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Learning to categorize stimuli in a new way can change 
how those stimuli are perceived or judged. This phenom-
enon is called learned categorical perception (CP). There 
are numerous kinds of reported CP effects (for a review, 
see [1]). Learning that two stimuli belong to the same cat-
egory can increase their similarity or perceptual confus-
ability, an effect known as compression (e.g., [2]), while 
learning that two stimuli belong to different categories 
can have the opposite effect, often called expansion 
(e.g., [3–4]). Categorizing stimuli based on particular fea-
tures may increase sensitivity to those features, regardless 
of whether the stimuli belong to the same or different cat-
egories, or it may reduce sensitivity to features that are 
not relevant to the categories (e.g., [3]).

Although there are these distinct possible conse-
quences of learning to categorize stimuli, most studies of 
learned CP only report finding one of the possible effects, 
even though different kinds of CP effects are not logically 

mutually exclusive. Determining why categorization train-
ing leads to different CP effects in different experimental 
contexts is an important step towards a thorough under-
standing of the mechanisms that cause CP, as the differ-
ent CP effects implicate different kinds of mechanisms. 
For example, some models predict a change in overall 
sensitivity to a dimension after categorization training 
due to dimension-based attention weighting (e.g. [5–6]). 
However, sensitization to a particular range of values 
along a dimension requires different kinds of models 
that allow for changes in perceptual sensitivity at a sub-
dimensional level (e.g. [7–8]).

Several studies have demonstrated that whether CP 
is observed at all depends on various factors including 
(1) the availability of verbal labels during perceptual 
testing [9], (2) the particular kind of perceptual assess-
ment used to determine whether CP is present [10], and 
(3) how stimulus morphspaces are created [11]. However, 
few studies have reported differences in the kind of CP 
effect observed based on experimental manipulations, 
though there are exceptions. For example, Goldstone, 
Lippa, and Shiffrin [12] and Livingston and Andrews [13] 
both reported two qualitatively different CP effects exhib-
ited by the same subjects when they were tested in two 
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different ways. Thus, one possible reason for the diversity 
of CP effects is that different tasks used to assess CP are 
sensitive to different aspects of CP or invoke different pro-
cesses, only some of which exhibit particular CP effects.

In addition to the task used to measure CP, it is possi-
ble that incidental differences in stimuli between experi-
ments are responsible for the different kinds of CP effects 
observed. If subjects learn that stimuli with small differ-
ences belong in different categories, successful categori-
zation necessitates the ability to differentiate the stimuli, 
which might naturally lead to expansion effects. However, 
if the differences between stimuli are obvious prior to 
training, then expansion might be less likely to occur. 
Pevtzow and Harnad [14] used texture patterns and found 
larger expansion effects for stimulus sets that were harder 
to differentiate, which is consistent with this idea. This 
would also explain why studies using near-JND stimulus 
differences have tended to show expansion (e.g., [3–4]) 
while studies using stimulus differences well above JND 
have tended to report compression effects instead (e.g., [2]).  
However, in many cases, the difference in stimulus  
discriminability across studies coincided with a difference 
in dependent measure, complicating the interpretation.

In the experiment reported here, we directly tested the 
influence of both stimulus discriminability and assess-
ment task on CP. We created an artificial stimulus set that 
varied on two dimensions and selected two subsets of 
stimuli from this set, one with only half as much varia-
tion between neighboring pairs as the other. We expected 
that the stimulus set with less variation would be more 
likely to produce expansion effects, while the stimulus 
set with more variation would be more likely to produce 
compression effects. Three commonly used tasks were 
implemented to assess CP: a similarity rating task, a same-
different task, and an XAB forced-choice task. Different 

tasks may not invite equivalent perceptual/cognitive strat-
egies, so this is a reasonable potential source of different 
patterns of results between studies. For example, subjec-
tive rating tasks such as similarity judgments may invite 
strategic responses (altering the rating based on the cat-
egory labels without warping of perceptual similarity) and 
thus produce CP effects even when objective measures 
such as same-different or XAB do not, especially in cases 
where perceptual learning is not necessary for categori-
zation (i.e., when stimuli are highly discriminable). If this 
is the case, assessment task and stimulus discriminability  
should interact. We included both the XAB and same- 
different tasks since both are frequently used in the literature, 
though we expected them to produce similar results.

