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ABSTRACT. This study investigates the use of neural networks for data assimilation of local data in the WRF 
model in Rio de Janeiro, Brazil. Surface and upper-air data (air temperature, relative humidity, wind speed and 
direction) from airport stations and 6-hour forecast from WRF are used as input for the model and the 3D-Var 
analysis for each grid point is used as target variable. Periods of 168h from 2014 and 2015 are used with 6h and 
12h assimilation cycles for surface and upper-air data, respectively. The neural network model was built using the 
Multi-Particle Collision Algorithm (MPCA) where different topologies are tested until the optimum solution is found. 
Results show that the neural network is able to emulate the 3D-Var with root mean squared error (standard 
deviation), respectively, of 0.31 K (0.37 K), 3.10% (4.04%), 0.63 ms-1 (1.05 ms-1), 1.10 ms-1 (1.56 ms-1) for air 
temperature, relative humidity, u-component of the wind and v-component of the wind. Also, the results show the 
neural network method is able to run 71 times faster than the conventional method under similar hardware 
configurations. 
 
Keywords: data assimilation; weather research and forecasting; surface data; profile data. 

RESUMO. Este estudo investiga o uso de redes neurais para assimilação de dados locais no modelo WRF no 
Rio de Janeiro. Dados de superfície e do ar superior (temperatura do ar, umidade relativa, velocidade e direção 
do vento) das estações do aeroporto e previsão de 6 horas do WRF são usados como entrada para o modelo, e 
a análise 3D-Var para cada ponto da grade é usada como variável destino. Períodos de 168h de 2014 e 2015 
são utilizados com ciclos de assimilação de 6h e 12h para dados de superfície e do ar superior, respectivamente. 
O modelo de rede neural foi construído usando o algoritmo de colisão de partículas múltiplas (MPCA), onde 
diferentes topologias são testadas até que a solução ideal seja encontrada. Os resultados mostram que a rede 
neural é capaz de emular o 3D-Var com raiz do erro quadrático médio (desvio padrão) de 0,31 K (0,37 K), 3,10% 
(4,04%), 0,63 ms-1 (1,05 ms-1), 1,10 ms-1 (1,56 ms-1) para temperatura do ar, umidade relativa, componente u do 
vento e componente v do vento. Além disso, os resultados mostram que o método de rede neural é capaz de 
rodar 71 vezes mais rápido que o método convencional em configurações de hardware semelhantes. 

Palavras-chave: assimilação de dados; dados de superfície; dados de perfil.  
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INTRODUCTION 

Numerical weather prediction (NWP) is 
considered an initial-value problem where the 
present state of the atmosphere is used as 
input to a numerical model for simulating or 
forecasting its evolution on space and time. 

This is a remarkable key point in a scientific 
conquer to the geophysical fluid dynamics, with 
very good impact into many economic sectors: 
agriculture, prevention and/or mitigation of 
natural disasters, insure and tourism industries, 
just for mention few sectors. 

The problem of the initial condition 
determination for a forecast model is essential 
and complex, and has become a science in 
itself (Daley, 1991). Several methods have 
been developed since the 1950s to tackle this 
problem. Daley (1991), Talagrand (1997), 
Zupanski & Kalnay (1999), and Kalnay (2003) 
provide to a broader review on data analysis 
and assimilation techniques. 

Data assimilation is a relevant topic for 
research and operational issues for many 
branches of geosciences, including ocean 
circulation (Wang et al., 2007) – using 3D-Var 
method), atmosphere-ocean coupled model 
(Smith et al., 2015) – employing 4D-Var 
method), ionospheric dynamics (Lin et al., 
2017) – using Kalman filter), hydrology (Vrugt 
& Schoups, 2018) – applying particle filter 
method), snow dynamics (Piazzi et al., 2018) – 
using particle filter method), environmental 
prediction (Khassenova & Kussainova, 2018) – 
by variational method). In meteorology, there is 
a wide variety of data sources to be assimilated 
to accurately estimate the state of the atmos-

