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Abstract

Fairness of classification and regression has received much attention recently and various,
partially non-compatible, criteria have been proposed. The fairness criteria can be enforced for a
given classifier or, alternatively, the data can be adapated to ensure that every classifier trained
on the data will adhere to desired fairness criteria. We present a practical data adaption method
based on quantile preservation in causal structural equation models. The data adaptation is
based on a presumed counterfactual model for the data. While the counterfactual model itself
cannot be verified experimentally, we show that certain population notions of fairness are still
guaranteed even if the counterfactual model is misspecified. The precise nature of the fulfilled
non-causal fairness notion (such as demographic parity, separation or sufficiency) depends on the
structure of the underlying causal model and the choice of resolving variables. We describe an
implementation of the proposed data adaptation procedure based on Random Forests (Breiman,
2001) and demonstrate its practical use on simulated and real-world data.

1 Introduction

Care needs to be taken when machine learning techniques are used in socially sensitive domains,
because algorithms are sometimes capable of learning societal biases we would not want them to
learn. For example, women tend to be disadvantaged in credit score ratings, partially due to the
fact that women are currently perceived to have lower income on average (Blau and Kahn, 2003).
A gender-neutral credit scoring would be desirable. The precise notion of fairness one would like
to achieve is often debatable, though. A much publicised and discussed example of this is the
COMPAS dataset (Larson et al., 2016) which involves predicting whether inmates will recidivate
after being released on parole. The prediction is based on demographic data and information about
prior convictions. Standard methods, which do not ensure all racial groups are treated in the same
way, have been shown to lead to highly-discriminatory predictions against the black population
(Larson et al., 2016). After being criticised for not achieving a fairness criterion called equality of
odds, the company that produced the predictions, Northpoint, has claimed that their predictions
satisfy a criterion called calibration (Dieterich et al., 2016).

Current approaches for building fair predictors broadly fall into three categories. Pre-processing
methods focus on transforming the data in order to remove any unwanted bias (Zemel et al., 2013;
Calmon et al., 2017). In-processing methods attempt to build in fairness constraints into the
training step (Fish et al., 2016; Zafar et al., 2017; Donini et al., 2018). Post-processing methods
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focus on transforming an already constructed predictor (Hardt et al., 2016). Our work falls into the
pre-processing category. The work that relates to our approach are the path-specific counterfactuals
methods, proposed by Nabi and Shpitser (2018) and Chiappa and Gillam (2018), which aim to
detect and eliminate the path specific effects (PSE) of the protect attribute on the response.

In particular, our work

1. Provides a practical implementation of fair data adaption based on Random Forests and an
underlying causal model which is assumed to be known. This allows to incorporate resolving
variables (Kilbertus et al., 2017). The software is provided as an R package fairadapt.

2. Presumes a specific counterfactual model. We can show that a counterfactual notion of
fairness is satisfied if the model is correct (unfortunately not verifiable), but that certain
population fairness notions are satisfied in any case, even if the counterfactual model is
wrong.

3. Allows the achieved notion of fairness to depend on the causal graph. This might offer a more
principled way of agreeing on a suitable fairness notion (if people can agree on the structure
of the underlying causal graph).

We also demonstrate the empirical value of our approach, exhibiting very competitive performance.

1.1 Setup

Let random variable Y ∈ Y be the outcome of interest that one would like to predict in the future
in a fair way. For simplicity, we mostly assume binary classification so that Y = {0, 1}. The
binary outcome Y represents perhaps recidivism whilst on parole or repayment of a loan. Let A
be the protected attribute such as race or gender and X = (X(1), . . . , X(p)) ∈ Rp be predictor
variables for the outcome of interest. We assume we have access to n i.i.d. samples (Ai, Xi, Yi)
i = 1. . . . , n coming from a distribution FA,X,Y . For the majority of the exposition we assume
that A has two levels {0, 1}, but generalizations are straightforward. The key goal is to provide a
data-transformation or data-adaptation

T : Rp × Y 7→ R
p × Y.

The transformation should be such that if we train a classifier with the adapted data

T
(
(Xi, Yi)

)
, i = 1, . . . , n

instead of the original data {(Xi, Yi), i = 1, . . . , n}, we want to be able to automatically guarantee
appropriate fairness criteria. At the same time, we want the change induced by the data adaptation
to be minimal in an appropriate sense.

1.2 Causal framework

We mainly use a standard non-parametric structural equation model (NPSEM) for Z = (A,X, Y ) ∈
Rp+2 as in Pearl (2000) and let each variable Z(k) be defined as

Z(k) = gk(Zpak , U (k)), (1)

2



where U ∈ Rp+2 is a latent variable that determines the realization of the variable Z(k) and pak is
the set of parents of the variable Z(k). We denote by fk(z(k) | zpak) the density corresponding to
Z(k). Without limitation of generality, we let U have marginally a uniform distribution on [0, 1].
We further assume that gk(z, u) is monotonically increasing with u for each z. Thus, U (k) can be
interpreted as the quantile of the k-th variable, conditional on the value of its parents Zpak . We
also assume that the components of U are independent, that is we assume lack of confounding,
also known as the Markovian assumption in (Pearl, 2009) . Assume for the following discussion
first that the random variables are continuous and a density exists. Then Z(U = u) = z is the
realized value of Z under the realization u of the quantiles U and there exists a one-to-one mapping
between the value of z and u. We will return later to the case of discrete random variables and
randomization, where the deterministic relationship between z and u breaks down.

We will try to keep notation as lean as possible. Suppose R is a subset of X. We denote with
X(A = a,R = r) the random variable that is determined by the set of structural equations (1)
where the structural equation for variables A and R are replaced by setting their corresponding
values equal to a and r respectively. We can, for example, compare the distribution of the predictor
variable X under the interventions do(A = a) and do(A = a′) by comparing the distributions of

X(A = a) and X(A = a′)

without making assumptions about the joint distribution of these two random variables and could
use the formal framework of single-world intervention graphs (SWIGs) introduced in Richardson
and Robins (2013).

However, we need cross-world statements for some of the discussion. The value X(A = a, U =
u) is the outcome under a specific realization of the latent variable U . We can view the value
X(A = a, U = u) as the realized value of X under the quantiles specified by u and an intervention
do(A = a). In this sense, a simple counterfactual model defines X(A = a, U = u) to be the
counterfactual of X(U = u) under the do-intervention that is setting the attribute A to the value
a. This way we are defining a joint distribution for X and X(A = a) and can make cross-world
statements. Of course, we could define a different counterfactual model by keeping the marginal
distributions of X and X(A = a) identical, but changing the joint distribution. For the specific
counterfactual model used in this paper we keep the conditional quantiles U constant.

Definition 1 (Quantile preservation assumption (QPA)). The conditional quantiles U of the SEM
in Equation (1) remain unchanged under a do(A = a) intervention.

Such a counterfactual cross-world model (assumptions about the joint distribution of random vari-
ables under different interventions) is obviously not empirically verifiable. We will try to make clear
where we use single-world and where we use cross-world assumptions throughout the text.

Another assumption we make is that the protected attribute A is a root of the causal graph G.
A consequence of this is that the do(A = a) intervention is equivalent to conditioning on A = a.
This idea, which is easily shown using the 2nd rule of do-calculus (Pearl, 2009), shows up frequently
in our discussion.

1.3 Example

Consider the following example with four variables A, X1, X2, Y . Variable A is the protected
attribute, in this case gender (A = 0 corresponding to male, A = 1 to female). Let X1 be the
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education level and X2 the current salary of an individual. Outcome Y is the successful repayment
of a loan. Edges in the graph indicate how variables affect each other.

A

X1

X2

Y

The main problem is that the attribute A, gender, has an effect on both X1 and X2 (education
and salary). We want to find a data transformation that makes the data “look” the same for all
levels of A. Subject to this, we also want to minimize the distortion in the data coming from the
transformation. Namely, for all females (A = 1), we would first want to compute their education
level had they been male. More explicitly, for a female with education level x1, we give it the
transformed value x̃1 chosen such that

P(X1 ≥ x1 | A = 1) = P(X1 ≥ x̃1 | A = 0).

The main idea is that the relative education within the subgroup would stay the same if we changed
someone’s gender. If you are a female better than 60% of the females in the dataset, we assume
you would be better than 60% of males had you been male. After computing everyone’s education
(in the “male” world), we continue by computing the transformed salary values X̃2. The approach
is again similar, but this time we condition on the education level as well. That is, a female with
values (X1, X2) = (x1, x2) is assigned a salary level x̃2 such that

P(X2 ≥ x2 | X1 = x1, A = 1) = P(X2 ≥ x̃2 | X1 = x̃1, A = 0),

where the value x̃1 was obtained in the previous step. The transformed data X̃1, X̃2 can then be
used to construct a classifier. Generally, the transformation we are describing is carried out using
quantile regression forests (Meinshausen, 2006). A full implementation of this method for a general
situation is available in the fairadapt package on CRAN. The aim of this paper is to formalize all
of the ideas above mathematically.

As we transform our data, we also end up with the covariate values individuals would attain if
we set their gender to male. We are basically trying to answer the hypothetical question “What
would my attributes look like, had I been male?”. This aspect of our method can help explain why
individuals obtain their predictions. To this we refer to as method interpretability.