Method
Participants
The Vassar College Institutional Review Board approved 
the procedures used in this study and consent was obtained 
as part of the online data collection. We recruited 564  
participants through Amazon Mechanical Turk (AMT).1 

Eight subjects were excluded from the analysis because 
of a bug that allowed them to complete more than one 
condition of the experiment, leaving 556 participants.

Materials
The experiment was developed using jsPsych, a software 
library for building online experiments [15]. Stimuli were 
cell-like shapes that varied on two dimensions, shape and 
tail length, created using Mathematica 8.0 (for details, 
consult the stimulus creation script available in the pro-
ject repository). We generated two sets of stimuli: a high 
discriminability (HD) set and low discriminability (LD) set. 
The LD stimuli had half as much variation as correspond-
ing HD stimuli (see Figure 1). The stimulus space was 

Figure 1: The two sets of stimuli used in the experiment. Shape varies along the X axis and tail length varies across the 
Y axis.
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6 (shape) by 6 (tail length) for both sets. We chose the val-
ues along each dimension by arbitrarily selecting the two 
endpoints and creating equal numeric intervals between 
neighboring items; however, we did not test whether the 
psychological distance between neighbors was equivalent 
throughout the space, nor do we expect that it is.

When shape was the category relevant dimension, the 
category boundary was between the 3rd and 4th stimuli 
on the shape dimension and the tail length dimension 
was irrelevant. When tail length was the category relevant 
dimension, the category boundary was between the 3rd 
and 4th stimuli on the tail length dimension and the 
shape dimension was irrelevant.

Procedure
Participants were randomly assigned to one of 24 con-
ditions: 2 training type (control v. category training) X 2 
stimulus sets (HD v. LD) X 3 type of assessment (similarity 
v. same-different v. XAB) X 2 category-relevant dimensions 
(shape v. tail length). There were 18–28 participants per 
condition after excluding subjects who failed the training 
phase (see Results). The category-relevant dimension vari-
able was not of theoretical interest here but is included in 
the analyses for completeness, as suggested by an anony-
mous reviewer.

Training. Participants who were assigned to a training 
condition completed an adaptive training protocol by iter-
ating through multiple blocks of training until category 
assignments were learned for all stimuli. In each block of 
the procedure, all 36 stimuli were shown one at a time 
and categorized as either a ‘Tig’ or a ‘Bep’ by the partici-
pant. Participants were told that they would initially need 
to guess which category a cell belonged to, but would 
receive feedback indicating the correct category for each 
cell. When a stimulus had been correctly categorized in 
four consecutive blocks, the stimulus was removed from 
the training set. If at any point fewer than five stimuli 
were left in the training set, stimuli that had already been 
learned were randomly included in the block (but these 
stimuli were considered learned, even if an error was 
made). Once all stimuli had been learned, the training 
ended. If a participant got fewer than 60% of the items 
correct in a round, then the round did not count towards 
the four consecutive blocks (to prevent guessing strate-
gies). If a participant got fewer than 60% correct for 5 con-
secutive rounds, then training ended and the participant 
was considered to have failed training.

Post-training categorization test. Once participants 
completed the adaptive training, they categorized each of 
the 36 stimuli without feedback in a single block. Stimuli 
were presented in a random order and remained on screen 
until the participant gave a response. A blank screen was 
displayed for 1500ms between stimuli.2

Post-training assessment tasks. Participants com-
pleted one of three different assessment tasks. Those who 
received category training completed the task immedi-
ately after the category learning test, while control partici-
pants only performed the assessment task.