phere, which includes conventional and non-
conventional data. Conventional data include 
surface meteorological stations, balloon 
soundings, aircraft and ship observations. On 
the other hand, data retrieved from satellites 
(e.g. radiance), wind profilers (e.g. SODAR, 
LIDAR), and radar are usually known as non-
conventional, due to inhomogeneity of their 
spatial-temporal distribution. Conventional and 
non-conventional data are commonly 
assimilated in global models. But, very often for 
the local conditions (regional models), the data 
from global models are smoothed due to 
interpolation methods and quality control 
routines. Also, not all observations are part of 
the global observation network and they are not 
processed by data assimilation routines for 
global models. Therefore, to accurately 
determine the state of the atmosphere for 
regional models, it is mandatory not only to 
employ the global model’s analysis, but 
reinforcing the assimilation with local retrieved 
data. According to Cintra and Campos Velho 
(2012), the computational challenge to the 
traditional techniques of data assimilation lies 
in the size of matrices involved in operational 
NWP models, currently running at a million 
equations – equivalent to full matrix of the order 
∼ O(1012). In this scenario, the applications of 
Artificial Neural Networks (ANN) in data 
assimilation is suggested for reducing the 
computational effort. The neural network 
technique is applied to implement the mapping: 
xa = F[yo,xf], where xa is the analysis field – the 
estimated initial condition – representing the 
observation-based correction to the model, F is 
the data assimilation process, yo is the vector of 
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observations of the constituent, xf is the model 
forecasting field (simulation) that estimates the 
constituent – often called the first guess. A 
supervised neural network is trained by a set of 
analysis obtained from another assimilation 
method. Methods using ANN have been 
proposed showing consistent results regarding 
implementation in simple models, see 
Nowosad, 2001; Furtado, 2008; Cintra, 2010; 
Härter & De Campos Velho, 2012; França et 
al., 2018; Almeida et al., 2020. The present 
article is part of a sequence of studies related 
to nowcasting that have been executed by the 
Laboratory for Applied Meteorology at the 
Federal University of Rio de Janeiro, following 
Almeida, 2009; Silva et al., 2016; França et al., 
2016; França et al., 2018; Paulucci et al., 2019; 
Almeida et al., 2020. All these studies 
encompass researches based on artificial 
intelligence and methods dealing with models 
focused on numerical weather forecasts. This 
paper relates to the latter, exploring the 
sensibility of the Weather Research and 
Forecasting (WRF) – a sophisticated 
mesoscale regional model - for surface and 
upper-air data assimilation using artificial 
neural networks in the metropolitan area 
centered at the Galeão airport of the Rio de 
Janeiro city, searching for efficient ways to 
reduce the CPU time of the assimilation 
process and, thus, enable faster assimilation 
cycles with the growing number of available 
datasets. The paper is organized as: section 
Material and Methods gives a brief description 
of the dataset used in this study, the WRF 
model and data assimilation methods using 3D- 
 

Var scheme and artificial neural network 
including a technique for finding optimal neural 
network configuration; next section presents 
the results and discussions; finally, the 
conclusions are presented with the main 
findings of this study. 

 

MATERIALS AND METHODS 

The study area is the metropolitan area of Rio 
de Janeiro and its surroundings (Fig. 1) 
located approximately at latitude 22°55’44.3"S 
and longitude 43°24’21.1"W. The most import 
airports in the region are located in Figure 1 
identified by their International Civil Aviation 
Organization (ICAO) codes: Santos Dumont 
Airport (SBRJ), Galeão International Airport 
(SBGL), Santa Cruz Air Force Base (SBSC), 
Jacarepaguá Airport (SBJR) and Afonsos Air 
Force Base (SBAF).  Each airport is 
responsible for local hourly routine and special 
reports surface observations of several 
meteorological parameters as surface wind 
(direction and speed), visibility, significant 
weather, cloud cover, air and dewpoint 
temperature, and station pressure. Besides, 
the SBGL airport has an upper-air (or 
sounding) station that produces regularly 
atmospheric soundings twice a day, the 
atmospheric profile of pressure, air and 
dewpoint temperature, relative humidity, and 
wind (direction and speed), from the surface 
up to more than 25 km. 
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Figure 1 – Domain and computational grid. The labels SBSC, SBAF, SBJR, SBRJ and SBGL are located at 

the airports in the metropolitan area of Rio de Janeiro. 
 