1.4 Related work

We summarize the work which is relevant to our discussion. Our method is related to fairness
notions of demographic parity (Darlington, 1971) and calibration (Chouldechova, 2017). In a sim-
ple case, we can also see a connection to equality of odds (Hardt et al., 2016). A discussion of
fair adaptation and observational criteria is given in Section 4.2. Two causal notions of fairness
that play an important part in our method are counterfactual fairness (Kusner et al., 2017) and
resolving variables (Kilbertus et al., 2017). More about relation to causal notions of fairness is
discussed in Section 2. Methods based on mediation analysis build on some related ideas (Zhang
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and Bareinboim, 2018a,b). In their approach, the two most similar methods to ours are the path
specific counterfactual methods (Nabi and Shpitser, 2018; Chiappa and Gillam, 2018). This relation
is discussed more in Section 4.3.

1.5 Structure of the paper

In Section 2 causal notions of fairness that are important for our method are discussed. In Section
3 the adaptation procedure is introduced and a summary of the goals when applying our method
is provided. The achieved fairness notions are discussed and in particular how they depend (or
do not depend) on the assumptions used. The population level adaptation procedure (under no
estimation error) is given. The assumptions that are used are also briefly discussed. We illustrate
what our desired fairness notions amount to in the simplest linear additive setting. In Section 4
the relation of our work to previously proposed methods and criteria is analyzed. Section 5 goes
in depth about discussing the practical aspects of our method. How to handle discrete variables in
the adaptation procedure is particularly emphasized. The sample level non-parametric adaptation
procedure is given. The training step options after applying the data adaptation are described. Two
possible methodological extensions are discussed in the end of the section. In Section 6 empirical
performance of our method is demonstrated both on simulated and real-world data.

2 Causal notions of fairness

We look at two counterfactual notions of fairness that play an important role in our methodology.

2.1 Counterfactual fairness

Counterfactual fairness was first introduced as a notion by Kusner et al. (2017). The notation
Ŷ (A = a) indicates again the prediction under a do-intervention do(A = a) on the protected
attribute.

Definition 2 (Counterfactual fairness, Kusner et al. (2017)). A predictor Ŷ is counterfactually
fair if

Ŷ (A = a) | A = a,X = x
d
= Ŷ (A = a′) | A = a,X = x ∀a, a′, x (2)

Here Ŷ (A = 0) indicates that Ŷ comes from the distribution resulting from a do(A = 0) intervention,
while the conditioning occurs in the observational, non-interventional, distribution.

The idea behind this notion is that if we intervene to change someone’s race or gender, this
should not affect the prediction they obtain. We emphasize that the notion in Equation (2) in
our setting is a single-world counterfactual notion. For the original authors this notion is a cross-
world one (due to the existence of latent variables U which remain distributions even after the
conditioning on A = a,X = x).

A weaker form of counterfactual fairness would just require that the distribution of Ŷ under an
intervention on the protected attribute remains unchanged, that is

Definition 3 (Population fairness). A predictor Ŷ is said to satisfy population fairness if

Ŷ (A = a)
d
= Ŷ ∀a.
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The distributional equivalence from Definition 3 does not rest on cross-world assumptions and is
equal to the observational criterion of demographic parity, in the case when A is a root node in the
causal graph (shown later in Proposition 1). In contrast, a much stronger notion can be defined as
follows

Definition 4 (Strong counterfactual fairness). A predictor Ŷ is said to satisfy strong counterfactual
fairness if

Ŷ (A = a, U = u) = Ŷ (U = u) ∀a, u .

Definition 4 requires the counterfactual prediction to be identical when setting the protected at-
tribute to any value. Note that this is an individual level fairness notion.

2.2 Resolving variables

Kilbertus et al. (2017) discuss that in some situations the protected attribute A can affect variables
in a non-discriminatory way. For instance, in the Berkeley admissions dataset (Bickel et al., 1975) we
observe that females often apply for departments with lower admission rates and consequently have
a lower admission probability. However, we perhaps would not wish to account for this difference
in the adaptation procedure if we were to argue that department choice is a choice everybody is
free to make. This motivated the following definition:

Definition 5 (Resolving variables, Kilbertus et al. (2017)). Let G be the causal graph of the data
generating mechanism. Let the descendants of variable A be denoted by de(A). A variable R is
called resolving if

(i) R ∈ de(A)

(ii) the causal effect of A on R is considered to be non-discriminatory

The idea is that the value of a resolving variable, or a resolver, R should not change under our
adaptation procedure. More generally, we can consider a set of resolving variables R. The desired
counterfactual fairness criteria with respect to this definition can now be stated as

Population: Ŷ (A = a,R = r)
d
= Ŷ (A = a′, R = r) ∀r (3)

Cond.: Ŷ (A = a,R = r) | A = a,X = x
d
= Ŷ (A = a′, R = r) | A = a,X = x ∀a, x, r (4)

Strong: Ŷ (A = a,R = r, U = u) = Ŷ (A = a′, R = r, U = u) ∀a, a′, r, u (5)

to which we refer to as population, conditional and strong resolved fairness respectively. In the
presence of resolving variables, we have an additional do(R = r) intervention, while the three differ-
ent levels of fairness stay the same. The strong notion requires that the counterfactual predictions
remain unchanged under a do-intervention on the protected attribute.

It is not immediately clear which variables should be considered as resolving. It can even
happen that the same variable can be resolving or non-resolving in different applications. For
instance, when recruiting students for an athletics training programme, we perhaps do not wish to
give males an advantage based on physical ability. In this case, physical strength is not a resolving
variable. However, if we are hiring workers for a physical job, we might want to consider physical
strength as a resolving variable.
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3 Adaptation

The main goal of this paper is to combine the two causal notions given in Sections 2.1 and 2.2 to
describe a preprocessing procedure which gives a fair representation of the data. After this, any
method can be used to construct a fair classifier Ŷ , with slight care in the training step.

Adaptation aim. Suppose R is the set of resolving variables. We want to find a transformation
FT : Rp 7→ R

p such that the transformed data FT (X) satisfy

FT (X(A = a,R = r))
d
= FT (X(A = a′, R = r)) for all a, a′, r. (6)

We construct a classifier (or a regressor) f for Y using the transformed data FT (X) as the input in
the training step. This immediately guarantees that, for the classifier Ŷ = f ◦FT , the distribution
of

Ŷ (A = a,R = r) (7)

does not depend on the value of a for any r. Hence we achieve population fairness no matter
which classifier f is used to obtain Ŷ . We will base the fair transformation FT (x) on a presumed
counterfactual model by defining, for X(U = u) = x, the transformation as

FT (X(U = u)) := X(A = 0, U = u,R = R(U = u)). (8)

That means we: (i) keep the latent quantile variables U identical; (ii) set the protected attribute
A to its baseline value; (iii) keep the value of the resolvers equal to their values R(U = u) under
no intervention. The population level notion (3) is guaranteed to be satisfied. The adapted data
FT (X) can be interpreted as counterfactuals. If we believe the counterfactual model obtained when
using Definition 1, we achieve the strong counterfactual notion of fairness, namely

Ŷ (FT (X(U = u))) = Ŷ (FT (X(A = a, U = u))) (9)

for any value of a. That is the prediction Ŷ will be unchanged for the individual corresponding
to U = u under a do-intervention that is setting the protected attribute A to its baseline value
A = 0 and keeping the resolving variables R = r fixed. This follows directly from definition (8)
of the data transformation, as FT (X(U = u)) is equal to X(A = 0, U = u,R = r) and also
FT (X(A = 0, U = u,R = r)) = X(A = 0, U = u,R = r). But even if the counterfactual model
is misspecified (and we cannot empirically verify this in principle), we still achieve the population
fairness notion. We can hence summarize the goal as in the following table.

population
fairness

strong
counterfactual

fairness

counterfactual
model true

4 4

counterfactual
model false

4 8
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To summarize: if the counterfactual model is right, we achieve counterfactual fairness in the sense
of Equation (5) with the data adaptation defined in Equation (8). If the counterfactual model
is wrong, we still achieve population fairness as in Equation (3). An interesting special case is
when there are no resolvers, R = ∅. In this case FT (X) ⊥⊥ A and demographic parity Ŷ ⊥⊥ A is
guaranteed to hold, irrespective of the counterfactual model we are using.

When writing X(U = u) = x, note that x and u have a one-to-one correspondence for continuous
random variables that permit a density. This means that u is a deterministic function of the
observed realization x. We get back to the need for randomization in the case of discrete random
variables, as they do not have densities.