Similarity. In the similarity task, participants saw two 
stimuli sequentially. Each stimulus was visible for 750ms, 

with a blank screen displayed for 1000ms between  
stimuli. The participant dragged a movable slider to indi-
cate how similar the two stimuli were using a continuous  
(no segmentation) scale anchored by the labels “most sim-
ilar” and “least similar”. There were 9 different pair types 
that could be presented: (Tig-Tig pairs, Bep-Bep pairs, or 
Tig-Bep pairs) X (1, 2, or 3 city block units of distance 
between items in a pair). Each of the 9 different types was 
selected exactly 4 times, but the particular exemplars that 
made up each pair were selected at random from all pos-
sible pairs that satisfied the constraints.

Same-different. In the same-different task, partici-
pants saw two stimuli sequentially, each for 750ms, with 
a blank screen displayed for 1000ms between stimuli. 
They pressed one of two keys to indicate whether the 
stimuli were the same or different. There were 4 blocks 
of 54 pairs of stimuli. Each block consisted of 27 identi-
cal pairs and 27 non-identical pairs. The 27 non-identical 
pairs were selected according to the same policy as used in 
the similarity task, except that only 3 pairs per type were 
chosen instead of 4 in order to limit the overall length of 
the experiment.

XAB. In the XAB task, participants saw a target stimu-
lus (X) for 750ms, followed by a blank screen for 1000ms, 
and then the simultaneous presentation of two stimuli (A 
and B) for 750ms. Participants pressed a key to indicate 
whether A or B was identical to X. There were 4 blocks of 
36 pairs of stimuli, selected in the same manner as in the 
similarity task.

Data and Analysis Files
Our data and analysis files are available in an Open Sci-
ence Framework repository at https://osf.io/54rve/.

Results
Training
A total of 39 participants failed training and were excluded 
from the analysis. Of those 39 exclusions, 38 were for 
participants for whom the less salient dimension of tail 
length was the category-relevant dimension. Over all 
training conditions, the mean number of trials required 
to complete training was 220 with a standard deviation of 
48. The minimum number of trials to complete training 
by any subject was 149, and the maximum was 386.

CP Effects
Between-category versus within-category pairs. The 
data set for analysis of between vs. within category pairs 
was restricted to pairs that varied only on the category-rel-
evant dimension, with a maximum distance of 2 between 
the items. This emphasizes the effect of category learning 
on measures of CP. The pairs that were 3 units apart were 
not used because all such pairs were between category 
and have no within-category counterparts. The between-
category and within-category scores for each participant 
consisted of mean rating for the similarity task and pro-
portion of correct responses for the same-different and 
XAB tasks on the relevant subset of item pairs.

Dimension influence. This analysis was restricted to 
item pairs differing by 1 or 2 units on one dimension (and 

https://osf.io/54rve/
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not differing on the other dimension). Each participant 
received a score (mean similarity rating or mean propor-
tion correct) for the relevant dimension and the irrelevant 
dimension.

Conversion to a common scale. In order to make 
performance across the three different assessment tasks 
comparable and to directly test whether assessment task 
plays a role in producing learned CP effects, we took each 
participant’s scores as explained above and transformed 
them as follows: First, the similarity scores were reverse 
coded so that higher scores represented greater differen-
tiation of items, to be comparable to the same-different 
and XAB measures. For the between-category versus 
within-category pairs analysis, we determined the mean 
and standard deviation of all raw scores for a given assess-
ment task for the items used in that analysis. Each par-
ticipant’s score was transformed by subtracting that mean 
and dividing by that standard deviation. The same thing 
was done for the dimension influence data. Transforming 
the data in this way provides a common scale for the three 
assessment tasks, making it easier to incorporate assess-
ment task into the statistical analysis as an independent 
variable. The nature of the transformation is such that 
there is no possibility of a main effect of assessment task 
on performance; however, that would not be possible to 
determine using the raw scores either, and the transfor-
mation makes it possible to determine whether assess-
ment task interacts with other independent variables to 
produce different patterns of CP effects, which is the pri-
mary goal.