The numerical experiments performed using the 
NCEP FNL (Final) Operational Global Analysis data. 
The FNL data are available on 1-degree grids 
prepared operationally every 6 hours. This product is 
from the Global Data Assimilation System (GDAS), 
which continuously collects observational data from 
the Global Telecommunications System (GTS), and 
other sources, for many analyses. The FNLs are 
made with the same model that NCEP uses in the 
Global Forecast System (GFS), but the FNLs are 
prepared for about an hour or so after the GFS is 
initialized. The FNLs are delayed so that more 
observational data can be used. The GFS is run 
earlier in support of time-critical forecast needs and 
uses the FNL from the previous 6-hour cycle as part 
of its initialization. The analyses are available on the 
surface, at 26 mandatory (and other pressure) levels 

from 1000 millibars to 10 millibars, in the surface 
boundary layer and at some sigma layers, the 
tropopause and a few others. More information can 
be found at https://rda.ucar.edu/datasets/ds083.2. 

WRF: Limited-Area Atmospheric Model 

The WRF model is a next-generation mesoscale 

numerical weather prediction system designed for 

both atmospheric research and operational 

forecasting applications. It features two dynamical 

cores, a data assimilation system, and a software 

architecture supporting parallel computation and 

system extensibility. The effort to develop WRF 

began in the latter 1990s and was a collaborative 

partnership of the National Center for Atmospheric 
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Research (NCAR), the National Oceanic and 

Atmospheric Administration (represented by the 

National Centers for Environmental Prediction 

(NCEP) and the Earth System Research 

Laboratory), the U.S. Air Force, the Naval 

Research Laboratory, the University of Oklahoma, 

and the Federal Aviation Administration (FAA). 

Please refer to the WRF User’s Guide and the 

Technical Note document available at 

http://www2.mmm.ucar.edu/wrf/users/ for 

completeness of the 3D-Var implementation 

present at WRF (Skamarock et al., 2019). The 

WRF model solves a set of equations modeling the 

state and evolution of the atmosphere, including: (i) 

conservation of momentum; (ii) thermodynamic 

energy conservation; (iii) mass conservation; (iv) 

geopotential relation; and (v) the equation of state. 

Also, several physical processes are 

parameterized (e.g. short and longwave radiation 

transfer, surface modeling, turbulence, cumulus 

convection, cloud microphysics and precipitation). 

These ones are too small, too brief, too complex, 

too poorly understood, or too computationally 

costly to be explicitly represented. In our numerical 

experiments, the WRF model is integrated into a 2-

km grid with 35 levels in vertical, generating hourly 

outputs from the surface and pressure-level 

variables. Regarding the parametrizations the 

following options were chosen: Microphysics – 

WRF Single–moment 3 (Hong et al., 2004), 

Cumulus – Grell–Freitas Ensemble Scheme (Grell 

& Freitas, 2014), Radiation – Dudhia Shortwave 

Scheme (Dudhia, 1989) / RRTM Longwave 

Scheme (Mlawer et al., 1997), Planetary Boundary 

Layer – Yonsei University Scheme (YSU) (Hong et 

al., 2006), and Land Surface model – Unified Noah 

Land Surface Model (Tewari et al., 2016). 