3.1 Population level adaptation

The input of our procedure is the causal graph G, a choice of resolving variables R and data
(Ak, Xk, Yk)k=1:n = (A,X, Y ). Even though we are describing the procedure on population level
(meaning we are ignoring finite sample estimation errors) we still work with data samples to em-
phasize our counterfactual construction. We also assume that the densities fk(xk | pa(xk)) of the
SEM in Equation (1) are known. The output of our procedure is the transformed data FT (X) and
FT (Y ). So far we have only considered adapting the covariates X. In the procedure we also adapt
the response Y . This idea will be discussed shortly after the algorithmic procedure. In Section 5.3
we explain how the procedure is carried out non-parametrically on sample level. We show that the

Algorithm 1: Population Fairness Adaptation

Input: causal graph G, density of the data generating mechanism

f(x1, ..., xk) =
∏
f(xi | pa(xi)), choice of resolving variables R, data

(Ak, Xk, Yk)k=1:n = (A,X, Y )

Output: adapted data FT (X), FT (Y )

1 FT (Ak)← 0 for each k

2 FT (Rk)← Rk for each k

3 for V ∈ de(A) \R in topological order do

4 using the density f(v | pa(v)) obtain the inverse quantile function gV of V , such that

V = gV (U (V ),pa(V ))

5 obtain the latent quantile U
(V )
k of Vk for each k

6 obtain the transformed value FT (Vk) using the transformed values of its parents

(obtained in previous steps), by setting FT (Vk)← gV (U
(V )
k , FT (pa(Vk)))

7 return FT (X), FT (Y )

procedure in Algorithm 1 satisfies the desired fairness criteria in the following theorem:

Theorem 1 (Population and strong resolved fairness). Let FT (·) be the transformation from Al-
gorithm 1. Suppose f is any classifier built based on the transformed data FT (X,Y ). Then we
have that the classifier Ŷ = f ◦ FT (·) satisfies population resolved fairness, that is

Ŷ (A = a,R = r)
d
= Ŷ (A = a′, R = r) ∀a, a′, r.

8



Graphical model representation Generating mechanism (SEM)

A

X

R

Y

A← Bernoulli(0.5)

X ← 1

2
1(A = 0) + εX

R← 3

4
1(A = 0) + εR

Y ← 1

2
X + ε

Table 1: A full description of the example discussed in the text.

Further, under the quantile preservation assumption (QPA) Ŷ satisfies strong resolved fairness,

Ŷ (A = a,R = r, U = u) = Ŷ (A = a′, R = r, U = u) ∀a, a′, r, u.

The main idea of the proof is to show that the FT (·) transformation is equivalent to the do(A =
0, R = r) intervention and to use the counterfactual construction to show that the stronger fairness
notion is satisfied. The full proof is given in Appendix A.

Resolver-induced parity gap. In the absence of resolving variable, the data adaptation of X
achieves the desired fairness criterion. Theorem 1 shows that Ŷ = f ◦ FT satisfies the fairness
notion (3) for any classifier f . However, in the presence of resolving variables, the setup is more
subtle. We look at a simple example of a linear, additive regression model. The details of it are
given in Table 1. Suppose we had data coming from this model. Assume that we want the variable
R to be resolving. Then our data adaptation would change the value of X so that

FT (X) = X − 1

2
1(A = 0)

in order to remove the effect of A from X. Suppose that, after this, we want to use the transformed
values FT (X) and R to construct a predictor for Y . Since Y can in fact be written as

Y =
1

2
X + ε =

1

2
FT (X) +

1

4
1(A = 0) + ε

we can notice that Y and R are correlated. Furthermore, Y 6⊥⊥ R | FT (X). Therefore, if we linearly
regress Y onto {FT (X), R} and obtain Ŷ , then R will have a non-zero coefficient. In fact, by using
R, Ŷ will predict higher values for the A = 0 population. This is somewhat paradoxical, as R has
no causal effect on Y . The condition (3) will still hold, though. How do we reconcile this problem?

The example above illustrates that the condition (3) on its own is not sufficient to ensure the
type of fairness we want. The difference between subpopulations should be at most the difference
resulting from the causal effect of the resolvers. Therefore an additional strengthening of the
criterion is necessary in the presence of resolving variables. We want to bound the maximum parity
gap that can occur in the presence of the resolving variables.

Definition 6 (Resolver-induced parity gap). We say that a predictor Ŷ for Y satisfies the resolver-
induced parity gap with respect to a set of resolving variables R if

E
[
Ŷ (A = 0)− Ŷ (A = 1)

]
≤ E

[
Y (A = 0)− Y (A = 0, R = R(1))

]
. (10)
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The LHS of the definition is the parity gap of our predictor Ŷ . The RHS is the parity gap between
the two groups explained only by the resolvers R. This is the maximum parity gap we wish to
allow for Ŷ . The main problem of the example above is, in some sense, that the labels Y were not
adapted jointly with X. Thus Y still contained the effect of A. This effect was ultimately explained
by R.

We argue that using the transformed labels FT (Y ) is one way to circumvent the problem. If
we allow Ŷ to be a probability predictor (instead of a {0, 1} classifier), then

f?(FT (X)) = E
[
FT (Y ) | FT (X)

]
satisfies

E
[
f?(FT (X))

]
= E

[
E[FT (Y ) | FT (X)

]]
= E

[
FT (Y )

]
= E

[
Y (A = 0, R = R(a))

]
,

where the last equality comes from Theorem 1. Therefore, Ŷ = f? ◦ FT satisfies

E
[
Ŷ (A = a)

]
= E

[
Y (A = 0, R = R(a))

]
from which it follows that this Ŷ satisfies the condition (10). Finally, note that reasonable classifiers
f will converge to the population optimal prediction f?. For small sample sizes, the parity gap-
condition is only fulfilled modulo sampling noise. The reader might wonder why we work with
probability predictions instead of {0, 1} predictions. This is discussed in depth in Section 5. A
brief discussion related to the above argument is also given in Appendix B.

Obtaining the (inverse) quantile function and latent quantiles. In line 4 of Algorithm 1,
we obtain the inverse quantile function gV of V . More precisely, we first obtain the quantile function
QV (V ; pa(V )) using quantile regression forests (Meinshausen, 2006), after which gV is obtained by
inverting QV (V ; pa(V )). The latent quantiles in line 5 are also obtained using quantile regression
forests. Even though tree ensemble methods might perform worse in presence of heteroscedastic
noise, we focus on this option because of its computational tractability. Alternative options for the
quantile step are optimal transport methods, for instance (Carlier et al., 2016).

Discussion of the assumptions. The quantile preservation assumption (QPA) from Definition 1
is used for constructing a joint cross-world distribution. The assumption is equivalent to the equal
noise assumption used in the NPSEM-IE framework of Pearl (2009). This assumption has been
much debated in the causal community in its different forms. See, for instance, (Dawid, 2000) or
(Pearl, 2000). The assumption is indeed not testable, not even in principle. We offer some thoughts
on why QPA might be sensible in the fairness context:

(a) If we consider two continuous distributions with cumulative functions FX0 and FX1 and p ≥ 1,
the Wasserstein distance Wp(FX0 , FX1) is minimised1 by the optimal transport map F−1

X1
◦FX0 ,

as shown by Cuesta-Albertos et al. (1993). This mapping precisely represents quantile match-
ing. We can see how QPA arises naturally as minimising the distance between counterfactual
worlds.

1We note that this minimisation is achieved uniquely in the case where p > 1, since the cost function is strictly
convex.
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(b) Consider two distributions which only differ by a shift in the mean, for example N(µ1, σ
2) and

N(µ2, σ
2). In the null-case, when the means are the same, there is no difference between the

subpopulations. When taking the limit to the null case, µ2 → µ1, we recover the quantile
matching property.

(c) The quantile preservation assumption ensures that we retain the original ordering of the values.
Namely, if for a variable V two individuals have equal values for all an(V ), then QPA guarantees
their counterfactual values V (A = 0) will retain the original ordering.

(d) In mathematical modelling, we often use noise to describe variations which are not explained
by the data. This does not necessarily mean these are completely random, but could be a
result of certain unobserved variables, which possibly cannot even be measured in practice. For
instance, in the hypothetical intervention ”What would have happened had this female been
born a male?”, there are a number of genetic, parenting and societal factors that would have
remained the same.

(e) If we consider individuals with high quantiles U (very successful individuals), it would be hard
to argue how it could be fair that these quantiles do not stay the same in the counterfactual
world.

Linear additive case. The following theorem is intended to provide intuition about what the
resolved fairness condition ensures in the simplest linear additive case.

Theorem 2 (Strong resolved fairness for linear additive SEMs). Assume that we have an additive,
linear structural equation model for variables (A,X(1), ..., X(k), Y ) and that A ∈ {0, 1} is a root
node in the causal graph

X(i) ←
∑

V ∈pai

β
(i)
V V + εi,

Y ←
∑

V ∈pa(Y )

βYV V + ε.

The noise variables are assumed to be independent. Let R be the set of the resolving variables. If
Ŷ = αAA+

∑k
i=1 αiX

(i) is a linear predictor for Y then the strong resolved fairness condition (5)
implies that

k∑
j=1

αj ×

 ∑
paths A→Xj

disjoint from R

∏
m∈ path

βm

− αA = 0. (11)

Proof. In the proof we suppress the notation U = u to indicate that the quantiles are unchanged.
Instead we say that condition (5) implies that all the noise variables εi remain unchanged under
the do(A = a,R = r) intervention. Hence we know that

X(i)(A = 1, R = r)−X(i)(A = 0, R = r) =∑
V ∈pai

β
(i)
V (V (A = 1, R = r)− V (A = 0, R = r))
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By recursively expanding the sum on the RHS we obtain that

X(i)(A = 1, R = r)−X(i)(A = 0, R = r) =
∑

paths A→Xj

disjoint from R

∏
k∈ path

βk. (12)

Finally, condition (5) implies that

Ŷ (A = 1, R = r)− Ŷ (A = 0, R = r) = 0. (13)

Expanding the expression (13) using the identity (12) gives precisely the constraint (11).