Statistical analysis. We used the Bayes factor 
approach for all statistical analyses because of the impor-
tance of being able to quantify relative evidence for the 
null and alternative hypotheses concerning assessment 
method, stimulus discriminability, and their interactions 
with other independent variables. Statistical analyses were 
done using the BayesFactor package [16] in R [17].

The BayesFactor package places a sensible default, 
vaguely-informed prior on the standardized effect size 
of the model predictors [18]. The only parameter for the 
prior is a scaling factor, which controls how concentrated 
the prior probability density is around the standardized 
effect size of 0. We used a scaling factor of 0.5 on the prior, 
which puts half of the prior probability on standardized 
regression coefficients between -0.5 and 0.5. This reflects 
an expectation of finding small-to-moderate effects. 
Smaller scaling factors would generally increase the odds 
in favor of the alternative models, while larger scaling fac-
tors would increase the odds in favor of the null.

Between-category versus within-category pairs. The 
first analysis was designed to determine whether boundary 
CP effects occurred and, if so, whether they varied accord-
ing to assessment task and/or stimulus discriminability. 
Using the transformed pair type dependent measure, 
we tested a set of linear models to quantify the support 
for each model. First we tested just for main effects of 
four of the five independent variables: stimulus set (HD 
v. LD), training type (control v. category training), pair 
type (between-category v. within-category), and category-
relevant dimension (shape v. tail length). We did not test 

for a main effect of assessment type because the depend-
ent variable was normalized to remove any main effects 
of assessment type (see previous section). For each effect, 
we found the Bayes factor for a model that included the 
effect and the random effect of subject against the model 
that just included the random effect of subject. The results 
are shown in the Appendix. There is very strong evidence 
for models including a main effect for stimulus set, pair 
type, and category-relevant dimension. The main effect of 
stimulus set can be seen in the smaller graphs on the right 
of Figure 2a, which show that HD performance consist-
ently tends to be above 0 and LD performance tends to be 
below 0. The very strong main effect of category-relevant 
dimension is presumably due to the boundary analysis 
being restricted to item pairs differing only on the cate-
gory-relevant dimension and, as shown by the training 
data, the categories were much harder to learn when they 
were defined by tail length rather than shape.

We then tested the model that includes all main effects, 
the random subject effect, and the training type by pair 
type interaction (which would constitute evidence for a 
learned CP effect) against the model that contains only 
the main effects and the random subject effect. The result 
was strong support for the model that includes the inter-
action and is shown in Figure 2a; BF10 = 71.66

The next analysis tested whether assessment type 
interacted with the CP effect. We tested all models that 
included the assessment type by training type by pair 
type interaction or other higher-order interactions of this 
3-way interaction with the other independent variables, 
against the model that included only the CP interaction, 
the main effects, and the random subject effect. In other 
words, we tested all of the models in which the CP inter-
action (training type by pair type) interacted with assess-
ment type. This set of model comparisons is a direct test 
of whether the assessment type modulates the CP interac-
tion. None of the models that include interactions with 
the CP interaction received more support than the model 
with just the CP interaction. For all but one of the 15 tests, 
the Bayes factor was better than 3:1 in favor of the CP-only 
model (see Appendix for full results). A similar analysis 
was performed to test all models that include interactions 
between the CP interaction and the stimulus set and once 
again, none of the models that include those interactions 
received more support than the corresponding model 
without the interaction. However, the Bayes factors were 
generally equivocal between the CP-only model and the 
interaction of stimulus set with CP. The three-way inter-
actions all had Bayes factors between 1 and 3 in favor of 
the CP-only model. Only the higher order interactions and 
models with multiple interactions had Bayes factors larger 
than 3 in favor of the CP-only model. The larger Bayes 
factors in favor of the CP-only model are to be expected 
as a natural result of increasing the complexity of the 
model when all the lower-order components of the model 
slightly favor the simpler CP-only model.

