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Abstract: The members of the mitochondrial carrier fam-
ily, also known as solute carrier family 25 (SLC25), are
transmembrane proteins involved in the translocation of a
plethora of small molecules between the mitochondrial
intermembrane space and the matrix. These transporters
are characterized by three homologous domains structure
and a transport mechanism that involves the transition
between different conformations. Mutations in regions
critical for these transporters’ function often cause several
diseases, given the crucial role of these proteins in the
mitochondrial homeostasis. Experimental studies can be
problematic in the case ofmembrane proteins, in particular
concerning the characterization of the structure–function
relationships. For this reason, computational methods are
often applied in order to develop new hypotheses or to
support/explain experimental evidence. Here the compu-
tational analyses carried out on the SLC25 members are
reviewed, describing the main techniques used and the
outcome in terms of improved knowledge of the transport
mechanism. Potential future applications on this protein
family of more recent and advanced in silico methods are
also suggested.

Keywords: membrane proteins; mitochondrial carrier
family; molecular dynamics; protein structure modelling;
solute carrier family 25.

Introduction

Mitochondria and cytosol are involved in many metabolic
processes that require the import/export of fundamental mol-
ecules (e.g., adenosine diphosphate (ADP), adenosine
triphosphate (ATP), and phosphate for oxidative phosphory-
lation, substrates for the citric acid cycle, for fatty acid oxida-
tion, for mitochondrial replication, etc.) [1]. Due to the
impermeablenatureof the innermembrane, onlya fewneutral
molecules (such as O2 and CO2) can cross the mitochondrial
membranes without protein mediation. The transport of a va-
riety of metabolites, nucleotides, and cofactors through the
inner mitochondrial membrane is performed by a family of
membrane transporters known asmitochondrial carrier family
(MCF) or solute carrier family 25 (SLC25). This family includes
solute transporters, such as the mitochondrial tricarboxylate
transport protein (SLC25A1) [2], the ADP/ATP translocase
(SLC25A4) [3] and the carnitine–acylcarnitine carrier
(SLC25A20) [3]. Although big efforts have been made to char-
acterize this protein family (Table 1), a fifth of them still does
not have a known function (SLC25A16, SLC25A25, SLC25A34,
SLC25A35, SLC25A39, SLC25A40, SLC25A43, SLC25A45,
SLC25A46, SLC25A48, SLC25A49, SLC25A50, and SLC25A53).

All MCs have common structural characteristics,
different from those of any other SLC family member. The
structural feature that makes their identification unequivocal
is the presence of three homologous domains repeated in
tandem, of about 100 amino acids in length. Each one con-
tains two hydrophobic regions, separated by a large hydro-
philic sequence. In detail, the structure is composed of six
transmembrane α-helices (H1 to H6), linked by three short
α-helices (h12, h34 and h56) on the matrix side, forming a
funnel-shaped structure with the cavity open towards the
cytosol and closed on the side of the matrix. Proline residues
of the conserved Px[DE]xx[RK] signaturemotifsmake contact
with the odd numbered transmembrane α-helices, while the
charged residues of these motifs form an interhelices salt
bridges network that closes the cavity on the matrix side.
When the internal cavity is open towards the cytosol, the
transporter is in the cytoplasmic state (c-state) conformation
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[45]. On the contrary, the charged residues of another motif
[FY][DE]xx[RK] are responsible for a salt bridges network on
the “cytoplasmic” side of the protein. It is assumed that,
during a catalytic transport cycle, the alternating formation of
the above salt bridges networks determines the MCs’ transi-
tion from the c-state to a state with the cavity open to the
matrix (the m-state). Therefore the central cavity is alterna-
tively accessible to the substrate from the intermembrane
space or the matrix (Figure 1) [45].