Notice that resolved fairness is in the linear additive case equivalent to a single linear constraint
on the coefficients of Ŷ .

Lastly, we summarize the main advantages of our method:

(i) it does not throw away information contained in de(A) which is potentially useful for predic-
tion, as proposed in some previous works (Kusner et al., 2017),

(ii) it takes the causal perspective into account and offers interpretability of how and why fairness
is achieved, ensuring that fairness criteria are not satisfied spuriously,

(iii) it allows for a multitude of different fairness criteria, suitably adapted for different applica-
tions, reaching from demographic parity achieved when R = ∅, all the way to calibration
which is often achieved when all variables are resolving, that is R = X.

4 Relation to existing work

In this section we discuss the relation of fair adaptation to previous work on fairness.

4.1 Observational notions of fairness

For sake of brevity, we do not mention all the definitions of fairness proposed so far. We only
review the most important observational notions. By observational notions we refer to all notions
that only focus on the observational distribution of the data, without taking the generating causal
mechanism into account.

(i) One of the first observational notions, called demographic parity, goes all the way back to
Darlington (1971).

Definition 7 (Demographic parity). A predictor Ŷ satisfies demographic parity if

Ŷ ⊥⊥ A. (14)

In the special context of binary predicted labels, Ŷ ∈ {0, 1}, demographic parity is equivalent
toP(Ŷ = 1 | A = 0) = P(Ŷ = 1 | A = 1). In words, this definition requires that our prediction
is independent of the protected attribute. We now show that our population fairness criterion
(3) is equivalent to demographic parity in the case when A is a root node in the causal graph:
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Proposition 1. Suppose that the protected attribute A is a root node in the causal graph G.
If Ŷ is a binary predictor for the outcome Y , then we have that

Ŷ ⊥⊥ A ⇐⇒ Ŷ (A = a)
d
= Ŷ ∀a. (15)

In words, if A is a root node, then population fairness is equivalent to demographic parity.

Proof. By applying the Action/Observation exchange rule (2nd rule of do-calculus), found in
(Pearl, 2009) we have

Ŷ (A = a)
d
= Ŷ | A = a

Therefore, if Ŷ (A = a)
d
= Ŷ ∀a, then for any a, a′,

Ŷ | A = a′
d
= Ŷ (A = a′)

d
= Ŷ (A = a)

d
= Ŷ | A = a,

implying demographic parity. The reverse implication works analogously.

(ii) Another population definition of fairness is equality of odds, first proposed by Hardt et al.
(2016).

Definition 8 (Equality of odds). A predictor Ŷ satisfies equality of odds if

Ŷ ⊥⊥ A | Y.

For binary response Y and prediction Ŷ (the original context in which it was proposed),
equality of odds is equivalent to P(Ŷ = 1 | Y = y, A = 0) = P(Ŷ = 1 | Y = y, A = 1) for
y ∈ {0, 1}. Only taking the equality above for y = 1 gives equality of opportunity. In words,
this definition requires our prediction to be independent of the protected attribute, given the
true outcome.

(iii) The last observational notion we wish to mention is calibration, recently discussed by Choulde-
chova (2017). Here, it is assumed that Ŷ is an estimator of the true conditional probability
of Y = 1. Calibration is defined as follows.

Definition 9 (Calibration). A prediction Ŷ satisfies calibration if

Y ⊥⊥ A | Ŷ .

For binary outcomes calibration is equivalent to P(Y = 1 | Ŷ = y, A = 0) = P(Y = 1 | Ŷ =
y, A = 1) for y ∈ [0, 1]. Calibration states that, given our prediction, the protected attribute
should not provide us with additional information about the true outcome.
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Table 2: Examples that describe the intrinsic relation of observational criteria to counterfactual
fairness.

Example Causal graph Observational criterion achieved

(a)
A X Y

X not resolving
Ŷ ⊥⊥ A

(b)
A Y X

Y not resolving
Ŷ ⊥⊥ A

(c)
A Y X

Y resolving
Ŷ ⊥⊥ A | Y

(d)
A X Y

X resolving
Y ⊥⊥ A | Ŝ

4.2 Adaptation and observational criteria

We discuss the relation between the observational criteria and our adaptation method. Consider
the examples given in Table 2, in which we consider a classifier Ŷ to be a function of the adapted
data FT (X). For understanding the examples, it suffices to think of a non-resolving variable as
adapted to contain no effect of A. In the table we discuss the possibility of Y being a resolving
variable, which might seem confusing. By Y being resolving we simply mean that the true outcome
is considered fair as it is. In the given examples we consider X to be a single feature, although
the conclusions remain the same for multiple features. We first provide a formal statement about
Table 2.

Theorem 3 (Fairness criteria). Assume that for examples (a)-(c) from Table 2 we are building a
classifier Ŷ based on appropriately adapted data FT (X,Y ) which satisfies the condition (3) for the
choice of resolvers R given in the table. In example (d) we are building a predictor of the positive
probability S(x) = P(Y = 1 | X = x). For the given examples we have the following:

(a) for Ŷ built based on FT (X,Y ) we have Ŷ ⊥⊥ A

(b) for Ŷ built based on FT (X,Y ) we have Ŷ ⊥⊥ A

(c) for Ŷ built based on FT (X,Y ) = (X,Y ) we have Ŷ ⊥⊥ A | Y

(d) under the additional assumption that our predictor Ŝ built based on FT (X,Y ) = (X,Y ) equals
the true positive probability S(x) = P(Y = 1 | X = x) we have that Y ⊥⊥ A | Ŝ

Proof. Consider the following:
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(a,b) In both examples the values of X and Y are transformed to FT (X,Y ) which are indepen-
dent of A, by condition (3). Any predictor Ŷ which is a function of FT (X) must also be
independent of A.

(c) Consider the following graph where the predictor Ŷ is included in the causal graph

A Y X Ŷ

Clearly we have that Y d-separates A and Ŷ and the conclusion follows.

(d) In this example we can view the causal representation to be expanded as follows:

A X S Y

where S(x) = P(Y = 1 | X = x) is the true positive probability. Under the additional
assumption Ŝ = S, we have that Ŝ d-separates A and Y .

We can now clarify the core ideas of observational notions discussed in this section. Note that
in the toy examples from Table 2 we have that:

(a,b) Demographic parity is achieved when X or Y are considered to be non-resolving. We can see
that in some sense demographic parity is a criterion that requires us to treat all subpopulations
as exactly the same, regardless of what is observed in the data.

(c) Equality of odds is achieved when Y is considered to be resolving. In this case the adaptation
procedure does not change the values of X,Y . The idea that the true outcomes Y are fair is
in the heart of this notion.

(d) Calibration can be2 achieved when X is considered to be resolving. In this case our adaptation
procedure does not change the values of X,Y . Calibration is a criterion that ensures we do
not discriminate any subpopulation beyond the differences observed in the data. Calibration
should often come as a result of a good maximum utility predictor.

4.3 Mediation and path-specific effects

It is important to mention the connection of our work with some previous works (Nabi and Shpitser,
2018; Chiappa and Gillam, 2018). In particular, Nabi and Shpitser (2018) start with the joint
distribution p(X,Y ) and define discrimination as φ(p(X,Y )), where φ is some functional of the
distribution. After that, their goal is to find another distribution p?(X,Y ) which is close to the
original p(X,Y ) and satisfies |φ(p?(X,Y ))| ≤ ε. One possible choice of φ they work with is the
natural direct effect (NDE) which is defined as

NDE = E
[
Y (A = a,R = R(a′))− Y (A = a′)

]
.

2It might be valuable to note that calibration does not necessarily have to arise in this case. The criterion is still
dependent on how we build our classifier.
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The NDE can be interpreted as the total causal effect of the protected attribute on the outcome
that does not go through resolving variables. If we use the transformed distribution FT (X,Y ) as
the p?(X,Y ), then we can relate their approach to our method via the following proposition

Proposition 2. Suppose that condition (3) holds, that is

Ŷ (A = a,R = r)
d
= Ŷ (A = a′, R = r) ∀r.

Then it follows that
E
[
Ŷ (A = a,R = R(a′))− Ŷ (A = a′)

]
= 0.

The short proof is given in Appendix F. The proposition shows that condition (3), which our method
achieves, is sufficient (but not necessary) for the NDE to vanish for the transformed distribution.

5 Practical aspects and extensions

After explaining the main ideas and fairness criteria our method achieves, we turn to discussing
the practical aspects and extensions of our method.

5.1 Categorical (and discrete) variables

An important practical aspect of our method is dealing with variables that take values on a discrete
domain. There is an immediate problem we encounter in this case. If we think about the mapping
u→ V (U = u), we can see that different values of u can correspond to the same value of V (U = u) =
v, that is the mapping is no longer injective (as opposed to the continuous case). To summarize, the
conditional distribution U | V = v is deterministic in the continuous case, and non-deterministic
in the discrete case.

