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Abstract We review the calculations of the kinetic coef-
ficients (thermal conductivity, shear viscosity, momentum
transfer rates) of the neutron star core matter within the
framework of the Landau Fermi-liquid theory. We restrict
ourselves to the case of normal (i.e. non-superfluid) matter.
As an example we consider simplest npeμ composition of
neutron star core matter. Utilizing the CompOSE database
of dense matter equations of state and several microscopic
interactions we analyze the uncertainties in calculations of
the kinetic coefficients that result from the insufficient knowl-
edge of the properties of the dense nuclear matter and sug-
gest possible approximate treatment. In our study we also
take into account non-quantizing magnetic field. The pres-
ence of magnetic field makes transport anisotropic leading to
the tensor structure of kinetic coefficients. We find that the
moderate (B � 1012 G) magnetic field do not affect con-
siderably thermal conductivity of neutron star core matter,
since the latter is mainly governed by the electrically neutral
neutrons. In contrast, shear viscosity is affected even by the
moderate B ∼ 108–1010 G. Based on the in-vacuum nucleon
interactions we provide practical expressions for calculation
of transport coefficients for any equation of state of dense
matter.

1 Introduction

Neutron stars (NSs) are the most compact astrophysical
objects known that are still stable against the gravitational
collapse. This is possible because NSs are largely composed
of strongly interacting degenerate baryons (although quark
cores, other hadronic, or mixed models are also discussed),
which pressure is strong enough to counterbalance the grav-
ity forces. This is strongly supported by the inferences on the
masses (∼ 1–2 M�) and radii (R ∼ 10–20 km) obtained for
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these objects by astrophysical methods, which correspond to
the mean densities few × ρ0 with ρ0 = 2.8 × 1014 g cm−3

being the nuclear saturation density.
Understanding properties of matter under such extreme

conditions is a subject of fundamental importance for modern
physics. Such studies allow one to test the predictions of the
nuclear matter theories for the conditions unreachable in the
terrestrial settings over the astrophysical observations.

Various physical input is required to model processes and
dynamical phenomena that can occur during the NS life.
Among it there are the transport properties of the NS matter,
see, e.g. [1] for review.

In the present study we revisit the calculation of the trans-
port coefficients of NS core matter based on the Landau
Fermi-liquid theory. We give relatively detailed description
of the technique used to calculate these coefficients and to
identify how they enter the evolution equations that are then
used in the modelling of various physical processes. It is
not possible to give a detailed account of many aspects of
neutron star transport theory in one article, so we restrict
ourselves here to the transport coefficients mediated by col-
lisions between the particles composing baryonic NS cores.
We left aside more exotic compositions such as meson con-
densates, or quark cores. We ignore processes related to the
reactions. In this sense we do not consider the bulk viscosity,
since the bulk viscosity mediated by collisions is negligi-
ble. It should be calculated using a different technique in
comparison to other transport coefficients (see., e.g., [1]).
We also do not consider the possibility of nucleon pairing
which can result in the superfluidity/superconductivity phe-
nomena in NS cores. The transport coefficients of the super-
fluid/superconducting NS cores are much less explored and
the consistent picture is not drawn yet.

We, however, include the magnetic field effects into con-
sideration. Magnetic field plays an important role in NS
physics. Indeed, the most common astrophysical manifesta-
tion of the NSs are the radio pulsars the operation of which is
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driven by the magnetic field. The studies of magnetars show
that the surface field can reach values up to 1014–1015 G
[2]. It is natural to assume that the NS core matter can be
under the influence of a strong magnetic field. The effect of
the magnetic field on the transport properties of the NS crust
is studied in great detail, see, e.g. [3–7], however the trans-
port coefficients of the magnetized NS cores received less
attention.

Magnetic field makes the motion of charged particles
curvilinear, this affects their response to the external per-
turbations. Neutral particles feel the effects of magnetic field
indirectly, through the interaction with charged species (the
neutral particles can also have the magnetic momenta). The
influence of the magnetic field on the charge particles in
degenerate matter can be described by the cyclotron fre-
quency on the Fermi surface of particle species a

ωBFa = qa B

m∗
a
, (1)

where qa is the electric charge of the particle species a and
m∗

a is its effective mass at the Fermi surface. In this paper
we assume that the magnetic field is non-quantizing, i.e.
ωBFa � T . For typical NS core conditions, this inequal-
ity is most easily violated for lightest particles, i.e., electrons
at B � 1014 T/(108 K) G [8,9]. When T � ωBFa , but
ωBFa � TFa , where TFa is the degeneracy temperature of
particle species a, the field is weakly quantizing. In this case
particles populate many Landau levels. Transport coefficients
in this case demonstrate oscillating behavior around the clas-
sical (i.e. non-quatizing) values, and are well-described by
the expressions which neglect quantization after the oscilla-
tions are smeared out. Therefore the results discussed here
will be relevant for a moderately weak quantizing field as
well.

At very large fields, known as the strongly quantizing
regime, ωBFa � TFa , particles populate mainly the lowest
Landau levels. For electrons, this corresponds to unrealisti-
cally large B � 1018 G [9] and can barely happen in NS
cores (but not in the crust e.g., [3]).

The calculations of the transport coefficients of NS core
matter are hampered by the poorly known properties of the
baryon interactions at supranuclear densities. The equation
of state (EOS) of such matter is not known and many models
are available on the market. Recent progress in theory and
observations shrinks the range of available models, but the
robust picture is yet to be established.

From the practical point of view it is desirable to have the
publically available repository containing relevant properties
of dense matter for variety of proposed models in coherent
manner, so they can be readily used for astrophysical impli-
cations. For the EOSs, this route is taken, e.g., by the Com-

pOSE database.1 It contains a data on a large number of EOSs
relevant for a NS and supernovae simulations.

In principle, it would be convenient for such database to
contain as well the set of the transport coefficients relevant for
each EOS. However, no simple solution for this task is seen.
Transport coefficients are not universal and for each EOS
should be calculated under the same underlying microscopic
model. At the moment this does not look feasible.

In the present study we identify what information is
needed from the microscopic theory for calculating trans-
port coefficients of magnetized NS cores. Specifically, here
we consider the beta-stable nucleonic matter with baryon
number density � 1 fm−3, temperature T � 1010 K and
magnetic field � 1014 G. Utilizing a range of the nucleonic
EOSs from the CompOSE database and a few microscopic
interactions we illustrate the potential scatter that can emerge
in calculations. We then elaborate on the ‘poor man’ solu-
tion for nucleonic NS cores based on the in-vacuum nucleon
interaction. This approach allows one to calculate transport
coefficients for any EOS and we provide practical approxi-
mate expressions allowing to do this.

The paper is organized as follows. In Sect. 2 we review
the first-order relativistic hydrodynamics equations in order
to identify the occurrence of the transport coefficients stud-
ied here. We do not consider effects of the General Relativity
since we deal with the microscopic calculations of the trans-
port coefficients which are performed in the local Lorentz
frame. The typical mean free path scale is much smaller
than the macroscopic scale where the curvature of space-time
manifests itself. In Sect. 3 we consider the transport theory
of Fermi liquids. In particular, in Sect. 3.3 we briefly intro-
duce the irreducible spherical tensor formalism convenient
for studying the problem in magnetic field. In Sect. 3.6 we
outline the general expressions for calculation of transport
coefficients at lowest variational order. In Sect. 4 the quasi-
particle collisions governed by electromagnetic (Sect. 4.1)
and strong (Sect. 4.2) interactions are considered. In Sect. 5
we apply the described formalism to the transport coefficients
in nucleonic NS cores. In Sect. 5.1 we consider effective scat-
tering cross-sections. In Sect. 5.2 we describe partial contri-
butions to transport coefficients in non-magnetized matter
and Sect. 5.3 we discuss transport coefficients in presence of
the magnetic field. We conclude in Sect. 6.

We give the practical expressions for the calculation
of transport coefficients for nucleonic NS core matter in
Appendix B.

Throughout the paper we set h̄ = c = kB = 1. The
metric tensor convention is gμν = diag(1,−1,−1,−1), and
the Greek indices are used for the components of four-vectors
while the Roman ones for components of three-vectors. Bold
font is used for three-vectors. The Levi-Civita antisymmetric

1 https://www.compose.obspm.fr/.
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tensor εμναβ is normalized as ε0123 = 1. Dirac matrices obey
γ 5 = −iγ 0γ 1γ 2γ 3.

2 Hydrodynamic equations

Let us start from formulating the relativistic hydrodynamic
equations, e.g. [10,11], for the normal (i.e. non-superfluid)
NS core matter which is a mixture of r species (e.g. neutrons,
protons, electrons, etc.). We assume that collision timescales
between the various species are compatible with the equili-
bration timescale for the single species. Therefore it is appro-
priate to describe the NS core mixture as a single fluid. If this
condition is not met (as can generally happen in terrestrial
or astrophysical plasmas) or if the superfluidity is taken into
account, then more complicated multifluid hydrodynamics
should be constructed, see, e.g., [12–15].

Hydrodynamic equations consist of the conservation
equation for the energy–momentum tensor T μν and the
conservation equations for the particle currents jμ(a), a =
1, . . . , r . The latter equations read

∂μ j
μ

(a) = 0. (2)

In principle, the particle currents are not conserved since the
weak reactions can operate in the NS core. In this case the
right-hand side of Eq. (2) should contain reaction terms. In
case of reaction mixtures it is, in principle, more natural to
consider the exactly conserved currents (i.e. baryon number
current) instead of particle currents. However, the timescales
of the weak reactions in the NS cores are much larger than the
collision timescales we will deal below. Therefore we omit
these terms for brevity.2

We assume that the large-scale electromagnetic field can
be present in the system. The equation for the energy–
momentum tensor of the fluid is then

∂μT μν = Fνλ Jλ, (3)

where Fμν is the electromagnetic field tensor and Jμ is the
electromagnetic current

Jμ =
r∑

a=1

qa j
μ

(a). (4)

We assume for simplicity that the magnetic fields are not
overwhelmingly large so that the matter is unpolarized and
the magnetic pressure can be neglected. More general dis-
cussion can be found in [16–18].

One defines the so-called local rest frame (LRF) of the
fluid which for the ideal fluid is defined as a frame where the

2 For the hyperonic cores there can exist also strong inelastic processes
of a form A + B ↔ C + D. For simplicity, we assume the equilibrium
state with respect to such reactions, so the particle currents are still
conserved.

energy flow T 0i , momentum components densities T i0, and
particle flows j i(a), i = 1, 2, 3, vanish. For the fluids outside
equilibrium, the definition of the LRF becomes ambiguous
[10,19]. In any case, the rest frame of the fluid is described by
the hydrodynamic four-velocity Uμ normalized as UμUμ =
1. In the LRF, Uμ = (1, 0, 0, 0), and in the laboratory frame
Uμ = γ (1, V ) where V is three-velocity and γ = (1 −
V 2)−1/2 is the corresponding Lorentz factor. We define the
the orthogonal projector

Δμν = gμν −UμU ν (5)

and decompose the four-gradient operator as

∂μ = UμU ν∂ν +Δμν∂ν ≡ UμD + ∇μ. (6)

In the LRF, D → ∂t and ∇μ → (0,−∇), where ∇ = ∂r is
the spatial gradient operator.

Using the hydrodynamic velocity, the particle currents can
be written as

jμ(a) = naU
μ +Δ jμ(a), (7)

where Δ jμ(a) is the dissipative correction, which vanishes in
equilibrium, and na is the number density of particle species
a. Total particle number density is

n =
r∑

a=1

na (8)

and the decomposition of the total particle current jμ is

jμ ≡
r∑

a=1

jμ(a) ≡ nUμ +Δ jμ, (9)

where Δ jμ is the total dissipative particle flux. Similarly,
the decomposition of the energy–momentum tensor into the
ideal and non-ideal part is

T μν = (E + P)UμU ν − Pgμν +ΔT μν, (10)

where E is the internal energy density of the fluid, P is the
thermodynamic pressure, and ΔT μν is the dissipative cor-
rection. Local equilibrium thermodynamic quantities na , E ,
and P are assumed to be related by the thermodynamic laws
to the local temperature T (x) and chemical potentials μa(x)
via the standard relations provided the equation of state (e.g.,
in the form P = P({μa}, T )) is given. The thermodynamic
laws are

dE = TdS +
∑

a

μadna, (11a)

H ≡ E + P = T S +
∑

a

μana, (11b)

dP = SdT +
∑

a

nadμa, (11c)

where H is the total enthalpy density and S is the equilibrium
entropy density.

123



42 Page 4 of 50 Eur. Phys. J. A (2022) 58 :42

The decompositions (7)–(10) describe fluids close to the
local equilibrium state so that the dissipative corrections are
small and can be systematically expanded in derivatives of
the thermodynamic field variables (e.g., [20])

ΔT μν = O(∂)+ O(∂2)+ · · · , (12)

Δ jμ = O(∂)+ O(∂2)+ · · · . (13)

Truncating these expansions leads subsequently to the first-
order hydrodynamics, second-order hydrodynamics, etc.

There is a principle ambiguity in how to define the fields
T (x), {μa(x)}, and Uμ(x) in order to write the decompo-
sitions (7)–(10) in non-equilibrium case. The different pos-
sibilities are commonly referred as a ‘choice of the frame’
(e.g., [20]).

The standard choice assumes that the dissipative correc-
tions are transverse to Uμ:

UμΔ jμ(a) = 0, (14a)

UμUνΔT μν = 0, (14b)

and additional condition is required to fixUμ. Two traditional
options are due to Eckart [21] and Landau and Lifshitz [19]

Δ jμ = 0, Eckart, (15a)

UμΔT μν = 0, Landau–Lifshitz. (15b)

It is well-known, however, that the first-order hydro-
dynamics equations in these frames suffer from acasual
and unstable behavior [22], see detailed discussion in, e.g.,
[10,11,14]. In principle, that these theories allow for unsta-
ble modes and acasual heat propagation does not mean that
the actual studies will necessary encounter these problems.
In most of studies concerned with the NS core transport, up
to our knowledge, the first-order theory was enough. This is
not the case for the heavy ion collisions and may change with
the progress of the simulations of NS mergers.

The solutions to these problems were proposed, for
instance, on the basis of second-order theories of extended
irreversible thermodynamics [23–25] or Carter’s variational
formalism (e.g. [14]), see [26] for a recent review. Alterna-
tively it was recently proposed that the first-order hydrody-
namics equations can be made stable if the frames beyond
traditional Eckart or Landau–Lifshitz one are considered
[20,27–37]. The latter formalism was recently explored
numerically [38] and equations were extended to the second
order in general frame [39]. Notice that in fact the certain
frames can be preferred over others on the physical basis (i.e
the so-called thermodynamics frame [29,40], see also [41]).

The discussion of the validity and sufficiency of the first
order or second order description is beyond the scope of the
present paper [14,26,36,42]. We restrict ourselves to much
less ambitious task. We are interested in the microscopic cal-
culations of the transport coefficients (thermal conductiv-
ity, shear viscosity, diffusion coefficients) appearing already

in the first-order theory. These coefficients are governed by
quasiparticle collisions and are invariant in the first order
under the choice of the frame [20,33,43].

In order to identify these coefficients let us formulate the
entropy production law. The expression for the canonical
entropy current is based on the first law of thermodynamics
[10]

T Sμ = PUμ +UνT μν −
∑

a

μa j
μ

(a) (16a)

= T SUμ +UνΔT μν −
∑

a

μaΔ jμ(a). (16b)

In principle, in a non-equilibirum state the true entropy cur-
rent, which strictly obeys the second law of thermodynam-
ics ∂μSμ � 0, is not necessarily given by Eq. (16a), but it
can also contain correction terms [44–47]. However, in the
domain of validity of the first-order theory, one can remain
with Eq. (16a). Then the inequality ∂μSμ � 0, in principle,
becomes approximate [20,36,42].

Using Eqs. (2), (3), (7), (10), and (11), the divergence of
the canonical entropy current can be written as

ς ≡ ∂μSμ = ΔT μν∂μUν
T

−
∑

a

Δ jμ(a)∂μ
μa

T
− 1

T
Eλ Jλ,

(17)

which is valid in any frame [36]. Taking into account the
discussion above, we further assume that the matching con-
ditions (14) hold, but do not yet fix Uμ.

The term Eλ ≡ UνFλν in Eq. (17) is the electric field
four-vector resulting from the decomposition of the electro-
magnetic field tensor

Fμν = EμU ν − EνUμ + εμναβUαBβ, (18)

where Bμ ≡ 1
2ε
μναβUνFαβ is the magnetic field four-vector.

We assume that the magnetic field is large, i.e. B = O(1),
while the electric field is induced by the dissipative processes,
so E = O(∂).

The equations of motion are obtained by employing
Eqs. (6) and (7) in Eq. (2) and by contracting Eq. (3) with Uν
and Δλν [10]. One obtains

Dna + na∇μUμ = −∂μΔ jμ(a), (19a)

DE + H∇μUμ = −Uν∂μΔT μν + Eσ Jσ , (19b)

HDUλ − ∇λP −ΔλνFνσ Jσ = −Δλν∂μΔT μν. (19c)

At the first order in gradients, right-hand sides of Eq. (19)
vanish.

To proceed further, let us define particle fractions as ya ≡
na/n and introduce diffusion currents iμ(a) via

jμ(a) = ya j
μ + (Δ jμ(a) − yaΔ jμ) ≡ ya j

μ + iμ(a). (20)

Notice that at first order iμ(a) are independent of the choice
of Uμ (and of the frame selection in general). The diffusion
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currents sum to zero:

r∑

a=1

iμ(a) = 0. (21)

We also assume that the system is electrically neutral in the
LRF,

∑
a qana = 0. The electromagnetic current is then

Jμ =
∑

a

qaΔ jμ(a) =
∑

a

qai
μ

(a). (22)

Due to charge neutrality, the electromagnetic current is
orthogonal to the fluid velocity, i.e. Uμ Jμ = 0. This retains
only the magnetic part of the Lorentz force, ΔλνF

νσ Jσ =
Uαεαλμν JμBν , in the left-hand side of Eq. (19c). Notice that
in multifluid hydrodynamics, different ‘fluids’ might have
different LRFs, and the definition of local charge neutrality
becomes more subtle, see, e.g., [48].

The dissipative correction to the energy–momentum ten-
sor ΔT μν can be further decomposed as

ΔT μν = UμQν +U νQμ +Πμν, (23)

where Qμ is the dissipative part of the energy flux

Qμ = UνΔT νλΔμλ ≡ Iμ(q) + hΔ jμ = Jμ(q) +
∑

a

haΔ jμ(a),

(24)

Iμ(q) is the heat flux (which is frame-independent in first

order), h ≡ H/n is the specific enthalpy per particle, Jμ(q)
is the reduced heat flux, Jμ(q) = Iμ(q) − ∑a hai

μ

(a), and ha
is the specific enthalpy of the particle species a, so that
h = ∑a yaha . Notice that the specific enthalpies cannot be
defined in the phenomenological single-fluid theory. They,
however, will arise naturally from the Fermi-liquid kinetic
theory (discussed below).

The term Πμν in Eq. (23) is the non-equilibrium part of
the stress tensor which in view of Eq. (14) is

Πμν = ΔμλT λδΔνδ + PΔμν = Δμλ ΔT λδΔνδ . (25)

Using the decompositions (23)–(24), the entropy current
in (16b) can be rewritten in the following forms

Sμ = S

n
jμ + 1

T

(
Iμq −

∑

a

μai
μ

(a)

)
(26a)

=
∑

a

sa j
μ

(a) +
Jμ(q)
T

(26b)

which do not depend onUμ [43]. The quantities sa in Eq. (26)
are partial specific entropies to which all said above about ha
applies as well.

Let us now rewrite the entropy production rate (17) with
the help of Eqs. (23), (24), (19c), and (11) in several equiva-

lent forms [49]

Tς = Πμν∇μUν − Iμ(q)

(∇μT
T

− DUμ

)

−T
∑

a

iμ(a)∇μ
μa

T
+ 1

n
jμF

μλ Jλ (27a)

= Πμν∇μUν − Jμ(q)

(∇μT
T

− DUμ

)

−
∑

a

iμ(a)

(
dE
(a)μ − ha

hn
ΔμνF

νλ Jλ

)
(27b)

= Πμν∇μUν − Jμ(q)

(∇μT
T

− DUμ

)

−
∑

a

Δ jμ(a)

(
d(a)μ − ha

hn
ΔμνF

νλ Jλ

)
. (27c)

In order to derive these equations, we expressed the acceler-
ation DUμ from (19c) taken atO(∂) (i.e. neglecting its right-
hand side). However, we traditionally kept the acceleration
term in the combination T−1∇μT − DUμ which multiplies
the heat fluxes in Eq. (27).

In Eq. (27) we introduced four-vectors

dEμ
(a) = d̃μ(a) −

qa
n

jνF
νμ, (28a)

dμ(a) = d̃μ(a) + qaE
μ, (28b)

where

d̃μ(a) = T∇μμa

T
− T

ha
h

∑

b

yb∇μμb

T
. (29)

All these vectors are linearly dependent since

r∑

a=1

yad̃
μ

(a) = 0, (30)

and, owing to charge neutrality,

r∑

a=1

yad
Eμ
(a) =

r∑

a=1

yad
μ

(a) = 0. (31)

The first Eq. (27a) is manifestly frame independent, since
it contains frame-independent fluxes. The second Eq. (27b)
is rewritten using the reduced heat flux, since it natu-
rally emerges from the kinetic theory and is also frame-
independent.

Notice that the thermodynamic forces coupled to the dif-
fusion currents contain [the last term of Eq. (27b)] the electric
field in the specific frame [namely, particle, or the Eckart one,
cf. Eqs. (28a) and (28b)]. Notice also that the Δμν projector
in the magnetic term can be dropped since iμ(a) is orthogonal
to Uμ.

Consider, finally, the third form of the entropy production
equation (27c). Here dissipative particle current and the vec-
tor dμ(a) depend on the choice of frame (but not the entropy
production itself). However, Eq. (27c) has the structure that
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is readily obtained from the kinetic theory by integrating the
corresponding single-particle transport equations, see below.
In the Eckart frame [Eq. (15a)] Eqs. (27b) and (27c) coin-
cide. This suggest that it is convenient to work in the Eckart
frame for the calculation of the transport coefficients.

Equation (27b) has a form of bilinear combinations of
thermodynamic forces and fluxes

Tς = −
∑

k=ζ,η,q,Da

Yk · Xk, (32)

where Xk are thermodynamic forces, corresponding to dif-
ferent transport phenomena. Namely,

Xζ = ∇μUμ (33a)

corresponds to the bulk viscosity (k = ζ ),

Xμνη = 1

2

(
ΔμσΔ

ν
τ +ΔνσΔμτ − 2

3
ΔμνΔστ

)
∇σU τ (33b)

corresponds to the shear viscosity (k = η),

Xμq = ∇μT
T

− DUμ (33c)

corresponds to thermal conductivity (k = κ), and r thermo-
dynamic forces (k = Da with a = 1 . . . r )

XμDa = dEμ
(a) − ha

hn
ΔμνFνλ J

λ (33d)

drive the diffusion processes. In Eq. (32), Yk are the corre-
sponding thermodynamic fluxes

Yζ = −1

3
ΔμνΠ

μν ≡ Π, (34a)

Yμνη = −
(
ΔμσΔ

ν
τ − 1

3
ΔμνΔστ

)
Πστ ≡ −Π 〈μν〉, (34b)

Yμq = Jμ(q), (34c)

YμDa = iμ(a). (34d)

In Eqs. (34a), (34b) we decomposed the stress tensor in the
isotropic part (described by the viscous pressureΠ ) and the
traceless symmetric part (shear stress tensor), for which we
use the short-hand notation Π 〈μν〉.

The irreversible thermodynamics states that the fluxes are
the linear combinations of forces (and vice versa), namely

Yk = −
∑

k′
L̂kk′Xk′ , (35)

where L̂kk′ is the matrix of the transport coefficients. Here
and up to the end of this section we omit the tensor component
indices for brevity, and use hats to stress tensor character of
corresponding quantities (in order to eliminate the explica-
tion of tensor component indices). Entropy production now
is given by the quadratic form on the thermodynamic forces
Xk . The transport coefficients matrix L̂kk′ needs to be semi-
positive definite for the second law of thermodynamics to be

valid. In addition, the matrix L̂kk′ obeys Onsager reciprocal
relations [50]

L̂kk′(B) = ±L̂T
k′k(−B), (36)

where the superscript T means transposition with respect to
the tensor multiindex, and one needs to use the plus sign
if the thermodynamic forces k and k′ have the same time-
reversal symmetry, and minus in other case (i.e. for the cross-
coefficients between viscosity and diffusion; however these
coefficients are zero due to inversion symmetry).