Data assimilation method: 3D-Var 

The 3D-Var approach is used as implemented in the 
Data Assimilation component of the WRF 
framework. The basic ideas of variational data 
assimilation and specifically the WRF Data 
Assimilation (WRFDA) system is deeply discussed 
in Barker et al. (2012). Among various data 
assimilation methods, the variational approaches 
have been widely used in meteorology, specifically 
the method 3D-Var. In the 3D-Var approach, a cost 
function (Eq. 1) is defined which is proportional to 
the square of the distance between the analysis (xa) 
and both the background (xb) and observations (yo) 
(Kalnay, 2003). The analysis field is computed by 
the direct minimization of such function. Important to 
notice that the error matrices for both the 
background (B) and observation (R) are considered 
in the minimization process. The operator H mapped 
the gridded analysis to the observation space for 
comparison against the observation matrix yo. The 
analysis xa is computed by minimizing the cost 
function (J) expressed as: 
 

J = 1 2⁄ {[𝑦𝑦𝑜𝑜 − 𝐻𝐻(𝑥𝑥)]𝑇𝑇𝑅𝑅−1[𝑦𝑦𝑜𝑜

− 𝐻𝐻(𝑥𝑥)]

+ [𝑥𝑥 − 𝑥𝑥𝑏𝑏]𝑇𝑇𝐵𝐵−1[𝑥𝑥

− 𝑥𝑥𝑏𝑏]} 

(1) 

where R is the covariance matrix of the sensor 
errors, and B is the covariance background matrix. 
The latter matrix is computed as a vector product 
from the difference of two WRF executions for a 
certain initial condition (Barker, et al., 2012). The 
3D-Var approach consists in processing observed 
information in a temporal window (typically from 1 
h before the analysis time to 1 h after) over a spatial
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domain. After this process, a subset of the 
observed data is retrieved that will be assimilated 
in a previous forecast grid by the minimization of a 
cost function. 

Data assimilation method: optimal neural 
network 

Artificial neural networks is a branch of artificial 
intelligence belonging to the class of machine 
learning algorithms – see Rosenblatt, 1958; 
Hopfield, 1982; Rumelhart et al., 1986; Haykin, 
1999. An ANN is an arrangement of several 
connected processing units. These units are called 
neurons, where the weighted inputs can or not be 
combined with a bias to feed a nonlinear activation 
function. ANN can be roughly classified into two 
groups: supervised and unsupervised neural 
networks. For the first one, there is a reference 
dataset to be used to identify the connection 
weights. A very employed supervised ANN is the 
multi-layer perceptron (MLP). The MLP-NN is a 
supervised network, and it typically consists of a set 
of layers: the input layer (one or more inputs), one or 
more hidden layers, and the output layer (one or 
more outputs). The well known error back-
propagation algorithm is a standard procedure to 
determine the connection weights – the process is 
named as the training or learning phase (Haykin, 
1999, Section 4.3). There are many parameters or 
functions to be chosen for configuring the MLP-NN: 
number of hidden layers, number of neurons for 
each hidden layer, the type of activation function, 
and the parameters for the training phase (learning 
ratio and momentum). In order to find the best 
architecture to the MLP-NN for our application – a 
neural network to emulate the 3D-Var method for 
data assimilation, the problem is addressed as an 

optimization one by minimizing the functional 
(Anochi & De Campos Velho, 2014): 

L(𝐐𝐐)

= 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑦𝑦 × �
𝜌𝜌1𝐸𝐸train(𝐐𝐐) + 𝜌𝜌2𝐸𝐸gen(𝐐𝐐)

𝜌𝜌1 + 𝜌𝜌2
� 

(2) 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑦𝑦

=  𝑐𝑐1exp{[#neurons]²}+𝑐𝑐2{#epochs} + 1 
(3) 

where Q is the unknown vector; Etrain and Egen are 
respectively training and generalization errors (the 
square difference between the NN output and the 
analysis produced by 3D-Var); finally penality is a 
measurement of the neural network complextiy. 
Therefore, the optimal topology for the MLP-NN is 
looking for the simplest neural network with better 
agreement with the reference datasets (training and 
generalization). The optimal solution Q∗ is computed 
by minimizing the functional above (equation 2). The 
optimization problem is solved by the MPCA 
metaheurisc described in the next section. 