Ordered categorical and discrete variables. As a starting point, we describe our method
for a binary variable V ∈ {0, 1}. Consider the probabilities p0 := P(V = 0 | pa(V ), A = 0) and
p′0 := P(V = 0 | pa(V ), A = 1). Assume without losing generality that V = 0. Then we compute
the transformed value FT (V ) as:

• if p′0 ≤ p0 then FT (V ) = 0

• if p′0 > p0 then

FT (V ) =


0 with probability p0

p′0

1 with probability
p′0−p0
p′0

We need to generalise this approach to non-binary, discrete variables V . Suppose now that V takes
values in {1, ...,m}. Similarly as above, define p = (p1, ..., pm) and p′ = (p′1, ..., p

′
m) where:

pi := P(V = i | pa(V ), A = 0) (16)

p′i := P(V = i | pa(V ), A = 1) (17)

These probabilities can, for example, be estimated using probability random forests (Malley et al.,
2012). Motivated by the quantile matching assumption, which arises as a solution that induces
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minimal change in the counterfactual world, we want to find a joint density for p, p′ that minimises
some transport cost. This can be done by solving the following optimisation problem:

min
Π∈Rm×m

Tr(ΠC)

s.t.
m∑
j=1

Πij = pi ∀i ∈ {1, ...,m}

m∑
i=1

Πij = p′j ∀j ∈ {1, ...,m}

(18)

where the cost matrix C has entries Cij = |i − j|p. The exact value of p does not really matter,
since any p > 1 will give the same (unique) solution. When V = i, we sample FT (V ) from the
distribution given by Π̂i, the ith row of the optimal transport matrix. In particular Π̂i needs to be
normalised, and we let F

Π̂i
be the corresponding cumulative distribution function. We then have

FT (V ) = F−1

Π̂i
(U), where U ∼ U [0, 1] (19)

Notice that FT (V ) is not necessarily deterministic. It can happen that Π̂i has multiple non-zero
entries, meaning that the value V = i is coupled with multiple counterfactual outcomes. The
reason for this was already mentioned, namely the fact that the conditional distribution U | V = v
is non-deterministic in the discrete case.

Unordered categorical variables. Let V be categorical and unordered. We first obtain an
ordering for it. Suppose V takes values C1, ..., Cl. We then find a bijection σ : {C1, ..., Cl} →
{1, ..., l} such that

σ(Ci) ≤ σ(Cj) =⇒ P(Y = 1 | V = Ci, A = 0) ≤ P(Y = 1 | V = Cj , A = 0) (20)

Then simply define V ′ = σ(V ) and use it as a replacement for V . Note that the condition (20)
implies that the marginal probability P(Y = 1 | V ′ = v, A = 0) is increasing in v. Implicitly, we
assume that the same holds for A = 1. That is, we assume that P(Y = 1 | V ′ = v, A = 1) is also
increasing in v. Then we can again apply the approach used for discrete variables.

If there is no meaningful ordering, or we have reason to believe that imposing an ordering does
not make sense, a slightly different approach is needed. We define p, p′ the same way as above,
with pi = P(V = Ci | pa(V ), A = 0) and p′i := P(V = Ci | pa(V ), A = 1). We again solve
the optimisation problem (18), but with a different cost matrix C, namely Cij = 1(i 6= j). When

V = Ci, the distribution of FT (V ) is given by the (appropriately normalized) ith column of Π̂.

5.2 Inherent limitation of the discrete case

In Section 3.1 we gave an optimal transport interpretation of the quantile preservation assumption
(QPA). In particular, we state that for two random variables X,Y with distribution functions
FX , FY the Wasserstein distance Wp(X,Y ) is minimised by matching the quantiles, that is using
the optimal transport map given by F−1

Y ◦ FX . This map is the optimal transport map for every
p ≥ 1 and also a unique optimal transport map for p > 1, since the cost function then becomes
strictly convex.
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The quantile matching is the greedy solution. Note that this approach also extends to the discrete
case - a greedy solution3 is optimal whenever the cost function is strictly convex (Santambrogio,
2015, chap. 2). However, there is a major difference between the continuous and the discrete case.

In the continuous case, using the quantile preservation assumption, we are able to compute
the counterfactual values exactly. Richness of the ambient space allows for the optimal transport
map to be deterministic, whereas in the discrete setting this is never the case. The solution of
the problem (18) gives us a non-deterministic distribution over the counterfactual outcomes. The
reason for this is that it is impossible to distinguish individuals which have the same value of a
variable V - in some sense, the information coming from the quantiles is compressed.

A possible solution which first comes to mind is to perhaps take the expectation over this
randomness. But even if we consider the simplest example, we run into a problem. Consider using
a single binary predictor X ∈ {0, 1} distributed as P(X = 1 | A = 0) = 0.5 and P(X = 1 |
A = 1) = 0.4. Suppose that the outcome Y simply equals X. After solving the optimal transport
problem, all individuals with A = 1, X = 0 would have the counterfactual distribution

P(X(A = 0) = 1 | A = 1, X = 0) = 1−P(X(A = 0) = 0 | A = 1, X = 0) =
1

6

and all other individuals would retain the values they have. But when taking the expectation over
this randomness, we have that

E[X(A = 0) | A = 1, X = 0] =
1

6

meaning we get no additional information to distinguish between individuals with A = 1, X = 0. To
treat everyone equally, we would have to either assign everyone X = 1 or X = 0, neither of which
options is desirable. Therefore, we use randomisation, which in this case chooses a ”lucky” 1/6 of
the individuals with A = 1, X = 0 and sets their counterfactual values X(A = 0) to 1. For some
regression applications integrating outcomes over different counterfactual worlds is meaningful. In
that case, taking expectation over the assignment randomness might be sensible. For classification,
where labels are either 0 or 1, this might fail, as shown above.

Further, consider two variables X1 ∼ N(0, 1) and X2 = 1(X1 > 0). If we only have the variable
X2 available, then it is impossible to distinguish between individuals that have X2 = 1. However, if
we use X1 instead, then no two individuals will be the same - we will always be able to distinguish
them. When going from X1 to X2, we see that quantiles are compressed and they can only be
determined up to an interval. This causes the counterfactual value to be non-deterministic.

Finally, we clarify the difference in approach for different types of variables taking values on
discrete domains. There are two cases we consider:

(a) Discrete and ordered categorical variables:

We solve the optimisation problem (18) with the cost matrix Cij = |i− j|p corresponding
to `p-loss. The cost matrix reflects the fact that, due to an inherent ordering of the values, we
wish to penalise larger changes more. For any p > 1 the greedy solution is the unique optimal
solution.

3A reader familiar with optimal transport will recognize that here we are talking about solutions satisfying the
c-monotonicity property.
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(b) Unordered categorical variables:

We also solve the optimisation problem (18), but with the cost matrix Cij = 1(i 6= j).
This cost matrix corresponds to `0-loss. Since in this case we do not have an inherent ordering
structure of the values, we penalise all changes equally. The optimal solution in this case is not
unique.

5.3 Sample-level adaptation

Let G be the causal graph and let R be a choice of resolving variables. Further, let f(V | pa(V ))
be the density corresponding to variable V . Let g(pa(V ), U (V )) represent the inverse quantile
function of the distribution of V , that is V = g(pa(V ), U (V )). Sample level fair adaptation is given
in Algorithm 2. Notice that our procedure treats the response Y separately. The only reason for

Algorithm 2: Fairness Adaptation

Input: Data (Ak, Xk, Yk)k=1:n, causal graph G, choice of resolving variables R.

Output: Adapted data FT (Ak, Xk, Yk)k=1:n

8 for V ∈ de(A) \R in topological order do

9 if V continuous then

10 estimate the quantiles (Û
(V )
k )k=1:n of V in the distribution f(V | pa(V )) using

quantile regression on the data (Vk, pa(Vk))k=1:n

11 using (Vk, pa(Vk), Û
(V )
k )k=1:n obtain an estimator ĝ(pa(V ), U (V )) of g(pa(V ), U (V ))

12 else

13 case 1. V discrete and V 6= Y do

14 estimate the probability distributions p̂(pa(Vk))k=1:n as in Equations (16)-(17)

15 obtain the transformed probability distributions p̂(FT (pa(Vk)))k=1:n

16 ∀k solve the optimal transport problem (18) between p̂(pa(Vk)) and

p̂(FT (pa(Vk))) with `p-loss to get (Π̂k)k=1:n

17 case 2. V = Y do

18 perfrom case 1. restricted to the training set

19 for all k with Ak = 1 and Vk known do

20 if V continuous then

21 FT (Vk)← ĝ(FT (pa(Vk)), Û
(V )
k )

22 else

23 FT (Vk)← sample from the distribution Π̂k
Vk

as in Equation (19)

24 return FT (Ak, Xk, Yk)k=1:n

this is that Y is unavailable on the test set. The quantile regression step can be done either using
random forests (Meinshausen, 2006) or by using an optimal transport approach (Carlier et al.,
2016).
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5.4 About the training step

To construct a useful predictor Ŷ we must make use of the labels Y . The adapted labels FT (Y )
are available as an output of our fair adaptation procedure. The resolver-induced parity gap was
introduced in Definition 6 after convincing ourselves that condition (3) is not sufficient on its own
(in the presence of resolving variables).