Mutations, insertions, and deletions in the sequence of
these transporters often cause numerous diseases affecting
the metabolism or the energy production of the mito-
chondria (Table 2) [46]. Most of the missense mutations
detected in patients suffering from MCs related diseases
correspond to those regions of the transporters that are
vital for their function [47]. For example, it is essential for
the proper functioning of the transporter that nomutations
occur at the substrate binding site or near the matrix/
cytosolic gate [1]. On the other hand, almost all positions
corresponding to residues in contact with the lipid bilayer,
as well as most of those participating in inter-helices in-
teractions, tolerate substitutionwith cysteine or alanine [1].

The study ofmembrane proteins through experimental
approaches can be nontrivial. In this regard, given the
recent rise in terms of computational power and the
development of newer and more efficient techniques, in
silico studies can help to understand experimental obser-
vations or propose new mechanistic theories. Here,
computational analyses of the SLC25 family members are
reviewed. Furthermore, new in silico approaches are also
discussed, in order to provide a future perspective on the
potential application of innovative simulation techniques
to the study of this family of transporters.

Table : SLC transporters known substrates, based on
biochemical studies.

Approved
symbol

Transported substrates References

SLCA Citrate, isocitrate, malate, phospho-
enolpyruvate, and cis-aconitate.

[, , ]

SLCA Histidine, homoarginine, mono-
methylarginine, and asymmetric dime-
thylarginine (ADMA).

[]

SLCA Phosphate, H+, OH−, copper. [, ]
SLCA adenosine triphosphate (ATP), adeno-

sine diphosphate (ADP), H+.
[, ]

SLCA ATP, ADP. []
SLCA ATP, ADP. []
UCP
(SLCA)

H+. []

UCP
(SLCA)

Fatty acids, H+, malate, oxaloacetate,
aspartate, malonate, sulfate, and
phosphate.

[, ]

UCP
(SLCA)

H+. []

SLCA Malonate, malate, succinate, phosphate,
sulfate, sulfite, thiosulfate, and
glutathione.

[–]

SLCA Oxoglutarate, malate, oxaloacetate, and
glutathione.

[–]

SLCA Glutamate, H+, aspartate. []
SLCA Glutamate, H+, aspartate. []
SLCA
(UCP)

Sulfate, sulfite, thiosulfate, phosphate,
and dicarboxylates.

[]

SLCA Ornithine, lysine, arginine, and citrulline. []
SLCA Coenzyme A (CoA), flavin adenine dinu-

cleotide (FAD), flavin mononucleotide
(FMN), adenosine monophosphate
(AMP), nicotinamide adenine dinucleo-
tide (NAD+), adenosine′,′-diphosphate
(PAP), ADP.

[]

SLCA Glutamate, H+. []
SLCA Thiamine pyrophosphate. []
SLCA Carnitine, acylcarnitine. []
SLCA -oxoadipate, -oxoglutarate, adipate,

glutarate, pimelate, -oxopimelate,
-aminoadipate, oxaloacetate, and
citrate.

[]

SLCA Glutamate, H+. []
SLCA ATP, ATP-Mg, ADP, AMP, and phosphate. []
SLCA ATP, ATP-Mg, ADP, AMP, and phosphate. []
SLCA S-adenosylmethionine. []
SLCA
(UCP)

H+. []

SLCA Fe. []
SLCA Arginine, lysine, homoarginine, methyl-

arginine, ornithine, and histidine.
[]

SLCA
(UCP)

Sulfate, sulfite, thiosulfate, phosphate,
and dicarboxylates.

[]

SLCA ADP, ATP. []
SLCA Folate. [, ]

Table : (continued)

Approved
symbol

Transported substrates References

SLCA Uracil, thymine, guanine, and cytosine
(deoxy)nucleoside di- and triphosphates.

[]

SLCA Uracil, thymine, guanine, and cytosine
(deoxy)nucleoside di- and triphosphates.

