
Running head: MODELLING DECISION-MAKING USING GP 1

Modelling value-based decision-making policies using Genetic Programming: A proof of1

concept study2

Angelo Pirrone3

Centre for Philosophy of Natural and Social Science4

London School of Economics and Political Science5

London, UK6

Fernand Gobet7

Centre for Philosophy of Natural and Social Science8

London School of Economics and Political Science9

London, UK10

Corresponding authors {a.pirrone, f.gobet}@lse.ac.uk. The authors declare that there is

no conflict of interest regarding the publication of this article. The MATLAB code used

for the simulations presented in this study is available at https://osf.io/5ma6c/. We

thank Laura Bartlett and Noman Javed for comments on the manuscript. Funding from

the European Research Council (ERC-ADG-835002—GEMS) is gratefully acknowledged.



MODELLING DECISION-MAKING USING GP 2

Abstract11

An important way to develop models in psychology and cognitive science is to express12

them as computer programs. However, computational modelling is not an easy task. To13

address this issue, it has been proposed to use artificial-intelligence (AI) techniques, such14

as genetic programming (GP) to semi-automatically generate models. In this paper, we15

establish whether models used to generate data can be recovered when GP evolve models16

accounting for those data. As an example, we use an experiment from decision making,17

which addresses a central question in decision making research: to understand what18

strategy, or ‘policy’, agents adopt in order to make a choice. In decision-making, this often19

means understanding the policy that best explains the distribution of choices and/or20

reaction times of two-alternative forced-choice decisions. We generate data from three21

models using different psychologically plausible policies. We then evaluate the ability and22

extent of GP to correctly identify the true generating model, among the class of virtually23

infinite candidate models. Our results show that, regardless of the complexity of the policy,24

GP can correctly identify the true generating process. In view of these results, we discuss25

implications for cognitive science research and computational scientific discovery, and26

possible future applications.27

Keywords: genetic programming, value-based decision-making, cognitive modelling,28

cognitive science29
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Modelling value-based decision-making policies using Genetic Programming: A proof of30

concept study31

Introduction32

Two key aspects of scientific discovery are the generation of predictions, and the33

development of models. In psychology and cognitive science, the generation of predictions34

often refers to predicting participants’ observable behaviour. The generation of models35

instead refers to elucidating the combination of, mostly unobservable, mechanisms and/or36

processes that give rise to a specific behaviour.37

An important means to develop models in psychology and cognitive science is to38

express them as computer programs. Such models offer the advantages of being39

unambiguous, explaining both simple and complex behaviour, and making clear-cut40

predictions (e.g. Gobet et al., 2011). However, computational modelling is not an easy41

task. At the very least, it requires acquiring skills in computer science and programming in42

addition to skills specific to a particular domain, such as psychology. In addition, the43

generation of scientific models can be described as a heuristic search in the combinatorial44

space of all the possible candidate models that explain a specific phenomenon45

(Frias-Martinez & Gobet, 2007; Simon, 1977). Given the infinite size of such spaces,46

searching them can be very hard indeed both theoretically and computationally, and47

human scientists can explore only a limited portion of those spaces. One way to alleviate48

these difficulties is to use artificial-intelligence (AI) techniques to (semi-)automatically49

develop models. In particular, AI has developed a number of search techniques that can50

semi-automatically perform an efficient search in these spaces.51

The aim of this article is to show how a specific search technique, genetic52

programming (GP; Koza, 1992), can be used to support the generation of models in53

cognitive science. Genetic programming evolves a large number of computer programs54

applying principles based on natural evolution, using as fitness value the extent to which55

the programs solve target problems. Our approach will be to generate synthetic data from56
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known models and evaluate whether GP can correctly recover the models that generated57

the data. As a domain of study, we use a well-known experiment from research into58

value-based decision-making, and select three simple, yet psychologically plausible models59

that guide decision-making. We focus on establishing whether GP can discover back the60

decision making policies (strategies) that were implemented in the models.61

Value-based decision making62

In value-based decision-making (for examples, see Tajima et al., 2019; Tajima et al.,63

2016), tasks consist of comparing the values of rewarding alternatives. Classical examples64

are foraging scenarios, and consumer choices. Compared to perceptual decision-making65

(Bogacz et al., 2006), in which participants make a decision mostly on the basis of sensory66

evidence (e.g., decide whether a noisy visual stimulus is tilted clockwise or anticlockwise, or67

decide which of two stimuli is brighter), in value-based decision-making (Krajbich et al.,68