It is important to mention that, in the case of resolving variables, data from different counter-
factual worlds should not be used. For instance, one should not use the original labels Y with the
transformed covariates FT (X). If doing so, the parity gap condition (10) might not be satisfied.
We refer the reader back to example given in Section 3.1 and Definition 6. It is also not advisable
to leave out variables in the training procedure. We discuss two options for the training step. These
are:

(A) train the classifier on the original data (Ak, Xk, Yk)train
k=1:n

(B) train with the adapted data and the adapted labels FT (Ak, Xk, Yk)train
k=1:n

For both methods above, the adapted test data FT (Ak, Xk, Yk)test
k=1:n should be used to produce

the predictions for the test set. We have shown in Section 3.1 that method (B) is sensible for
satisfying the condition (10). Similar reasoning can be used for method (A), that is if f? is such
that

f?(X) = E
[
Y | X

]
then for Ŷ = f? ◦ FT we have that

E
[
Ŷ (A = 0, R = R(a))

]
= E

[
f?(X(A = 0, R = R(a)))

]
= E

[
E
[
Y (A = 0, R = R(a)) | X(A = 0, R = R(a))

]]
= E

[
Y (A = 0, R = R(a))

]
from which it follows that this Ŷ also satisfies the condition (10). The better of the two options can
be chosen via cross-validation as the one with the best fairness-accuracy trade-off. For experimental
results in Section 6 we by default use training method (B).

5.5 Method extensions

There are two methodological extensions of our approach that we briefly discuss, leaving out some
of the detail.

Is there really a baseline? So far we have considered the subpopulation A = 0 to be the
baseline. This choice is somewhat arbitrary. We briefly comment on the implications of choosing a
baseline.

Firstly, the choice of the baseline can influence the optimism of our predictor. Imagine that we
are trying to predict recidivism on parole, with race being the protected attribute. If we adapt the
data using the white subpopulation as baseline, then our predictor will be much more optimistic,
meaning that it will predict fewer recidivism outcomes than it would have in the case of choosing
the black subpopulation as the baseline.

Secondly, if we have discrete variables, then our procedure will include some randomisation.
There is no randomisation for the baseline population, but there is for the rest. If the baseline is
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the advantaged group, then randomisation can serve as positive discrimination and might be seen
as acceptable. However, we might want to consider an approach in which both subpopulations are
randomised equally. We briefly discuss how we might split the burden of randomisation between
the subpopulations.

A non-baseline approach. We previously discussed adapting the data to the A = 0 baseline
using Algorithm 2, which gives us the pre-processed version of the data, which we here label X̃A=0.
Of course, the same procedure can be applied to obtain the version corresponding to the A = 1
baseline, which we label X̃A=1. Then we can use the following approach:

1. Obtain (X̃A=0, Ỹ A=0) and (X̃A=1, Ỹ A=1) using Algorithm 2.

2. Concatenate the two versions to obtain

X? = (X̃A=0, X̃A=1).

3. Build predictors π̂A=0(x?), π̂A=1(x?) that estimate the probabilities P(Ỹ A=0 = 1 | X? = x?),
P(Ỹ A=1 = 1 | X? = x?) respectively.

4. For any test observation with X?
test = x?test return the predicted probability of

π̂(x?test) =
π̂A=0(x?test) + π̂A=1(x?test)

2
.

We offer an interpretation of the approach above. First we combine the information from the two
worlds in which A = 0 and A = 1. We then use the joint information to predict probabilities of
positive outcomes in both of these worlds. In the final step, we combine the probabilities from the
two worlds by simply taking the mean probability. In this way, we obtain probability estimates for
positive outcomes, which can then be used to construct a classifier by thresholding.

Edge specific extension. We quickly mention another possible extension of our method. So far
we discussed resolving variables, on which the effect of A is deemed fair. Sometimes deciding if a
variable is resolving might not be straightforward. For example, we might see the causal effect of
several causal parents as being fair, but of several as being unfair. In some sense, our method so
far was focused on the nodes in the causal graph G. An extension of this, which focuses more on
specific edges in G is possible. A short discussion of this idea, motivated by an example, is given
in Appendix C.

6 Experimental results

An implementation of our method, which uses tree ensembles for the quantile learning step, is
available as the fairadapt package on CRAN. Our experimental results consist of two parts. In the
first part, we look at synthetic examples which demonstrate how our methodology offers flexibility
compared to possibly prohibitively strong demographic parity. In the second part, we look at the
method performance on two real world datasets, comparing it to several different baseline methods.
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6.1 Measures of fairness and performance

Before displaying the experimental results, we discuss all the measures that are used for assessment
of our classifiers. For measuring performance, we report on accuracy in the simple classification
tasks. It is, however, sometimes desirable to work with probability predictions, in which case we
report the area under the receiver operator characteristic (AUC).

Fairness measures. There are two fairness measures we use. To assess demographic parity, we
use the parity gap, defined as P(Ŷ = 1 | A = 0)−P(Ŷ = 1 | A = 1). When dealing with probability
predictions, we simply report the parity gap at the 0.5 threshold.

In order to assess calibration, we need a measure for it. We introduce the k-level calibration
score. Suppose we have the predicted positive probabilities P(Ŷ = 1 | X = x) and the true labels Y .
We start by splitting the individuals with A = 0 into k groups, based on the predicted probability
of P(Ŷ = 1 | X = x). In particular, if P(Ŷ = 1 | X = x) ∈ [ ik ,

i+1
k ), then the individual is assigned

to group Gi. In each group we compute the mean of the true outcomes Y for that group, E[Y | Gi],
which is simply the proportion of positive outcomes in the group Gi. Assume that the vector cccA=0

contains these proportions for each group. We compute cccA=1 for the A = 1 population in the same
way. Then the k-level calibration score is defined as

1

k
||cccA=0 − cccA=1||1.

Note that for a well-calibrated score, this measure should be small. If calibration is satisfied, as
k →∞, the k-level calibration score tends to 0.

6.2 From parity to calibration

Earlier in the text we claimed that our method can offer fairness criteria which are between demo-
graphic parity and calibration. Namely, Theorem 3 shows that in a simple case demographic parity
is achieved when none of the variables are resolving, and that calibration can be achieved if all of
the variables are resolving. Depending on the choice of the resolving variables, we can interpolate
between these two notions of fairness. Roughly speaking, the larger the resolving set is, the larger
the effect of A is in the data. In that case, the predictor Ŷ is closer to the unconstrained Ŷ max-util

predictor, meaning that we are closer to satisfying calibration. The smaller the resolving set is, the
smaller the effect of A is, meaning that we are closer to demographic parity.

We demonstrate this by looking at two synthetic examples, with their structural equation models
given in Table 3. All the noise terms εi are independent N(0, 1) variables and expit(x) = ex

1+ex .
In words, Y follows a logistic regression model based on the Xi’s. The causal graphs of the two
synthetic examples are given in Figure 1. In both examples, we analyse the AUC-parity gap and
parity gap-calibration score trade-offs via the resolving variables. Two baseline methods were
implemented, to compare our results. These are reweighing (Kamiran and Calders, 2012) and
fair reductions (Agarwal et al., 2018). Both of these methods aim to achieve demographic parity.
Therefore, we should compare them to our method with no resolving variables. More details on
comparison methods are given shortly in Section 6.3. The fair reductions approach performs poorly
on both of these task (for a range of parameter values ε of the method), so it is not included in the
final analysis of the results.

In example A we enlarge the set of resolving variables stepwise, including Xi at step i. For
example B, we try out all possible subsets of resolving variables. We run our method ten times,
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Synthetic A Synthetic B

A← Bernoulli(0.5)

Xi ← −
A

4
+

1

8
+ εi for i ∈ {1, ..., 5}

Y ← Bernoulli(expit(
5∑

i=1

Xi))

A← Bernoulli(0.5)

Xi ← −
A

4
+

1

8
+ εi for i ∈ {1, 2}

X3 ←
1

4
X2 + ε3

Y ← Bernoulli(expit(
3∑

i=1

Xi))

Table 3: Structural equation models for the two synthetic examples A and B. All the noise variables
εi are independent and expit(x) = ex

1+ex .

A

X1 X2 X3

X4 X5

Y

(A)

A

X2

X1

X3

Y

(B)

Figure 1: A graphical model representation of the SEMs used for Synthetic examples A and B.

with 5000 training and test samples generated from the given SEMs. A logistic regression classifier
is used after applying fairadapt. On each repeat we measure the AUC, parity gap and the
calibration score. The results are shown in Figures 2 and 3. Vertical error bars in the figures
represent the standard deviations of respective measures obtained from the ten repeats.

Example A. In Figure 2 the AUC and the parity gap are increasing, whereas the calibration
score is becoming smaller, as we enlarge the resolving set. Here we can see the trade-off between
demographic parity and calibration via the resolving variables. The baseline method of reweighing
obtains better accuracy, but fails to eliminate discrimination fully.

Example B. Figure 3 shows similar behaviour, in a slightly more complicated causal situation.
For example, note that setting X1 to be resolving implicitly sets X3 to be resolving, too. Setting
R = {X1, X2} has almost the same performance as setting R = {X1, X2, X3}. Similary, resolving
sets {X2, X3} and {X2} show very similar results, as expected.