Dimension influence. The second analysis was designed 
to determine whether dimensional sensitivity CP effects 
occurred and, if so, whether they varied according to 
assessment task and/or stimulus discriminability. The 



de Leeuw et al: Categorization Effects Don’t Depend on Task Art. 9, page 5 of 9

Fi
gu

re
 2

: (
a)

 P
er

fo
rm

an
ce

 o
n 

be
tw

ee
n-

ca
te

go
ry

 v
er

su
s 

w
it

hi
n-

ca
te

go
ry

 p
ai

rs
 b

y 
th

e 
co

nt
ro

l a
nd

 t
ra

in
in

g 
gr

ou
ps

. (
b)

 P
er

fo
rm

an
ce

 o
n 

pa
ir

s 
di

ff
er

in
g 

on
ly

 o
n 

th
e 

ir
re

le
va

nt
 v

er
su

s 
th

e 
re

le
va

nt
 d

im
en

si
on

 b
y 

th
e 

co
nt

ro
l a

nd
 t

ra
in

in
g 

gr
ou

ps
. I

n 
bo

th
 p

an
el

s,
 t

he
 la

rg
e 

gr
ap

h 
on

 t
he

 le
ft

 s
ho

w
s 

th
e 

ov
er

al
l i

nt
er

ac
ti

on
 a

cr
os

s 
ta

sk
 t

yp
e.

 T
he

 t
hr

ee
 g

ra
ph

s 
in

 t
he

 
m

id
dl

e 
sh

ow
 th

e 
in

te
ra

ct
io

n 
fo

r e
ac

h 
ta

sk
, a

nd
 th

e 
si

x 
sm

al
le

r g
ra

ph
s o

n 
th

e 
ri

gh
t s

ho
w

 th
e 

in
te

ra
ct

io
n 

fo
r e

ac
h 

ta
sk

 a
nd

 e
ac

h 
st

im
ul

us
 ty

pe
. H

ig
he

r s
co

re
s o

n 
th

e 
Y 

ax
is

 re
pr

es
en

t 
gr

ea
te

r d
iff

er
en

ti
at

io
n 

be
tw

ee
n 

it
em

s.



de Leeuw et al: Categorization Effects Don’t Depend on TaskArt. 9, page 6 of 9  

exact same analyses described above were carried out on 
the transformed dimensional influence dependent meas-
ure. There was very strong evidence for models including 
a main effect for stimulus set and varying dimension (see 
Appendix for results) and the varying dimension by train-
ing type interaction, which is shown in Figure 2b (BF10 = 
166.43). For all models including interactions between 
the CP-interaction and assessment type and/or stimulus 
set, the Bayes factor was better than 4:1 for the CP-only 
model (see Appendix for full results).

Bayes factor t-tests were also performed to determine 
the specific nature of the CP effects shown in the interac-
tions with training type. We used the default Bayes factor 
t-test method from the BayesFactor R package, with a scal-
ing factor of 0.5 on the prior, indicating a prior belief that 
the standardized effect size will generally be small when 
the null is false. The four types of CP effects imply that  
the effect will be in a particular direction, e.g.,  compression 
requires that trained subjects show less differentiation 
on within-category judgments. We used alternative  
priors that built in this one-sided constraint [19]. For the 
boundary analysis, BF10 = 92.12 for the between-category 
pairs and BF01 = 13.12 for the within-category pairs, clearly 
demonstrating expansion but not compression. These 
data strongly favor the null in the case of compression. 
For the dimension analysis, BF10 = 11.16 for the relevant 
dimension and BF10 = 6.15 for the irrelevant dimension, 
suggesting stronger evidence of increased sensitivity to 
the relevant dimension, but also support for decreased 
sensitivity to the category-irrelevant dimension. We also 
tested variations in the scaling factor to examine the 
robustness of the BF t-tests to different prior beliefs. Even 
with a scaling factor of 1.0, double the scaling factor we 
used, the Bayes factors for expansion, acquired equiva-
lence, and acquired distinctiveness were still all better 
than 3.5 to 1 in favor of the alternative. Scaling factors 
less than 0.5 further increased the relative support for the 
alternative models.