The Curie principle states that in the isotropic media the
thermodynamic fluxes and forces of different tensor dimen-
sions do not mix [51]. In the presence of the magnetic field,
the system possesses lower-degree axial symmetry and one
can write

Yζ = −ζXζ − ζ̂1X̂η, (37)

Ŷη = 2η̂X̂η − ζ̂1Xζ , (38)

where ζ is the bulk viscosity coefficient, η̂ is the shear vis-
cosity which, in general, is a four-rank tensor, and ζ̂1 is the
cross-term viscosity coefficient which is a traceless symmet-
ric second-rank tensor. Due to inversion symmetry there are
no cross terms between the vector fluxes and the viscous
forces and vice versa. Below (Sect. 3.3) we will see that for
a wide class of systems including NS cores one may con-
sider ζ̂1 = 0 due to a particular form of the Lorentz force
[52]. If more general interaction with magnetic field is con-
sidered (e.g. the particles’ magnetic moments are taken into
account), one may have ζ̂1 
= 0.

For the vector fluxes the general situation is more cum-
bersome. One can expand Eq. (35) in the explicit form

Jq = −L̂qqXq −
∑

a

L̂qaXDa, (39a)

i(a) = −L̂aqXq −
∑

b

L̂abXDb, (39b)

which contains thermal conductivity, diffusion, and thermod-
iffusion processes. At the level of first-order irreversible ther-
modynamics there is a freedom to choose the thermodynamic
forces and fluxes in various ways by changing a basis of the
expansion of the entropy production as a quadratic form. For
instance, it is possible to use thermodynamic fluxes Yk in
place of forces, and take thermodynamic forces Xk as the
fluxes. Notice that the thermodynamic force XDa as defined
in Eq. (33d) contains the term proportional to J , which in
turn is the linear combination of the diffusion currents, i.e.
YDa . This means that Eq. (39b) can be viewed as a system of
linear equations for i(a). Solving this system, one expresses
the diffusion currents i(a) via the linear combination of the
thermal force Xq and the true diffusion forces X̃Da , which
do not contain the magnetic field term, i.e.

X̃Da = dE
(a). (40)
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The entropy production is still given by the quadratic form
with some different transport coefficient matrix related to the
L̂kk′ . We do not write the explicit transformation between
these formulations here. Instead we rewrite the diffusion law
in the so-called Stephan–Maxwell form. To do this we first
rewrite the linear transport laws in the form where the set of
thermodynamic forces containsXq and the diffusion currents
i(a), while the thermodynamic fluxes are XDa and still Jq :

Jq = −T κ̂Xq −
∑

a

R̂qai(a), (41a)

XDa = −R̂aqXq −
∑

b

R̂abi(b), (41b)

where the thermal conductivity tensor κ̂ is introduced,
R̂qa(B) = R̂T

aq(−B), and R̂ab(B) = R̂T
ba(−B) is the con-

jugate set of the tensor transport coefficients. Multiplying
Eq. (41b) by na , summing over a, and employing Eqs. (21–
22) and Eq. (30), one observes
∑

b

qbΔ̂F̂i(b) =
∑

a

R̂aqXq +
∑

ab

na R̂abi(b). (42)

Since this equality should be valid for any Xq and any i(b)
satisfying Eq. (21), the coefficients R̂ab, R̂aq should satisfy
[53]
∑

a

na R̂aq = 0, (43a)

∑

a

na R̂ab − qbΔ̂F̂ = n R̂, (43b)

where the tensor R̂ does not depend on b. Now Eq. (41b) can
be rewritten in the Stephan–Maxwell form

naXDa = −na R̂aqXq +
∑

b

Ĵab

(
i(b)
nb

− i(a)
na

)

−qaΔ̂F̂i(a), (44)

where

Ĵab = −nanb(R̂ab − R̂) (45)

is the set of the r(r − 1)/2 independent friction tensor coef-
ficients also known as the momentum transfer rates. Since
according to Eq. (43a) there is r − 1 independent thermal
diffusion coefficient R̂aq , there are r(r + 1)/2 tensors in
total which describe the heat and particle diffusion. Notice
that the magnetic term in the second line in Eq. (44) does not
contribute to the entropy production rate. Indeed, accord-
ing to Eq. (27b) entropy production contains the product
i(a)XDa . The magnetic term contribution from (44) is then
qai(a)Δ̂F̂i(a) = qai(a) F̂i(a) which vanishes due to asymme-
try of the electromagnetic field tensor.

In the isotropic case (in our context – in the absence of
magnetic field) all transport coefficients described above are

scalars. In presence of the magnetic field, they become ten-
sors with a certain symmetry with respect to the magnetic
field direction. We discuss this structure in detail in Sect. 3.3
based on the irreducible spherical tensor formalism.

In the terrestrial settings transports coefficients defined in
the effective hydrodynamics theories can be (at least in prin-
ciple) obtained from experiment. In the astrophysical settings
this is more complicated. Therefore the reliable values for
transport coefficients should be derived on the basic of some
microscopic theory.

Within the linear response regime, the expressions for
the transport coefficients can be given by the Kubo-type
formulae (e.g., [54]). Appropriate expressions for the rel-
ativistic hydrodynamics (including magnetized case) can be
found, e.g., in [16–18,55] and references therein. The practi-
cal analytical calculations of the transport coefficients in this
approach can be complicated since they require resummation
of infinite number of diagrams.

Another alternative that works in the weak-coupling limit
is the kinetic theory framework. Here we assume that the
low-temperature conditions in NS cores allow to represent
matter as a mixture of weakly interacting quasiparticles and
describe it within the Landau Fermi-liquid theory [56]. Then
the transport coefficients can be calculated from the kinetic
theory for Fermi-liquids, which we describe below.

3 Transport theory of Landau Fermi-liquids

3.1 General setup and definitions

Landau Fermi-liquid theory does not consider the ground
state of the system. In contrast it deals with the slightly
excited states and assumes that these states of the condensed
system are described in terms of weekly interacting quasipar-
ticles which have a one-to-one correspondence to the actual
particle states of the system. The Landau Fermi-liquid the-
ory was initially formulated in the non-relativistic setup. The
relativistic generalization closely following the original con-
sideration was constructed for the single-component fluid by
Baym and Chin [57] (see also the generalization for mixtures
[58]). The manifestly covariant generalization exists [59–61]
based on the expansion of the pressure variation instead of
the energy density variation.

For the purpose of the transport coefficients calculation,
it is easiest to work in the rest frame of the fluid. Since the
gradients of the hydrodynamic velocity enter the equations
for the thermodynamic forces, one also considers the labo-
ratory frames that are close to the LRF, i.e. which have non-
relativistic velocities V � 1. In this case the formulation
by Baym and Chin [57] is natural. After necessary velocity
gradients are identified in equations, one can set V = 0. The
resulting equations are similar to their non-relativistic coun-
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terparts, having in difference mainly the relativistic quasipar-
ticle dispersion law [57], see also [43].

The quasiparticle states are characterized by the quasi-
classical distribution functions fa( p, r, t). Below we will
omit the coordinate dependence of the distribution functions
for brevity. Distribution functions also depend on the spin
quantum numbers (and other quantum numbers, if present).
We do not consider here interesting spin-dependent effects,
and restrict ourselves to the spin-unpolarized state. Let us
abbreviate
∫

p
≡
∑

σ

∫
d3 p
(2π)3

, (46)

where σ is a spin state index. Notice that since we work in
the LRF, we do not introduce the Lorentz-invariant volume
element here. This allows to consider relativistic and non-
relativistic cases on the same footing.

The particle densities (zero components of the particle
currents) are assumed to be given by the integration of the
quasiparticles distribution functions

j0
(a) =

∫

p
fa( p). (47)

In principle, one usually defines the family of the space-like
hyperplanes orthogonal to some time-like vector πμ, so that
the densities of hydrodynamic variables are defined as, e.g.
πμ j

μ

(a) [41,62]. We leave this generalization aside and take
πμ = (1, 0, 0, 0).

The momentum density T i0 is also defined to be a known
functional of fa( p)

T i0 =
∑

a

∫

p
pi fa( p). (48)

In contrast, the energy density T 00 is considered as an
unknown functional of the set of distribution functions
{ fa( p)}, a = 1, . . . , r . However for the small departures
from the equilibrium ground state, the variations in energy–
momentum density can be written as

δT μ0 =
∑

a

δT μ0
(a) =

∑

a

∫

p
pμ(a)( p)δ fa( p), (49)

where

pμ(a) ≡ (εa( p), p) (50)

and εa( p) is the quasiparticle energy, which itself is the func-
tional of the distribution functions εa( p) = εa( p)[{ fb( p)}].
The variational derivative of the quasiparticle energies with
respect to the distribution functions

δεa( p) =
∑

b

∫

p′
fab( p, p′)δ fb( p′) (51)

defines the Landau Fermi-liquid interaction fab( p, p′).

Entropy density of (quasi)particle species a has a purely
combinatorial nature and is given by the same expression as
for the non-interacting gas

Sa = −
∫

p

[
fa( p) log fa( p)+ (1 − fa( p)) log(1 − fa( p))

]
.

(52)

The local equilibrium state descibed by a set of the
local equilibrium distribution functions { f l.e.

a } is obtained
by maximizing total entropy density subject to constraints
j0
(a)[ f l.e.] = j0

(a) and T μ0[ f l.e.] = T μ0, where j0
a and

T μ0 are the actual local values of particle density and
energy–momentum density, respectively, which are well-
defined as expectation values of the corresponding quantum-
mechanical operators for a given state of the system. This
conditional extremum problem amounts to maximization of
the functional

∑

a

[
Sa[ f l.e.] − αa

(
j0
(a)[ f l.e.] − j0

(a)

)

−βμ
(
T μ0
(a) [ f l.e.] − T μ0

(a)

)]
, (53)

where αa and βμ are Lagrange multipliers, which are iden-
tified as [41]

αa = −μa

T
, βμ = Uμ

T
. (54)

Equating to zero the variation of Eq. (53) over distribution
functions fa results in the local equilibrium distribution func-
tions

f l.e.
a = fF

(
pμ(a),l.e.Uμ(r, t)− μa(r, t)

T (r, t)

)
, (55)

where

fF(x) = [exp (x)+ 1
]−1 (56)

is the Fermi function. Notice that here the local equilibrium
dispersion law appears in pμ(a),l.e. = (εl.e.

a ( p), p), which
itself is the functional of Eq. (55).

Using Eq. (54) in variation of Eq. (53) results in the ther-
modynamic relation

UμdT μ0 = T dS +
∑

a

μad j0
(a), (57)

where S = ∑a Sa , which when written in the LRF reduces
to Eq. (11a).

Fermi-liquid theory describes low-temperature systems
close to the T = 0 ground state. In this case Eq. (55) reduces
to the Heaviside step function
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f l.e.
a ( p) = �(pFa − p), (58)

where

pFa = (3π2na)
1/3 (59)

is the quasiparticle species a Fermi momentum. This means
that all states with p < pFa are occupied and those with p >
pFa are vacant. For small perturbations from equilibrium, the
distribution function varies only in the vicinity of the Fermi
surface. One defines the quasiparticle Fermi velocity

vFa =
(
∂εl.e.

a (p)

∂p

)

p=pFa

(60)

and (Landau) effective mass on the Fermi surface

m∗
a = pFa

vFa
. (61)

The evolution of the distribution function is described by
the Landau-Boltzmann transport equation [56,57]

∂ fa
∂t

+ ∂εa

∂ p
∇ fa −

(
∂εa

∂ r
− Fa

)
∇ p fa = Ia[{ fb}], (62)

where the important difference from the Boltzman equation
for a gas [43,63] is contained in the appearance of the ∂εa/∂ r
term. In Eq. (62), Fa is the external force (not included in the
miscroscale mean field) which we here take as the Lorentz
force

Fa = qa (E + [va × B]) , (63)

where va = ∂εa/∂ p. Finally, the term Ia[{ fb}] is the colli-
sion integral for the quasiparticle species a which describes
the change of the distribution function due to collisions and
depends, in principle, on the full set of the distribution func-
tions, b = 1, . . . , r .

Transport Eq. (62) allows one to derive a general equation
of transfer for any state variable ψ . Introducing

〈ψ〉 =
∫

p
ψ fa, (64)

and integrating (62) multiplied by ψ one obtains

∂μ〈vμa ψ〉 = ∂〈ψ〉
∂t

+ ∇〈vaψ〉

=
〈
∂ψ

∂t
+ va∇ψ − (∇εa − Fa)

∂ψ

∂ p

〉

+
∫

p
ψ Ia, (65)

where we assumed that ∇ p · Fa = 0 like in the case of
Lorentz force. The term 〈vμa ψ〉, where

vμa = ∂εa

∂pμ(a)
= (1, va), (66)

gives the flux of the variable ψ and the right-hand side of
Eq. (65) is the quantity ψ production (or source) term.

Setting ψ = 1 in Eq. (65) results in the particle current
conservation laws Eqs. (2) with jμ(a) = 〈vμa 〉. Notice, that
in general, va 
= pa/εa as holds in the free space. Here
it is assumed that the collision integrals conserve particle
numbers, i.e.

∫
p Ia = 0, since we do not consider reactions.

Similarly the transfer equations for four-momenta ψ =
pμ(a) summed over the particle species lead, with the help of
Eq. (49), to the energy–momentum tensor conservation law
Eq. (3) with the definition [56,57]

T μν(a) =
∫

p
pμvνa fa( p)− gμν

(∫

p
εa( p) fa( p)− T 00

(a)

)
.

(67)

Notice that for the ideal realtivistic gas [43,63] the last term
is exactly zero. In deriving Eq. (67), we assumed that the
collisions conserve energy and momentum
∑

a

pμ(a) Ia = 0, (68)

i.e. there are no external scattering mechanisms and the
energy–momentum leakage due to emission processes is
neglected. Substituting of the local equilibrium function
Eq. (55) into Eq. (52), integrating by parts, summing over
particles, and using the definition (49) one obtains in LRF the
Eq. (11b) and, hence, the Gibbs-Duhem relation Eq. (11c).

Comparing Eqs. (52) and (64) one observes that the
entropy transfer equation can be derived by setting ψ =
ψ
(a)
S = − log fa + (1 − f −1

a ) log(1 − fa). Current for ψ(a)S
is identified with the partial entropy current of the particle
species a and Eq. (65) results in

∂μ〈vμa ψ(a)S 〉 ≡ ςa =
∫

p
log

(
1 − fa

fa

)
Ia[{ fb}]. (69)

The right-hand side, summed over particle species, gives the
total entropy production, i.e. ς =∑a ςa . It vanishes for the
local equilibrium functions Eq. (55) if the collision probabil-
ities which enter the collision integral also correspond to the
local equilibrium state.

The collision integral in the right-hand side of Eq. (62)
contains contribution from the binary quasiparticle collisions
between all species and has the Uehling–Uhlenbeck form

Ia[{ fb}] =
∑

b

Iab, (70)

where

Iab[ f ] = − 1

1 + δab
∫

p1′

∫

p2

∫

p2′
wab( p, p2; p1′, p2′)

× [ f1 f2(1 − f1′)(1 − f2′)

−(1 − f1)(1 − f2) f1′ f2′ ] , (71)

where we abbreviated f1 = fa( p), f1′ = fa( p1′), f2 =
fb( p2), f2′ = fb( p2′), and the kernel wab( p, p2; p1′, p2′)
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is the differential probability of the quasiparticle collisions.3

It is seen that the collision integral in this form vanishes for
the local distribution functions Eq. (55) again if the collision
probabilities are calculated for the local equilibrium quasi-
particles. However, in general, the local equilibrium func-
tions do not solve the transport Eq. (62), since they do not
give zero in the driving term. Both sides of kinetic equa-
tion vanish in the global equilibrium state (for the global
equilibrium distribution functions). Deviation of the local
equilibrium state from the global equilibrium results in the
dissipative processes that tend to eliminate these differences.

Unitary of the scattering matrix for binary collisions,
which enters wab, leads to the Boltzmann H -theorem [43,
63], i.e. to the entropy increase law ς � 0 in Eq. (69) for the
collision integral Eq. (71).

The laws of dissipative hydrodynamics are derived from
the kinetic theory by considering small deviations around
the local equilibrium state. There exist two general meth-
ods that perform this expansion. One is the Grad’s moments
method [64] and other is the Chapman–Enskog expansion
method [65].

The moments method is based on the expansion of the
non-equilibrium distribution function in some orthogonal set
constructed from pμ; the lowest order moments are the phys-
ical flows. The expansion is then truncated at a certain finite
number of expansion coefficients (moments).

The Chapman–Enskog expansion employs the small
parameter, namely the Knudsen number Kn = λ/L , where
λ is the typical mean free path or the microscopic scale, and
L is the typical scale of the state variables gradients, or the
macroscopic scale. The distribution functions are then pro-
gressively expanded in orders in Kn.

Both methods were derived for non-relativistic systems
and are extended to the relativistic sector e.g., [43,63]. Both
approaches suffer from certain limitations, see [66,67] for a
detailed discussion. In the non-relativistic case, lowest order
Grad’s method and Chapman–Enskog methods give equiv-
alent formulations, while this is not so in the relativistic
case. The relativistic generalization of the Grad’s moments
method allowed [25] to construct the casual second-order
hydrodynamic equations. On the other hand, the Chapman–
Enskog formulation is asymptotically correct (in small Kn
limit). There are evidences from the numerical analysis of
the solution of the relativistic Boltzmann equations, that the
Chapman–Enskog procedure is favored, e.g., [67] and refer-
ences therein, see, however, [68]. The methods combining
advantages of the both procedures are proposed in the non-
relativistic (e.g., [53]) and relativistic [66,69] setup.

3 In case of inelastic collisions (reactions), the final quasiparticle states
can correspond to different particle species, i.e. f1′ = fc( p1′ ) and
f2′ = fd ( p2′ ) for a binary reaction a + b ↔ c + d.

Since the Chapman–Enskog method provides asymptot-
ically correct limit for transport equations, the first-order
transport coefficients can be reliably calculated in this
approach. Below we employ the Chapman–Enskog method
at the lowest (linear) order in Kn. To a certain extent, the
Champan–Enskog procedure in a Fermi-liquid turns out to
be similar to those for the relativistic gas kinetic theory,
described in detail in, e.g., [43,63,66].

3.2 Chapman–Enskog procedure

In order to use the Chapman–Enskog procedure one needs to
linearize the transport equation (62) around the equilibrium
distribution function in terms which are progressively larger
in powers of the Knudsen number

fa = f eq
a + δ f (0)a + δ f (1)a + · · · (72)

where f eq
a is the distribution function in global equilibrium

and

δ f (0)a = f l.e.
a − f eq

a (73)

is the difference between the local and global equilibrium dis-
tribution functions. The quasiparticle energies are function-
als of the distribution function and are subject to the similar
expansion

εa = εeq
a + δε(0)a + δε(1)a + · · · (74)

In the first order one retains zero-order terms in the driv-
ing term [left-hand side of Eq. (62)] with the exception of
the magnetic part of the Lorentz force and first-order terms
in the collision integral. Linearization of the collision integral
requires a certain care. Here it is necessary to bear in mind
that the conservation laws in the collision probabilities wab

contain true quasiparticle energies. Therefore the collision
integral will vanish exactly for any distribution functions of
the local equilibrium form if one uses there the true quasi-
particle spectrum instead of the local equilibrium one, i.e.,
if one substitutes pμ(a),l.e. → pμ(a) in Eq. (55) [52,56]. It is
instructive to introduce the deviation denoted with bar via

fa( p) = f l.e.
a (pμ(a),l.e.)+ δ fa( p) = f l.e.

a (pμ(a))+ δ fa( p).
(75)

Importantly, the thermodynamic fluxes in the first order are
expressed via the functions δ fa [52]:

Δ j (a) =
∫

p
va δ f a, (76a)

J (q) =
∑

a

∫

p
va (εa − ha) δ f a, (76b)

Π 〈i j〉 =
∑

a

∫

p
p〈iv j〉a δ f a . (76c)
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To obtain Eqs. (76b) and (76c) we used Eq. (67) and the
definitions (24) and (25) in the LRF [i.e., in the limit Uμ →
(1, 0, 0, 0)]. Here and below

A〈i j〉 = 1

2

(
Ai j + A ji − 2

3
δi j Akk

)
(77)

is the short-hand notation for the traceless symmetric part of
a 3-dimensional tensor Ai j .4 All variables in Eq. (76), i.e.
va , εa , and ha , now correspond to the global equilibrium.

The magnetic part of the Lorentz force also vanishes
exactly for the distribution function f l.e.

a (pμ(a)). We assume
that the magnetic field is large, therefore it should be kept in
the driving term at the first order. This term thus also contains
δ fa [52].

The linearized transport equation (62) is then given by

∂δ f (0)a

∂t
+ va∇δ f (0)a −

(
∂δε

(0)
a

∂ r
− qaE

)
∇ p f

eq
a

= −qa [va × B] ∇ pδ f
(1)
a + Ia

[{
δ f
(1)
r

}]
, (78)

where va , quasiparticle energies and collision probabilities in
Ia are calculated for the global equilibrium state. Derivatives
in the left-hand side are due to gradients of the macroscopic
fields T (x), μa(x), and V (x).

In order to identify the terms containing velocity gradi-
ents, it is necessary to consider the equations in the fixed
inertial laboratory frame that moves with the instant veloc-
ity −V , V � 1, relatively to the LRF. Let us indicate state
variables in LRF with a bar for a moment, i.e. p, εa , and
f a . General principles of Lorentz invariance require that the
transformation laws for quasiparticle energy and momentum
are the same as for the free particles [57], therefore

ε2
a − p2 = ε2

a − p2 ≡ M2
Da( p, r), (79)

where the (Dirac) mass MDa here in principle depends on p.
Notice, that if there is no dependence of MDa on p, then the
standard relation va = p/εa holds.

When V � 1, transformation laws for the quasiparticle
energy and momenta are [57]

εa = εa − pV , (80a)

p = p − εaV . (80b)

and the distribution function in the moving frame is related
to the LRF distribution function f a( p) as

fa( p) = f a( p). (81)

4 The tensorΠ 〈i j〉 coincides with the spatial components of the tensor
Π 〈μν〉 in Eq. (34b) at Uμ → (1, 0, 0, 0).

The variation of the distribution function at fixed p can be
written according to the chain differentiation rule

δ fa = δ f a( p)+ δ p∇ p f a = δ f a( p)− εa
∂εa

∂ p
δV
∂ f a
∂εa

,

(82)

where the variation in the first term is taken at fixed p. Sim-
ilarly, the quasiparticle energy variation is

δεa = δεa − εa ∂εa
∂ p
δV + pδV . (83)

After substitution of Eqs. (82) and (83) to Eq. (78) one can
set V = 0, p = p, and εa = εa .

The proper (i.e. independent of δV ) zero-order variation
of the distribution function in the LRF can be written as

δ f (0)a = f ′
F (xa)

(
δε
(0)
a − δμa

T
+ (εa − μa)δ

1

T

)
, (84)

where the dimensionless quantity

xa = εa − μa

T
(85)

is introduced.
Collecting all terms, one obtains for the left-hand side of

Eq. (78)

l.h.s. = − f ′
F (xa)

{
εa − ha

T
va

(∇T

T
+ V̇

)

+ 1

T
va

(
d(a) + ha

hn
[J × B]

)

pivaj
T

Vi j + 1

3
( pva)divV − ∂

∂t

(
εl.e.
a − μa

T

)}
,

(86)

where (19c) in the limit V � 1 is used in the second line to
eliminate the acceleration V̇ . In Eq. (86), d(a) is the spatial
part of the four-vector dμ(a), Eq. (28b). Namely in the LRF,

dμ(a) = (0,−d(a)), where

d(a) = T∇μa

T
− T

ha
h

∑

b

yb∇μb

T
− qaE. (87)

The tensor Vi j in Eq. (86) is

Vi j = ∂〈i V j〉 = 1

2

(
∂Vi
∂x j

+ ∂Vi
∂x j

− 2

3
δi jdivV

)
(88)

and is the spatial part of Eq. (33b) in the limit V � 1.
Different lines in Eq. (86) correspond to different transport

processes. Namely, the first line corresponds to the heat con-
duction while the second line to diffusion processes. These
two processes are driven by the vector thermodynamic forces,
and in principle they mix (Sect. 2). The third line of Eq. (86)
corresponds to the shear viscosity, whose driving force is the
second-order traceless tensor Vi j . The fourth line of Eq. (86)
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corresponds to the scalar bulk viscosity processes [56]. As
stated above, we do not consider bulk viscosity here, since
it is mainly governed not by the quasiparticles collisions but
by the reactions, and in this case in the kinetic approach a
non-stationary problem should be solved. As such, we further
assume that divV = 0.