[]

SLCA Fe. []
SLCA Glycine. []
SLCA ATP-Mg, phosphate. []
SLCA Coenzyme A, dephospho-CoA, ADP, and

adenosine ′,′-diphosphate.
[]

SLCA Valine, leucine, and isoleucine. []
SLCA H+. []
SLCA NAD+. []
SLCA NAD+. []
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Computational methods for
membrane proteins analysis

In the absence of experimental data, the amino acid
sequence of a protein represents the starting point for an-
alyses aimed at understanding its structure and function.
Multiple sequence alignments (MSAs) of protein sequences
(e.g., proteins of a given family) can help to identify
conservedmotifs important for molecular function, or they
could highlight critical differences due to divergence in the
mechanism of action or substrate specificity. In the case of
membrane proteins, the sequence can also tell us how and
how many times the protein backbone crosses the bilayer
membrane. Several web-servers, such as TOPCONS [48],
are able to predict the topology of the protein and the
presence of signal peptides, allowing to better understand
the spatial organization of the protein’s residues. Obvi-
ously, atomic coordinates are far more useful but often
really hard to obtain.

The huge amount of data derived from annotated
protein sequences and structures are now important re-
sources used to model with great accuracy the three-
dimensional structure of proteins not yet solved. These
approaches are divided in comparative (by homology)
modeling and template-free modeling. While the first
category is based on the sequence similarity between two
proteins (for one of which the three-dimensional structure
is known), the second can be used to build a protein’s
structural model from scratch. The most used comparative
modeling software is MODELLER [49], where the choice of

one ormore suitable templates is crucial for the production
of reliable results. The template structure should display at
least a 30% sequence identitywith the target (the protein to
be modeled) and the resolution should not be above 3.5 Å
[50, 51]. Historically, the I-TASSER software was the most
used one for template-free modeling, this being one of the
best web servers for modeling in terms of accuracy and per-
formance [52, 53]. However, machine learning and deep
learning algorithms have recently been used, which allow to
achieve results never seen before (for further details about
these modeling techniques see Section Structural modeling)
[50]. Both the comparative and the template-free approaches
resulted to be valid also for transmembrane proteins.

Once the structure is available, molecular dynamics
(MD) simulations can be performed; allowing the system to
explore several configurations by solving Newton’s laws of
motion according to interatomic forces calculated using a
molecular force field [54].With this technique, it is possible
to analyze details of the conformational landscape of
macromolecules that cannot be easily studied with wet lab
experiments. In order to simulate membrane proteins,
these must be embedded in a membrane bilayer that
mimics their real molecular environment. The web-server
CHARMM-GUI significantly helps users to accomplish such
a task and it provides a large amount of different lipid types
to build realistic biological membranes [55]. An extensive
description about the setup of membrane proteins simu-
lations can be found here [56, 57]. However, biologically
relevant rare events, such as ligand binding or conforma-
tional transitions, are often very difficult to sample during
atomistic simulations. Thus, several additional simulation

Figure 1: Representation of the cytoplasmic
and matrix state of the mitochondrial
carriers.
For the cytoplasmic state, the bovine ATP/
ADP carrier structure (PDB ID: 1OKC) is
depicted [3]; for the matrix state, the
Thermothelomyces thermophilus ATP/ADP
carrier structure (PDB ID: 6GCI) is shown
[85]. Residues belonging to thematrix motif
[P]x[DE]xx[RK] and involved in the matrix
network salt bridges are shown as sticks
andhighlightedwith green circles; residues
belonging to the cytoplasmicmotif [FY]x[DE]
xx[RK] and involved in the cytoplasmic
network salt bridges are shown as sticks
and highlighted with yellow circles. This
figure and the following ones have been
drawn using UCSF Chimera molecular
graphics software [177].
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methods are being developed and applied. These can be
divided in four groups: methods that take advantage of the
thermal energy and fluctuations, such as replica exchange

molecular dynamics (REMD) [58]; techniques that need
different conformations of the protein in order to identify a
minimum free energy path between them (e.g.,milestoning
[58]); other techniques that also exploit the end-point
states, aiming tofind a free energydifference between them
[59] (in general, these are more suitable for small perturba-
tions such as ligand binding or single point mutations); and
finally, methods that apply a bias potential on a set of col-
lective variables (CVs) (e.g., dihedral angles, distances, etc.)
responsible for the slowest degrees of freedom of the system,
allowing the system to overcome free energy barriers. This
last group includes methods such as metadynamics [60] or
adaptive biasing force [61]. The abovedescribed classification
concerning the use of advanced MD sampling techniques for
the study ofmembrane proteins is thoroughly reviewed in the
work of Harpole and Delemotte [62].

