The methodology of our work is inspired by implicit computational complexity, which aims at characterizing

complexity classes by means of dedicated programming languages, mainly in the sequential setting, for instance

by providing languages for FPTIME functions. Some results have been adapted to the concurrent case, but mainly

for the work complexity or for other languages than the π -calculus, e.g. [10, 17, 35] (the irst reference is for a

higher-order π -calculus). The paper [16] is closer to our setting as it deines a notion of causal complexity in

π -calculus and gives a type system characterizing processes with polynomial complexity. However, contrarily to

those works we do not restrict to a particular complexity class (like FPTIME) and we handle the case of the span.

Technically, the types we use are inspired from linear dependent types [9]. Those are one of the many variants

of sized types, which were introduced in [29].

9 CONCLUSION AND PERSPECTIVES

We believe that the salient contributions of this paper are the following ones:

• a deinition of the span in π -calculus by means of a simple reduction semantics (reduction of annotated

processes),

• a sized types system for π -calculus, which is here employed for analysing the complexity, but which we

think could be used for other applications,

• a natural proof method for establishing the complexity soundness of a type system for span, consisting in

proving a subject reduction property for the annotated processes.

We see several possible future directions to this work:

• Type inference: we plan to investigate how type inference could be automatized or partially automatized

for the span type system. We will study typing by constraint generation and explore whether existing

of-the-shelf solvers or new procedures could allow to solve these constraints. We have shown here (Sect.

4.6) that the case of work generates a set of constraints close to those in [4]. However, the case of span

could require more sophisticated reasoning because of the strong distinction between servers and channels

with the advancing of time.

• We have mentioned that our type system for span is not adapted to analyse some concurrent systems such

as the simple example of the semaphore (Sect. 5.3). However, we believe that a type system based on an

adaptation of usages [30, 32, 33] could be promising for this purpose.

• It would be challenging to examine whether similar type systems could be developed to account for some

other complexity properties, for instance to extract the number of parallel processes needed to achieve the

span.

Acknowledgements. We are grateful to Naoki Kobayashi for suggesting the deinition of annotated processes and

their reduction that we use in this paper.

ACM Trans. Program. Lang. Syst.

111:48 • Patrick Baillot and Alexis Ghyselen

This work was supported by the LABEX MILYON (ANR-10-LABX-0070) of Universite de Lyon.

REFERENCES

[1] Selim G. Akl. 2011. Encyclopedia of Parallel Computing. Springer US, Boston, MA, Chapter Bitonic Sort, 139ś146.

[2] Elvira Albert, Jesús Correas, Einar Broch Johnsen, and Guillermo Román-Díez. 2015. Parallel Cost Analysis of Distributed Systems. In

Static Analysis - 22nd International Symposium, SAS 2015, Proceedings (Lecture Notes in Computer Science, Vol. 9291). Springer, 275ś292.

[3] Elvira Albert, Antonio Flores-Montoya, Samir Genaim, and Enrique Martin-Martin. 2017. Rely-guarantee termination and cost analyses

of loops with concurrent interleavings. Journal of Automated Reasoning 59, 1 (2017), 47ś85.

[4] Martin Avanzini and Ugo Dal Lago. 2017. Automating sized-type inference for complexity analysis. Proceedings of the ACM on

Programming Languages 1, ICFP (2017), 43.

[5] Patrick Baillot and Alexis Ghyselen. 2021. Types for Complexity of Parallel Computation in Pi-Calculus. In Programming Languages and

Systems - 30th European Symposium on Programming, (ESOP 2021) (LNCS, Vol. 12648). Springer, 59ś86.

[6] Patrick Baillot and Virgile Mogbil. 2004. Soft lambda-Calculus: A Language for Polynomial Time Computation. In Foundations of

Software Science and Computation Structures, 7th International Conference, FOSSACS 2004 (LNCS, Vol. 2987). Springer, 27ś41.

[7] Patrick Baillot and Kazushige Terui. 2004. Light Types for Polynomial Time Computation in Lambda-Calculus. In 19th IEEE Symposium

on Logic in Computer Science (LICS 2004), Proceedings. IEEE Computer Society, 266ś275.