Solving the optimization problem by the MPCA 
metaheuristic 

The MPCA (Multi-Particle Collision Algorithm) is a 
metaheuristic based on the canonical Particle 
Collision Algorithm (PCA) developed by Sacco & 
De Oliveira (2005) – see also Sacco et al. (2006, 
2007, 2008), inspired on a neutron traveling inside 
of a nuclear reactor under absorption and 
scattering phenomena. There are similarities with 
the Simulated Annealing (Kirkpatrick et al., 1983) 
scheme. The MPCA follows the PCA strategy, but 
with a new feature: the use of several particles, 
instead of only one particle to act over the search 
space. The theory behind the MPCA algorithm is 
detailed by Pacheco da Luz et al. (2008, 2011).
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Coordination between the particles was able 
through a blackboard strategy, where the best 
fitness information is shared among all the 
particles in the process. The MPCA is 
implemented using MPI libraries in a 
multiprocessor architecture with distributed 
memory. The MPCA codification is close to the 
PCA. Assuming the number of calls to the 
absorption operator is equal to the number of 
calls of scattering operator, and both equal to N, 
results in a complexity O(N × N), just checking 
operations in the inner loops. But due to the new 
loop, introduced by the multiple particle 
technique, the number of checking operations 
can be increased to N3 operations, considering 
the number of particles equal to the number of 
iterations. So, the complexity associated to 
MPCA will be O(N3). The parallel procedures 
can improve the processing by distributing the 
tasks among p processors. If the number of 
processors could be p = N, being N the number 
of particles, the computational effort is reduced 
to O(N2), such as the standard PCA.  

The PCA starts by selecting an initial 
solution, and it is modified by a stochastic 
perturbation, leading to the construction of a 
new solution. The new solution is compared to 
the old one (the solutions are compared by 
calculating the fitness of each one), and the new 
solution can or cannot be accepted. If the new 
solution is not accepted, a scheme is used to 
find a new solution. If a new solution is better 
than the previous one, this new solution is 
absorbed (absorption is one feature involved in 
the real collision process). If a worst solution is 
found, a probability is calculated to find a 
particle in a different location of the search 
space, giving the algorithm the capability of 

escaping a local minimum. The latter procedure 
is inspired on the scattering process.  

Pacheco da Luz et al. (2011) present an 
application of the MPCA algorithm for solving 
two inverse problems – formulated as 
optimization problems. In the conclusion, the 
authors state the MPCA is an alternative to 
determine inverse solutions. Nowadays, even 
personal computers are found with multicore 
architectures, allowing to apply the execution of 
an algorithm developed for high performance 
environments. The results also demonstrate the 
MPCA convergence to compute a good solution 
within a reasonable amount of available 
resources. Anochi (2015) used the MPCA for 
climate precipitation field prediction in the 
South, Southeast, and Northeast regions of 
Brazil. The results suggest that the optimal 
architecture determined by MPCA was found in 
a shorter time compared to time a specialist 
would take to find an acceptable topology. 
Another advantage is that the automatic 
strategy discards the need for a specialist in 
neural networks making the use of neural 
networks accessible to a larger audience. 
Additionally, the author suggests that a major 
advantage of using neural networks is their 
hardware implementation. 

Description of Experiments  

Experiments with 1-week data assimilation are 
performed using the WRF model during the 
years 2014 and 2015, starting at February 1st 
with 168h for time-integration (seven days). The 
data assimilation is carried out every 6 hours for 
surface variables (air temperature, relative 
humidity, and wind direction and speed) at the 
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airport locations, and every 12 hours for upper-
air variables (air temperature, relative humidity, 
and wind direction and speed) at SBGL location. 
Figure 2 describes the flowchart for the methods 
performed for the numerical experiments and 
the neural network training and validation. The 
experiment steps are described as follows: 
 

1. White-noise perturbation is applied to the 
background field at the airport locations for 
surface and upper-air data generating synthetic 
observations; 