Computational studies of the SLC25
protein family members

In this section, anhistorical perspectiveon the computational
studies of the SLC25 protein family members is reported.

Comparative sequence/structure analyses

The first hypothesis of a common substrate binding site in
MCF was formulated by Robinson and Kunji, combining
experimental evidence, and computational analyses [63].
This study was conducted on the Saccharomyces cerevisiae
MCs, as 19 of them had been already characterized at that
time. In detail, these were classified into three major sub-
families, based on the functional groups of the experimen-
tally identified substrates: keto acids carriers, amino acids
carriers, and carriers of adenine-containing substrates. The
MSA alone was not sufficient to assign a function to several
residues identified by evolutionary conservation. For this
reason, comparative structural models of the carriers (in the
c-state) were built, using the structure of the mitochondrial
bovine ADP/ATP carrier (bAAC, Protein Data Bank (PDB) ID:
1OKC [3]) as template. Then, the distances between the
functional groups of each substrate were used to obtain po-
sitional and chemical constraints for the identification of
potential binding residues.

Using this approach, some conserved residues, located
in the even numbered transmembrane helices (H2, H4, and
H6) of the three domains, resulted to have important cor-
relations within their subfamilies (Figure 2).

Table : Diseases associated with SLC transporters, based on
the Online Mendelian Inheritance in Man (OMIM) database
annotations.

Approved
symbol

Phenotype References

SLCA Combined D-- and L--hydroxyglutaric
aciduria

[, ]

Myasthenic syndrome, congenital, ,
presynaptic

[–]

SLCA Mitochondrial phosphate carrier
deficiency

[–]

SLCA Mitochondrial DNA depletion syndrome
A (cardiomyopathic type) AD

[]

Mitochondrial DNA depletion syndrome
B (cardiomyopathic type) AR

[–]

Progressive external ophthalmoplegia
with mitochondrial DNA deletions,
autosomal dominant 

[–]

SLCA Mitochondrial DNA depletion syndrome
*

[]

SLCA Paragangliomas  []
SLCA Developmental and epileptic encepha-

lopathy 
[, ]

SLCA Citrullinemia, adult-onset type II [–]
Citrullinemia, type II, neonatal-onset [–]

SLCA Hyperornithinemia–hyper-
ammonemia–homocitrullinemia
syndrome

[, –
]

SLCA Microcephaly, Amish type [, ]
Thiamine metabolism dysfunction syn-
drome  (progressive polyneuropathy
type)

[]

SLCA Carnitine–acylcarnitine translocase
deficiency

[–]

SLCA Mitochondrial DNA depletion syndrome
*

[]

SLCA Developmental and epileptic encepha-
lopathy 

[–]

SLCA Fontaine progeroid syndrome [–]
SLCA Combined oxidative phosphorylation

deficiency 
[]

SLCA Exercise intolerance, riboflavin-
responsive*

[]

SLCA Anemia, sideroblastic, , pyridoxine-
refractory

[]

SLCA Metabolic crises, recurrent, with vari-
able encephalomyopathic features and
neurologic regression

[–]

SLCA Neuropathy, hereditary motor and sen-
sory, type VIB

[–]

UCP Obesity, susceptibility to, BMIQ** [, ]
UCP Obesity, severe, and type II diabetes** [, ]

*Provisional phenotype–gene relationship. **Susceptibility.

68 Pasquadibisceglie and Polticelli: Computational studies of the SLC25 MCs family



The residues in the first domain, collectively identified
as “contact point I”, were found out to discriminate be-
tween different substrates of the same class (e.g., different
amino acids): basic residues [RK] are involved in carboxyl
or phosphate groups recognition, acidic residues [DE]
stabilize substrates’ basic amino groups, aromatic residues
[FY] interact with aromatic moieties and hydrophobic
amino acids [ILV] are needed to form Van der Waals in-
teractions with hydrophobic portions of the ligands.