It is convenient to further transform the right-hand side of
Eq. (78), defining [56]

δ fa( p)
(1) ≡ − 1

T
f ′
F (xa)Φa( p), (89)

where Φa( p) with a = 1, . . . , r are unknown functions to
be found. Notice that Eqs. (89) and (86) ensure formally
that the deviations from the local equilibrium distribution
functions are localized in the vicinity of the Fermi surface
due to appearance of the term f ′

F (x) in these equations.
With this substitution, the magnetic operator in Eq. (78)

becomes
qa
T

f ′
F (xa) [va × B] ∇ pΦa( p), (90)

while the collision integrals Eq. (71) take the linearized form

Iab lin[Φ] = − 1

T (1 + δab)
∫

p1′

∫

p2

∫

p2′
w

eq
ab( p, p2; p1′, p2′)

×Fab(Φ1 +Φ2 −Φ1′ −Φ2′) , (91)

where we introduced the Pauli blocking factor

Fab = f eq
1 f eq

2 (1 − f eq
1′ )(1 − f eq

2′ ), (92)

Φ1 = Φa( p), Φ1′ = Φa( p1′), Φ2 = Φb( p2), and Φ2′ =
Φb( p2′). We will further drop the superscript ‘eq’.

The problem thus reduces to finding the functions Φa( p)
from the system of the linearized transport equations

− 1

T
f ′
F (xa)

{
(εa − ha)va

(∇T

T
+ V̇

)

+ va

(
d(a) + ha

hn
[J × B]

)
+ pivaj Vi j

}

=
∑

b

Iab lin[Φ] + qa
T

f ′
F (xa) [va × B] ∇ pΦa( p). (93)

Consider now the entropy production rate given by
Eq. (69). Linearization of the first term under the integral
gives

log
1 − fa

fa
≈ εa − μa

T
− 1

T
Φa . (94)

The first term correspond to the entropy exchange between
the different species. When summed over species, this part
of Eq. (69) vanishes (for exact collision integral, as discussed
above) and one is left with

Tς = −
∑

a

∫

p
Φa( p)Ia [{Φb}] . (95)

It is evident from this form of entropy production rate, that
ς is indeed second order in gradients. The linearized col-
lision operator should be seminegative-definite in order to
ensure the second law. Multiplying the left-hand side of the
linearized Boltzmann Eq. (93) by Φa( p), integrating over
p and summing over species we obtain Eq. (27c) for the
entropy generation (formally written in the LRF). Notice that
the magnetic term in the right-hand side of Eq. (93) does not
contribute to entropy production.

Equations (93) do not determine the functionsΦa( p) com-
pletely, since the collision integrals are all zero for any set of
the functions Φker

a = aa + bμ pμ(a), where aa (a = 1 . . . , r )
and bμ are arbitrary constants. These constants, which fix the
solution of the homogeneous equation, should be determined
by the additional conditions known as the conditions of fit
[43]. Different conditions of fit can be traced to the different
choices of the hydrodynamic frames [33], which is important
for stability of the hydrodynamical equations, as discussed
in Sect. 2. According to the general discussion, in order to
find the frame-invariant collision transport coefficients at first
order, it is actually possible to impose any conditions of fit.
According to Eqs. (76), the uniform solutions given by a set of
the constants {aa} do not contribute to the dissipation fluxes
we consider (notice, that this would not be true for the bulk
viscosity). The same is true for the ‘energy’ kernel solutions
in the form b0ε0

(a). The conditions of fit that fix {aa} and b0 are
already contained in our definition of the local equilibrium
state; they also correspond to the conditions in Eqs. (14). The
remaining kernel solutions of the form b p do not modify the
heat current Eq. (76b) or the shear stress tensor Eq. (76c), but
affect the dissipative particle currents Eq. (76a). Clearly, the
conditions of fit for fixing the constant vector b are nothing
more that the conditions that fix the hydrodynamic frame. At
the same time, we are interested in diffusion fluxes i (a) that
do not depend on b. Therefore we suggest that the vector b
is fixed by imposing the Eckart condition of fit (i.e. b = 0),
when the diffusion transport coefficients can be calculated
directly from (76a) in accordance with the discussion around
Eq. (27). This considerations allow us to forget about the
kernel solutions and assume that the deviation functions Φa

are linear combinations of thermodynamic forces Xk

Φa( p) =
∑

k

Ĝa
k ( p) · Xk, (96)

where Ĝa
k ( p) are some, in general tensor, functions.

3.3 Tensor relations

The Curie principle states that the responses to the thermo-
dynamic forces of different tensor ranks do not mix [51]. The
microscopic basis of this statement is the scalar character of
the collision integral in the isotropic medium. In anisotropic
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medium (i.e. anisotropic crystal) this principle can be vio-
lated. In the neutron star context this is the case when the
magnetic field is very strong and the quasiparticle collisions
are affected by magnetic field effects. Another example is
the generic anisotropic structure, i.e. anisotropic pasta phase
at the bottom of the crust, or the anisotropic pairing texture
possible for the triplet neutron pairing. Both these effects are
almost unexplored in the regard to NSs. Below we assume
that magnetic field does not affect the quasiparticle scatter-
ing probabilities and the collision integral is isotropic. In
degenerate matter the latter is a good approximation when
ωBFa � qvFa , where q is the typical momentum transfer in
collisions and is valid for non-quantizing fields considered
in this paper.

In order to fully take into account the symmetry of the
problem, it is instructive to use the irreducible tensors tech-
nique e.g., [43,66]. To this end one performs expansion over
the irreducible representations of a little group corresponding
to timelike vector Uμ. In the LRF this means the expansion
over the irreducible representations of the group of 3D rota-
tions. Usually in the kinetic theory the Cartesian irreducible
tensor formalism is used. For our purposes, however, it is
instructive to use the formalism of the irreducible spherical
tensors (e.g., [70]) which allows for a simple account of the
axial symmetry of the problem in the presence of the mag-
netic field.

Irreducible tensor set (under rotations) is a set of quanti-
ties which transform under an irreducible representation of
the rotation group. Irreducible spherical tensors, in particular,
transform in the same way as the eigenfunctions of the angu-
lar momentum operator, i.e. the spherical harmonics. Each
vector T can be expressed as the rank-1 irreducible spherical
tensor Tμ,μ = −1, 0, 1, employing spherical basis [70]. The
transformation law between Cartesian and spherical basis is
described by the unitary matrixUμi , i.e. Tμ = Uμi Ti . Explic-
itly,

⎛

⎝
T−1

T0

T+1

⎞

⎠ =
⎛

⎜⎝

1√
2

− i√
2

0

0 0 1
− 1√

2
− i√

2
0

⎞

⎟⎠

⎛

⎝
Tx
Ty
Tz

⎞

⎠ . (97)

Similarly, any second-rank tensor can be transformed to
the spherical basis as

Tμμ′ = UμiUμ′ j Ti j . (98)

Then the tensor Tμμ′ can be cast over the irreducible compo-
nents TKq via the unitary Clebsch–Gordan transformation

Tμμ′ =
∑

Kq

i KCKq
1μ1μ′TLq , TKq =

∑

μμ′
(−i)KCKq

1μ1μ′Tμμ′ ,

(99)

where CKq
1μ1μ′ is the Clebsch–Gordan coefficient [70]. The

phase factor i K is introduced here to ensure that the resulting

tensors behave similarly to spherical functions under com-
plex conjugation, i.e.

(
TKq
)∗ = (−1)qTK−q . Then

TKq =
∑

μμ′
(−i)KCKq

1μ1μ′UμiUμ′ j Ti j , (100a)

Ti j =
∑

Kq

i KCKq
1μ1μ′U

†
μiU

†
μ′ j TKq . (100b)

Explicitly, for the traceless symmetric tensor of the second
rank Ti j

T20 = −
√

3

2
Tzz, (101a)

T2±1 = ±Txz + iTyz, (101b)

T2±2 = 1

2

(
Tyy − Txx

)∓ iTxy . (101c)

We now rewrite the linearized transport Eq. (93) in the
irreducible spherical tensor formalism. The left-hand side of
Eq. (93) can be written in the following general form (cf.
e.g., [71])

− 1

T
f ′
F (x)

∑

k

√
4π

2�k + 1
Da
k (p)

(
Y�k ( p̂) · (Xk)�k

)
, (102)

where �k is the tensor dimension of the thermodynamic force
Xk , dot denotes the scalar product

(
Y�k ( p̂) · (Xk)�k

) =
�k∑

m=−�k
Y ∗
�km( p̂)(Xk)�km, (103)

Y�km( p̂) are the spherical harmonics, p̂ denotes the direction
of p, asterisk means complex conjugate, and (Xk)�km is the
m’th component of the thermodynamic force Xk taken in
the irreducible spherical tensor form. The functions Da

k (p)
in Eq. (102) contain the remaining scalar terms in Eq. (93)
which depend on p but not on the direction p̂. They are given
in Table 1.

In order to transform the right-hand side of Eq. (93) in a
similar way, the deviation function Φa( p) can be expanded
in the spherical harmonics as

Φa( p) =
∑

�m

(Φa)�m (p)Y
∗
�m( p̂). (104)

Table 1 Explicit forms of various quantities defined in the text for
three thermodynamic problems, i.e. thermal conductivity (k = κ), shear
viscosity (k = η), and diffusion (k = Da)

Force (k) � Da
k D̃k X̃k ξk

κ 1 va(εa − ha) T x −1

η 2
√

2/3 (pva)
√

2/3 pFa 1 +1

Da 1 va 1 1 +1
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The collision integral in most general form in this basis is the
matrix in �m indices

Ia[{Φb}] =
∑

�m�′m′
Ia[{(Φb)�′m′ }]�m�′m′Y ∗

�m( p̂). (105)

However, when the collision probability is isotropic, the lin-
earized collision integral is diagonal in �m and, moreover,
does not depend on m

I �a [{(Φb)�′m′ }]�m�′m′ = I �a [{(Φb)�m}]δ��′δmm′ . (106)

The magnetization term Eq. (90) can be written in the irre-
ducible form by introducing the p-space angular momentum
operator

�̂ p = −i
[
p × ∇ p

]
. (107)

Then Eq. (90) becomes

qa [va × B] ∇ pδ f
(1)
a = i

qava
pT

f ′
F (xa)(B · �̂ p)Φa( p).

(108)

This operator is diagonal in the spherical basis Eq. (104) if
the direction of the magnetic field is taken as the Z axis. The
equations can be solved in this frame and then rotated into
the general frame, as shown below.

Thus for the isotropic collision operator, the equations for
different tensor components of Φa decouple and for each
component (Φa)�m we obtain

− 1

T
f ′
F (x)

∑

k|�k=�

√
4π

2�+ 1
Da
k (p)(Xk)�m

= I �a [{(Φb)�m}] + i
1

T
f ′
F (x)mωBa(p)(Φa)�m, (109)

where the summation is carried over those thermodynamic
forces, that have �k = �. The forces of the same rank, i.e.
�k = �k′ are present in the left-hand side of Eq. (109) and do
mix. Namely, this is the case for the thermal conductivity and
diffusion processes which have �κ = �Da = 1, see Eq. (39).
As such we ‘proved’ the Curie principle for the linearized
kinetic equation. Notice that the conservation of �k by the
magnetic operator (108) ensures absence of the cross-term
viscosity ζ̂1 introduced in Eqs. (37), (38). The term ωBa in
Eq. (109) is the (momentum-dependent) cyclotron frequency
of the particle species a

ωBa = qa Bva
p

. (110)

Therefore using the irreducible tensor formalism we have
splitted the initial system of transport equations into the set
of 2� + 1 independent Eq. (109) for each �. Owing to the
isotropic character of the collision integral and a simple form
of the magnetic term in Eq. (109), one observes that

(Φa(B))�m = (Φa(mB))�1, (111)

thus Eq. (109) needs to be solved only form = 1. The compo-
nents of Φa for other m’s are obtained by a simple magnetic
field rescaling B → mB [72,73].

The general solution of the irreducible linear Eq. (109) is
a linear combination [cf. Eq. (96)]5

(Φa)�m (p) =
∑

k

(
Ga
k (p)

)
�m (Xk)�m . (112)

Substituting Eq. (109) to Eq. (76) using Eqs. (89) and (104)
thermodynamic fluxes in spherical tensor notations reduce to

(Yk)�m = −
∑

a

∫

p

1

T
f ′
F (x)

√
4π

2�+ 1
Da
k (p)Y�m( p̂)Φa( p)

= −
∑

k′
Lkk′
�m (Xk′)�m, (113)

with the matrix of the kinetic coefficients Lkk′
�m which is diag-

onal in �m. Explicitly, the matrix Lkk′
�m is related to functions(

Ga
k (p)

)
�m in Eq. (112) as

Lkk′
�m =

∑

a

gsa
2π2

∫
p2dp

f ′
F (x)

T

√
4π

2�+ 1
Da
k (p)

(Ga
k′(p)

)
�m ,

(114)

where gsa = 2 (for fermions) is the spin statistical weight.
It is instructive to rotate the Eq. (113) to a general coordi-

nate system in the LRF using the rotation matrices (Wigner
D-function [70])

(Yk)�m =
∑

k′m′m′′

(
D�mm′(b̂, 0)

)∗
Lkk′
�m′ (Xk′)�m′′ D�m′′m′(b̂, 0)

=
√

4π

2�+ 1

∑

k′

2�∑

K=0

Lkk′
K

[
(Xk′)� ⊗ YK (b̂)

]

�m
,

(115)

where b̂ ≡ B/B, square brackets denote irreducible spheri-
cal tensor product
[
(Xk′)� ⊗ YK (b̂)

]

�m
=
∑

m′′Q
C�m�m′′KQ (Xk′)�m′′ YKQ(b̂),

(116)

and Lkk′
K is a different set of 2�+1 kinetic coefficients linearly

related to 2�+ 1 coefficients Lkk′
�m as

Lkk′
K =

∑

m

(−1)�−mCK0
�m�−mL

kk′
�m . (117)

As Eq. (115) is written in a form of an expansion over the
spherical harmonics in the direction of magnetic field, it can
be convenient in practice. Notice, that the component index

5 Notice that
(Ga

k (p)
)
�m are coefficients in the linear combination

Eq. (112) written in the specific frame, where B is the polar axis, and
are not the spherical components of the tensor Ĝa

k in Eq. (96). They can
be related by the transformation similar as performed in Eq. (115).
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m can now be dropped in Eq. (115) since this is now the rela-
tion between the tensors for the general orientation of the
LRF coordinate system with respect to B. The relation (115)
can be transformed from the LRF to the general frame by
applying the appropriate Lorentz boosts to the tensor quan-
tities in this relation. In this way the generalized transport
coefficients (i.e. as specified in [74]) can be determined. At
the end of the day they are expressed via the (2�+ 1) coeffi-
cients Lkk′

�m or Lkk′
K for each kk′ pair. According to discussion

around Eq. (111), it is enough to calculate the function

L̃kk′(B) ≡ Lkk′
�k1(B), (118)

since Lkk′
�m (B) = Lkk′

�1 (mB).
The spherical tensor formalism above can be easily con-

nected to the Cartesian one. Let us start from the vector
(� = 1) thermodynamic forces. For example, for the thermal
conductivity problem (ignoring the thermal diffusion term)
one gets

Yqz = −T κ̃(B = 0)Xqz, (119a)

(∓Yqx − iYqy) = −T κ̃(±B)(∓Xqx − iXqy). (119b)

Comparing with the standard definitions [52], one identifies
κ‖ ≡ κ̃(B = 0) as the parallel component of heat conduc-
tivity, κ⊥ ≡ Re κ̃(B) as the transverse heat conductivity, and
κ∧ ≡ −Im κ̃(B) as the Hall thermal conductivity compo-
nent. Similar expressions hold for other transport coefficients
related to the vector thermodynamic forces. The conduction
parallel to magnetic field does not depend on B, while the
conduction across the magnetic field depends on it.

The relations between the Cartesian components of the
stress-energy tensor and the tensor Vi j (� = 2) are

Πzz = 2η̃(B = 0)Vzz, (120a)

(Πzx ± iΠzy) = 2η̃(±B)(Vzx ± iVzy), (120b)

(Πxx −Πyy ± 2iΠxy) = 2η̃(±2B)

×(Vxx − Vyy ± 2iVxy). (120c)

Let us compare this equations with traditional formulation
containing five shear viscosity coefficients η0 . . . η4 [52]

Πzz = 2η0Vzz, (121a)

Πxx = −η0Vzz + η1(Vxx − Vyy)+ 2η3Vxy, (121b)

Πyy = −η0Vzz − η1(Vxx − Vyy)− 2η3Vxy, (121c)

Πxy = 2η1Vxy − η3(Vxx − Vyy), (121d)

Πxz = 2η2Vxz + 2η4Vyz, (121e)

Πyz = 2η2Vyz − 2η4Vxz . (121f)

Then one identifies η0 = η̃(B = 0), η1 = Re η̃(2B), η3 =
−Im η̃(2B), η2 = Re η̃(B), η4 = −Im η̃(B).

3.4 Relaxation time approximation

The above considerations are general, but they can be ana-
lyzed in the most transparent form if the relaxation time
approximation for the collision integral is used, which reads

I �a [Φa] = 1

T
f ′
F (xa)

(Φa)�m

τ
(�)
a (εa)

. (122)

The covariant form of the relaxation time approximation is
the Anderson-Witting model [75] where in the general frame
Eq. (122) is multiplied by a factor (pμUμ)/p0 (equal to 1
in the LRF). This form violates the current conservation as
well as the energy and momentum conservation, respected
by the collision integrals Eq. (71). In this sense it is not cor-
rect to employ the relaxation time approximation for descrip-
tion of transport of a closed (self-contained) plasma. In the
non-relativistic case, the generalization of the relaxation time
approximation was given by [76] and the current-conserving
relaxation time approximations for relativistic plasmas were
recently formulated by [77,78]. Here these peculiarities do
not matter since we investigate the general tensor structure
of the transport coefficients. One may view the relaxation
time in Eq. (122) as a manifestation of the external scatter-
ing mechanisms which do not respect the conservation laws
(an example is the scattering of electron off the ionic lattice
in the NS crust). Within the same reasoning, we consider the
single component case for simplicity, but retain the electric
charge of this component. Then the electric conductivity and
thermal diffusion effects are present, governed by the exter-
nal scattering mechanism.

In the relaxation time approximation, the solution of the
linearized Eq. (109) is given in the form Eq. (112) where
simply

(
Ga
k (p)

)
�m = −

√
4π

2�+ 1
Da
k (p)

τ
(�)
a

1 + imωBaτ
(�)
a

, (123)

and according to Eq. (114)

Lkk′
�m = − gs

2π2(2�+ 1)

∫
p2dp

f ′
F (x)

T
Da
k (p)D

a
k′(p)

× τ
(�)
a

1 + imωBaτ
(�)
a

. (124)

Three transport coefficients in the vector sector (with
k, k′ = q, Da) are
⎧
⎨

⎩

L̃qq(B)
L̃qa(B)
L̃aa(B)

⎫
⎬

⎭ = − 1

3π2

∫
p2v2

adp
f ′
F (x)

T

⎧
⎨

⎩

(εa − ha)2

(εa − ha)
1

⎫
⎬

⎭

× τ
(1)
a (εa)

1 + iωBaτ
(1)
a (εa)

. (125)

The coefficient L̃aa when multiplied by q2
a is the charge

conductivity, the coefficient L̃qa describes termodiffusion
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effects, and L̃qq is related to the heat conduction, although
the traditional thermal conductivity coefficient in this case is
given by

T κ̃ = L̃qq − L̃2
qa

L̃aa
, (126)

according to Eq. (41). In the degenerate matter, ha ≈ μa

and the factor f ′
F (x) ≈ −δ(x), and integration in Eq. (125)

results in

κ̃ = π2naT

3m∗
a

τ
(1)
a (μa)

1 + iωBFaτ
(1)
a (μa)

, (127a)

L̃aa = na
m∗

a

τ
(1)
a (μa)

1 + iωBFaτ
(1)
a (μa)

, (127b)

where ωBFa is the cyclotron frequency at the Fermi sur-
face defined in Eq. (1). Here we employed the fact that the
thermal diffusion coefficient vanishes at the first approxi-
mation (τ (1)a (εa) = const) (see the discussion below), thus
κ̃ ≈ T−1 L̃qq . Equation (127b) is the Drudde formula and the
Wiedemann-Franz rule κ̃ = π2T L̃aa/3 holds in the degen-
erate case in the relaxation time approximation [79].

In the limit of large magnetization,ωBFaτ
(1)(μ)� 1, one

finds

κ⊥ = Re κ̃ = π2naT

3m∗
a

1

ω2
BFaτ

(1)
a (μa)

∝ B−2 (128a)

κ∧ = −Im κ̃ = π2naT

3m∗
a

1

ωBFa
∝ B−1. (128b)

Notice that the limiting value of the Hall component of the
thermal conductivity in Eq. (128b) does not depend on the
collision mechanism and depends only on the quasiparticle
number density na and the magnetic field B.

Similarly, for the shear viscosity (� = 2), we obtain from
Eqs. (38), (124), (118), and Table 1, the following expression

η̃ = − 1

15π2

∫
p4v2

adp
f ′
F (x)

T

τ
(2)
a (εa)

1 + iωBaτ
(2)
a (εa)

, (129)

which for the strongly degenerate matter integrates to

η̃ = na p2
Fa

5m∗
a

τ
(2)
a (μa)

1 + iωBFaτ
(2)
a (μa)

. (130)

In the limit of strong magnetization, ωBFaτ
(2)
a (μa) � 1,

we obtain

η1 = η2

4
= na p2

Fa

5m∗
a

1

4ω2
BFaτ

(2)
a (μa)

. (131a)

η3 = η4

2
= na p2

Fa

5m∗
a

1

2ωBFa
. (131b)

Like for the thermal conductivity, the ‘Hall’ components of
the shear viscosity, η3 and η4, do not depend on τ (2) and
depend only on the quasiparticle number density.

Fig. 1 Thermal conductivity components (κ‖, κ⊥, κ∧) in units of κ‖
and shear viscosity components (η0, . . . , η4) in units of η0 in relaxation-
time approximation as function of the Hall parameter xHall, Eq. (132),
see text for details

Although the relaxation time approximation is probably
the simplest one, it catches the qualitative behavior of the
tensor components of the transport coefficients with magnetic
field. Let us introduce the Hall parameter

xHall = ωBFaτa(μa), (132)

where τa(μa) is either τ (1)a (μa) or τ (2)a (μa) depending on the
tensor rank of the corresponding thermodynamic force. The
particles are said to be magnetized when their xHall � 1.
In Fig. 1 we plot the dependence of various components
of thermal conductivity and shear viscosity tensors on xHall

following Eqs. (127) and (130). All quantities in Fig. 1 are
plotted relative to the longitudinal components (η0 or κ‖) of
the transport coefficients in question. Until xHall � 1, trans-
verse and longitudinal components of the transport coeffi-
cients are almost indistinguishable and the corresponding
Hall components are small but gradually increase with xHall.
At xHall = 1, they reach maximum with κ∧/κ‖ = η4/η0 =
1/2. At the same point κ⊥/κ‖ = η2/η0 = 1/2. For larger
xHall, both transverse and Hall components of transport coef-
ficient tensors decrease, albeit with different slopes. Namely,
at large Hall parameters, one gets κ⊥/κ‖ = η2/η0 = x−2

Hall
and κ∧/κ‖ = η4/η0 = x−1

Hall.
In general case, the relaxation time approximation does

not hold. In particular this is the situation in the NS cores,
where the relaxation time approximation is not applicable
(Sect. 3.6). In this case, one employs the general function
Φ�m in Eqs. (123)–(125), (129) instead of the solution (123).
Before turning to the calculation of transport coefficients in
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NS cores, let us briefly outline the variational method of the
solution of the linearized transport equation.