2. Synthetic observations are placed on the 
exact coordinates where real sensors are 
located; 

3. New analysis field is generated from 
synthetic observations and background field 
using the 3D-Var data assimilation technique; 

4. Steps (i)-(iii) are repeated from Feb/01 to 
Feb/08 00Z with surface data assimilation 
every 6h and upper-air data assimilation every 
12h;  

5. Steps (i)-(iv) are repeated for the same 
period of 168h for the years 2014 and 2015; 

6. The impact of the synthetic observations on 
the surroundings is computed using 5-grid 
points radius with the value. In grid points 
under the influence of more than one station, 
the inverse of the distance is used as a 
weighting factor; 

7. Synthetic observations, background field, 
and analysis are employed; 

8. A preprocessing is executed for data 
cleansing and normalization; 

9. A shuffle and split are performed on the 
dataset defining 60% for training, 20% 
validation, and 20% generalization; and 

10. An evaluation is performed comparing the 
results for the data assimilation process by the 
3D-Var data and self-configured neural 
network. 

RESULTS AND DISCUSSION 

Table 1 contains the results with self-configured 
MLP-NN for experiments performed for 4 
meteorological variables using the MPCA 
algorithm. Table 1 is structured as follows: the 
column 1 lists the variable names, the column 2 
presents several parameters obtained for each 
experiment, and the columns 3 to 7 show values 
retrieved from five experiments for each variable 
(described in the first column) and parameter 
(described in the second column). The MPCA 
software was applied to determine different 
parameters from a MLP-NN, such as: number of 
hidden layers, number of neurons in each hidden 
layer, type of activation function, and learning 
process parameters – momentum (α) and 
learning rate (η). In Table 1, the activation 
functions codes represent logistic (1), tangent 
(2), and Gaussian (3). The results show that the 
experiments number 3, 1, 1, and 1 were defined 
by the MPCA software as having the optimum 
topologies for the variables air temperature, 
relative humidity, u and v wind components, 
respectively.  
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Figure 2 – Flowchart describing the method.

Table 2 presents the statistical values for mean 
error (ME), standard deviation (STD), root mean 
square error (RMSE), and Pearson correlation 
coefficient (CORR), all values computed for each 
meteorological variable from the testing dataset. 
The forecasts were determined using the best 
neural network topologies obtained from the MPCA 
software – see Table 1. The statistics presented in 
Table 2 show correlations over 90% to the target 
variables for the optimal trained neural data 
assimilation operators and errors smaller than the 
white-noise perturbation of the synthetic 
observations been assimilated. The wind variables 
show higher errors compared to the statistics 
retrieved for the other variables. It is important to 
note a statistical performance difference is reported 
to the vector variable (wind). Figures 3 to 6 present 
the quantile–quantile plot (graphic for comparing 
two probability distributions) for air temperature, 
relative humidity, u and v wind components, 

respectively, from the testing dataset. This kind 
of plot is very useful to find bias in the model 
forecast for specific regions of the variable 
distribution. Looking at Figures 3 and 4, there is 
an underestimation tendency for air temperature 
greater than 35oC), and for relative humidity in 
the interval [80-100%] slight tendency of relative 
humidity overestimation for lower percentiles 
(under 30%). As shown in Table 2, greater 
differences are found for wind forecasts. Figure 5 
shows the u-component, where there is an 
underestimation tendency for values greater than 
5 ms−1. For the v-component of the wind (Figure 
6), there is an underestimation tendency for 
values greater than 5 ms−1, and a positive bias 
for all negative values. 

The differences observed in the 
distributions tails are expected since for extreme 
values there is a greater uncertainty in the 
observed data. 
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Table 1 – MPCA results for the training and validation dataset for the meteorological variables. The activation function codes 

represent logistic (1), tangent (2), and Gaussian (3). The alpha parameter represents the momentum and the eta parameter 

represents the learning rate. 