[8] David Castro-Perez and Nobuko Yoshida. 2020. CAMP: cost-aware multiparty session protocols. Proc. ACM Program. Lang. 4, OOPSLA

(2020), 155:1ś155:30.

[9] Ugo Dal Lago and Marco Gaboardi. 2011. Linear dependent types and relative completeness. In 26th Annual IEEE Symposium on Logic in

Computer Science (LICS 2011), Proceedings. IEEE, 133ś142.

[10] Ugo Dal Lago, Simone Martini, and Davide Sangiorgi. 2016. Light logics and higher-order processes. Mathematical Structures in Computer

Science 26, 6 (2016), 969ś992.

[11] Ornela Dardha, Elena Giachino, and Davide Sangiorgi. 2017. Session types revisited. Information and Computation 256 (2017), 253 ś 286.

[12] Ankush Das, Jan Hofmann, and Frank Pfenning. 2018. Parallel Complexity Analysis with Temporal Session Types. Proc. ACM Program.

Lang. 2, ICFP (2018), 91:1ś91:30.

[13] Ankush Das, Jan Hofmann, and Frank Pfenning. 2018. Work Analysis with Resource-Aware Session Types. In Proceedings of the 33rd

Annual ACM/IEEE Symposium on Logic in Computer Science, (LICS 2018). ACM, 305ś314.

[14] Pierpaolo Degano, Fabio Gadducci, and Corrado Priami. 2003. Causality and Replication in Concurrent Processes. In Perspectives of

System Informatics. Springer Berlin Heidelberg, 307ś318.

[15] Pierpaolo Degano and Corrado Priami. 1995. Causality for mobile processes. In Automata, Languages and Programming. Springer Berlin

Heidelberg, 660ś671.

[16] Romain Demangeon and Nobuko Yoshida. 2018. Causal Computational Complexity of Distributed Processes. In Proceedings of the 33rd

Annual ACM/IEEE Symposium on Logic in Computer Science (LICS 2018). ACM, 344ś353.

[17] Paolo Di Giamberardino and Ugo Dal Lago. 2015. On Session Types and Polynomial Time. Mathematical Structures in Computer Science

-1 (2015).

[18] Marco Gaboardi, Jean-Yves Marion, and Simona Ronchi Della Rocca. 2008. A logical account of pspace. In Proceedings of the 35th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL 2008). ACM, 121ś131.

[19] Elena Giachino, Einar Broch Johnsen, Cosimo Laneve, and Ka I Pun. 2016. Time Complexity of Concurrent Programs - - A Technique

Based on Behavioural Types -. In Formal Aspects of Component Software - 12th International Conference (FACS 2015) (Lecture Notes in

Computer Science, Vol. 9539). Springer, 199ś216.

[20] Stéphane Gimenez and Georg Moser. 2016. The complexity of interaction. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages (POPL 2016). 243ś255.

[21] Emmanuel Hainry, Jean-Yves Marion, and Romain Péchoux. 2013. Type-Based Complexity Analysis for Fork Processes. In Foundations

of Software Science and Computation Structures - 16th International Conference, (FOSSACS 2013), Proceedings (Lecture Notes in Computer

Science, Vol. 7794). Springer, 305ś320.

[22] Robert Harper. 2012. Practical Foundations for Programming Languages. Cambridge University Press.

[23] Jan Hofmann, Klaus Aehlig, and Martin Hofmann. 2012. Multivariate amortized resource analysis. ACM Trans. Program. Lang. Syst. 34,

3 (2012), 14:1ś14:62.

[24] Jan Hofmann, Klaus Aehlig, and Martin Hofmann. 2012. Resource Aware ML. In Computer Aided Veriication - 24th International

Conference, (CAV 2012), Proceedings (Lecture Notes in Computer Science, Vol. 7358). Springer, 781ś786.