3.5 Variational principle

The linearized transport Eq. (93) is the linear integral equa-
tion for the set of functions Φa , a = 1, . . . , r , which in this
section we denote collectively asΦ, that can be symbolically
written as

X = (L̂ + M̂)Φ, (133)

where L̂ is the collision operator, which is symmetric and
semi-negative definite in the Hilbert space of the functions
Φ, M̂ is the magnetic operator which is anti-symmetric, and
X is the left-hand side. L̂ and M̂ here are understood as
matrices in particle species state.

The general transport Eq. (133) can rarely be solved ana-
lytically. One of the examples is the relaxation time approx-
imation described in the previous section. For the traditional
single-component Fermi-liquids, where the collision integral
has the specific properties detailed in the next section, it is
possible to construct the exact solutions of Eq. (133) [80–82].
This method was generalized to multicomponent problem by
[71,83] and to the non-Hermitian case in [84].

In other cases other mathematical methods are necessary,
for instance quadrature methods [85]. Here we briefly outline
the idea of the variational method of transport theory [43,79,
86]. Consider first the case B = 0, and, therefore, M̂ = 0,
and define the scalar product

〈Ψ |Φ〉 =
∫

p
Ψ ( p)∗Φ( p) (134)

(in the multicomponent system the summation over species
index is understood). Left multiplying Eq. (133) with 〈Φ|,
one obtains

〈Φ|X〉 = 〈Φ|L̂|Φ〉, (135)

where the right-hand side of this equation is clearly the
entropy production rate according to Eq. (95)

Tς = −〈Φ|L̂|Φ〉. (136)

It can be proved [79] that the solution of Eq. (133) maximizes
Eq. (136) subject to condition Eq. (135). This is one of the
equivalent formulations of the variational principle of the
transport theory [79]. One observes, that it is closely related
to the second law of thermodynamics (see also [86] for a
review). The variational principle can be reformulated to give
the boundaries on the diagonal transport coefficients in the
Onsager linear relations.

In practice, the variational principle is used via the expan-
sion of the set of test functions over some convenient finite

basis set {|Φn〉}n=1...N

Φ =
N∑

n=1

cnΦn, (137)

with coefficients cn being the variational parameters. Then
the variational equations take the form of the system of linear
equations [43,79]

〈Φn|X〉 =
N∑

m=1

〈Φn|L̂|Φm〉cm (138)

which define the variational coefficients cn . In a sense, this
method approximates the integral kernel L̂ with some degen-
erate kernel [85].

Unfortunately, in the magnetized case the straightforward
application of the variational principle is not possible. The
physical reason is that the magnetic field term drops out of
the entropy generation rate. One can formulate the similar
principle for the Eq. (109) for functions Φ�m (or using the
functionΦ(−B) in place of the complex conjugate function
in Eq. (134) [79]). In this case the variational functional is
only stationary (have a saddle point) but not the extremal one,
however the relevant equations for the variational basis will
also take the form

〈Φn|X〉 =
∑

m

〈Φn|L̂ + M̂ |Φm〉cm . (139)

This method for non-Hermitian operators is essentially the
Bubnov–Galerkin method, see e.g., [43,85]. We are not going
in the discussion of the convergence of this procedure and
assume that the sufficient conditions are fulfilled. In fact, we
will use below the simplest variational solution based on the
single variational function (N = 1) which proved itself to be
rather accurate under the NS conditions.

3.6 Transport coefficients for the general Fermi-liquid
collision integral

For the multicomponent Fermi liquid inside NS cores the
relaxation time approximations is not valid, therefore it is
necessary to consider the generic linearized collision inte-
gral Eq. (91). Remember, that we assume that collision inte-
gral is scalar, i.e. the transition probabilitywab depends only
on the relative orientations of the momenta of the colliding
particles. Following the formalism of Sect. 3.3, the spherical
components of the collision integral [see Eq. (106)] take the
form

I �a [{(Φb)�m}] =
∑

b

I �ab[{(Φb)�m}], (140)

where (see Appendix A for details)

I �ab = − 1

T (1 + δab)
∫

p1′

∫

p2

∫

p2′
wab( p1, p2, p1′ , p2′)
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×Fab
(
(Φa(p1))�m + (Φb(p2))�mP�( p̂1 p̂2)

− (Φa(p1′))�mP�( p̂1 p̂1′)

− (Φb(p2′))�mP�( p̂1 p̂2′)
)
, (141)

an P�(y) are Legendre polynomials of the order �. Here we
redefine p1 = p in comparison with Eq. (91), that makes
the description of the scattering process as 12 → 1′2′ more
symmetric (on the price of introducing the redundant index 1
in the left-hand side of the kinetic equation). Equation (141)
is written for the elastic binary collisions, where the particle
species in the input and output channels are the same. In case
of the reactions (or inelastic collisions), in general deviation
functions for four different species (for the reaction in a form
a + b ↔ c + d) enter Eq. (141). This equation is still linear
and the whole formalism below can be adapted to this case
(assuming that the matter is in equilibrium with respect to
such a reaction, i.e. μa +μb = μc +μd ) with small modifi-
cations, although the kinematics of collisions become more
involved.

The transition probability can be written as

wab = (2π)4δ(4)(P ′ − P)|Tab(12 → 1′2′)|2, (142)

where δ(4)(P ′ − P) represent the four-momenta conserva-
tion with Pμ = pμ1 + pμ2 and P ′μ = pμ1′ + pμ2′ being
the total quasiparticle pair four-momenta before and after
the collision, respectively, and Tab(12 → 1′2′) is the tran-
sition matrix element. Since we are considering the spin-
unpolarised case, it is convenient to define the spin-averaged
squared transition matrix element as

Qab = 1

4(1 + δab)
∑

spins

|Tab(12 → 1′2′)|2. (143)

Owing to a strong degeneracy of Fermi liquids, it is pos-
sible to decompose angular and energy integration, putting
quasiparticles on the Fermi surfaces whenever possible.
Moreover, only in the vicinity the Fermi surface the well-
defined quasiparticles exist. Then one can express (dropping
species index for brevity) d p = m∗ pdεdΩ p. Moving from
the energy integration to the integration over the dimension-
less energy variable x , Eq. (85), one can extend the lower
integration limit for x from −μ/T to −∞. This allows to
introduce an additional symmetry variable, namely the par-
ity with respect to the x ↔ −x inversion, which we denote
as ξ = ±1. The collision integral conserves parity, there-
fore the perturbations that are odd and even in x decouple.
As stated already, at the same level of approximation one
can take ha ≈ μa and neglect temperature corrections to
the chemical potentials. Then the heat conductivity driving
term becomes odd in x , while the shear viscosity and dif-
fusion parts are even in x . This means, in particular, that in
the first approximation the thermal diffusion transport coef-
ficients vanish and therefore thermal conductivity and diffu-

Fig. 2 Collision geometry for the process 12 → 1′2′ assuming p1 =
p1′ and p2 = p2′ . Various quasiparticle momenta and their combina-
tions, as well as the relevant angles are identified, as discussed in the
text

sion problems decouple. Based on this, we can consider the
shear viscosity, thermal conductivity, and diffusion problems
separately [56,71].

The relative orientation of four fixed-length vectors in
space is fixed by two angular variables, see Fig. 2. There-
fore of six angular integrations in Eq. (141) only two
remain (formally, three integrations are eliminated by the
momentum-conserving delta-function and one integration
over the third Euler angle of the body-frame coordinate
system, say azimuthal angle of p2 around p1, is trivial).
Different choices of these angular variables can be conve-
nient depending on the properties of the collision matrix
element. Figure 2 shows the geometry and various conve-
nient angles and vectors. The momenta of the quasiparti-
cles of the species a and b before the collision are p1 and
p2, respectively, while their momenta after the collision are
p1′ and p2′ , respectively. Total colliding pair momentum
P = p1+ p2 = p1′ + p2′ is conserved during collisions. The
momentum transferred in collision from b quasiparticle to a
quasiparticle is q = p1′ − p1 = p2 − p2′ and the transferred
energy is ω = ε1′ − ε1 = ε2 − ε2′ . In degenerate matter, the
transferred energy is of the order of temperature [due to the
Pauli blocking factorFab in Eq. (141)] and therefore is small.
In addition, one defines the momentum q ′ = p2′ − p1 which
describes the momentum transfer in exchange channel.

In what follows it is convenient to define the angular aver-
age of some function A({ pi }) as6

6 Actually, this expression is not exactly an average, since for A = 1 it
givesπ(qmax−qmin), see (145) below. This definition, however, reduces
the number of unnecessary factors in expressions.
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〈
A({ pi })

〉 = p1 p2 p1′ p2′

16π2

∫
d p̂1d p̂1′d p̂2d p̂2′ A({ pi })

×δ( p1′ + p2′ − p1 − p2). (144)

If the function A({ pi }) depends only on the relative orien-
tations of the quasiparticle momenta, as in Eq. (141), the
integration over p̂1 gives just 4π , and can be excluded from
Eq. (144).

Scattering matrices are frequently obtained from the
microscopic theory as functions of the transferred momen-
tum q. Therefore, one of the convenient angular variables
is q = |q| and for the second one one can use the angle φ
between the planes ( p1 p1′ ) and ( p2 p2′ ), see Fig. 2. In this
case the angular averages reduce to the integration over q
and φ:

〈
A({ pi })

〉 =
∫ qmax

qmin

dq
∫ π

0
dφ A({ pi }), (145)

whereqmax = min(p1+p1′ , p2+p2′) andqmin = max(|p1−
p1′ |, |p2 − p2′ |). In NS cores one has |ω|vFa,b � q and
qmin ≈ max(|ω|/vFa, |ω|/vFb) [1]. One can set p1 ≈
p1′ ≈ pFa , p2 ≈ p2′ ≈ pFb, qmin = 0 and qmax =
min(2pFa, 2pFb).

Alternatively, we notice that the cross-sections for the
in-medium problems are frequently calculated from micro-
scopic theory as a function of the total momentum P . In this
case it is convenient to use P and the Abrikosov–Khalatnikov
angle φAK [87] (see Fig. 2) instead of q and φ. The angle φAK

is the angle between the ( p1 p2) and ( p1′ p2′) planes. In this
case, the angular average becomes

〈
A({ pi })

〉 =
∫ Pmax

Pmin

dP
∫ π

0
dφAK A({ pi }), (146)

where Pmin = |pFa − pFb| and Pmax = pFa + pFb. One can
relate P to the second Abrikosov-Khalatnikov angle, namely
the angle θAK between p2 and p1 via

P2 = p2
1 + p2

2 + 2p1 p2 cos θAK, (147)

which is convenient whenwab is known as a function of θAK

and φAK. In this case one obtains the standard definitions of
angular averages of the Fermi-liquid theory [56,71].

Finally, it can be convenient to use P and q as the inte-
gration variables. This is achieved by utilizing the relation

q = qm sin
φAK

2
, (148)

where qm(P) is the maximal value of q for a given P and
is equal to twice the height in the (p1, p2, P) triangle (see
Fig. 2)

qm = 2p1 p2 sinΘAK

P
=
√

4p2
Fa p

2
Fb − (p2

Fa + p2
Fb − P2)2

P
.

(149)

Then

〈
A({ pi })

〉 = 2
∫ Pmax

Pmin

dP
∫ qm

0

dq√
q2
m − q2

A({ pi }). (150)

The concise description of the different choices of the angular
variables can be found in [84].

The remaining integration is performed over energy vari-
ables, or over xi , i = (1, 2, 1′, 2′), in the dimensionless
form. One integration is eliminated by the energy conser-
vation and generally only the two integrations remain. One
of them can be carried out further if the transition proba-
bility can be placed on shell, i.e., if it does not depend on
the transferred energy ω = ε1′ − ε1. This is the standard
approximation for the traditional Fermi-liquids [56]. How-
ever, in principle, transition probability can depend on the
transferred energy. This is the typical situation encountered
in the classical, non-degenerate plasmas. But, it turns out
that the electromagnetic interaction in the relativistic plasma
(and also the QCD interactions for the quark matter) also
possesses this property [88].

To proceed further, it is convenient to express

Da
k (p1) ≈ vFa D̃k(pFa)X̃k(x1), (151)

where X̃k(x1) is the x-dependent part of the driving term
(namely, x1 for the thermal conductivity and 1 for other pro-
cesses considered), and D̃k(pFa) is the remainder, which
depends on the on-shell momentum pFa . This decomposi-
tion is possible since we work in the vicinity of the Fermi
surface which is guaranteed by the presence of the factor
f ′
F (x) in all integral expressions for physical quantities. The

functions entering Eq. (152) are also given in Table 1.
Consider now the thermal conductivity or shear viscos-

ity problems. As said above, these transport problems can
be considered separately owing to the symmetry restrictions.
The diffusion problem will be treated later. The irreducible
sherical componsnts of the deviation functionΦk

a can be rep-
resented (k = κ, η) as

(
Φk

a (p1)
)

�m
= −

√
4π

2�+ 1
D̃k(pFa) (Xk)�m

×λ(k,eff)
a

(
Ψ k
a (x1)

)

�m
, (152)

where
(
Ψ k
a (x1)

)
�m are the dimensionless functions of the

energy variable. Notice that there is no summation over k in
comparison to Eq. (123) due to decoupling of the transport
phenomena considered.

The quantities λ(k,eff)
a in Eq. (152) are the auxiliary effec-

tive mean free paths. Traditionally, in the Fermi-liquid trans-
port theory one utilizes the concept of the effective relaxation
times (e.g., [56], see also Sect. 3.3), which are related to the
effective mean free paths as λeff = vFτeff . Since the NS
cores contain the relativistic leptons with Fermi velocities of
the order of the speed of light and the heavy non-relativistic
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baryons (e.g., protons), the relaxation times for these quasi-
particles are quite different, while the effective mean free
paths are closer [89], and usage of λeff instead of τeff seems
to be more convenient, although this is of course a matter of
taste. In the standard approach, one takes the single quasipar-
ticle excitation mean free path (relaxation time) for λ(k,eff)

a

[56,71]. However this approach is problematic in the rela-
tivistic plasma in NS cores, since this quantity diverges at the
Fermi surface due to the properties of the long-range elec-
tromagnetic interaction (e.g., [90]). This potentially could
present a problem for the whole theory, however the trans-
port is governed by the quasiparticles slightly distorted from
the Fermi surface and the resulting transport mean free path
stays finite. In principle, the auxiliary effective mean free
paths λ(k,eff)

a are then selected based on the aesthetic argu-
ments (e.g. in such a way that the system of transport equa-
tions is made maximally compact).

Once the functions Ψ k
a (x) defined in Eq. (152) are found

from the solution of the linearized transport equation, the
complex thermal conductivity and shear viscosity coeffi-
cients can be found. The corresponding expressions are given
by Eqs. (A.5) and (A.6) in Appendix A. The complete sys-
tems of linearized transport equation for thermal conductivity
and shear viscosity problems for the case when the scattering
probability can depend on the transferred energy ω are rather
lengthy and are given in Appendix A. Notice, that whenwab

does not depend on ω, the situation simplifies significantly
and the exact solution of the system of the multicomponent
transport equations can be constructed [71]. In general situ-
ation, the exact analytical solution is not known.

Here we employ the simplest variational solution based on
the one-parametric family of the test functions as described in
Sect. 3.5. In this respect, we consider the equation for m = 1
(Sect. 3.3) and replace

λ(k,eff)
a (Ψ k

a (x1))�1 → λ̃ka X̃k(x1) (153)

in Eq. (152), where λ̃ka is now a (complex) variational param-
eter. The tilde above λ̃ka has the same meaning as in Eq. (118).
Substitution Eq. (153) is a simplest one which respects the
parity of the function Ψ̃ (x1) and clearly resembles the solu-
tion (123) obtained in the relaxation time approximation.

Using Eqs. (137) and (139) with N = 1 and evaluating the
scalar products one obtains the following system of equations
for k = κ, η

1 =
∑

b

(
Λk

abλ̃
k
a +Λ′k

abλ̃
k
b

)
+ i
ωBFa

vFa
λ̃ka (154)

at the lowest order variational solution. The matrices Λk
ab

andΛ′k
ab contain all information about the quasiparticle col-

lisions and are related to the transport cross-section in the
system. They differ for the different transport problems con-
sidered, see below, but the general structure is the same. We

will call further Λk
ab as transport matrix. Equation (154) is

written in the form that isolates different pair collision mech-
anisms. It is instructive to rewrite it in an explicit form of the
r × r linear system for λ̃ka

1 =
(
Λk

a + i
ωBFa

vFa

)
λ̃ka +

∑

b 
=a

Λ′k
abλ̃

k
b, a = 1 . . . r, (155)

where the diagonal elements of the (transport) matrix of the
system are

Λk
a =

∑

b

Λk
ab +Λ′k

aa . (156)

Once the parameters λ̃ka are found from the system of equa-
tions (155), the partial thermal conductivity and shear viscos-
ity are given by the standard expressions [cf. Eqs. (127a) and
(130)]

κ̃a = π2naT

3pFa
λ̃κa , (157)

η̃a = na pFa

5
λ̃ηa . (158)

According to Eq. (114), the total κ and η are given by a sum
of the partial contributions over particle species.

The transport matrices Λk
ab in Eq. (154) are given by the

angular averages of the transition matrix element with cer-
tain angular factors depending on the transport coefficient
considered. Specifically, for the thermal conductivity, k = κ
(� = 1, ξ = 1)

Λκab = 3T 2m∗2
a m∗2

b

4π4 p2
Fa

∫

w

〈(
w2

π2 +
[

1

3
− w2

6π2

]
q2

p2
Fa

)
Qab

〉
,

(159a)

Λ′κ
ab = −3T 2m∗2

a m∗2
b

4π4 p2
Fa

∫

w

w2

π2

〈(
p1( p2 + p2′)

2pFa pFb

)
Qab

〉
,

(159b)

wherew = ω/T is the dimensionless transferred energy and
the abbreviation
∫

w

=
∫ ∞

0
dw

(w/2)2

sinh2(w/2)
(160)

is introduced.
For the shear viscosity, k = η (� = 2, ξ = +1) the

transport matrix elements are

Λ
η
ab = 3T 2m∗2

a m∗2
b

4π4 p2
Fa

∫

w

〈
q2

p2
Fa

(
1 − q2

4p2
Fa

)
Qab

〉
,

(161a)

Λ′η
ab = −3T 2m∗2

a m∗2
b

4π4 p2
Fa

∫

w

〈
q2

p2
Fa

(
p1( p2 + p2′)

2pFa pFb

)
Qab

〉
.

(161b)
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In principle, the determination of the diffusion coefficients
should proceed in similar way. The certain care is needed
since there are r − 1 independent forces in the left-hand side
of the Boltzman equation and one needs to employ the addi-
tional condition of fit (as discussed in Sect. 2), the conditions
specifying the Eckart frame can be used). There are different
strategies for treating this problem, e.g., [91] (see also the
appendix in Ref. [74]). However, in the lowest-order varia-
tional approximation it is instructive to employ the Stephan–
Maxwell scheme Eq. (44) and express d(a) through the dif-
fusion fluxes. This is easily achieved by writing

Φa( p1) = p1w(a) (162)

with constant vectors w(a) which have the meaning of the
diffusion velocity since in this case

Δ j (a) = naw(a). (163)

Integration of the linearized transport equation multiplied
with p1 results in

na

(
d(a) + ha

hn
[J × B]

)
=
∫

p1

p1 Ia[{Φb}]

+qa
[
Δ j (a) × B

] =
∑

b

Jab(wb − wa)

+naqa[wa × B], (164)

where

Jab = T 2m∗2
a m∗2

b

12π6

∫

w

〈q2Qab〉 (165)

are the momentum transfer rates (or friction coefficients). In
this simplest case the friction coefficients Jab do not depend
on the magnetic field. Going beyond Eq. (162) in princi-
ple results in tensor structure of the coefficients Jab, charac-
teristic for the vector transport coefficients (Sect. 3.3). The
equation of motions (164) serve as a part of the input for
the studies of the magnetic field evolution in NS cores, e.g.
[92–97]. When the diffusion driving forces d(a) contain only
the electric field contribution (no chemical gradients), some-
times it is desirable to invert Eq. (164) and find the relation
J = σ̂ E, where σ̂ is the electrical conductivity tensor. Elec-
trical conductivity depends on the momentum transfer rates
Jab in a non-trivial way, see, e.g., [8]. A problem of inversion
of Eq. (164) is discussed in Appendix C where also a prac-
tical expression for the electrical conductivity for a specific
case of npeμ matter is given.

In traditional Fermi liquids, the squared transition matrix
element Qab does not depend on ω = wT . Then integrals
over w in Eqs. (159), (161), and (165) can be taken ana-
lytically and one obtains instead of Eqs. (159a)–(165) the
following expressions:

Λκab = T 2m∗2
a m∗2

b

5π2 p2
Fa

〈(
1 + q2

4p2
Fa

)
Qab

〉
, (166a)

Λ′κ
ab = −T 2m∗2

a m∗2
b

5π2 p2
Fa

〈(
p1( p2 + p2′)

2pFa pFb

)
Qab

〉
. (166b)

Λ
η
ab = T 2m∗2

a m∗2
b

4π2 p2
Fa

〈
q2

p2
Fa

(
1 − q2

4p2
Fa

)
Qab

〉
, (167a)

Λ′η
ab = −T 2m∗2

a m∗2
b

4π2 p2
Fa

〈
q2

p2
Fa

(
p1( p2 + p2′)

2pFa pFb

)
Qab

〉
,(167b)

Jab = T 2m∗2
a m∗2

b

36π4 〈q2Qab〉. (168)

In general, as stated above, in this case it is possible to obtain
exact solutions of the system of transport equations analyti-
cally [71,84], but the properties of electromagnetic interac-
tions in NS cores spoil this picture.

Therefore, in order to find the transport coefficients of the
magnetized multicomponent liquid inside the NS cores one
needs to be supplied by the quasiparticle spectra (effective
masses) and the squared matrix element Qab(ω, q, φ). The
discussion of the latter one is the subject of the next section.

4 Microphysics of quasiparticle collisions in NS cores

We assume here that the NS cores contain light leptonic com-
ponent (electrons and muons) and heavy baryon component.
For the transport properties of the quark NS core see, e.g.,
review in [1] and references therein. Leptons interact between
themselves and with charged baryons via the electromagnetic
forces, while baryons mainly interact by the strong forces.
The presence of the dense medium modifies the properties of
both these interaction channels. When collisions of charged
baryons are considered, in principle, the interference between
the electromagnetic and strong interaction channels needs to
be taken into account [98]. However, it was found that the
charged baryons usually give negligible contribution to the
transport coefficients [83,89,99,100]. Therefore, we neglect
the interference contribution and consider the electromag-
netic and strong channels separately for simplicity.

4.1 Electromagnetic interactions

The properties of the electromagnetic interaction are strongly
affected by the character of the plasma screening. In the rel-
ativistic plasma the magnetic part of the interaction becomes
dominant which in the leading order is screened dynami-
cally. This changes considerably the behavior of the transport
cross-sections in cold relativistic plasmas resulting in their
non-Fermi liquid temperature dependence. This was realized
in Refs. [88,101,102] and applied to the nucleonic NS core
matter by [103–106], see [1] for a review.
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The transition matrix at the one-loop level is given as

Tab → Mab = 4πα f

(
J 0
a J 0

b

q2 +Πl(ω, q)
− J a,tJ b,t

q2 +Πt (ω, q)

)
,

(169)

where α f is the fine-structure constant,J a,t is the transverse
with respect to q component of the spatial part of the transi-
tion current, J 0

a is the timelike component of the transition
current, andΠl(ω, q) andΠt (ω, q) are the longitudinal and
transverse polarization operators of the photon in medium,
respectively. When a = b, the exchange contribution needs
to be taken into account according to

Tab(12 → 1′2′)→ Mab(12 → 1′2′)− Mab(12 → 2′1′),
(170)

which leads to appearance of the exchange-interference terms
in the squared matrix element. However these interference
terms lead only to small corrections to the transport cross-
sections (due to dominance of the small-angle collisions) and
can be neglected [103,104].