6.3 Real data experiments

We next look at real data experiments. We summarize all the baseline methods against which we
benchmark our results. In the real data comparisons, we only consider the case of demographic
parity (meaning no resolving variables) as other comparisons methods are designed to achieve
precisely this notion.
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Figure 2: AUC-parity and parity-calibration
score trade-off for example A. Vertical bars
represent standard deviations obtained from
10 repeats.

Figure 3: AUC-parity and parity-calibration
score trade-off for example B. Vertical bars
represent standard deviations obtained from
10 repeats.

Baseline methods. The comparison methods that we look at are:

• standard implementaion of random forests (Wright and Ziegler, 2015), serving as a fairness-
ignorant baseline

• fairness through unawareness - RF applied to the data after excluding the protected attribute

• the reweighing preprocessing method (Kamiran and Calders, 2012), which learns specific
weights for the combinations of the class label and the protected attribute which are then
used for building a classifier (in this case we use the logistic regression classifier and the
implementation from the IBM toolkit (Bellamy et al., 2018))

• the reductions approach (Agarwal et al., 2018) casts the fairness problem in a linear program-
ming (LP) form in order to find a sample-weighted classifier which satisfies the desired fairness
constraint (we again use logistic regression for our classifier that allows sample-weighting and
vary the fairness constraint violation parameter ε ∈ {0.1, 0.01, 0.001})

UCI Adult. The Adult dataset from the UCI machine learning repository (Lichman et al., 2013)
contains information on 48842 individuals and the outcome to be predicted is whether an individual
has a yearly income of more than 50 thousand dollars. The data comprises of the following features4:

• gender, labelled A, which we consider to be the protected attribute

4The original dataset contains a few more features, but we focus on those that have been used in previous fairness
applications.
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Figure 4: (a) the causal graph (black edges) claimed to correspond to the UCI Adult dataset. The
additional red, dashed edge corresponds to a sampling bias in the data; (b) causal graph of the
COMPAS dataset.

• demographic information C - including age, race and nationality

• marital status M and years of education L

• work related information R - job occupation, hours of work per week and work class

• a binary outcome Y representing whether a person’s income exceeds 50000 dollars a year

The UCI Adult dataset has been previously analyzed as an application of different fairness proce-
dures, for instance in (Nabi and Shpitser, 2018) and (Chiappa and Gillam, 2018). The proposed
causal graph for the dataset is presented in Figure 4(a). While we do agree that this causal graph
makes sense intuitively, care needs to be taken because the sampling bias can induce dependencies
that have no explanation in reality. This is precisely the case with the UCI Adult dataset, which we
can observe by inspecting the relation between two features in CCC (age and race) and the protected
attribute A. From the plots in Figure 5 we see that in the dataset gender is not independent of
age and race, as the causal graph would imply. To solve the problem, we subsample the dataset in
order to mitigate the sampling bias. Details about how we pre-processed the dataset are given in
Appendix A.

COMPAS dataset. The second real dataset we analyse is the COMPAS dataset (Larson et al.,
2016) which contains the following features:

• outcome Y is recidivism whilst on parole within a two year period

• protected attribute A in this case is race (White vs. Non-White)

• demographic information CCC

• juvenile offense counts JJJ , count of prior offenses P and degree of the charge D

The causal graph that we propose is given in Figure 4(b). The reader here might disagree that this
example falls into the class of Markovian non-parametric models.

We select several individuals in the dataset which are non-white, male and of age 30. We look at
their values of juvenile counts and prior counts (J1, J2, J3, P ) before and after applying fairadapt

25



Figure 5: Plots of influence of sex on race (A) and age (B) in the UCI Adult dataset.

> compas[id, offense.count]

juv_fel_count juv_misd_count juv_other_count priors_count

241 0 0 0 4

646 0 0 0 8

807 0 0 0 17

1425 2 0 0 20

1470 1 0 2 15

> adapted_compas[id, offense.count]

juv_fel_count juv_misd_count juv_other_count priors_count

241 0 0 0 3

646 0 0 0 5

807 0 0 0 13

1425 0 0 0 11

1470 0 0 2 9

We can notice that fair adaptation reduces the number of offenses for these individuals, since in the
dataset the baseline population (white) has fewer offenses on average. Notice how the transformed
values could be used in an interpretable way. Hypothetical statements like ”if you were white, your
juvenile offense counts would have been J1, J2, J3, in turn resulting in prior count of P , resulting
in prediction Ŷ ” now become possible. This part of our method, however, rests on the assumption
from Definition 1.

Results. For both UCI Adult and COMPAS, we split the dataset into 75% training and 25%
testing randomly 20 times. Each time, we apply all the baseline methods and our fairadapt

method, measuring accuracy and the parity gap each classifier achieves. Figures 6 and 7 summarize
the obtained results. For the Adult dataset, no method is better than fairadapt on both criteria.
For the COMPAS dataset, only the reweighing method is marginally better. We note our method
has very satisfying performance. On top of this, we mention that our method has the ability to relax
the fairness criterion via resolving variables, has a causal interpretation and allows for individual
level interpretability (under the QPA).
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Figure 6: Comparison of the performance of
different fairness methods on the UCI Adult
dataset. Vertical bars represent standard de-
viations obtained from 20 repeats.

Figure 7: Comparison of the performance of
different fairness methods on the COMPAS
dataset. Vertical bars represent standard de-
viations obtained from 20 repeats.

Finally, we take a look at how fairadapt affects the distribution of the positive outcome
probabilities. We plot the densities of P(Ŷ = 1 | A = a) for both levels of A for the two cases of
not applying and applying fairadapt. The results are shown in Figures 8 and 9. Note that the
densities are much closer when applying fairadapt, indicating a clear reduction in discrimination.

7 Conclusion

In the final section we revisit some of the ideas discussed previously and conclude our argument.

About observational criteria. Causal and observational notions of fairness have an inherent
link. If the protected attribute is a root node, the intervention on A is equivalent to conditioning
on A. Causality is necessary, not just to provide new criteria, but to give meaning to the existing
observational criteria used.

About fair data adaptation. We conclude that fairadapt shows competitive performance
compared to other baseline methods in the case of demographic parity. It also gives a causal and
interpretable perspective on the data transformation that is carried out. Further, it offers various
relaxations of demographic parity, all the way to the case of calibration, which is achieved when all
the variables are considered to be resolving. The output of fair data adaptation also allows us to
see which values individuals were assigned in the transformation procedure. This helps justify and
interpret why a certain individual was given his prediction.

About the current datasets and methods. We emphasize that it would be beneficial for
the advancement of fairness if there were established real world datasets with agreed-upon causal
graphs. This would allow different authors to compare their methods in a meaningful way, demon-
strating the performance and measuring different fairness criteria. Having a benchmark for al-
gorithm performance and fairness criteria achieved could also help us understand how and why
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Figure 8: Change in the positive out-
come probability density due to applying
fairadapt to UCI Adult.

Figure 9: Change in the positive out-
come probability density due to applying
fairadapt to COMPAS.

different methods yield different results on the same datasets. We feel like this is not yet the case
and that much more could be done on this front.

About future work. We have discussed a method which achieves certain fairness criteria and
shown how it can be used in practice. However, this is only the very first step of fairness. A big
component of the whole problem that has so far been barely discussed is the temporal implications
of fairness criteria on well-being of different groups. The only work on this topic we are currently
aware of is (Liu et al., 2018). Although many of the fairness criteria make intuitive sense and
perhaps have some philosophical backing, we have no reason to convince ourselves that they are
necessarily doing the right thing in terms of their long-term effect. This is a serious question and
perhaps more involvement is needed from the economics community - many already developed tools
could be very useful in this discussion.

Acknowledgements: We would like to thank Domagoj Ćevid, Yuansi Chen and Federico Glaudo
for useful discussions and suggestions that greatly improved our work.
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A Proof of Theorem 1

Proof. We prove that the transformation FT (·) satisfies

FT (X(U = u)) = X(A = 0, R = r, U = u) ∀r, u.

Take any U = u such that R(U = u) = r. Under the do(A = 0, R = r) intervention the assignment
equations of A and R change to

A← 0,

R← r,

meaning that FT (A(U = u)) = A(A = 0, U = u) and FT (R(U = u)) = R(A = 0, R = r, U = u).
Also, for any V non-descendant of A or R we have that

FT (V (U = u)) = V (A = 0, R = r, U = u).

We proceed inductively. Let U (V ) be the component of U = u corresponding to variable V . In the
first step, for any V ∈ ch(A) we can show that

V (A = 0, R = r, U = u) = g(pa(V )(A = 0, R = r, U = u), U (V )) (21)

= g(FT (pa(V )), U (V ))

= FT (V (U = u))

where the first equality holds by definition of the intervention and the quantile preservation as-
sumption (QPA), the second because we showed FT (V (U = u)) = V (A = 0, R = r, U = u)
for all V ∈ {A,R, nde(A)} (here nde(A) are non-descendants of A), the third from the definition
of Algorithm 1. Using the fact that Algorithm 1 goes through variables V in topological order,
inductively we can show FT (V (U = u)) = V (A = 0, R = r, U = u) for any V in ch(ch(A))
and so on. This shows that strong resolved fairness holds under the QPA. If the QPA is not
used, then the equality (21) does not hold anymore. However, even without QPA it still holds

that V (A = 0, R = r, U ′)
d
= g(pa(V )(A = 0, R = r, U), U (V )) where U,U ′ are now viewed as

independent random variables (with a U [0, 1]p+2 distribution). This is enough to guarantee that

X(A = a,R = r)
d
= X(A = a′, R = r) ∀a, a′, r. From this it follows that for any classifier

Ŷ = f ◦ FT we have that

Ŷ (A = a,R = r)
d
= Ŷ (A = a′, R = r).