On the contrary, the residues at the second domain,
identified as “contact point II”, were predicted to distinguish
between different substrates classes: in the amino acid sub-
family, themotif R[DE] is able to recognize the amine (–NH3

+)
and carboxyl (–COO−) functional groups of the transported
molecule; in the keto acid subfamily, the motif R[QHNT] in-
teracts with the negatively charged keto group; and in the
adenine nucleotide subfamily, the hydrophobic motif G
[IVLM] recognizes the adenine moiety of the substrate.

Finally, the residues (generally R or K) located at the
third domain (“contact point III”) are able to recognize
carboxyl or phosphate groups, stabilizing the substrate
binding [63, 64]. The region of the protein inwhich all these
contact points are located was defined as the common
substrate binding site.

In a following work [45], sequence-based analyses of
the 3-fold pseudo-symmetrical repeats showed that the
subfamily’s conserved asymmetric residues were all
located in a central region of the transporters, colocalized
with the previously described common substrate binding
site. The symmetry analyses also suggested a 3-fold
mechanism in which the transition, c- to m-state, occurs
with a symmetric rotatory movement of the six α-helices.

Molecular dynamics and enhanced sampling
simulations

Around the same years, there were also several attempts to
analyze the transport process of MCs, exploiting compu-
tational techniques such as MD. In 2006, the first in silico
study of the bAAC (PDB ID: 1OKC [3]), was published [65]. A
MD simulation of the transporter, inserted in a palmitoyl-
oleoyl-phosphatidyl-choline (POPC) bilayer membrane,
allowed hypothesizing the potential role of the α-helices
during the conformational changes. Notwithstanding the
relatively short length of the simulation (20 ns in total), due
to the limited computational resources available at that
time, flexibility of the odd-numbered helices kink was
pointed out through fluctuation and geometrical analyses.
Three proline residues (Pro27, Pro132 and Pro229), of the
conserved motif Px[DE]xx[RK], were suggested to function
as hinges, critical for the movement of the helices during
the transition from the c- to the m-state. Moreover, signif-
icant variations were found for the rotation angles of the
even-numbered helices, and for the salt bridges connecting
the transmembrane helices.

In 2008, the role of the electrostatic potential in driving
the translocation of the substrate, in the AAC carrier, was
investigated [66, 67]. Two papers were published, in both
of which unbiased and biased MD simulations of the
crystal structure of the AAC were carried out, in the pres-
ence and absence of the transported solutes ADP and/or
ATP. Although in the two studies different strategies and
different biased methodologies were employed, these ob-
tained common results, pointing to a crucial role of the

Figure 2: Schematic representation of the
three contact points.
The three contact points are highlighted in
red and circled, using the bovine ATP/ADP
carrier structure (PDB ID: 1OKC) as reference
[3]. For each contact point, a list of the
corresponding residues involved in the
recognition of particular ligand moieties,
depending on the ligand subclass, are
reported.
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protein-generated electrostatic potential in attracting the
negatively charged nucleotide ADP toward the bottom of
the transporter. In particular, both studies identified a
common interaction of the diphosphate moiety of the
substrate with residues Lys22, Arg79, and Arg279; these
interactions were responsible for the disruption of the
matrix network salt bridges, suggesting a possible mech-
anism for the conformational transition.