Remember that the relevant energy transfer in the colli-
sions is of the order of temperature due to Pauli blocking.
Therefore it is enough to take the polarization operators in
the limits (ω, q � pFa) and ωvFa � q. In this case the lon-
gitudinal polarization operator is simply the squared Debye
mass

Πl(ω, q) = q2
l ≡ 4α f

π

∑

a

Z2
am

∗
a pFa, (171)

where Za is the quasiparticle charge number so that qa =
Zae. In NS cores, Za = ±1. Notice the appearance of the
quasiparticle effective mass in Eq. (171). In contrast, the
transverse screening is not static, and in the leading order
it is governed by the Landau damping. The transverse polar-
ization operator is

Πt (ω, q) = i
π

4

ω

q
q2
t ≡ i

ω

q
α f

∑

a

Z2
a p

2
Fa ≡ iΛ3/q, (172)

where the characteristic momentum scale Λ is introduced,
which obeys Λ � ql � pFa . At high temperatures (T �
ql ), the static limit breaks down and one needs to consider
more general structure of the polarization operator [102].
Notice that the detailed analysis of the impact of various
approximations to Πl and Πt is performed by [106,107],
where it is found that the so-called hard dense loop result
for the in-medium polarization functions is always a good
approximation in the NS core context.

In order to calculate Qab, it is necessary to take the spin
trace of the squared matrix element Eq. (169). The electro-
magnetic transition current in free space is given by

J μa = ua(p1′)

(
Fa1(−q2)γ μ+i

Fa2(−q2)

2ma
σμνqν

)
ua(p1),

(173)

where σμν = i/2[γ μ, γ ν], Fa1(−q2) and Fa2(−q2) are
electromagnetic form-factors, ma is the bare particle mass,
and the ua(p1) is the Dirac bispinor normalized as

uaua = ma

εa
. (174)

This normalization is used in order to keep the notations
for transition matrix elements close in relativistic and non-
relativistic cases.

Defining

Gμνa = 1

2

∑

spins

J μa J νa (175)

one obtains

Gμνa = F2
a1(−q2)+ F2

a2(−q2) q2/(4m2
a)

4ε2
a

Pμa Pνa

+ F2
a,m(−q2)

4ε2
a

(
Q2gμν − QμQν

)
, (176)

where Fa,m(−q2) = Fa1(−q2) + Fa2(−q2) is the Sachs
magnetic form-factor, Pμa = pμ1 + pμ1′ and Qμ = pμ1′ − pμ1 .
Notice that for leptons the form factors are F�1 = F�m =
1, F�2 = 0 (neglecting QED corrections), while for proton
Fp1(0) = 1, Fpm(0) = 2.79, and for the neutron Fn1(0) = 0,
Fnm(0) = −1.91.

The squared transition matrix element is then

Qab = 16π2α2
f

(
G00

a G00
b∣∣q2 +Πl(ω, q)

∣∣2

−2Re
Gk0

a Gk0
b

(q2 +Πl(ω, q))(q2 +Πt (ω, q))∗

+ Gkl
a G

kl
b∣∣q2 +Πt (ω, q)

∣∣2

)
, (177)

where we neglected exchange-interference term for identical
particles (a = b) and took into account that J a,t ≈ J a in
the limit ωvFa � 1 since Q = (0, q), Q2 = −q2, and the
spatial component of Pa is transverse to q.

Equation (176) is obtained for the free non-interacting
particles and can be modified by the Fermi-liquid effects. For
degenerate leptons which form almost ideal gas, it is enough
to use Eq. (176). Since we are interested in the transition
probabilities in the vicinity of the Fermi surface, we can set
εa = m∗

a .
The situation is different for baryons. However, the main

contribution to the scattering probabilities comes from the
small-angle collisions, where q � pFa . In non-relativistic
limit (applicable well for protons in NS cores) this also means
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that q � ma . For charged baryons (protons) this allows
one to neglect the magnetic term containing F2

a,m and do
not discuss its renormalization in a first approximation. At
the same level of approximation, one can neglect the kine-
matic structure of the form-factors and the anomalous mag-
netic moment interaction and set Fa1(−q2) ≈ Fa1(0) = 1,
Fa2(−q2) ≈ Fa2(0) = 0. Then the same expressions for lep-
ton and lepton-baryon scattering can be used. Finally, notice
that the transition current is the matrix element of the veloc-
ity operator. That means that in vicinity of the Fermi surface
one should substitute εa → m∗

a in denominator in Eq. (176)
as in the case of free particles. These considerations are not
valid for neutrons which are chargeless particles. However
their electromagnetic interaction with other charged particles
is small and can be neglected.

Therefore, using Eqs. (176), (177), one finds the following
expression for Qab

Qab = 16π2α2
f Z

2
a Z

2
b

(
Ll∣∣q2 +Πl(ω, q)

∣∣2

−2Re
vFavFbLtl

(q2 +Πl(ω, q))(q2 +Πt (ω, q))∗

+ v2
Fav

2
FbLt

∣∣q2 +Πt (ω, q)
∣∣2

)
, (178)

where the kinematic numerators are

Ll =
(

1 − q2

4m∗2
a

)(
1 − q2

4m∗2
b

)
, (179a)

Ltl =
√√√√
(

1 − q2

4p2
Fa

)(
1 − q2

4p2
Fb

)
cosφ, (179b)

Lt =
(

1 − q2

4p2
Fa

)(
1 − q2

4p2
Fb

)
cos2 φ

+ q2

4p2
Fa

+ q2

4p2
Fb

. (179c)

The Eqs. (178), (179) needs to be substituted into the expres-
sions for the various transport matrix components, Eqs. (159),
(161), and (165). We need to perform three integrations (over
q, φ, andw). The integration overφ is trivial since the angular
weighting factors in ‘direct’ transport matrices Eqs. (159a),
(161a), and (165) do not depend on φ, while the weight-
ing factor in the non-diagonal transport matrices Λ′k

ab in
Eqs. (159b) and (161b) in contrast are proportional to cosφ.
Therefore the longitudinal (Ll ) and transverse (Lt ) channels
contribute to transport matricesΛk

ab, Jab, so one can decom-

pose Λk
ab = Λ

k,l
ab + Λk,t

ab , while the non-diagonal matrices

Λ′k
ab contain only the mixed (Llt ) channel. After the φ inte-

gration, Eq. (178) contains only the polynomial in q2 terms
in the numerator. The integrals over q [see Eq. (145)] will

depend on the following rational integrals for three terms in
Eq. (178)

I (n)l =
∫ qm

0

qndq

|q2 +Πl |2 =
∫ qm

0

qndq

|q2 + q2
l |2 , (180)

I (n)t =
∫ qm

0

qndq

|q2 +Πt |2 =
∫ qm

0

qn+2dq

q6 +Λ6 , (181)

I (n)tl =
∫ qm

0
Re

qndq

(q2 +Πl)(q2 +Πt )∗

=
∫ qm

0

qn+4dq

(q2 + q2
l )(q

6 +Λ6)
, (182)

which all can be taken analytically. We do not give these
lengthy expressions here,7 but notice that since the charac-
teristic transverse screening momentumΛ is small, only the
leading terms in Λ are needed in practice. Then

I (0)t = π

6Λ3 + O(Λ−1), I (2)t = π

3Λ
+ O(Λ), (183)

I (0)tl = π2

3q2
l Λ

+ O(Λ0), (184)

but for the mixed integral and n ≥ 2, the transverse screening
can be neglected and

I (n)tl = I (n)l + q2
l I
(n−2)
l + O(Λ), n ≥ 2. (185)

The longitudinal part of the squared matrix element does
not depend onΛ at all. The only dependence onw in expres-
sions is contained in theΛ-dependent terms. When the lead-
ing contribution inΛ is identified, the integral overw can be
performed analytically. Collecting all results, we find for the
transport matrices for the thermal conductivity problem

Λκab = Λκ,tab +Λκ,lab , (186)

where the transverse contribution is

Λ
κ,t
ab = 24ζ(3)T

π3q2
t
α2
f Z

2
a Z

2
b p

2
Fb, (187)

where ζ(3) is the Riemann zeta-function, while for the lon-
gitudinal contribution one obtains rather lengthy, but simple
expression

Λ
κ,l
ab = 16πα2

f Z
2
a Z

2
bT

2m∗2
a m∗2

b

5p2
Fa

(
I (0)l

+ 1

4

(
1

p2
Fa

− 1

m∗2
a

− 1

m∗2
b

)
I (2)l

− 1

16

(
1

p2
Fam

∗2
a

− 1

m∗2
a m∗2

b

+ 1

p2
Fam

∗2
b

)
I (4)l

+ 1

64p2
Fam

∗2
a m∗2

b

I (6)l

)
. (188)

7 Explicit expressions for some of these integrals are given in Appendix
B.
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In practice it is enough to restrict the calculations to the first
line in Eq. (188). Keeping explicitly only the leading term in
ql , one gets

Λ
κ,l
ab = 4π2α2

f Z
2
a Z

2
bT

2m∗2
a m∗2

b

5p2
Faq

3
l

+ O(q−1
l ), (189)

however it is not recommended to use this limit, since the
correction induced by the exact expression for I (0)l can be
significant. Other integrals in Eq. (188) are written for com-
pleteness. The non-diagonal term for thermal conductivity,
Eq. (159b), contains only the mixed (tl) contribution. Keep-
ing the leading order in Λ results in

Λ′κ
ab =

(
4

π

)1/3

Γ (11/3)ζ(8/3)α2
f Z

2
a Z

2
b
m∗

am
∗
b pFbT 5/3

pFaq2
l q

2/3
t

,

(190)

where Γ (11/3) is the Euler gamma-function, and this result
is exact in ql .

Similarly, for the shear viscosity transport matrices,

Λ
η
ab = Λη,tab +Λη,lab , (191)

where the transverse contribution is

Λ
η,t
ab = 2

(
4

π

)1/3

Γ (8/3)ζ(5/3)α2
f Z

2
a Z

2
b
p2

FbT
5/3

p2
Faq

2/3
t

. (192)

Notice the different power of temperature in comparison
with Eq. (187). This is a result of an additional q2 factor
in Eq. (161a) which leads to different contribution of plasma
screening to the final result. The longitudinal contribution
with account for all kinematic corrections is given by

Λ
η,l
ab = 4πα2

f Z
2
a Z

2
bT

2m∗2
a m∗2

b

p4
Fa

(
I (2)l

−1

4

(
1

p2
Fa

+ 1

m∗2
a

+ 1

m∗2
b

)
I (4)l

+ 1

16

(
1

p2
Fam

∗2
a

+ 1

m∗2
a m∗2

b

+ 1

p2
Fam

∗2
b

)
I (6)l

− 1

64p2
Fam

∗2
a m∗2

b

I (8)l

)
. (193)

The leading contribution is given by the first line in Eq. (193).
Retaining the leading order in ql , Eq. (193) reads

Λ
η,l
ab = π2α2

f Z
2
a Z

2
bT

2m∗2
a m∗2

b

p4
Faql

+ O(ql). (194)

In contrast to the thermal conductivity case, for the shear
viscosity problem the non-diagonal matrix elementΛ′η

ab does
not depend on the transverse screening in the leading order

and has the same order in ql as the longitudinal part, namely

Λ′η
ab = 4πα2

f Z
2
a Z

2
bT

2m∗
am

∗
b pFb

p3
Fa

(
I (2)tl − 1

4

(
1

p2
Fa

+ 1

p2
Fb

)
I (4)tl

+ 1

16p2
Fa p

2
Fb

I (6)tl

)
, (195)

and, keeping the leading order in ql ,

Λ′η
ab = 2π2α2

f Z
2
a Z

2
bT

2m∗
am

∗
b pb

p3
Faql

+ O(ql). (196)

Finally, performing the same integration for the momen-
tum transfer rates in Eq. (165), one finds

Jab = J lab + J tab, (197)

i.e. there is no mixed longitudinal-transverse contributions
in this case. The transverse term J tab in Eq. (197) is

J tab = na pFa
3

Λ
η,t
ab (198)

and the longitudinal one is

J lab = 4

9π
α2
f Z

2
a Z

2
bT

2m∗2
a m∗2

b
(
I (2)l − 1

4

(
1

m∗2
a

+ 1

m∗2
b

)
I (4)l

+ 1

16m∗2
a m∗2

b

I (6)l

)
. (199)

These contributions behave similarly as the transport matrix
for the shear viscosity problem. Indeed, according to Eqs.
(161a) and (165), if the kinematical corrections in Eq. (161a)
can be neglected (extremely weak screening case), one finds
na pFaΛ

η
ab = 3Jab. Keeping, as above, the leading order in

ql , the longitudinal contribution to Jab reads

J lab = α2
f Z

2
a Z

2
bT

2m∗2
a m∗2

b

9ql
+ O(ql). (200)

In practice, the transverse contributions to Λκab, Ληab, and
Jab always dominate over the longitudinal contributions.
This leads to the non-Fermi-liquid behaviour of the trans-
port matrices and hence of the transport coefficients [1,102].
However, while for the thermal conductivity one can just
neglect the longitudinal contribution, for the shear viscosity
and momentum transfer rates this dominance is not dramatic
and both contributions should be kept at realistic values of
temperature. Moreover, it is not enough to retain only the
leading order in ql and the reasonable approximation is to
keep the integral I ln with lowest order n for each expression
above.
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In principle, there are also contributions to the transport
matrix due to lepton—neutron scatterings, namely Λk

en and
Λk
μn terms. They arise from the interaction of the lepton

with the anomalous neutron magnetic moment [Fa2 term
in Eq. (173)]. It is much less effective than lepton–proton
interaction. Thus we expect Λk

en and Λk
μn to give negligible

contributions to viscosity and thermal conductivity and do
not consider these transport matrix elements in this work.
The only quantities, for which the lepton—neutron interac-
tion is important, are the friction coefficients Jen and Jμn .
These coefficients can be found in section VII of the Ref.
[74] and references therein.

Practical expressions for calculating the electromagnetic
contribution to transport coefficients based on the results of
this section are given in Appendix B.

4.2 Strong interactions

Description of collisions in the strong sector is hampered by
the poorly known impact of many-body effects on the baryon
interactions at supranuclear densities. Different approaches
to the problem in the context of the NS cores transport
are reviewed in [1]. Remember, that the necessary transport
matrices Λk

ab depend on the in-medium effective masses of
quasiparticles and the scattering matrix elements Qab.

One approach is to forget about all in-medium modifi-
cations or include them only in the effective masses and
employ the free-space scattering matrix elements. The sim-
plest model of the strong interaction is the free one-pion
exchange model (FOPE). For completeness we briefly dis-
cuss it in Sect. 4.2.2, since in principle it can serve as a starting
model for the in-medium modifications.

It is well-known, however, that the free one-pion exchange
model in the first Born approximation overestimates the scat-
tering cross-sections so it does not serve as a good approx-
imation for calculation of Qab. Therefore the next level of
approximation is to extract Qab directly from the experi-
mental data on the scattering experiments or from the accu-
rate free-space calculations that reproduce the experimental
data. The latter approach was elaborated in a range of studies
[9,83,104,105,108], we consider it in Sect. 4.2.3.

Of course, this is a ‘poor man solution’ to the problem of
in-medium transport cross-sections. Both effective masses
and scattering probabilities need to be calculated from the
same microscopic model (and the same as the EOS). Unfor-
tunately, model dependence of results is quite substantial,
especially at large densities (e.g., [1,89]). Several approaches
were proposed for calculation of the in-medium scattering
rates in NS cores [1]. In pure neutron matter approximation
these include thermodynamic T -matrix approach [109] or
effective quasiparticle interaction [110]. Effective interaction
construction on a basis of the variational methods and subse-
quent application to NS matter was performed in [111–113].

The calculations within the Brueckner-Hartree-Fock (BHF)
theory [114] were also carried out [89,99,100,111,115,116].
Frequently a partial wave expansion of the scattering problem
is used and we show how this expansion enters the calcula-
tions in Sect. 4.2.4.

A different approach is known as the medium-modified
one-pion exchange (MOPE) model derived in the framework
of the Landau-Migdal Fermi-liquid theory for nuclear matter
[117]. In this model the modification (softening) of the pio-
nic mode by the in-medium effects is explicitly introduced in
the theory. At present, up to our knowledge, the calculations
of transport coefficients of dense nuclear matter within this
model exist for pure neutron matter only. For thermal con-
ductivity this was done by [118] and for shear viscosity by
[119]. The review of the MOPE model is outside the scope
of the present manuscript.

4.2.1 Kinematics of collisions

For the collisions mediated by the strong interactions, the
static case (ω = 0) can be employed and one needs to calcu-
late the angular averages given in Eqs. (166)–(168). It turns
out that it is convenient to use the (Pq) representation of
angular averages given in Eq. (150). The total momentum P
of the colliding pair with respect to surrounding medium can
be used to parameterize the in-medium effects. On the other
hand, the scattering is frequently described in the center of
mass (c.m.) frame by defining the relative p momenta of the
colliding pair [ p = 1

2 ( p1 − p2), see Fig. 2], and the center
of mass scattering angle θcm given by (see Fig. 2)

cos θcm = 1 − q2

2p2 . (201)

Notice that the total and relative momenta are related via

P2 + 4p2 = 2(p2
Fa + p2

Fb), (202)

in addition the following useful equality holds

p1( p2 + p2′) = P2 − p2
Fa − p2

Fb + q2

2
. (203)

Then the angular weighting factors in Eqs. (166)–(168) are
observed to be polynomial in P and q. This suggests that it
is convenient to introduce the averages8 [99]

Q(i j)ab ≡
〈
Qab P

iq j
〉
. (204)

The relevant transport matrices in Eqs. (166)–(168) in
terms of averages Q(i j)ab are given as [116]

Λκab = T 2m∗2
a m∗2

b

5π2 p2
Fa

(
Q(00)

ab + 1

4p2
Fa

Q(02)
ab

)
, (205a)

8 Notice that the angular averages in [99,116] differ by a factor of 2
from Eq. (204) since this factor in Eq. (150) was taken out in those
references, which is not convenient here.
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Λ′κ
ab = T 2m∗2

a m∗2
b

10π2 p3
Fa pFb

(
(p2

Fa + p2
Fb)Q(00)

ab − Q(20)
ab − 1

2
Q(02)

ab

)
,

(205b)

Λκaa +Λ′κ
aa = T 2m∗4

a

10π2 p4
Fa

(
4p2

FaQ(00)
aa − Q(20)

aa

)
, (205c)

Λ
η
ab = T 2m∗2

a m∗2
b

4π2 p4
Fa

(
Q(02)

ab − 1

4p2
Fa

Q(04)
ab

)
, (205d)

Λ′η
ab = T 2m∗2

a m∗2
b

8π2 p5
Fa pFb

(
(p2

Fa + p2
Fb)Q(02)

ab − Q(22)
ab − 1

2
Q(04)

ab

)
,

(205e)

Ληaa +Λ′η
aa = T 2m∗4

a

8π2 p6
Fa

(
4p2

FaQ(02)
aa − Q(04)

aa − Q(22)
aa

)
, (205f)

Jab = T 2m∗2
a m∗2

b

36π4 Q(02)
ab . (205g)

In Eqs. (205c) and (205f) we combined the direct and primed
transport matrix elements for like species since it is this form
in which they couple to λ̃ka in Eqs. (154)–(155).

4.2.2 Free one-pion exchange

The simplest model of the strong NN -interaction is the one-
pion exchange (OPE) model. It appeals to a simple phe-
nomenological low-energy Lagrangian of theπN interaction

LπN = gabϕπψ̄aγ
5ψb, (206)

where ψa and ψb are the wavefunctions of incoming and
outcoming nucleons a and b, andϕπ is the pion field (charged
or neutral, depending on what the nucleons a and b are). For
πpp and πnn-scatterings, gpp = −gnn ≈ 13.1 and for πnp-
scattering gnp = gpp

√
2 (see, e.g., sec. 4.1.1. in Ref. [98]). In

this section we restrict ourselves to the free OPE interaction
in the first Born approximation. In this case the transition
matrix element for NN -scattering is [cf. Eq. (169)]

Tab(12 → 1′2′) = Mab(12 → 1′2′)− Mab(12 → 2′1′).
(207)

The direct and exchange parts of the matrix element are9

Mab(12 → 1′2′) = gaagbbūa(p
′
1)γ

5ua(p1)

×Dπ (p
′
1 − p1) ūb(p

′
2)γ

5ub(p2),

(208a)

Mab(12 → 2′1′) = g2
abūb(p

′
2)γ

5ua(p1)

×Dπ (p
′
2 − p1) ūa(p

′
1)γ

5ub(p2),

(208b)

where Dπ is the pion propagator. Consequently,

Qab = A2(q2)+ B2(q ′2)+ A(q2)B(q ′2)
16(1 + δab)ε2

aε
2
b

, (209a)

9 We employ the bispinor normalization Eq. (174).

where

A = gaagbbq
2Dπ (−q2), (209b)

B = g2
ab

[
q ′2 + (ma − mb)

2

−(εa − εb)2
]
Dπ
(
(εa − εb)2 − q2

)
. (209c)

In the latter three formulas q and q′ are the 3-momentum
transfers defined in Sect. 3.6.

The formula for Qab could be simplified for non-
relativistic collisions of nucleons. In this case one can set
ma = mb = mN , where we adopt mN = 939 MeV as a typ-
ical nucleon mass, and εa ≈ εb. In-vacuum pion propagator
reads Dπ (−q2) = (−q2−m2

π )
−1, which is of course a crude

estimate. ThenQab reduces to a standard form of the squared
matrix element of one pion exchange nuclear potential

Qab = 1

16(1 + δab)ε2
aε

2
b

[
g2
aag

2
bbq

4

(q2 + m2
π )

2

+ g4
abq

′4

(q ′2 + m2
π )

2 + gaagbbg2
abq

2q ′2

(q2 + m2
π )(q

′2 + m2
π )

]
. (210)

We can now calculate the averages Q(i j)ab in Eq. (204) and
hence the OPE transport matrices in Eq. (205). After trans-
ferring Eq. (210) to the (Pq) variables by employing the
relation

q2 + q ′2 = 4p2 = 2(p2
Fa + p2

Fb)− P2, (211)

the integrations, in principle, this can be performed analyti-
cally, but the results are by no means illuminating. We there-
fore do not give the explicit expressions here, and illustrate
the results in Sect. 5.

4.2.3 In-vacuum cross-sections

In this section we restrict ourselves to the nuclear composi-
tion of the NS core matter. In other words, we consider only
scattering within the np subsystem. Neglecting relativistic
corrections, one relates the differential cross-section to the
squared matrix element as

dσab
dΩ

(Elab, θcm) = m2
N

16π2 (1 + δab)Qab, (212)

where cos θcm is given by Eq. (201) and Elab = 2p2/mN .
Assuming that the differential cross-sections are known, one
can use them to calculate the transport matrices in Eq. (150).

Using this approach, Baiko et al. [108] defined for neutron-
neutron collisions in thermal conductivity problem

Λκnn +Λ′κ
nn = 64T 2m∗4

n

5m2
N pFn

Snn2 (213)
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where Snn2 is an effective transport cross-section with a
dimension of area,

Snn2 = m2
N

128π2 p3
Fn

〈
(q2 + q ′2)Qnn

〉
. (214)

We use here the variables q and q ′ inside the angular brackets
to make a clear connection with Ref. [108] who also used the
notation Sn2 for Snn2. Notice that in vacuum Snn2 depends
only on one argument, the neutron Fermi-momentum pFn .