VARIABLE PARAMETER 
EXPERIMENTS 

1 2 3 4 5 
       

AIR TEMPERATURE 

Best objective function value 0.0924 0.1233 0.0899 0.0924 0.0770 
Number of hidden layers 1 1 1 1 2 

Neurons in hidden layer 1 5 16 15 15 11 
Neurons in hidden layer 2 0 0 0 0 24 

Activation function 1 3 2 2 1 
alpha 0.2545 0.6352 0.3492 0.669 0.5306 
eta 0.0428 0.5617 0.5573 0.2724 0.8033 

       

       

RELATIVE HUMIDITY 

Best objective function value 0.0827 0.0908 0.0891 0.0912 0.0909 
Number of hidden layers 1 2 1 2 1 

Neurons in hidden layer 1 9 6 20 11 9 
Neurons in hidden layer 2 0 14 0 23 0 

Activation function 2 1 1 1 2 
alpha 0.6701 0.3604 0.2851 0.1981 0.0139 
eta 0.8110 0.2713 0.5577 0.0318 0.3069 

       

       

WIND (u-component) 

Best objective function value 0.0737 0.0739 0.0751 0.0754 0.0577 
Number of hidden layers 1 1 1 1 1 

Neurons in hidden layer 1 5 5 12 12 16 
Neurons in hidden layer 2 0 0 0 0 0 

Activation function 1 1 2 2 2 
alpha 0.1021 0.2733 0.2722 0.1559 0.5584 
eta 0.4563 0.3299 0.0282 0.0520 0.5277 

       

       

WIND (v-component) 

Best objective function value 0.0492 0.0841 0.0424 0.0698 0.0772 
Number of hidden layers 2 2 2 1 1 

Neurons in hidden layer 1 21 14 19 6 10 
Neurons in hidden layer 2 11 7 12 0 0 

Activation function 1 2 1 2 1 
alpha 0.0946 0.7286 0.2388 0.1467 0.3568 
eta 0.8424 0.1335 0.7601 0.7047 0.5013 
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Table 2 – MPCA statistics for the generalization dataset. 

VARIABLE ME STD RMSE CORR 
     

AIR TEMPERATURE -0.12 K 0.37 K 0.31 K 0.99 

RELATIVE HUMIDITY 1.02 % 4.04 % 3.10 % 0.99 
WIND (u-component) -0.19 ms-1 1.05 ms-1 0.63 ms-1 0.98 
WIND (v-component) -0.83 ms-1 1.56 ms-1 1.10 ms-1 0.95 

     

 
 

 
Figure 3 – Quantile-quantile plot comparing the probability distribution of the air temperature analysis 
generated by the 3D-Var assimilation approach and the MPCA algorithm. The dashed line represents the 
perfect correspondence (1:1) between the trained neural network and the 3D-Var approach. 
 

 

 
Figure 4 – Quantile-quantile plot comparing the probability distribution of the zonal component of the analysis generated by 

the 3D-Var assimilation approach and the MPCA algorithm. The dashed line represents the perfect correspondence (1:1) 

between the trained neural network and the 3D-Var approach. 
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Figure 5 – Quantile-quantile plot comparing the probability distribution of the wind zonal component (u 
component) analysis generated by the 3D-Var assimilation approach and the MPCA algorithm. The dashed line 
represents the perfect correspondence (1:1) between the trained neural network and the 3D-Var approach. 
 

 

 
Figure 6 – Quantile-quantile plot comparing the probability distribution of the wind meridional component (v-
component) analysis generated by the 3D-Var assimilation approach and the MPCA algorithm. The dashed line 
represents the perfect correspondence (1:1) between the trained neural network and the 3D-Var approach. 
 

Figure 7 shows a case for Feb/01/2014 06Z for 
the control field (Fig. 7a), the 3D-Var analysis (Fig. 
7b), the optimized MLP-NN analysis (Fig. 7c), and 
the difference between MLP-NN and the 3D-Var 
analysis (Fig. 7d), considering air temperature at 
1000 hPa. Here, the control field is the 6-hour 
model integration by noiseless initial condition, 
which is considered as the reference field. 