Eight years later, due to the advances in the compu-
tational field, atomistic simulations were able to capture
and describe the transition from the c- to the m-state of the
AAC [68]. The structure of the human AAC was built by
homology modeling using as a template the crystal struc-
ture of bAAC [3]. A biased MD approach, the well-tempered
metadynamics with multiple interacting walkers [69, 70],
was used to predict the structural changes of the trans-
porter linked to changes in free energy. The gyration radii
(Rg) of three crucial regions were used as collective vari-
ables (CV); these were calculated considering the residues
involved in the cytoplasmic network and aromatic gate (Rg

c-gate), the substrate binding site residues (Rg center) and
the matrix network residues together with the closest Pro
and Gly residues (Rgm-gate). Two free energyminimawere
identified at the extreme values of the Rg c-gate and Rg

m-gate, corresponding to the c-state and m-state confor-
mations of the protein. Between the two minima, another
free energy basin resulted to be associated with an inter-
mediate conformation, where both the c- and m-networks
are in a more closed configuration. The transition from the
c- to them-state was characterized by an activation barrier,
which was reduced by the binding of ATP or ADP. Of note,
the free energy minimum of the intermediate-state was
deeper with the inactive nucleotides (i.e. adenosine
monophosphate [AMP], guanosine triphosphate [GTP],
guanosine diphosphate [GDP], and guanosine mono-
phosphate [GMP]), preventing the conformational
transition.

At the same time, a Markov model of the molecular
kinetics [71], describing the stochastic motion of this car-
rier, was published [72]. This model, fitted on experimental
data, confirmed that cytoplasmic and matrix networks
have crucial roles for the conformational changes of the
transporter. In particular, when the energy values of these
networks are similar to each other and to the substrate
binding energy, the energy barrier is minimized and the
transport flow is maximized. Thus, the optimal binding of
the substrate to the intermediate conformation would be
responsible for the reduction of the energy barrier between
c- and m-conformations.

A further study, aimed at describing the conformational
transition, was carried out using a different biased MD

method, called Linear Response Path Following (LRPF),
which allows simulating large structural changes without
knowledge of the target conformation [73, 74]. In the c- to the
m-state transition, packing of the cytoplasmic network resi-
dueswas observed,with a large asymmetricmovement of the
first domain (H1–h12–H2). This was characterized by a
disruption of the salt bridge between Glu29 and Arg279,
whose formation had been observed by Wang and collabo-
rators in the simulations of the translocation of ADP [66].

Recently, an extensive unbiased MD simulation (three
independent 3 μs trajectories) showed highly asymmetric
interactions between the residues of the matrix network in
the apo c-state of AAC [75]. In particular, a Glu29–Arg279
interaction was observed, supporting the hypothesis that
this salt bridge is critical for the conformational transition.
Moreover, Arg30, Arg139 and Arg236 were suggested to be
responsible for the stabilization of the odd-numbered he-
lices, through the interaction with the negative electric
dipole on the C-terminal ends of these helices.

Cardiolipin–AAC interactions

Noteworthy, none of the above-mentioned studies used a
bilayer membrane mimicking the inner mitochondrial
membrane (IMM), where SLC25 members reside. All the
systems were built homogeneously using only POPC.
Instead, the IMM ismade up by amix of phospholipids, the
most abundant being phosphatidylcholine (PC), phos-
phatidylethanolamine (PE), and cardiolipin (CL) [76]. The
latter is a peculiar component of thismembranewith one or
two negative charges, which was experimentally described
to interact with and regulate the AAC transporter [77, 78].

For this reason, several groups tried to analyze the
characteristics of this interaction in silico.

Coarse-grained (CG) and atomistic simulations were
applied to investigate the binding of CL to bovine and yeast
AAC (PDB ID: 1OKC [3]; PDB ID: 4C9G [79]) and UCP2
(uncoupling protein 2; PDB ID: 2LCK [80]) [81]. CL mole-
cules were predicted to bind at three different sites with the
phosphate groups inserted in the cavities produced by the
three short α-helices (h12, h34, and h56), in correspon-
dence of the highly conserved [YWF][RK]G and [YF]xG
motifs, consistent with what had been observed experi-
mentally [3, 82].

These findings were confirmed by Duncan and col-
leagues [83], who also analysed lipid–AAC interactions
performing multiscale simulations (both CG and atom-
istic). Of note, they observed that the residence time of CL
was very peculiar, as it was significantly higher than the
residence time of PC and PE.
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Moreover, the simulations performed by Yi and collab-
orators showed that the conserved CL-binding motifs [YWF]
[RK]G and [YF]xG were organized in β-turn structures,
responsible for the interaction and stabilization of the three
Pro kink regions, but not in a symmetric manner [75].