Baiko et al. [108] were interested in the neutron contri-
bution to the transport coefficients and protons were con-
sidered as passive scatterers. While this is a good approx-
imation for the non-magnetized case, the proton transport,
in principle, can be significant in presence of the magnetic
field. If we neglect the charge dependence of nucleon inter-
actions (i.e. consider the electromagnetic forces separately),
then Eqs. (213) and (214) can be also used for the proton–
proton collisions by substituting pFn → pFp, namely

Λκpp +Λ′κ
pp = 64T 2m∗4

p

5m2
N pFp

Spp2, (215)

where Spp2 = Snn2|pFn→pFp .
For the neutron–proton scattering in thermal conductivity

problem one has [108]

Λκnp = 64T 2m∗2
n m∗2

p

5m2
N pFn

(Snp1 + Snp2), (216)

where two effective np cross-sections are defined:

Snp1 = m2
N

64π2 pFn
〈Qnp〉 (217)

and

Snp2 = m2
N

256π2 p3
Fn

〈q2Qnp〉. (218)

Second of them, Eq. (218), also enters the expression for the
momentum transfer rates [105]

Jnp = Jpn = 64

9π2 T
2 m

∗2
n m∗2

p

m2
N

p3
Fn Snp2. (219)

The same effective cross-sections define the transposed
(pn) matrix elements for the thermal conductivity problem

Λκpn = 64T 2m∗2
n m∗2

p pFn

5m2
N pFp

2

(
Snp1 + p2

Fn

p2
Fp

Snp2

)
. (220)

This spurious asymmetry results from the asymmetric defi-
nition of the effective transport cross-sections in [108].

The shear viscosity problem was treated in a similar way
in [104]. Equation (205f) for nn or pp collisions is rewritten
as (a = n, p)

Ληaa +Λ′η
aa = 64T 2m∗4

a

m2
N pFa

Saa4 (221)

with

Saa4 = m2
N

16π2

1

(2pFa)5
〈q2q ′2Qaa〉. (222)

Here we modified slightly the definition of Saa4 (with a = n)
compared to the quantity SSY08

nn introduced in [104], namely
Snn4 = SSY08

nn /12. Notice that like Snn2 and Spp2 above,
Snn4 and Spp4 are actually the values of the same function
Saa4(pFa) evaluated at pFn or pFp, respectively.

For the np scattering in the shear viscosity problem we
can write

Ληnp = 64T 2m∗2
n m∗2

p

m2
N pFn

(Snp2 − Snp4), (223)

where

Snp4 = m2
N

16π2

1

2(2pFn)5
〈q4Qnp〉. (224)

Shternin and Yakovlev [104] did not separate Snp2 and Snp4,
their SSY08

np = 6(Snp2 − Snp4).
In [104] like in [108] only neutron transport was consid-

ered. However the pn components of the transport matrix
can be expressed via the functions Snp2 and Snp4 as

Ληpn = 64T 2m∗2
n m∗2

p

m2
N pFp

(
p3

Fn

p3
Fp

Snp2 − p5
Fn

p5
Fp

Snp4

)
. (225)

The primed elements of the transport matrices which mix
neutron and proton transport were not considered in [104,
108]. In order to keep a close analogy with their notations
we express

Λ′κ
np = p2

Fp

p2
Fn

Λ′κ
pn = 64T 2m∗2

n m∗2
p

5m2
N pFp

S′
np2 (226)

and

Λ′η
np = p4

Fp

p4
Fn

Λ′η
pn = 64T 2m∗2

n m∗2
p

m2
N pFp

S′
np4, (227)

where

S′
np2 = m2

N

16π2

1

8p3
Fn

〈(
(p2

Fn + p2
Fp)− P2 − q2

2

)
Qnp

〉

(228)

and

S′
np4 = m2

N

16π2

1

32p5
Fn

〈
q2
(
(p2

Fn + p2
Fp)− P2 − q2

2

)
Qnp

〉
.

(229)

The functions Snn2, Snp1, Snp2, Snn4, and Snp2−Snp4 were
fitted in Refs. [104,108] on the basis of the free-space cross-
sections obtained in Refs. [120,121] based in turn on the
realistic Bonn potential [122] which accurately reproduces
observed NN scattering data and properties of a few-nucleon
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systems. Available range of fitting parameters in [104,108]
is insufficient for consideration of the pp collisions, there-
fore we refitted these functions (and fitted the complementary
ones) on a larger parameter space. Specifically, we took the
free-space cross-section calculated in [99] based on the real-
istic free-space Argonne v18 potential [123]. Resulting fit
expressions are given in Appendix B.

4.2.4 Partial wave expansion

In many cases when the quasiparticle scattering matrix is
obtained from the microscopic theory, it is given in the par-
tial wave basis in the center of mass frame of the scattering
baryons. Let us denote the in-medium scattering matrix by
Gab in this case instead of Tab (having in mind the G-matrix
of the Brueckner–Hartree–Fock theory as a prototype). The
partial wave basis depends on the total momentum P and
the relative momentum p of the colliding pair and the angu-
lar momentum quantum numbers. Namely, the partial wave
state is |P, p; J�SMJ 〉, where S is the pair total spin, � is
the pair orbital momentum, J is its total angular momentum,
and MJ is the total angular momentum projection.

Let GJS
��′ (P, p) be the matrix element of the scattering

matrix which is diagonal in P , p, J , and S and do not depend
on MJ . Then the quantity Qab can be expanded in the series
in Legendre polynomials PL (cos θcm):

Qab(q, P) = 1

1 + δab
∑

L

Q(L)ab (P)PL (cos θcm) , (230)

where cos θcm is given in Eq. (201) and the coefficients of
expansion are related to the matrix elements of the transition
amplitude in the partial wave basis as [99]

Q(L)ab (P) = 1

16π2

∑
i�

′−�+�̄−�̄′Π��′Π�̄�̄′Π
2
J J̄
CL ′0
�′0�̄′0C

L0
�0�̄0

×
{
�̄ S J̄
J L �

}{
�̄′ S J̄
J L �′

}

×
(

1 + δab(−1)S+�) (1 + δab(−1)S+�̄)

×GJS
��′ (P, p)

(
G J̄ S
�̄�̄′ (P, p)

)∗
. (231)

HereΠ f g ≡ √
(2 f + 1)(2g + 1), terms in curly brackets are

6 j-symbols of the quantum angular momentum theory [70],
terms in the third line take into account exchange contribu-
tions, and the pair index ab is omitted at the scattering matrix
elements for brevity. The summation in Eq. (231) is carried
over all angular momenta and spin variables, except L .

The medium effects enter Eqs. (230) and (231) via the
dependence of the scattering matrix on the total pair momen-
tum P which breaks the translation invariance. The expan-
sion (230) together with Eq. (201) allow us to perform the
integration over q in Eq. (204) analytically with the help of
the following relation [99]

qm∫

0

q jdq√
q2
m − q2

PL

(
1 − q2

2p2

)
= q j

m

2
B

(
j + 1

2
,

1

2

)

× 3F2

(
−L , L + 1,

j + 1

2
; 1,

j

2
+ 1; q2

m

4p2

)
, (232)

where B
(

j+1
2 ,

1
2

)
is the beta-function, and 3F2 is the gener-

alized hypergeometric function. It reduces to the L −1 order
polynomial in q2

m/(4p
2), as its first argument, −L , is a neg-

ative integer. The remaining integral over P in Eq. (204) in
general should be performed numerically.

5 Discussion

Section 3.6 identifies key quantities that are needed from
the microscopic theory for calculating the diffusive trans-
port coefficients in the NS core in the weak-coupling regime.
Namely, these are the effective masses m∗

a of the quasiparti-
cles presented in the matter and the values of transport matri-
ces Λk

ab, Λ′k
ab , which are found from the angular averaging

of quasiparticle scattering probabilities. With these quantities
available, the transport coefficients of the non-magnetized
matter can be easily found from the solution of the system
Eq. (155) or, in case of the momentum transfer rates, directly
from the corresponding Eqs. (165) or (168). Magnetic field
does not modify this procedure significantly if the irreducible
spherical tensor formalism is used and the transport coeffi-
cients are expressed via the complex functions (118). The
inclusion of the magnetic field in this formalism is achieved
by a simple addition of the imaginary diagonal matrix to the
system Eq. (155).

5.1 Transport matrices and momentum transfer rates

The electromagnetic part of the transport matrices can be
calculated in the universal form, independent on the par-
ticular EOS of the dense matter inside the NS cores. The
necessary microscopic ingredients are the particle fractions
and the quasiparticle effective masses at Fermi surface. The
lepton effective masses are ones for free particles, m∗

� =√
m2
� + p2

F� for � = e, μ. The proton (or other charged
baryon) effective masses should be provided along with the
EOS. For instance, some of the EOSs in the CompOSE
database already contain the information about m∗. Other-
wise one needs to assume some typical value of the proton
effective mass, say m∗

p = 0.8mN . In this case the electro-
magnetic contribution to Eq. (154) can be readily calculated.
For convenience, we give practical expressions for the elec-
tromagnetic contribution in Appendix B.

For the strong sector the situation is much less certain.
Ideally, the averages (204) and hence the elements of the
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transport matrices need to be calculated on the basis of the
same microphysics as the EOS. In reality this is rarely acces-
sible for a modelling practioners and they need to extract
transport coefficients and EOS from unrelated sources.

Let us illustrate this uncertainty following [89,116].
Assume that we take some EOS of the dense matter and
want to calculate the transport coefficients. For certainty,
we take the BSk21 EOS from the Brussels–Skyrme EOS
family [124] which has a convenient analytical parametriza-
tion of the particle fractions. In Fig. 3 we plot the effective
transport cross-sections defined in Sect. 4.2.3 as functions of
density for various models of nuclear interaction. Blue dash-
dotted lines show the results of the free OPE model in the
first Born approximation of Sect. 4.2.2, while red solid lines
show the results of the in-vacuum cross-sections calculated
as described in Sect. 4.2.3. Clearly the free OPE model in
Born approximation, as expected, is a bad approximation for
the effective transport cross-sections.

Other solid lines in Fig. 3 show the results of [89] who
calculated effective nucleon transport mean free paths on a
grid of baryon densities and proton fractions (xp > 0.05 and
nB < 0.6 fm−3) for five nuclear interactions models in the
non-relativistic BHF approach. Each interaction results in its
own EOS and, specifically, in its own proton fraction for NS
core matter in the beta equilibrium. These proton fractions
are also different from those for the BSk21 EOS.

The NN interactions considered in [89] are based on two
realistic two-body potentials: the Argonne v18 (Av18 for
short) potential [123] and the charge-dependent Bonn (CD-
Bonn for short) potential [125] and two models for the three-
body interactions, i.e. the phenomenological Urbana IX (UIX
for short) model [126] and the microscopic three-body force
(Tbfmic for short) model based on the meson-nucleon the-
ory of the nucleon interaction [127,128]. Combinations of
these interactions result in five interaction models (see [89]
for details) which we denote as Av18, CDBonn, Av18 + UIX,
CDBonn + UIX, and Av18 + Tbfmic. In these calculations,
effective masses and in-medium scattering matrices were cal-
culated in a self-consistent way within the BHF framework
and included in transport mean free paths.

One sees a considerable scatter in the effective transport
cross-sections in Fig. 3, especially at high nB . For most of
those, the in-vacuum interaction (red solid lines) provides a
poor approximation. One of the exceptions is the Snp2 cross-
sections [panel (f) in Fig. 3] related to the friction coefficient
Jnp and can be used in calculations (see, e.g., [74]).

Somewhat better results can be achieved by combin-
ing the effective transport cross-sections with the results of
the effective mass calculations for the microscopic models
(e.g., [129]). The latter ones are available more frequently.
We illustrate this with the dotted lines in Fig. 3 that show
the combinations m∗2

a m∗2
b Sα/m4

N where m∗
a,b are the effec-

tive masses for five microscopic interactions considered and

effective transport cross-sections Sα with α = nn2, nn4,
pp2, pp4, np1, np2, np4, np2′, and np4′ are calculated with
the in-vacuum interaction. The difference of these results
from the complete calculations (colored solid lined) is solely
due to in-medium Qab and not in m∗

a,b. We observe, that the
agreement with the complete calculations is poor, but better
than that for pure in-vacuum interactions. Thus it can be rec-
ommended to use the fits for the in-vacuum cross-sections
given in Appendix B together with microscopic values of
effective masses, if available. If not, one can use some typi-
cal values, e.g., m∗

n = m∗
p = 0.8mN , see below.

Notice that here only five interaction models within a singe
many-body method (non-relativistic BHF) are explored. In
reality, the uncertainty in microscopic treatment can be con-
siderably larger (e.g., when the calculations are performed
within the MOPE model [118,119]).

Let us focus now on the dependence of the in-vacuum
transport cross-sections on EOS of NS core matter. To this
end we downloaded several EOSs from the ‘Cold neutron
star EOS’ section of the CompOSE database. Specifically we
restricted ourselves to the models with purely nucleonic com-
position, and also to those where the composition is stored in
the database. These include 16 models of the unified Skyrme
group [130] denoted as ‘RG(Name)’ in CompOSE, where
‘Name’ is the label of the interaction model, three relativis-
tic mean field (RMF) models from [131,132], denoted as
DS(CMF)-2, DS(CMF)-4, and DS(CMF)-J6, and the BHF
calculations based on the chiral perturbation theory from
[133].

We extended our EOS bank beyond the current Com-
pOSE database. Namely, we added two EOSs denoted by
DDME2 and NL3ωρ in [134], the Skyrme-based EOS SLy4
from [135], and the microscopic BHF EOS from [136].

We also employed several models from the BSk family
which have convenient analytical representations. Specif-
ically, we used the models BSk20−22 and BSk24−26
[124,137]. We also added a celebrated variational EOS APR
[138] and four EOSs built upon the anaytical parameteriza-
tion of the APR EOS of [139,140], specifically those denoted
by APR I−IV in [141] or HHJ I−IV in [134]. Finally we
included four analytical PAL models from [142,143], which
differ by the functional form of the density dependence of
the symmetry energy, see appendix D in [144] for details.

In total, our EOS bank contains 39 models summarized in
Table 2. The proton fractions xp as functions of the baryon
density nB are given in Fig. 4 by the black solid lines.10

Notice that some EOSs result in quite large (and probably
unrealistic) proton fractions for beta-equilibrium matter. In
the same figure with the thick red line we plot the approximate

10 A prominent jump in one of the black curves seen in Fig. 4 corre-
sponds to the phase transition in the original APR EOS [138].
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 3 Effective transport cross-sections defined in Sect. 4.2.3 as func-
tions of density for the BSk21 EOS. Blue dash-dotted line show OPE
results, red solid line shows the in-vacuum cross-sections. Coloured
solid lines correspond to different microscopic models of nuclear inter-

actions as coded in the legend in panel (g) and described in the text. Dot-
ted lines show in-vacuum effective transport cross-sections combined
with the nucleon effective masses for the microscopic interactions (with
the same color coding as the respective solid lines), see text for details

expression

xp = 0.05

(
nB

n0

)0.65

, (233)

where n0 = 0.16 fm−3, proposed in [153] as a qualita-
tive estimate of the proton fraction inside a beta-equilibrium
nucleonic NS core. We will use this model as a toy model
below.

In Fig. 5 we plot the same effective transport cross-
sections as in Fig. 3 for the in-vacuum interaction for all EOS
considered here (black lines). Thick red lines correspond to

the ‘toy model’ composition of Eq. (233). One observes that
the effective transport cross-sections for the collisions of like
particles Snn2, Snn4, and to a lesser extent, Spp2, Spp4 are
described by the toy model relatively well, in contrast to
the cross-sections that involve np collisions. This is a direct
consequence of the large scatter of the proton fraction within
the EOS bank, see Fig. 4. Relatively small scatter of Spp2

and Spp4 around the toy model is because the main phase-
space dependence is accounted for by the normalization fac-
tors in definitions (214) and (222). Notice that the furthest
curves from the thick red line are those with the largest proton
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Table 2 Summary of EOSs used in the paper. First part corresponds to
models taken from CompOSE database, second for additional models
not in CompOSE

Name Composition Type References

CompOSE

RG(KDE0v) npeμ Skyrme [130,145]

RG(KDE0v1) npeμ Skyrme [130,145]

RG(Rs) npeμ Skyrme [130,146]

RG(SK255) npeμ Skyrme [130,145]

RG(SK272) npeμ Skyrme [130,145]

RG(SKa) npeμ Skyrme [130,147]

RG(SKb) npeμ Skyrme [130,147]

RG(SKI 2−5) npeμ Skyrme [130,148]

RG(SKI 6) npeμ Skyrme [130,149]

RG(SKMp) npeμ Skyrme [130,150]

RG(SKOp) npeμ Skyrme [130,151]

RG(SLy2) npeμ Skyrme [130,152]

RG(SLy9) npeμ Skyrme [130,152]

DS(CMF)-2,4,6 npe RMF [131,132]

BL npeμ BHF [133]

Not in CompOSE

DDME2 npeμ RMF [134]

NL3ωρ npeμ RMF [134]

SLy4 npeμ Skyrme [135]

BHF npeμ BHF [136]

BSk 20–21 npeμ Skyrme [124]

BSk 22, 24–26 npeμ Skyrme [137]

APR npeμ Var. [138]

HHJ I–IV npeμ Phen. [134,139,140]

PAL I–III npeμ Phen. [142,144]

PAL-IV npeμ Phen. [143,144]

Fig. 4 Proton fraction xp versus density for all EOSs considered in
the paper (black solid lines). Thick red line shows the toy model of
Eq. (233)

fractions. Nevertheless the toy model is expected to give an
acceptable estimate for the transport coefficients of nucle-
onic NS core matter when more sophisticated calculations
are not available.

For the sake of illustration we combine the results shown
in Figs. 3 and 5 in Fig. 6. Here we compare the in-vacuum
effective transport cross-sections (black lines) with the effec-
tive transport cross-sections for the microscopic models from
[89] (colored lines). The OPE cross-sections for the toy
model (233) are given by the blue dash-dotted lines, while
the in-vacuum cross-sections for this model are shown with
the thick red lines. In addition, with the thick red dashed
lines we show the effective transport cross-sections for in-
vacuum interaction but assuming m∗

n = m∗
p = 0.8mN .

Figure 6 looks rather cumbersome and basically illustrates
that until the microscopic calculations of transport properties
are available alongside the EOSs, all ‘simple’ calculations
are mere qualitative estimates rather than the quantitative
ones. We can range the levels of approximation as toy model
plus m∗

n,p = 0.8mN , in-vacuum fits for the actual composi-
tion plus m∗

n,p = 0.8mN and in-vacuum fits with somehow
known m∗

n,p. Below we continue with first two options.
In Fig. 7, panels (a)–(h) we plot (in the logarithmic scale)

the elements of the transport matrices which enter the sys-
tem of Eq. (155) for the np subsystem and in the panel
(i) we plot the neutron–proton momentum transfer rate Jnp
which is given by the similar angular average expression,
see Sect. 4.2.1. All quantities are calculated within the in-
vacuum interaction model for T = 108 K and m∗

n =
m∗

p = 0.8mN . Remember that each Λab in Fig. 7 scales
as Λab ∝ m∗2

a m∗2
b T 2. As in Fig. 4, black solid lines show

results for a complete EOS bank described here, while thick
red lines correspond to the toy model composition. We see
that the typical transport mean free paths for nucleons due to
collisions mediated by strong interactions in NS cores are of
the order of 10−6 T−2

8 cm, where T8 = T/(108 K).
For comparison, in Fig. 8 we plot the electromagnetic con-

tributions to the transport matrices in the eμp subsystem as
function of nB . Black and blue lines correspond to thermal
conductivity (k = κ) and shear viscosity (k = η) problems,
respectively, for all EOSs considered here. Thick red and
orange lines show the toy model results for κ and η trans-
port matrices, respectively. Since the transport matrices for
shear viscosity, in general, contain additional factor q2 in
angular averages (see Sect. 4.1), the values ofΛη are couple
orders of magnitude smaller than Λκ . Remember that due
to dominance of the dynamically-screened transverse part of
the electromagnetic interaction, the temperature dependence
of Λk

ab plotted in Fig. 8 differs from the Fermi-liquid law
Λk

ab ∝ T 2. Approximate scaling for the diagonal compo-
nents is Λκa ∝ T and Ληa ∝ T 5/3, although in the latter
case this scaling works worse as discussed in Sect. 4.1. One
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 5 Effective transport cross-sections defined in Sect. 4.2.3 as functions of density for all EOS described in the text and the in-vacuum interaction
(black solid lines). Thick red solid lines show the results for the toy model with the proton fraction from Eq. (233)

observes that the diagonal components of the transport matrix
for electromagnetic interaction are always much larger than
the non-diagonal components which can be neglected in the
first approximation. Protons interact both via the strong and
electromagnetic forces therefore in Fig. 8(i) we plot with
dashed lines the total Λκp (red dashed lines) and Ληp (red
orange lines). While strong interactions dominate the effec-
tive proton mean free path for the shear viscosity problem,
this is not so for the thermal conductivity problem, where the
contributions from the electromagnetic and strong sectors are
comparable. Figures 7 and 8 show that it is always a good
approximation to treat protons as the passive scatterers.

5.2 Shear viscosity and thermal conductivity at B = 0

Now we have all in hand to calculate the shear viscosity and
the thermal conductivity in the NS cores. Figure 9 shows
the parallel components of the shear viscosity, η0 [panel (a)]
and thermal conductivity κ‖ [panel (b)] which do not depend
on B. These components are equal to the isotropic transport
coefficients in absence of the magnetic field. As for Fig. 7,
we set T = 108 K and m∗

n = m∗
p = 0.8mN and plot the

results for all EOSs with black lines and the result for the
toy model composition with the thick red line. As the elec-
tromagnetic contribution and strong sector contribution have
different temperature dependencies, there is no general sim-
ple temperature scaling for these coefficients (however, see
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Fig. 6 Same as Fig. 5 with addition of the results for various micro-
scopic potentials applied to all EOSs considered in the paper (cf. Fig. 3
for BSk21 EOS). Different microscopic interactions are coded as in

Fig. 3. Thick lines show the toy model (233) results for the OPE
(blue dash-dotted), in-vacuum (red solid), and in-vacuum with constant
m∗

n,p = 0.8mN (red dashed)

below). One observes qualitatively similar behavior of the
transport coefficients with density for all considered EOSs.

The partial contributions to η0 and κ‖ are shown in Fig. 10
in panels (a, b), respectively, for the toy model composition,
T = 108 K, and m∗

n = m∗
p = 0.8mN . Other, more real-

istic EOSs, show similar behavior. Notice that the thermal
conductivity, Fig. 10b, is almost completely determined by
the neutron contribution [1]. This is due to the strong domi-
nance of the transverse channel of the electromagnetic inter-
action which suppresses the lepton thermal conductivity and
also makes it temperature-independent, Sect. 4.1. The neu-
tron contribution, in contrast, scales as T−1. Thus, only at

high temperatures, T � 3 × 109 K, leptons start to play
some role in heat conduction in the non-superfluid matter
[1,103]. The neutron thermal conductivity is determined by
the Λκn transport matrix element shown in Fig. 7a. Its rel-
atively small scatter over EOSs transforms to the relatively
small scatter for κ‖ in Fig. 9b. It is clear that the modification
of the microscopic interaction results in large changes in κ‖
[89]. Anyway, the important fact for practical applications is
that the thermal conductivity in NS cores is large, effectively
washing out the temperature gradients.