Comparing Figures 7b and 7c to Figure 7a it is 
clear that there is an increase of values in the 
surroundings of the station locations (red dots). As 
expected, although the assimilation process 
removes a great part of the white-noise 
perturbation on the data, part of it still changes the 
variable field. Figure 7d represents the root 
square difference between the assimilation 
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performed by the 3DVar technique (WRFDA) 
and the results from the MPCA trained model. 
The difference between the two processes is 
under 3 K for all the regions which is around 1% 
of the magnitude of the assimilated air 
temperature data. The average execution time 
of each 3D-Var assimilation cycle was 00:01:11 
(1 minute and 11 seconds), while the average 
execution time of the neural network model was 
close to 00:00:01 (about 1 second). Therefore, 
the MLP-NN method was (at least) 71 times 
faster than 3DVar, under similar hardware 
conditions, producing very similar quality 
analysis. Previous results using MLP-NN 

emulating the analysis from the local ensemble 
transform Kalman filter (LETKF) has obtained a 
computational speed-up of 79 and about 54 times 
faster than the LETKF for the 3D spectral global 
models Simplified Parameterizations, primitivE-
Equation DYnamics (SPEEDY) (Cintra & 
Campos Velho, 2018) and Center for Ocean-
Atmospheric Prediction Studies, Florida State 
University (COAPS-FSU) (with full physics 
parameterizations) (Cintra et al., 2018), 
respectively. We point out the relevance to have 
an effective and faster technique for data 
assimilation, allowing to include more 
observations on a finer model resolution. 

 

 
Figure 7 – Air temperature field at Feb/01/2014 06Z for: (a) control; (b) 3D-Var analysis; (c) MLP-NN 
analysis; and (d) difference between the MLP-NN and 3D-Var analysis. The red dots represent the 
location of the surface stations where the assimilated data were measured. 

 

 

 

b 

d 
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CONCLUSION 

This work investigated the ability of a multilayer 
perceptron using a self-configuration strategy by 
MPCA metaheuristic to emulate the 3D-Var method 
implemented in the WRF data assimilation 
framework, for surface and vertical profile 
assimilated data. The experiments were performed 
on the terminal area of Rio de Janeiro for the years 
2014 and 2015, with synthetic observations 
generated at five different airport locations. 

Our results can be summarized as follows: 

1. The results showed correlations over 90% 
between the two data assimilation 
techniques (3D-Var and MLP-NN) and 
errors smaller than the white-noise 
perturbation of the synthetic observations 
been assimilated. 

2. The greater differences between optimized 
MLP-NN and 3D-Var were verified for the 
vector field (wind), in comparison to scalar 
variables. 

3. The neural data assimilation method was 
71 times faster than 3D-Var approach. 

4. Although only 1-week experiments in 2014 
and 2015 were used, our results also show 
a huge reduction of the CPU-time for the 
assimilation cycle, as shown in previous 
results (Cintra & Campos Velho, 2012; 
Härter & De Campos Velho, 2012). Longer 
periods of the year will be analyzed in a 
near future studies as well. 

More computational effort than 3D-Var is 
verified by 4D-Var method. Using the test case for 
the native variational schemes in a quad-core 

computer, the 3D-Var demands 45 seconds while 
4DVar demanded 9550 seconds (approximately 
210 times slower than 3D-Var). Future works will 
investigate the performance of neural networks 
face on 4D-Var data assimilation, including hybrid 
techniques (Wang et al., 2008a; Wang et al., 
2008b), with an evolving background error matrix. 
Other strategies for neural networks will be also 
studies, such as a multi-objective scheme for 
neural network training (Anochi et al., 2020) and 
deep learning approach (LeCun et al., 2015). As a 
final note, considering the operational centers with 
a relative short time window to elaborate forecast 
bulletins, the reduction of CPU time of order 71 
times faster than a standard method — the worked 
example here was the 3DVar scheme – to the 
assimilation cycle is important for several aspects: 
possibility of assimilation of a greater amount of 
data and/or the use of finer model computer 
resolution.  
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