B Probability predictions satisfying resolver-induced parity gap

Take the following simple example

A← Bernoulli(0.5)

X1 ←
1

2
1(A = 0) + ε1

X2 ←
2

3
(1(A = 0)− 1

2
) + ε2

Y ← Bernoulli(expit(X1 +X2))
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Figure 10: Density of the probability of positive outcome P(FT (Y ) = 1).

where ε1, ε2 are both N(0, σ2) variables with σ2 = 0.05. Variable A represents gender, with A = 0
being the male population. Suppose that X2 is resolving and X1 is not. After adaptation (assuming
no estimation error) we have that FT (X1) ← ε1 and FT (Y ) ← Bernoulli(expit(FT (X1) + X2)).
Plot of the density of the probability of a positive outcome P(FT (Y ) = 1 | A = a) are shown in
Figure 10. Note that an optimal probability predictor Ŷ = E

[
FT (Y ) | FT (X)

]
would have

E
[
Ŷ (A = 0)− Ŷ (A = 1)

]
= E

[
FT (Y ) | A = 0

]
−E

[
FT (Y ) | A = 1

]
≈ 0.164.

However, an optimal {0, 1} classifier Ỹ trying to minimize (for example) the L2-loss would simply
be constructed as Ỹ = 1(Ŷ ≥ 1

2). Note that (referring to Figure 10) for this Ỹ we have that

E
[
Ỹ (A = 0)− Ỹ (A = 1)

]
≈ 1.

Due to examples like this, the criterion (10) was defined for probability and not class predictions.
A much more involved, general discussion of this problem is given in Section 5.

C Edge specific extension

Consider a dataset consisting of the following features5:

• protected attribute A, in this case race

• information about amount of policing the person experiences, P (given explicitly or perhaps
implicitly through a ZIP code)

• information about prior convictions C

• recidivism outcome Y when the person is released on parole

A possible causal graph for this dataset is given in Figure 11(a). Nabi and Shpitser (2018) considered

5This example, not surprisingly, is motivated by COMPAS.
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Figure 11: (a) example that motivates the edge extension of the idea of resolving variables; (b)
example where an edge specific extension might arise naturally.

the variable C as resolving in the COMPAS dataset. If, however, information about policing is
available, we might want to account for this. Suppose that the difference in prior convictions
between the black and white population was partly due to the fact that black people experience
more policing. We would, in this case, consider this effect unfair. Therefore, we need to find a way
to remove the A → P → C effect, but keep the direct A → C effect. This example demonstrates
that sometimes we perhaps want to have partially resolving variables.

We argue that sometimes it is hard to choose if a variable is simply resolving or non-resolving.
Going back to the case of policing from Figure 11, it would be difficult to determine whether the prior
convictions variable C is resolving or non-resolving. In some sense, both choices would be wrong.
We therefore think the approach of choosing which edges to remove allows for some additional
flexibility with modelling. Another way in which the edge extension might arise naturally is the
following. Imagine that the path A → C was actually going through some unmeasured variable
W , as shown in Figure 11(b). If we considered W as resolving, removing the effect A → C in the
original graph might capture what we want to achieve with our adaptation.

For every variable V we need to define its adaptation parent set, aps(V ) ⊂ pa(V ), determining
which of the parent variables must change when computing the counterfactual value. The adap-
tation parent set aps(R) is the subset of parents whose unfair effect we wish to remove. For a
resolving variable R, aps(R) = ∅. For a non-resolving variable X we have that aps(X) = pa(X).
In the example from Figure 11(c) we have aps(C) = P .

The main difference from the original version is in line 6 of Algorithm 1, in which we assign the
transformed value as

FT (Vk)← gV (Uk, FT (pa(Vk))). (22)

In the edge specific case, instead of using transformed values of all the parents pa(V ) in the
assignment (22), we use the original values of parents in pa(V )\aps(V ) and the transformed values
FT (aps(V )) of the parents in aps(V ).

D UCI Adult dataset

We give more details about how we preprocessed the UCI Adult dataset. The preliminary cleaning
of the dataset is similar to that of Zhu (2016). In particular, the following operations on the features
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are performed:

• variables ”relationship”, ”final weight”, ”education” (categorical), ”capital gain” and ”capital
loss” were removed

• levels of variable ”work class” were merged, so that we obtain four different levels - Govern-
ment, Self-Employed, Private and Other/Unknown

• levels of the variable ”marital status” were merged so that we obtain two levels - Married and
Not-Married

• levels of variable ”native country” were merged so that we obtain two levels - US and Non-US

Categorical variables that are descendants of gender A were given an ordering, so that the proba-
bility of success P(Y = 1 | F = f) is marginally increasing in levels of F . This is described more
precisely in Section 5.1.

From Figure 5 we see that females in the dataset are much more likely to be in their early
twenties and are also more likely to be black than males. Since we do believe that additional edges
between A and C are present only due to sampling, we propose a subsampling method to resolve the
problem and obtain a dataset for which the causal graph in Figure 4(a) is valid. In particular, we
take only the white subpopulation. Since there are strictly more males than females for every age
value, we subsample the males randomly so that we achieve exact matching in the age distributions
between genders. In this way, we avoid the problem of biased sampling. The dataset still consists
of 26052 individuals, which is a sufficient amount of data.

E Quantiles are fair

Here we discuss the motivation behind our method and demonstrate our starting point on a very
simple example. Consider the situation corresponding to the causal graph in Figure 12. In standard
graphical representations, the nodes corresponding to noise are usually suppressed. Instead of the
noise representation, we use the quantile representation. The quantile U determines (together with
the parent A) which value X takes, meaning that

X = gX(A,U)

where gX is a deterministic function. It is important to note two facts:

• there is a path U → X → Y which implies that U contains information on Y

• the path U → X ← A is blocked by X and therefore U ⊥⊥ A

We can immediately notice that this reasoning extends to a general causal graph. In any graph we
have that the model distribution factorises as (Pearl, 2009):

f(x1, ..., xk) =
∏
i

f(xi | pa(xi)) (23)

The quantile Ui of the corresponding distribution f(xi | pa(xi)) of feature Xi contains information
about Y whenever Xi does. This motivates the following proposition:
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Figure 12: A graphical model representation of a simple example motivating the main ideas in the
section.

Proposition 3. Consider a distribution F(A,X,Y ) of (A,X, Y ) with a corresponding causal graph
G. Define the set U = {Ui : A /∈ de(Xi)}, that is the set of quantiles corresponding to features that
do not have A as their descendant. Then the following hold:

(i) pa(Ŷ ) ⊂ U =⇒ Ŷ ⊥⊥ A. Therefore, any such predictor Ŷ satisfies demographic parity.

(ii) Under the (untestable) assumption that the quantiles in U remain unchanged under a do(A =
0) intervention, our predictor Ŷ also satisfies individual level counterfactual fairness, in the
sense that

P(Ŷ | X = x) = P(Ŷ (A = 0) | X = x)

In words, this says that the distribution of the predictor does not change under the intervention
on the protected attribute for any given individual.

Proof. For i notice that any path from A to Ui ∈ U goes throughXi. Every path A↔ ...→ Xi ← Ui

is blocked by the empty set ∅, since Xi is a collider. It remains to check that there is no unblocked
path Ui → Xi → ....↔ A. Any such path either has a collider or A ∈ de(Xi) which is not the case.
Therefore A ⊥⊥ Ui, and since pa(Ŷ ) ⊂ U, it follows that Ŷ ⊥⊥ A. Claim ii is a direct consequence
of the assumption that the quantiles U are unchanged under the do(A = 0) intervention.

We can now give the intuition for why quantiles are useful. In some sense, the space of quantiles
offers a level playing field where all levels of the protected attribute are treated the same. Using
the quantiles allows us to map both levels A = 0, 1 onto the same space and treat them equally.
There is another, alternative way of doing this - by computing the actual counterfactual values
X(A = 0) under a do(A = 0) intervention. This would correspond to computing the value X would
have taken, had we hypothetically set A = 0 for everyone. The latter approach is what we pursue
in the paper.

F Proof of Proposition 2

Proof. Since Ŷ (A = a,R = r)
d
= Ŷ (A = a′, R = r) ∀r, then in particular it follows that

Ŷ (A = a,R = R(a′))
d
= Ŷ (A = a′, R = R(a′)).

Hence we have that

E
[
Ŷ (A = a,R = R(a′))− Ŷ (A = a′)

]
= E

[
Ŷ (A = a′, R = R(a′))− Ŷ (A = a′)

]
= 0.
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