Discussion
This study was designed to use procedures typical of the 
research literature on learned visual CP effects. Accord-
ingly, CP effects were examined in the context of success-
ful category training with an artificial stimulus set. Of the 
four possible patterns of learned CP effects, we found 
positive evidence for expansion (enhanced ability to dis-
tinguish between-category item pairs as a result of learn-
ing the categories), increased sensitivity to the category- 
relevant dimension, and decreased sensitivity to the  
category-irrelevant dimension. There was no evidence for 
compression. In fact, the data indicated strong support for 
the null that there was no compression effect.

The main purpose of this study was to explore two can-
didate reasons, stimulus discriminability and assessment 
task, for why different studies on learned CP find differ-
ent patterns of CP effects. The stimulus discriminabil-
ity manipulation was effective in that performance was 
clearly reduced for the LD stimuli relative to the HD stim-
uli. However, there was no strong evidence that the CP 
effects were influenced by stimulus discriminability – the 

analysis was generally equivocal about whether stimulus 
discriminability interacted with boundary-based CP, and 
the Bayes factor favored the CP-only model for the dimen-
sion effect – despite some prior evidence that expansion 
is stronger when stimuli are more difficult to discrimi-
nate [14]. This result also suggests that the cause of expan-
sion as opposed to compression effects in the literature is 
not due to stimulus discriminability.

Assessment task also did not influence the pattern of CP 
effects obtained; the evidence was overwhelmingly in sup-
port of the null hypothesis for interactions of assessment 
task with stimulus discriminability, category training, pair 
type, and dimensional relevance. This is an important 
result as no previously published study that we know 
of has directly compared different methods of assessing 
learned CP using the same stimuli and categories. This 
suggests that the variations in CP effects reported in the 
literature are not due to the use of different tasks, at least 
among similarity rating, same-different judgments, and 
XAB, which are the most common tasks used. It is reas-
suring that the CP effects obtained were so robust across 
these very different tasks, and this also suggests that cur-
rent models of learned CP, which do not address the role 
of assessment task, may well not need to do so.

This result can be reconciled with the few previous stud-
ies that suggested that assessment task might play a role. 
Goldstone, Lippa, and Shiffrin [12] used morphed face 
stimuli and a similarity rating task. They found expansion 
using a traditional between-category versus within-cate-
gory pair analysis, but found compression when stimuli 
were judged relative to a neutral, uncategorized face. Thus 
their differing patterns of results were not due to different 
assessment tasks but rather a different type of compari-
son stimulus. Livingston and Andrews [13] used artificial 
“alien” figures and obtained expansion using a similarity 
rating task and compression using a same-different task, 
but without rendering data from the two tasks compara-
ble in the way that we did here and treating task as an 
independent variable, we cannot but sure that task had 
a significant effect on the pattern of learned CP results. 
Even if it did, it would be important to determine whether 
that result is replicable and genuinely conflicts with the 
results of the current study.

The only other apparent counterexample of which we 
are aware comes from Gerrits and Schouten [10], who 
obtained CP effects under some conditions and not oth-
ers as a function of assessment task. These authors did 
directly compare performance using two different assess-
ment tasks, but their study differed in many critical ways 
from a typical visual learned CP study such as the one 
reported here: the stimuli consisted of speech sounds and 
no category training was involved. The fact that there was 
no learning means that compression vs. expansion effects 
cannot be compared as was done in the present study. 
What Gerrits and Schouten [10] did observe was presence 
of CP for vowels using one measure (2I2AFC or two inter-
val two alternative forced choice) but not when using a 
variant of that measure (4I2AFC or four interval two alter-
native forced choice). They conclude that the disappear-
ance of the CP effect in the latter case is owing to features 
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of the task that render listeners “incapable of using availa-
ble phonetic information that would have improved their 
performance” ([10], p. 375). This seems a limiting case in 
which failure to process the information relevant for a 
category distinction results in failure to show CP, which 
is hardly surprising. The fact that there are measurement 
tasks that can have this effect is interesting but is not in 
itself inconsistent with the conclusion that assessment 
task does not affect whether CP effects are the result of 
compression vs. expansion when they do occur.