[25] Jan Hofmann and Martin Hofmann. 2010. Amortized Resource Analysis with Polynomial Potential. In Programming Languages and

Systems, 19th European Symposium on Programming, (ESOP 2010), Proceedings (Lecture Notes in Computer Science, Vol. 6012). Springer,

287ś306.

ACM Trans. Program. Lang. Syst.

Types for Complexity of Parallel Computation in Pi-Calculus • 111:49

[26] Jan Hofmann and Zhong Shao. 2015. Automatic Static Cost Analysis for Parallel Programs. In Programming Languages and Systems.

Springer Berlin Heidelberg, 132ś157.

[27] Martin Hofmann. 2003. Linear types and non-size-increasing polynomial time computation. Information and Computation 183, 1 (2003),

57ś85.

[28] Martin Hofmann and Stefen Jost. 2003. Static prediction of heap space usage for irst-order functional programs. In Conference Record

of POPL 2003: The 30th SIGPLAN-SIGACT Symposium on Principles of Programming Languages. ACM, 185ś197.

[29] John Hughes, Lars Pareto, and Amr Sabry. 1996. Proving the correctness of reactive systems using sized types. In Proceedings of the 23rd

ACM SIGPLAN-SIGACT symposium on Principles of programming languages. ACM, 410ś423.

[30] Naoki Kobayashi. 2002. A Type System for Lock-Free Processes. Information and Computation 177, 2 (2002), 122 ś 159.

[31] Naoki Kobayashi. 2003. Type systems for concurrent programs. In Formal Methods at the Crossroads. From Panacea to Foundational

Support. Springer, 439ś453.

[32] Naoki Kobayashi. 2005. Type-based information low analysis for the π -calculus. Acta Informatica 42, 4-5 (2005), 291ś347.

[33] Naoki Kobayashi. 2006. A new type system for deadlock-free processes. In International Conference on Concurrency Theory. Springer,

233ś247.

[34] Naoki Kobayashi, Benjamin C. Pierce, and David N. Turner. 1999. Linearity and the Pi-calculus. ACM Trans. Program. Lang. Syst. 21, 5

(sep 1999), 914ś947.

[35] Antoine Madet and Roberto M. Amadio. 2011. An Elementary Aine λ-Calculus with Multithreading and Side Efects. In Typed Lambda

Calculi and Applications - 10th International Conference, (TLCA 2011), Proceedings (Lecture Notes in Computer Science, Vol. 6690). Springer,

138ś152.

[36] Jean-Yves Marion. 2011. A Type System for Complexity Flow Analysis. In Proceedings of the 26th Annual IEEE Symposium on Logic in

Computer Science, (LICS 2011). IEEE Computer Society, 123ś132.

[37] Robin Milner, Joachim Parrow, and David Walker. 1992. A Calculus of Mobile Processes, I. Inf. Comput. 100, 1 (1992), 1ś40.

[38] Davide Sangiorgi and David Walker. 2003. The pi-calculus: a Theory of Mobile Processes. Cambridge university press.

[39] Pedro B Vasconcelos. 2008. Space cost analysis using sized types. Ph.D. Dissertation. University of St Andrews.

ACM Trans. Program. Lang. Syst.

	Abstract
	1 Introduction
	2 The Pi-Calculus and Informal Introduction to Sized Types
	2.1 Syntax of Pi-Calculus
	2.2 Informal Introduction to the Semantics and Type Systems

	3 Semantics of Pi-calculus
	4 Work of a Process
	4.1 Semantics for Work
	4.2 Sized Input/Output Types
	4.3 Subtyping
	4.4 Example
	4.5 Soundness of the Type System
	4.6 A Hint for Type Inference for Work

	5 Type System for Parallel Complexity
	5.1 Definition of Span
	5.2 Sized Types with Time
	5.3 Examples
	5.4 Complexity Results

	6 An Example: Bitonic Sort
	7 Span and Causal Complexity
	7.1 Presentation of Causal Complexity
	7.2 span(P) CausC(P)
	7.3 CausC(P) span(P)

	8 Related Work
	9 Conclusion and perspectives
	References