The situation is in some sense opposite for the shear vis-
cosity. According to Fig. 10a, leptons give the main con-
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 7 Transport matrix elements for strong interaction in the np sub-
system (panels a–h) and the momentum transfer rate Jnp (panel i) as
functions of baryon number density. Results are shown for all EOS con-

sidered in the paper and in-vacuum interaction (black solid lines). Thick
red line shows the toy model (233) result. In all cases, T = 108 K and
m∗

n,p = 0.8mN

tribution to η0, while neutron contribution is less important
[1,89]. The difference with the thermal conductivity case is
due to considerably larger transport lepton mean free paths
for the shear viscosity problem than for the thermal conduc-
tivity (in other wordsΛη� � Λκ� ) due to different kinematics,
see Fig. 8 and the discussion in Sect. 5.1. Notice, that the con-
clusion η� � ηn does not depend on temperature, since the
temperature dependencies of the lepton and neutron contri-
butions are close. Namely, the neutron shear viscosity scales
as T−2, while the non-Fermi liquid effects in the electro-
magnetic interactions modify this scaling for leptons at most
to T−5/3 at lowest temperatures [1,104] (see also Fig. 12a

below). The gross result of the realistic microscopic interac-
tion, at least for the models considered here, is the further
reduction of the neutron contribution to η0 [89,99]. In this
respect, a considerable scatter in the results for various EOSs
seen in Fig. 9a results from the scatter in proton (and hence
lepton) fractions, see Fig. 4, and not from the scatter in Sα .
This means that the knowledge of the proton effective mass
and the particle fractions is enough for reliable calculation of
the shear viscosity coefficient η0 (i.e., shear viscosity in the
absence of magnetic field) in non-superfluid NS core matter.
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Fig. 8 Transport matrix elements for electromagnetic interaction in
the eμp subsystem as functions of baryon number density. Results for
all EOS considered in the paper are shown with black solid lines for
thermal conductivity and blue solid lines for shear viscosity, as marked
in the plot. Thick red and orange line shows the toy model e (233) results

for κ and η, respectively. Dashed red and orange lines in panel (i) show
total Λp = (Λp)

strong + (Λp)
em for thermal conductivity and shear

viscosity for the toy model, respectively. In all cases, T = 108 K and
m∗

p = 0.8mN

5.3 Shear viscosity and thermal conductivity of magnetized
NS cores

We now turn to the transport coefficients in presence of the
magnetic field. Remember, that at the lowest variational order
there is no magnetic field dependence and no tensor structure
in the momentum transfer rates Jab (this is of course not true
for the electric conductivity tensor that can be obtained by
inverting the generalized Ohm law (164), see, e.g., [8] and

Appendix C). Therefore we refer the reader to Ref. [89] and
sec. VII of Ref. [74] for the detailed discussion of the momen-
tum transfer rates in the non-superfluid npeμNS cores which
extends the discussion here.

In the magnetic field, components of the thermal conduc-
tivity and shear viscosity tensors are described by the com-
plex functions κ̃(B) and η̃(B) (Sects. 3.3 and 3.6). We have
already discussed the longitudinal contributions κ‖ = κ̃(B =
0) and η0 = η̃(B = 0). In Fig. 11 we plot real and imaginary
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(a) (b)

Fig. 9 Longitudinal component of the shear viscosity η0 (panel a) and longitudinal component of the thermal conductivity κ‖ (panel b) as functions
of density for all EOSs considered in the paper (black solid lines) and the toy model (233) (thick red solid line). In all cases, T = 108 K and
m∗

n,p = 0.8mN

(a) (b)

Fig. 10 Partial contributions to the longitudinal component of the
shear viscosity η0 (panel a) and longitudinal component of the ther-
mal conductivity κ‖ (panel b) as functions of density for the toy model

(233) and the npeμ composition. Total contribution and partial contri-
butions are color coded as indicated in the legend on the panel (a). In
this calculation, T = 108 K and m∗

n,p = 0.8mN

parts of κ̃(B) and η̃(B) and corresponding partial contribu-
tions from different particle species as functions of B. Recall
that the Cartesian components of the thermal conductivity
are κ⊥ = Re κ̃(B) and κ∧ = −Im κ̃(B), while for the shear
viscosity η1 = Re η̃(2B), η3 = −Im η̃(2B), η2 = Re η̃(B),
and η4 = −Im η̃(B). As above, we use the toy model compo-
sition at a characteristic baryon density nB = 0.35 fm−3. We
also set T = 108 K and m∗

n = m∗
p = 0.8mN . The behavior

of the transport coefficients can be understood by comparing
Fig. 11 with Fig. 1 which is plotted in the relaxation-time
approximation.

Indeed, the results of Sect. 4.1 for electromagnetic col-
lisions suggest that the non-diagonal (primed) components
of the transport matrices for electromagnetic interactions are
significantly smaller than the diagonal components, as seen
in Fig. 8. Therefore in the first approximation one can neglect

mixing between leptons and other species and the lepton
mean free paths can be determined from the simple equa-
tion of the effective relaxation time form, namely

λ̃k� = 1

Λk
� + iωBF�/vF�

, � = e, μ (234)

for k = κ, η. Therefore lepton transport coefficients behave
as shown in Fig. 1 where the effective Hall parameters are

xHall� = ωBF�
(
Λk
�vF�

)−1
. In a strong sector situation is not

so simple. Dashed lines in Fig. 8i can be viewed as an esti-
mate for the real part of inverse proton mean free paths. Com-
paring it with the non-diagonal components of the transport
matrices Λ′k

np in Fig. 7, one can assume that protons do not
influence the real part of the equation for neutron effective
mean free path λ̃kn (but not the imaginary part, since neutrons
are electrically neutral, see below). Therefore, one can write
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(a) (b)

(c) (d)

Fig. 11 Partial contributions to the complex shear viscosity η̃ and ther-
mal conductivity κ̃ coefficients as functions of the magnetic field. Pan-
els a–d show, respectively, Re η̃(B), |Im η̃(B)|, Re κ̃(B), and |Im κ̃(B)|.
Results are plotted for the toy model (233), npeμ composition, T =
108 K, nB = 0.35 fm−3 and m∗

n,p = 0.8mN . Black solid line marked

B = 0 in panel (a) and lines marked B < 1012 G in panel (b) also
represent the longitudinal components η0 and κ‖, respectively. Dashed
line marked eμ (B = 0) in panel (b) shows the electron and muon
contribution to κ‖. Discontinuities in the Hall contributions (panels c,
d) indicate the sign change of these components, see text for details

for neutrons the relaxation-time type expression

Re λ̃kn = 1

Λk
n
, (235)

which does not depend on the magnetic field. According to
Fig. 7, inverse neutron mean free pathΛk

n [see Eq. (235)] can
be comparable to the non-diagonal components of the trans-
port matrices Λ′k

pn , therefore this mixing can affect proton
mean free paths. In this approximation, one finds

Re λ̃kp = Re
1 −Λ′k

pn/Λ
k
n

Λk
p + iωBFp/vFp

. (236)

Equation (236) has the effective relaxation-time form with

the Hall parameter xHallp = ωBFp

(
Λk

pvFp

)−1
, but with

numerator different from unity.
Consider now the transverse components of the shear vis-

cosity shown in Fig. 11a. At low magnetic field (B � 3 ×
109 G for conditions in Fig. 11) leptons are not magnetized,

i.e. xHalle,μ < 1. In this case, Re η̃(B) ≈ η0 ≈ η0eμ, see
Fig. 11a. When xHalle,μ reaches unity and starts to increase
with increasing B, leptons become strongly magnetized and
their contribution to Re η̃ (i.e., to the transverse components
of the shear viscosity tensor) rapidly diminishes (see blue
and magenta lines in Fig. 11a). At this point (B � 1010 G
for conditions in Fig. 11), Re η̃ is fully determined by neu-
trons according to Eq. (235). Protons become magnetized at
larger fields when xHallp � 1 , but their contribution to Re η̃
is negligible.

A simpler behavior is observed for the transverse compo-
nent of the thermal conductivity, Re κ̃ , plotted in Fig. 11b.
According to Fig. 10b, the lepton contribution to the thermal
conductivity is negligible (at least at the selected tempera-
ture, see below) and their magnetization results in almost no
changes in Re κ̃ (Fig. 11b, black line). Notice that the lepton
Hall parameters for thermal conductivity reach unity at much
larger magnetic fields B than those for shear viscosity. This
is due to smaller effective transport mean free paths for ther-

123



42 Page 38 of 50 Eur. Phys. J. A (2022) 58 :42

mal conductivity due to stronger dominance of the transverse
channel of electromagnetic interactions.

Consider now the Hall components, Im η̃ and Im κ̃ , plotted
in Fig. 11c, d, respectively. Until protons are magnetized, the
Hall components are fully determined by leptons and follow
the relaxation-time expressions (234). They reach maxima at
xHalle,μ ≈ 1, cf. Fig. 1. According to Eqs. (131b) and (128b),
asymptotic values of Hall components of shear viscosity and
thermal conductivity at xHalle,μ � 1 (but xHallp � 1) are
given by the universal expressions

Im η̃ ≈ Im η̃eμ = −ne p2
Fe + nμ p2

Fμ

5eB
, (237a)

Im κ̃ ≈ Im κ̃eμ = −π
2T

3

ne + nμ
eB

. (237b)

In Fig. 11c, d we plot the Hall components in the logarith-
mic scale, so their sign is not shown. The Hall contribution
of leptons have negative sign due to negative charges of lep-
tons, while the proton contribution is positive. Figure 11a, c
show that at xHalle,μ ≈ 1, the Hall components of the shear
viscosity are comparable to the transverse components. For
thermal conductivity, Im κ̃ is always much smaller than Re, κ̃
(Fig. 11b, d).

From Eq. (154) for electrically neutral (qn = 0) neutrons,
for k = η, κ one obtains

Im λ̃kn = −Λ
′k
np

Λk
n

Im λ̃kp, (238)

i.e. despite being charge neutral, neutrons contribute to the
Hall components of thermal conductivity or shear viscosity
due to their interaction with protons. Depending on the sign
of (Λ′)knp which can be either positive or negative, the neu-
tron contribution to the total Im η̃ or Im κ̃ can be positive or
negative. For the specific case shown in Fig. 11, both proton
and neutron contributions are positive and larger that those
for leptons, leading to change in sign of this component at
xHallp � 1, which is seen as a discontinuities in total Hall
components shown in Fig. 11c, d.

Proton contribution to the Hall components of transport
coefficients, and hence the neutron contribution as well show
more complicated behavior around xHalle,μ ∼ 1 in Fig. 11c,
d than follows from a simple relaxation-time approxima-
tion. This can be understood as follows. Taking into account
Eq. (238), the equation for Im λ̃kp reads
(
Λk

p − Λ′k
npΛ

′k
pn

Λk
n

)
Im λ̃kp = −ωBFp

vFp
Re λ̃p

−Λ′k
pe Im λ̃ke −Λ′k

pμ Im λ̃kμ.

(239)

Assuming that λ̃ke , λ̃kμ, and Re λ̃kp are determined by
Eqs. (234) and (236), the imaginary part Im λ̃kp can be cal-

culated from Eq. (239). Until xHalle,μ,p < 1, Im λ̃k� ∝ ωBF�

and one has Im λ̃kp ∝ B. When leptons become magne-
tized, xHalle,μ ∼ 1, but still xHallp < 1, lepton contribution
to right-hand side of Eq. (239) drops down that is clearly
visible in cyan and red lines in Fig. 11c. For thermal con-
ductivity, this effect is not visible in Fig. 11d since the pro-
tons and leptons have similar Hall parameters here. Finally,
when all charged particles are magnetized, Im λ̃k� ∝ ω−1

BF�,
Re λ̃kp ∝ ω−2

BFp so that Imλ̃kp ∝ B−1, but with the pro-
portionality coefficient which contains combination of the
components of transport matrices. Therefore the total Hall
components of shear viscosity and thermal conductivity do
not reach universal asymptotics in the large Hall parameter
regime analogous to Eq. (237). Almost complete cancella-
tion of the lepton and neutron contributions to Im κ̃ seen at
large B in Fig. 11d is a chance coincidence which breaks
down at other densities.

Finally, in Fig. 12 we explore the temperature depen-
dence of η̃ and κ̃ for B = 108, 109, . . . , 1014 G; the values
of log10 B [G] are shown near the respective curves. As in
Fig. 11, we use the toy model composition atnB = 0.35 fm−3

and m∗
n = m∗

p = 0.8mN .
In Fig. 12a we show Re η̃ component of the shear viscosity

tensor. According to the discussion above, at B = 0 [black
solid line in Fig. 12a marked B = 0], leptons give the domi-
nant contribution to the shear viscosity [89]. At low temper-
atures, the shear viscosity obeys the η ∝ T−5/3 asymptotic
instead of the standard Fermi-liquid resultη ∝ T−2 due to the
dominance of the transverse channel of the electromagnetic
collisions, see Eq. (192). At higher temperatures, the contri-
bution of the longitudinal channel to the lepton shear viscos-
ity is significant and the slope of the η(T ) dependence lies in
between the ∝ T−5/3 and ∝ T−2 powerlaws. At each given
B > 0 the behavior of Re η̃(B) is similar. Since the effec-
tive mean free paths increase with decrease of temperature,
the effective Hall parameters for leptons also increase. Until
xHalle,μ) = 1, magnetic field does not influence the transport
significantly and Re η̃(B) ≈ η̃(B = 0), see Fig. 11. With
lowering temperature, leptons become magnetized and their
contribution to Re η̃ decreases until the transverse shear vis-
cosity components become completely determined by neu-
trons. In Fig. 12a this is the line corresponding to the highest
B = 1014 G plotted. At this point, Re η̃ ≈ Re η̃n ∝ T−2 and
does not depend on B (see Fig. 11).

The Hall components of the shear viscosity, i.e. Im η̃, are
plotted in Fig. 12c. This figure can be understood in the
same way as Fig. 11c. At a given B, starting from large
temperatures, Im η̃ is governed by leptons and basically fol-
low the relaxation-time approximation law Eq. (130). When
leptons are magnetized, Im η̃ is given by (237a) and does
not depend on temperature until the magnetization of pro-
tons occur. After that, Im η̃ changes sign rapidly (in present
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(a) (b)

(c) (d)

Fig. 12 Temperature dependence of the complex shear viscosity η̃ and
thermal conductivity κ̃ coefficients for various values of the magnetic
field B. Different values of B are shown in different colors and indicated
by log10 B[G] near the respective curves. Panels a–d show, respec-

tively, Re η̃(B), |Im η̃(B)|, Re κ̃(B), and |Im κ̃(B)|. Results are plotted
for the toy model (233), npeμ composition, nB = 0.35 fm−3 and
m∗

n,p = 0.8mN

model) and become determined by all particle species. At low
temperatures, Im η̃ stays constant, which is however not uni-
versal and depends on the transport scattering cross-sections
as follows from above [see Eq. (239)].

Less interesting situation is observed for the thermal con-
ductivity. In Fig. 12b we show Re κ̃ component of the thermal
conductivity tensor. Since at B = 0 thermal conductivity is
governed by neutrons (Figs. 10b, 11b), magnetic field does
not influence it considerably and for B < 1012 G for con-
ditions shown in Fig. 12b, Re κ̃(B) ≈ Re κ̃(B = 0) = κn .
The lepton contribution to thermal conductivity at B = 0 is
shown with dashed line in Fig. 12b. At lower temperatures
it is temperature-independent and start to transit to the stan-
dard Fermi-liquid behavior κ ∝ T−1 at large T . At large
B � 1012 G, the lepton magnetization starts at high temper-
atures, where the lepton contribution to the total thermal con-
ductivity is sizable. Therefore, for B � 1013 G one observes
the drop in Re κ̃ representing basically the neutron contribu-
tion. In any case, thermal conductivity perpendicular to the
magnetic field stays large.

The behavior of the Hall component of thermal conduc-
tivity, Im κ̃ , shown in Fig. 12d is qualitatively similar to the
behavior of Im η̃. In the limit of large magnetization, the
only difference is the appearance of temperature in the limit-
ing expressions Eq. (128b) and (237b) leading to Im κ̃ ∝ T
limiting behavior at low temperatures. In the opposite limit of
weak magnetization (large T ), Im κ̃ is determined by leptons
and basically have relaxation-time approximation behavior
according to Eqs. (127a) and (234). The change of the slope
of Im κ̃(T ) curve seen in Fig. 12d reflects the change of the
Λκ� temperature dependence (seen also with the dashed line
in Fig. 12b). This is a result of increasing contribution of the
longitudinal plasmon exchange to lepton scattering at large
T .

6 Conclusion

In this paper we reviewed the framework for calculating
the first-order transport coefficients (shear viscosity, ther-
mal conductivity, and momentum transfer rates) of the multi-
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component non-superfluid NS core matter in the presence of
the strong magnetic field. In this case, transport coefficients
become tensor quantities which can be most economically
calculated utilizing the spherical tensor formalism. In this
approach, each tensorial transport coefficient is described by
a single complex function of the magnetic field as discussed
in Sect. 3.3.

At the simplest variational level, thermal conductivity and
shear viscosity are given by Eqs. (157) and (158), where
the effective generalized complex mean free paths are found
from the system of linear algebraic equations (154) or (155).
The core of this system is the transport matrix elementsΛk

ab

andΛ′k
ab (k = κ, η, and a, b indicate particle species) which

are expressed by the angular averages of the scattering proba-
bilities with certain weighting factors depending on the trans-
port problem in question. The definitions of these matrix ele-
ments are given in Eqs. (159)–(161). The momentum trans-
fer rates are also expressed via the corresponding transport
matrix element, Eq. (168).

The transport matrices depend on the interactions between
the constituents of the NS core liquid and need to be calcu-
lated from the microscopic theory. Leptons interact via the
electromagnetic forces, the corresponding ‘electromagnetic’
contribution to transport matrices can be calculated in the rel-
atively model-independent way, provided composition and
effective masses of charged baryons are known. In contrast,
baryons interact mainly through the strong force channel. In
this case calculations of EOS and the transport properties
should be performed in consistent way. Ideally, public EOS
databases such as CompOSE, should also provide the trans-
port matrices for each EOS. When such calculations are not
available, one is forced to use the approximate approaches.

We applied the developed formalism to the npeμ com-
position of the NS cores. Utilizing 39 EOS models and five
microscopic interactions (not consistent with these EOSs),
we investigated the uncertainty range that can be expected in
realistic calculations. We then compared these results with
the approximate approach based on the in-vacuum cross-
sections of the nucleon scattering. We expect that these
results (supplemented with the nucleon effective masses if
available) give qualitatively correct picture of transport prop-
erties of the NS core matter. We provide (Appendix B) the
practical fitting expressions that can be used for any EOS
of dense matter. In addition we provide the ‘toy model’ fits
based on the crude estimate (233) for the proton fraction that
allow one to estimate the transport matrices and hence the
transport coefficients at a given baryon density.

Magnetic field more strongly affects the motion of light
leptons than the baryonic component of the matter. Therefore
magnetic field effects are more prominent for the shear vis-
cosity, where leptons dominate the transport at B = 0, than
for the thermal conductivity, where the situation is opposite

[1]. We find that the shear viscosity can be strongly influ-
enced even by the moderate B � 1010 G. At sufficiently low
temperatures, the shear viscosity in the plane transverse to
magnetic field becomes fully determined by neutrons. In this
sense it can vary significantly for the different models of the
nuclear interaction. The ‘parallel’ shear viscosity coefficient
η0 is not affected by the magnetic field and is dominated by
the lepton contribution. Thermal conductivity is less affected
by the magnetic field, basically the perpendicular component
of the conductivity is affected in the high-temperature and
high-magnetic field region of the parameter space studied.

Notice that while these conclusions were illustrated in the
paper for the ‘toy’ model under the approximation of the
in-vacuum nucleon scattering, they are expected to be qual-
itatively valid if more accurate calculations are available.

In our study we ignored the possibility of inelastic col-
lisions (i.e. reactions). The formalism outlined here can be
extended to this case by considering particle non-conserving
collision integrals in the system of Fermi-liquid transport
equations. Reactions lead to appearance of the correspond-
ing terms in the entropy generation rate and correspond-
ing scalar transport coefficients. These processes are in the
mutual interaction with the bulk viscosity coefficients. More-
over in this case a dynamical problem needs to be considered.
The reaction-driven bulk viscosity in the dynamical regime
can be derived without relying on the kinetic equations, see,
e.g., [1] for a review.

We illustrated the formalism described in the paper exclu-
sively for nucleonic NS core composition. In principle, NS
cores can have richer composition. For instance, the hyper-
onic NS cores are widely discussed, see, e.g. [154] for a
review. Transport coefficients for the hypernuclear NS cores
can be, in principle, calculated using the similar formalism
as studied here. For the non-magnetized case this was done
by [100] for two models of hypernuclear interaction. The
momentum transfer rates within the free-particle model and
npeΣ− composition were considered in [9]. When several
hyperon species are present, in principle, there is a possibility
of strong inelastic collisions (neglected in [100]). In this case,
even when the matter is in the equilibrium state with respect
to these reactions, they can contribute to the transport cross-
sections. In the presence of inelastic collisions, the system
(155), which determine transport mean free paths, has the
same form, but the transport matrices receive additional con-
tributions. These contributions can be determined following
the lines of Sect. 3.6, but the kinematic expressions for the
transport matrix elements and angular averages will be more
involved, because all four Fermi-momenta of the quasiparti-
cles participating in collisions are different in this case.

In this study we did not consider the transport prop-
erties of the NS core matter in presence of superfluid-
ity/superconductivity. It is known that baryons in NS core
matter can form Cooper pairs due to the presence of the attrac-
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tive character of some partial wave channels of the baryon
interaction, see [155] for a review. This pairing may lead to
the existence of superflows and supercurrents. In this case the
hydrodynamic equations become much more complicated,
and multifluid consideration is necessary, see e.g., [13,156],
and references therein. Additional complications arise since
the pairing in NS cores, like for the superfluid He3, can have
the anisotropic pattern. For instance, the neutrons in NS core
are thought to pair in the 3P2−3F2 channel. Even in the super-
fluid case, the flows of the normal part of the fluid are subject
to the dissipative processes. In principle the relevant trans-
port coefficients can be calculated based on the the kinetic
theory for the anisotropic superfluids e.g. [157], although it
is severely more complicated task than the non-superfluid
problem.

Superfluidity modifies the transport coefficients on NS
core matter in several ways, e.g. [1], which we outline briefly.
The relevant excitations of the normal component in the
superfluid matter are not the usual quasiparticles, but rather
the the Bogoliubov quasiparticles, which spectra have a gap
at the Fermi surface. In addition, the number of such quasipar-
ticles does not necessarily conserve in collisions. The main
effect of these modifications results in the exponential sup-
pression of the scattering rates for the processes in which the
superfluid species participate. Moreover, if the paired species
are charged (e.g., protons) this modifies the properties of the
electromagnetic screening. This affects the scattering of all
charged species, for instance, leptons [1,89]. At low temper-
atures, another excitations, namely the superfluid phonons,
can contribute to the transport properties of NS core matter.
This contribution is reviewed in, e.g., [158].

Even more complicated is the case of the magnetized
superfluid/superconducting matter. Under a certain condi-
tions, the matter can be in the type II superconducting state
where the magnetic field is confined in the topological defects
called Abrikosov vortices. This introduces another meso-
scopic scale on the stage and additional terms in dissipative
hydrodynamics, e.g. [15].

A detailed discussion of all these effects is left for future
studies.
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Appendix A: Linearized kinetic equations

Let us outline derivation of Eq. (141) from Eq. (91). Func-
tions Φ( pi ) are expanded in spherical harmonics according
to Eq. (104). These spherical harmonics can be rotated to the
body frame which has p1 as a polar axis via

Y�m( p̂i ) =
∑

m′

(
D�mm′( p̂1, ϕ)

)∗
Y�m′( p̂i p̂1, ϕi ), (A.1)

where ϕ is the azimuthal angle of the body frame system
with respect to the laboratory system, ϕi is the azimuthal
angle of pi in the body-frame coordinate system. Isotropy of
the collision probability in Eq. (141) means, in particular, that
it does not depend on ϕ however angular integration contains
integration over ϕ. Therefore only m′ = 0 term in Eq. (A.1)
survives and one has

Y�m( p̂i )→ Y�m( p̂1)P�( p̂i p̂1) (A.2)

resulting in Eq. (141).
Complete system of the linearized transport equations for

the thermal conductivity or the shear viscosity of multicom-
ponent Fermi-liquid is obtained by substituting Eqs. (152)
and (140) to Eq. (109) and placing all quasiparticles on
respective Fermi surfaces using energy-angular decomposi-
tion. It is convenient to substitute x2 → −x2 in the collision
integral and exchange x2 ↔ x2′ in terms containing Ψ̃b(x2′).
Finally, one obtains

− f ′
F (x1)X̃k(x1) = T 2m∗2

a

4π4 p2
Fa D̃k(pFa)

∫
dx1′dx2dx2′

× fF (x1) fF (−x1′) fF (−x2) fF (−x2′)

×δ(x1 − x2 − x1′ − x2′)

×
(
D̃k(pFa)Ψ̃

k
a (x1)λ

(k,eff)
a

∑

b

m∗2
b 〈Qab〉

− D̃k(pFa)Ψ̃
k
a (x1′)λ(k,eff)

a

∑

b

m∗2
b

〈
QabP�( p̂1 p̂1′)

〉

−
∑

b

m∗2
b D̃k(pFb)Ψ̃

k
b (x2)λ

(k,eff)
b

× 〈Qab
(
P�( p̂1 p̂2′)− (−1)ξkP�( p̂1 p̂2)

)〉
)

+i f ′
F (x1)

ωBFa

vFa
λ(k,eff)
a Ψ̃ k

a (x1), (A.3)

where the symmetry of the transport problem due to x inver-
sion is used (hence appearance of the phase (−1)ξk ) and
angular integrations are encapsulated in the angular brackets
according to Eq. (144). This equation for � = 1, 2 contains
the following angular averages that should be provided by
the microscopic theory

〈Qab〉 ,
〈
Qab P1( p̂1 p̂1′)

〉
,
〈
Qab P2( p̂1 p̂1′)

〉
,

〈
Qab(P1( p̂1 p̂2)± P1( p̂1 p̂2′))

〉
,

〈
Qab(P2( p̂1 p̂2′)− P2( p̂1 p̂2))

〉
. (A.4)

Notice that the averages 〈Qaa〉 (i.e. without angular factors)
do not enter the simplest variational solution, but are neces-
sary for solution of (A.3). If the squared matrix element Qab

does not depend on w = x1′ − x1, two of three integrations
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over xi can be performed analytically and Eq. (A.3) reduces
to much simpler integral equation given in [71] that allows
for exact solution. In principle, one can integrate over x2 and
x2′ in the terms containing Ψ̃a in Eq. (A.3), but in general
two energy integrations remain in terms containing Ψb(x2).