The same group recently reported an additional
computational study of the CL–AAC binding [84], in which
a long simulation (13 µs) allowed to observe a dynamic
interaction in three different protein regions, previously
described as binding sites. However, in one binding site the
CLmolecule hadmostly inter-domain interactions (domain
2 and 3), while in the other two binding sites CLs mainly
established intradomain interactions (domain 1 or 3).
Again, these asymmetrical binding modes were consistent
with their previous study [75] and it suggested a physio-
logical relevance for the displacement of domain 1
observed in the recently solved AAC structure in the
m-state [85].

These results suggest an asymmetrical behavior of the
transporter, a hypothesis supported also by other MD
studies [73, 86].

Future perspectives

Structural modeling

During the last years, thanks to new powerful algorithms,
computational techniques for the modeling of protein
structures significantly improved, as resulted also dur-
ing the 13th Critical Assessment of protein Structure
Prediction (CASP13), where the artificial intelligence
(AI)-based method developed by DeepMind, AlphaFold,
outperformed all other methods [87]. This is a co evolu-
tion based method that uses the protein’s MSAs to detect
the residues that co-evolve, predicting a probability
distribution over the pairwise distances between the
residues pairs. This can be translated into a statistical
potential function and then optimized with a simple
gradient descent algorithm to generate a folded protein
structure [88, 89]. A similar approach was implemented
in a method developed by Jinbo Xu’s group, named
RaptorX [90], and in amethod from Baker’s group, called
trRosetta [91]. The big advancement in this field could
clearly allow generating highly reliable structural
models of MC family members whose structure is not
available yet.

As an example, using the two latter methods,
different conformations of bAAC and Thermothelomyces
thermophilus AAC (TtAAC) (PDB ID: 1OKC [3]; PDB ID:
6GCI [85]), were obtained (Figure 3) (Pasquadibisceglie &

Polticelli, unpublished data). In particular, compared to
the experimentally solved structures, the modeled
structures display lower gyration radii of the cytoplasmic
network residues (using the open-source, community-
developed PLUMED library [92], version 2.7 [93]), point-
ing out a more closed conformation of the cytoplasmic
side. Conversely, compared to the experimentally solved
structures, the gyration radii of thematrix networks were
higher in the case of the bAACmodel structure, but lower
for the TtAACmodel structure. This is due to the different
conformations of the two crystal structures (bAAC in
c-state, while TtAAC in m-state) (Table 3). Moreover, the
presence of inhibitors and/or antibody fragments in the
solved structures, used to block the proteins in a precise
conformation, are likely to cause structural distortions,
in line with what Falconi and Dehez, independently,
observed [65, 67]. However, it should be noted that the
two above-mentioned modeling approaches exploit the
information about co evolving residues; this could result
in favoring lower distances between the interacting
residues of the matrix and cytoplasmic networks, thus
producing intermediate-like conformations.

Figure 3: Superimposition of the three-dimensional structures and
the molecular models of the bovine ATP/ADP carrier (bAAC), and the
ATP/ADP carrier from Thermothelomyces thermophilus (TtAAC) [3,
80, 85]. View from the inner mitochondrial space (top), and from the
matrix (bottom). The structure solved experimentally is colored in
tan, the structure modelled with RaptorX in light blue [90] and the
structural model produced by trRosetta in pink [91].
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Finally, to improve the accuracy of the model of a
protein structure the refinement step is crucial. MD simu-
lations are often used to accomplish such a task. However,
it is nontrivial to consistently improve a structural model
and select the conformation closer to the native state [94].
This is especially true for membrane proteins models,
where the scoring function has to take into account the
presence of a lipid bilayer. In this regard, refinement pro-
tocols and scoring functions developed specifically for
membrane proteins [95] could improve the modeling ac-
curacy for this class of proteins in general and for the SLC
superfamily members in particular.