It is possible that different results would occur even for 
visual learned CP and these same three tasks if the stimuli 
and/or category structures were very different from those 
used in the current study. In fact, if individually unique and 
distinctive stimuli were used, a same-different or XAB task 
would surely fail to show learned CP effects that a similar-
ity rating task might well show (as occurred, for example, 
in a study by Livingston, Andrews, and Dwyer [20] that 
produced compression using real tropical fish as stimuli 
and similarity ratings as the assessment method). But very 
few studies use such stimuli, and the current results sug-
gest that factors other than assessment task and discrimi-
nability are likely the cause of the variations in learned CP 
effects reported in the literature.

One such factor may well be category structure, but 
very few studies have examined this directly. Reppa and 
Pothos [21] used simple geometric stimuli and reported 
differences in the pattern of learned CP results as a func-
tion of category structure. Categories with one relevant 
and one irrelevant dimension of variation and non-linearly 
separable categories both produced compression, while 
a diagonal category structure in which both dimensions 
were relevant produced expansion. Given that the cate-
gories in the study reported here were also based on one 
dimension of variation yet produced expansion with the 
same similarity rating task used by Reppa and Pothos, it 
is clear that more than just category structure is involved.

Another possibility is that the variation in reported find-
ings is the result of statistical noise. Learned CP effects 
caused by a relatively short period of training are gener-
ally not very large effects, and sampling noise combined 
with low power could explain the variation in effects. Our 
data illustrate this point quite well. Note that in Figure 2b 
(central panel), the same-different and XAB tasks appear to 
show opposite results, with increased sensitivity to the rel-
evant dimension in the same-different task and decreased 
sensitivity to the irrelevant dimension in the XAB task. 
If these tasks were analyzed separately, such as typically 
occurs when comparing results across experiments, we 
would wrongly conclude that task does matter because we 
would observe a statistically significant acquired equiva-
lence effect in the XAB task and a statistically significant 
acquired distinctiveness effect in the same-different task. 
However, the full statistical model makes it quite clear 
that these variations are simply noise and that the general 
pattern is stable across task. An analogous situation may 
be affecting the literature as a whole when comparisons 
between the patterns of statistically significant results are 
made without considering whether or not the differences 
in the patterns themselves are statistically significant [22]. 

Comparing across different experiments in the literature 
is therefore often misleading.

A thorough examination of the learned CP literature 
shows that studies differ not only in the specific stimuli, 
features or dimensions, and category structures used, 
but also in the specific ways in which the effects of cat-
egory learning are measured. Some of these differences 
are subtle but could be important for determining what 
conditions create each of the four types of learned CP 
effects identified at the outset. For example, for studies 
that only analyze between-category versus within-cate-
gory pair data, it will be unknown whether dimensional 
sensitivity effects also occurred. In addition, both types 
of analyses may be influenced by the composition of 
the item pairs used for collecting and/or analyzing the 
data. Solid evidence that stimulus discriminability and 
assessment task do not determine the observed pat-
tern of effects allows us to turn our attention to these 
other factors in order to better understand the complex 
phenomenon of learned CP.

Supplementary Files
The supplementary material for this article can be found 
here: http://dx.doi.org/10.1525/collabra.32
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Notes
 1 Samples from AMT tend to replicate laboratory find-

ings, though category-learning tasks on AMT have 
produced mixed results [23]. Because the key meth-
odological consideration for our study is that all par-
ticipants in learning conditions have acquired the cat-
egory structure before doing the discrimination trials, 
we used an adaptive training protocol that ensures 
participants learned the category structure before pro-
gressing to the testing phase.

 2 A data recording error resulted in missing data for 
more than 50% of the participants for this particular 
task, so we do not report any analysis of this data.
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