After the solution of the system of kinetic equations (A.3),
the complex thermal conductivity and shear viscosity coef-
ficients are given by [cf. Eqs. (157) and (158)]

κ̃a = π2naT

3pFa
λ
κ,a
eff × 3

π2

∫
dx(− f ′

F (x))x
2Ψ̃ κa (x), (A.5)

η̃a = na pFa

5
λ
η,a
eff ×

∫
dx(− f ′

F (x))Ψ̃
η
a (x). (A.6)

For the diffusion problem the general transport equation
is even more cumbersome, since it contains the summation
over k. Moreover when solving these equations one needs to
carefully account for the conditions of fit that get rid of the
kernel solutions [91]. We do not write these equations here;
the formal equations can be easily written via the methods
described in Sect. 3. The respective equations for the normal
Fermi-liquid case where wab does not depend on ω can be
found in [71] (without the magnetic field).

Appendix B: Practical formulae for nuclear NS coremat-
ter

In this appendix we give practical expressions for calculating
transport coefficients considered in the paper, namely, ther-
mal conductivity κ̂ , shear viscosity η̂ tensors, and momentum
transfer rates Jab, a 
= b, in the nucleonic (npeμ) NS cores.

Independent components of the thermal conductivity and
shear viscosity tensors are determined by the complex func-
tions κ̃(B) and η̃(B), respectively, as

κ‖ = κ̃(B = 0), (B.7a)

κ⊥ = Re κ̃(B), (B.7b)

κ∧ = −Im κ̃(B), (B.7c)

η0 = η̃(B = 0), (B.8a)

η1 = Re η̃(2B), (B.8b)

η3 = −Im η̃(2B), (B.8c)

η2 = Re η̃(B), (B.8d)

η4 = −Im η̃(B). (B.8e)

Complex functions κ̃ , η̃ are sums of the partial contribu-
tions, a = n, p, e, μ

κ̃ =
∑

a

κ̃a, (B.9)

η̃ =
∑

a

η̃a, (B.10)

where

κ̃a = 5.66 × 1022
(
na
n0

)2/3

T8
λ̃κa

10−6 cm
erg cm−1s−1K−1,

(B.11)

η̃a = 5.66 × 1017
(
na
n0

)4/3
λ̃
η
a

10−6 cm
g cm−1s−1,

(B.12)

n0 = 0.16 fm−3, T8 = T/(108 K) and λ̃ka with k = κ, η are
generalized complex effective mean free paths of quasipar-
ticles.

Effective mean free paths are found from the solution of
a system of linear equations (k = κ, η)

1 =
(
Λk

a + i
ωBFa

vFa

)
λ̃ka +

∑

b 
=a

Λ′k
abλ̃

k
b, (B.13)

where magnetic field enters through the inverse gyroradii

ωBFa

vFa
= qa B

pFac
= 9.04 × 105 Za B12

(
na
n0

)−1/3

cm−1,

(B.14)

where B12 = B/(1012 G) and charge numbers Za = 0, ±1
in npeμ matter.

Coefficients Λk
a in Eq. (B.13) are

Λk
a =

∑

b

Λk
ab +Λ′k

aa . (B.15)

Transport matrix elements Λk
ab, Λ′k

ab in general contain
contributions from all interaction channels between the par-
ticle species a and b. In the model considered here, leptons
(� = e, μ) participate in electromagnetic interactions, neu-
trons in strong interactions, and protons in both. In latter
case one needs to sum both contributions. Below we give the
practical expressions for the transport matrix elements and
related momentum transfer rates Jab for electromagnetic and
strong channels separately. In this Appendix, xa ≡ na/nB ,
where nB is the total baryon density.

Appendix B.1: Electromagnetic channel

In the electromagnetic sector, a, b = e, μ, p. Expressions
below are based on the results described in detail in Sect. 4.1.

Practical expressions for the screening wavenumbers are

ql = 0.27

(
nB

n0

)1/6
√∑

a

Z2
a x

1/3
a

m∗
a

mN
fm−1, (B.16a)

qt = 0.16

(
nB

n0

)1/3√∑

a

Z2
a x

2/3
a fm−1. (B.16b)
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The effective mass for leptons ism∗
� =

√
m2
� + p2

F�/c
2, while

for protons one needs to use the Landau effective mass on
the Fermi surface here.

In what follows we normalize screening momenta over
fm−1: ql = ql/(fm−1), qt = qt/(fm−1).

We need the following integrals

I (0)l = 1

2q3
l

[
arctan

qm
ql

+ qmql
q2
m + q2

l

]
, (B.17a)

I (2)l = 1

2ql

[
arctan

qm
ql

− qmql
q2
m + q2

l

]
, (B.17b)

I (2)tl = I (2)l + q2
l I
(0)
l = 1

ql
arctan

qm
ql
, (B.17c)

where qm = 2 min(pFa, pFb).
Now the transport matrix elements for the thermal con-

ductivity are
[
Λκab
]em = Λκ,tab +Λκ,lab , (B.18)

where the transverse contribution is

Λ
κ,t
ab = 6.10 × 104 T8x

2/3
b

(
nB

n0

)2/3

q−2
t cm−1, (B.19)

and the longitudinal contribution is

Λ
κ,l
ab = 1.86 × 103 T 2

8

(
m∗

am
∗
b

m2
N

)2 (
nB

n0

)−2/3

×x−2/3
a I (0)l cm−1. (B.20)

Non-diagonal coefficients in Eq. (B.13) for thermal con-
ductivity are

[
Λ′κ

ab

]em = 3.65 × 103 T 5/3
8

q2
l q

2/3
t

m∗
am

∗
b

m2
N

x1/3
b

x1/3
a

cm−1. (B.21)

Similar expressions for shear viscosity problem read
[
Λ
η
ab

]em = Λη,tab +Λη,lab , (B.22)

where

Λ
η,t
ab = 200 T 5/3

8

x2/3
b

x2/3
a

q−2/3
t cm−1, (B.23)

and

Λ
η,l
ab = 822 T 2

8

(
m∗

am
∗
b

m2
N

)2 (
nB

n0

)−4/3

x−4/3
a I (2)l cm−1.

(B.24)

Non-diagonal elements are

[
Λ′η

ab

]em = 102 T 2
8
m∗

am
∗
b

m2
N

(
nB

n0

)−2/3 x1/3
b

xa
I (2)tl cm−1.

(B.25)

The momentum transfer rates Jab appearing in the diffu-
sion problems are calculated in a similar way:

[Jab]em = J lab + J tab, (B.26)

where

J tab = 1.89 × 1026 T 5/3
8

(
nB

n0

)4/3 x2/3
a x2/3

b

q2/3
t

g cm−3 s−1,

(B.27a)

J lab = 7.78 × 1026 T 2
8

(
m∗

am
∗
b

m2
N

)2

I (2)l g cm−3 s−1.

(B.27b)

Appendix B.2: Strong channel

The strong interaction operates in the subsystem of protons
and neutrons. We define

CΛ = 1.65 × 106 T 2
8

(
nB

n0

)−1/3

cm−1. (B.28)

Then, for the thermal conductivity and a = n, p

Λκaa +Λ′κ
aa = 1

5
CΛ

(
m∗

a

mN

)4

x−1/3
a

Saa2

mb
, (B.29a)

Λκnp = 1

5
CΛ

(
m∗

pm
∗
n

m2
N

)2

x−1/3
n

Snp1 + Snp2

mb
, (B.29b)

Λκpn = 1

5
CΛ

(
m∗

pm
∗
n

m2
N

)2
x1/3
n

x2/3
p

(
Snp1

mb
+ x2/3

n

x2/3
p

Snp2

mb

)
,

(B.29c)

Λ′κ
np = x2/3

p

x2/3
n

Λ′κ
pn = 1

5
CΛ

(
m∗

pm
∗
n

m2
N

)2

x−1/3
p

S′
np2

mb
.

(B.29d)

For the shear viscosity

Ληaa +Λ′η
aa = CΛ

(
m∗

a

mN

)4

x−1/3
a

Saa4

mb
, (B.30a)

Ληnp = CΛ

(
m∗

pm
∗
n

m2
N

)2

x−1/3
n

Snp2 − Snp4

mb
, (B.30b)

Ληpn = CΛ

(
m∗

pm
∗
n

m2
N

)2

x−1/3
p

(
xn
xp

Snp2

mb
− x5/3

n

x5/3
p

Snp4

mb

)
,

(B.30c)

Λ′η
np = x4/3

p

x4/3
n

Λ′η
pn = CΛ

(
m∗

pm
∗
n

m2
N

)2

x−1/3
p

S′
np4

mb
. (B.30d)

The momentum transfer rates (here only Jnp coefficient
exists)

Jnp = 1.56 × 1030 T 2
8

(
m∗

pm
∗
n

m2
N

)2 (
nB

n0

)
xn

Snp2

mb
. (B.31)
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Table 3 Fit parameters for the Eq. (B.32)

Cross-sec. a p b q c rrms (%) Max error (%)

Snn2 0.912 1.23 0.00631 2.248 4.045 0.05 0.1

Spp2 25.6 1.23 0.404 0.932 0.000 0.7 3.1

Snn4 0.0151 2.42 −0.00334 1.26 0.409 0.2 0.5

Spp4 3.04 1.12 −2.00 −0.336 1.10 1.1 2.2

Snp1 7.03 0.518 0.0789 1.43 0.000 0.3 0.8

Snp2 2.879 0.03806 0.02942 1.115 −2.674 1.0 2.4

Snp4 0.03562 0.0514 0.001068 1.802 −0.02000 1.8 3.9

S′
np2 −0.1833 0.5109 0.001413 2.139 −0.4024 0.2 0.4

S′
np4 −0.4658 −0.03099 0.06761 0.2137 0.3855 1.3 4.0

If the effective masses of nucleons are not known, we
suggest to use some typical effective mass, e.g., m∗

n = m∗
p =

0.8mN .
We provide two types of fits for the transport cross-

sections Sα in expressions above. First ones are for the toy
model where particle fractions are given in Eq. (233). These
fits give Sα(nB). The second fits are valid for any particle
fractions and give Sα(pFn, pFp). Both fits are based on the
in-vacuum interaction.

1. Fits for the toy model Eq. (233).
In this case all nine cross-sections Sα could be fitted by
the formula

Sα(nB) = a

(
n0

nB

)p

+ b

(
nB

n0

)q
+ c, (B.32)

where the appropriate values of fitting parameters a, b,
c, p, and q are listed in Table 3. The fitting domain is
nB = 0.08...1 fm−3.

2. Fits for the general compositions.
In expressions below pFn and pFp are measured in fm−1

and Pmin = |pFn− pFp|, Pmax = pFn+ pFp. All functions
are fitted on a grid 0.1 < pFn,p < 3.5 fm−3.

Saa2 = 7.82
1 + 0.576

∣∣pFa − 1.05
∣∣1.47

(1 − 0.198pFa)
(
0.0349 + p2.14

Fa

) mb,

(B.33)

rrms11= 1.2%, max error = 2.9% at pFa = 0.2fm−1.

pFn Snp1 = 79.5(Pmax − Pmin)

×1 − 0.164Pmax + 0.0258P2
max

P1.52
max

×
√

1 + 0.637P4
min

1 + 1.35P2
min

mb, (B.34)

11 rrms = root mean square relative error.

where rrms= 4.2%, max error= 12% at pFn ≈ 0.7 fm−1,
pFp = 0.7 fm−1.

p3
Fn Snp2 = 5.158

(Pmax − Pmin)
3.342

P1.618
max

(
1 + 0.3691P1.985

max

)

×
(

1 + 0.2072(Pmax − Pmin − 1.505)2
)

×
(

1 + 0.2279Pmin − 0.6076P2
min

+ 0.4962P3
min − 0.07539P4

min

)
mb, (B.35)

rrms = 2.6%, max error = 14% at pFn ≈ 0.1 fm−1,
pFp = 0.1 fm−1.

Saa4 = 2.84
1 + 1.65(pFa − 0.903)2

(1 + 1.70pFa)
(
(pFa + 0.165)2 + 0.103

) mb,

(B.36)

rrms = 0.95%, max error = 2.1% at pFa = 0.6fm−1.

p5
Fn Snp4 = 0.621

(Pmax − Pmin)
5.33

P1.64
max

× 1 + 0.274(Pmax − Pmin − 1.62)2(
1 + 0.262P2.12

max

)

×
(

1 + 0.122Pmin − 0.616P2
min

+0.538P3
min − 0.0860P4

min

)
mb, (B.37)

rrms = 4.0%, max error = 19% at pFn ≈ 0.1 fm−1,
pFp = 0.1 fm−1.

− p3
Fn S

′
np2 = 1.858

(Pmax − Pmin)
3.250

P2.415
max

× (−1 + 7.383Pmax − 1.695P2
max

+0.2441P3
max − 0.01657P4

max + 9.700Pmin

−7.698PmaxPmin + 0.9015P2
maxPmin
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−0.04207P3
maxPmin

−9.511P2
min + 3.939PmaxP

2
min

−0.3213P2
maxP

2
min

+2.822P3
min − 0.4262PmaxP

3
min

− 0.2448P4
min

)
mb, (B.38)

rrms = 2.7%, max error = 18% at kn ≈ 1.5 fm−1, kp =
0.2 fm−1.

− p5
Fn S

′
np4 = p5

Fn Snp4 − p2
Fn + p2

Fp

2
p3

Fn Snp2 +U ′
np4,

(B.39a)

where

U ′
np4 = 0.0451

(Pmax − Pmin)
3.27

P0.448
max

(
0.403P4

maxPmin

−0.918P3
maxP

2
min − 5.54P3

maxPmin + 1.78P2
maxP

3
min

+8.28P2
maxP

2
min + 28.7P2

maxPmin − 0.331PmaxP
4
min

−16.2PmaxP
3
min − 15.7PmaxP

2
min − 74.6PmaxPmin

−0.00111P5
max − 0.118P4

max + 1.77P3
max

−8.17P2
max + 17.2Pmax − 0.118P5

min + 1.77P4
min

+ 41.1P3
min − 21.0P2

min + 94.6Pmin + 1
)

mb.

(B.39b)

For U ′
np4, rrms=0.5% and max error = 1.9%. Notice that

in the region where S′
np4 changes sign and is therefore

small, this fit can give large relative error for S′
np4. In this

case, however, precise calculation of S′
np4 is not necessary

as being small it drops out of the equations.

AppendixC:Electrical conductivity of theNScorematter

Electrical conductivity in a multicomponent plasma is an
aspect of the general diffusion process. In this appendix we
discuss the relation between the electrical conductivity and
momentum transfer rates Jab and give practical expressions
for the npeμ matter composition. Below we do not consider
thermal diffusion.

In the discussion in the main part of the manuscript, the
diffusion in NS cores was described via the generalized Ohm
law (164) which we repeat here for convenience

na

(
d(a) + ha

hn
[J × B]

)
=
∑

b

Jab(wb − wa)

+naqa[wa × B]. (C.40)

According to Eqs. (95), (162), and (164), the entropy pro-
duction rate in the diffusion process is given by multiplication

of Eq. (C.40) by wa and summing over species

Tς = −
∑

a

nawa

(
d(a) + ha

hn
[J × B]

)

= 1

2

∑

ab

Jab(wb − wa)
2. (C.41)

Notice that the Eq. (C.40) is valid in general frame (without
imposing conditions of fit) and the second line in Eq. (C.41)
shows that the entropy generation rate is frame-independent.
Assume now that the only source for diffusion is the electric
field, so that Eq. (87) becomes

d(a) = −qaE. (C.42)

Then the first line of Eq. (C.41) reduces to

Tς = J E − ug [J × B] ≡ J E′, (C.43)

where

ug =
∑

a

Xawa, Xa = naha
nh

, (C.44)

may be called the relativistic ‘center of mass’ velocity of a
liquid, and

E′ = E + [ug × B
]

(C.45)

is the electric field in the center of mass frame, in which
ug = 0. The terms Xa in Eq. (C.44) are the ‘mass’ fractions
which in strongly degenerate matter (ha ≈ μa) are

Xa ≈ μana∑
b μbnb

. (C.46)

The center-of-mass frame is defined by the condition

ug =
∑

a

Xawa = 0. (C.47)

Since the center-of-mass frame and hence E′ is unique,
the Eq. (C.43) is frame-independent in accordance with
Eq. (C.41). Notice that only12 in the center-of-mass frame,
the heat release is given by the standard J E expression.

When the diffusion driving forces are given by Eq. (C.42),
all diffusion velocities and any their linear combination (i.e.
J and ug) will be linear in components of E. Namely,

J = σ̂ E, (C.48)

where σ̂ is the electrical conductivity tensor. This tensor,
however, is not frame-independent since the electric field (at
B 
= 0) depends on the frame. Indeed, let us denote the
electrical conductivity in the center-of-mass frame as σ̂ ′ and
let

ug = ÛE. (C.49)

12 Of course, this is strictly true only if d(a) = −qaE. More general
case is considered, e.g., in [96], where d(a) includes additional diffusion
terms ∝ ∇μa .
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Then

J = σ̂ ′E′ = σ̂ ′(E + [ÛE × B]) = σ̂ E, (C.50)

where

σi j = σ ′
im(δmj + εmkl BkUl j ). (C.51)

The electrical conductivity tensor can be found by inver-
sion of the Eq. (C.40) in any frame, however according to
Eq. (C.43) it physically motivated to do this in the center-of-
mass frame characterized by Eq. (C.47).

Let us, however, start from the case B = 0 in general
frame, characterized by
∑

a

Zawa = 0,
∑

a

Za = 1, (C.52)

where {Za} is a constant set. The general Ohm law Eq. (C.40)
takes the Stephan–Maxwell form

nad(a) =
∑

b

Jab(wb − wa). (C.53)

Remind that the vectors in right hand side, given by Eq. (87)
[not necessary by Eq. (C.42)], obey
∑

a

nad(a) = 0. (C.54)

The system (C.53) is singular and can not be inverted directly.
Assume that the inverse relationship has the form

wa = −
∑

b

Dabnbd(b) (C.55)

with Dab being the matrix of diffusion coefficients. Due to
singularity of this equation, diffusion coefficients Dab are
not uniquely defined. From a general point of view it is con-
venient to require this matrix to be symmetric [159,160] that
satisfy the Onsager relations manifestly. Since Eq. (C.52)
should hold for any set d(a), the symmetric diffusion matrix
must obey [161]
∑

a

ZaDab =
∑

b

DabZb = 0. (C.56)

It was shown in [161] that the following linear system
relates symmetric matrix Dab and the symmetric matrix Jab
∑

c

(
Jac − Zc

Za
Jaa

)
Dcb = −δab + Za, (C.57)

where the diagonal elements Jaa are defined in such a way
to satisfy
∑

a

Jab = 0. (C.58)

The advantage of Eq. (C.57) is that it automatically leads to
the symmetric diffusion coefficient matrix Dab, as proved in
[161]. However, no simple method of the analytical solution
of this equation is known. The explicit expressions Dab in

therms of Jab are given in [161] for two- three- and four-
component system.

Notice that if Dab is found in some frame, then the matrix
Dab in a different frame, described by a different set of coef-
ficients {Za}, is given by

Dab = Dab −
∑

c

ZcDcb −
∑

c

ZcDac +
∑

cd

ZcZdDcd .

(C.59)

For the electric current from Eq. (C.55) using Eq. (C.42)
one obtains

J = σ E, (C.60)

where

σ =
∑

ab

qaqbnanbDab. (C.61)

In the absence of magnetic field, σ is a scalar quantity, more-
over from (C.61) and (C.59) it is clear that it does not depend
on the choice of frame.

Now let us turn to the case of non-zero magnetic field.
Following the formalism of Sect. 3.3 we direct the Z axis
along the direction of B and introduce cyclic components
of vector. We define in this section w̃a = wax + iway and
similarly for J , d(a), and E vectors (in this definition we
omit normalization constants for brevity). Equation (C.40)
takes the form [8]

nad̃(a) − iXa J̃ B =
∑

b

Jab(w̃b − w̃a)− iqanaw̃a B. (C.62)

Formally, ifDab is known from the non-magnetized problem,
one can first transform Eq. (C.62) as

w̃a = −
∑

Dab
(
nbd̃(b) + iqbnbw̃bB − iXbB J̃

)
(C.63)

Exclusion of w̃a from Eq. (C.63) requires another linear sys-
tem solution which can be written as

w̃a = −
∑

bc

RacDcb
(
nbd̃(b) − iXbB J̃

)
, (C.64)

where Rab is the following matrix inverse

Rab = (δab − iDabqbB)
−1 . (C.65)

Electric current can be now calculated as J̃ =∑a naqaw̃a =
σ̃ Ẽ , where d̃(a) = −qa Ẽ , cf. Eq. (C.42). Then the complex
electrical conductivity is

σ̃ =
∑

abc qanaRacDcbnbqb
1 − i B

∑
abc qanaRacDcbXb

. (C.66)

If the calculations are performed in the center-of-mass frame,
i.e. Za = Xa and J̃ = σ̃ ′ Ẽ ′, the sum in the denominator in
Eq. (C.66) vanishes and one obtains

σ̃ ′ =
∑

abc

qaqbnanbRacDcb. (C.67)
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The complex electrical conductivity σ̃ ′ in Eq. (C.67) is
related to the Cartesian components of the electrical conduc-
tivity tensor as [cf. Eq. (119)] σ̃ ′ = σ⊥ − iσ∧.

The analytical calculations along these lines are cumber-
some and not easily tractable since they require additional
matrix inversion/linear system solution in order to find Rab.
Therefore, one usually directly inverts Eq. (C.62) replacing
one of the equations (i.e. for a = 1) with Eq. (C.47) (see,
e.g., [74]). In any case, tractable analytical expressions can be
obtained only for small number of species r . For two- three-
and four-component matter, the resulting general expressions
for σ̃ ′ can be found in [8].

Finally we show below the solution of Ref. [8] adapted
for the npeμ NS core composition. We take into account
that qn = 0 and neglect lepton-neutron interactions. The
resulting expression reads [8,105]

σ̃ ′−1 = d0 + i Bd1 − B2d2

a0 + i Ba1
+ X2

n

Jpn
B2,

a0 = e2(Jepn
2
μ + Jμpn

2
e + Jeμn

2
p),

a1 = −e3nenμn p,

d0 = Jep Jμp + Jeμ Jμp + Jeμ Jep,

d1 = −ene(1 − 2Xe)Jμp − enμ(1 − 2Xμ)Jep

−en p(1 − 2Xe − 2Xμ)Jeμ,

d2 = e2
[
nenμ(1 − Xe − Xμ)

2 − n p(X
2
enμ + X2

μne)
]
,

(C.68)

where e = |e| is an elementary charge.
The last term in Eq. (C.68) which contains Jpn is respon-

sible for increase of the resistivity at large B [105,162]
observed in plasma containing neutral species [163].
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