System setup for MD simulations

As several studies showed, CL is a crucial phospholipid for
the IMM and for the MCs, affecting their dynamics [75, 77,
78, 81–84]. For this reason, MD simulations would be more
accurate and reliable if the transporters were embedded in
a lipid bilayer that mimics the concentration of CL and the
relative asymmetric distribution, this phospholipid being
predominant in the inner leaflet with respect to the outer
one, in a 3:1 ratio [76, 96]. Also the fatty acids composition
often does not reproduce that of a realistic IMM, charac-
terized by a high degree of unsaturation [97, 98]. Nowa-
days, thanks to the great advances in the field of atomistic
and CG force fields, more realistic membrane models are
being used for MD simulations, trying to reproduce com-
plex systems and interactions, and in this regard
CHARMM-GUI represents a valuable resource [55, 99].

Sampling of rare events

Biological processes, such as them- to the c-state transition
or the substrate translocation, occur in the timescale of
microseconds to seconds.

One solution to sample these rare events could be that of
extending the simulation length, but this is not really

convenient due to the effort needed in termsof computational
resources. A larger time step allows extending the simulation
time with a lower computational effort. This can be easily
achieved using the method of hydrogen mass repartitioning
(HMR), where the mass of heavy atoms is redistributed onto
their bonded hydrogens, slowing their motions without
introducing significant additional errors [99]. In a recent
study, the use of HMR for membrane-containing systems
(with CHARMM36 FF) has been extensively tested, showing
negligible differences with respect to a conventional
approach. However, the authors pointed out that, using the
CHARMM36 lipid FF, a cutoff different from 12 Å with a force
switching function starting from 8 to 10 Å could generate
significant deviations on several parameters [99].

Anyhow, biologically relevant rare events are often

very difficult to sample during atomistic simulations, even

during microseconds-long trajectories. In this regard, two

enhanced sampling strategies have been used to study the

transport mechanism of the AAC, and its relative free en-

ergy landscape [68, 73]. Nevertheless, the application of

newmethods could better clarify several aspects of this and

other systems. For example, supervised and unsupervised

machine learning algorithms could be exploited for the

selection of CVs, to better understand the properties of a

simulated system, or to accelerate the sampling during the

trajectory (i.e., enhanced sampling) [100]. Moreover, other

advanced MD techniques are being developed, such as the

on-the-fly probability-enhanced sampling (OPES) that

avoids the sampling of unphysical states and that allows a

better exploration of the free energy surface [101].

Conclusions

The studies here reviewed showed how computational
approaches could suggest new hypotheses or support
experimental evidences: comparative analyses identified
critical residues for the substrate recognition [63, 64],
further supported by MD simulations [66, 67], cocrystal-
lized inhibitors [3] and photolabeling studies [102]. In a
similar way, the salt bridges networks involved in the
conformational changes were identified from comparative
studies [45], crystallized structures [3, 85] andmutagenesis
experiments [79], whereas MD evidenced the dynamical
behavior of these interactions [66, 68, 73, 75]. Finally,
several groups pointed out the relevance of cardiolipin
binding through crystal structures [3, 82], phosphorous
nuclear magnetic resonance (NMR) [77], and thermosta-
bility studies [103], as well as atomistic and coarse-grained
simulations [81, 83, 84].

Table : Radius of gyration analysis performed on the alpha car-
bons of the matrix and cytoplasmic network residues.

Cytoplasmic network Matrix network

bAAC (OKC)  Å . Å
bAAC (RaptorX) . Å . Å
bAAC (trRosetta) . Å . Å
TtAAC (GCI) . Å . Å
TtAAC (RaptorX) . Å . Å
TtAAC (trRosetta) . Å . Å
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Thus, the newest modeling methods together with the
most recent and powerful MD techniques will allow to
study with higher accuracy the AAC transporter and all the
other SLC25 family members, for which very few structural
data are available in literature, suggesting and/or sup-
porting new mechanistic hypotheses [104–109].
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