2010; Krajbich et al., 2012) choices are also affected by the expected utility associated with69

alternatives. Research has shown that the policy that agents use in value-based70

decision-making is affected by a number of factors, such as the number of alternatives71

(Churchland & Ditterich, 2012) or the visual fixation patterns (Krajbich et al., 2010).72

Genetic Programming73

GP evolves a population of candidate models in the form of computer programs in74

order to minimise an objective fitness function (in our case, the difference between the75

model’s predictions and the human data). From one generation to the next, evolutionary76

mechanisms such as mutation and crossover allow the candidate models to evolve and77

outperform the previous generation in minimising the fitness function. In GP, models are78

generated by combining terminals, the inputs given to the models, and operators, the79

operations that GP can perform on the terminals. Both terminals and operators are80

defined by the researcher.81
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The model space is a function of the number of terminals and operators – but also of82

additional parameters such as limits on the complexity of the tree, or the sampling method83

(see Koza, 1992; Silva and Almeida, 2003). GP constructs trees that represent the84

relationship between operators and terminals. Figure 1 shows an example of a GP tree;85

this tree was estimated by providing as input four arbitrary values X1, X2, X3 and X4 and86

as operators the ability to subtract (the ‘minus’ operator) and multiply (the ‘times’87

operator) those inputs. The tree of Figure 1 only reads inputs X1, X2 and X4 (i.e., it does88

not include X3 in its solution). The value on the top-right of the tree, X4, is multiplied by89

the difference between two further operations; the operation on the sub-tree on the90

bottom-left multiplies X1 and X4, while the operation on the bottom-right of the tree91

subtracts X2 from X2, resulting in 0 (that is, the value of X2 is irrelevant). Hence the tree92

of Figure 1 reduces to multiplying X4 by the product of X1 and X4.93

In GP, mutation allows random changes in the tree structure, for example by94

substituting the ‘times’ on top of Figure 1 with a ‘minus’. By contrast, crossover selects a95

random sub-tree (i.e., a section of the tree) from two different trees and swaps them.96

Selection governs the probability that a tree is replicated in the next generation; a common97

selection mechanism is that a tree will be replicated in the next generation proportionally98

to its fitness (in our case, the variance it explains compared to other trees). Other99

mechanisms such as shrink mutation or swap mutation are available; however, in our100

current work we exclusively use mutation and crossover.101

GP has a long history and has had many applications, including antenna designs102

(Lohn et al., 2004), patented electronic circuits (Koza et al., 2004) and molecular structure103

optimisation in chemistry (Deaven & Ho, 1995). In cognitive science there have been some104

applications of GP to improve curve fitting (Hollis et al., 2006), to discover variable105

interactions (Westbury et al., 2003), and to evolve models (Frias-Martinez & Gobet, 2007;106

Gobet & Parker, 2005).107

There are a number of benefits for estimating solutions to a problem using GP; first,108
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GP naturally overcomes local minima problems and sensitivity to the values of initial109

parameters that affect other minimisation procedures (Frias-Martinez & Gobet, 2007;110

Koza, 1992). Moreover, GP allows the investigation of large portions of the space of111

possible models given a number of operators, as opposed to testing a single model that the112

researcher wants to verify or falsify. This reduces the risk of confirmation bias which often113

drives hypothesis testing in cognitive science (Bilalić et al., 2010).114

Methods and simulations115

Consider a scenario in which agents are presented with two alternatives. In a classical116

experimental setting (e.g., Pirrone et al., 2018), this usually means that alternatives are117

presented at the same distance from a fixation point to the left and to the right of a118

computer screen. In a real-life setting, such as consumer choices, this would mean that119

alternatives are presented at the same distance from the initial position of the agent.120

Agents have learnt, over the course of previous similar encounters with such121

alternatives, that the values of alternatives vary in the arbitrary range 1-10, with the worst122

option having a value of 1, and the best option having a value of 10. During each trial (i.e.,123

each encounter with two alternatives), agents need to choose one of the alternatives and124

are rewarded on the basis of the value of the alternative chosen, regardless of whether the125

alternative chosen is the best. In particular, we assume that the two alternatives are126

presented for one second and after the presentation time, agents are prompted to choose127

one of the two.128

Agents use different strategies to choose between the two values. We are interested in129

whether, based on the choices made by an agent, GP can identify the strategy used to130

generate the data. For each trial we randomly selected the value of the left and right131

alternative, from a discrete distribution of possible values. We simulated a total of 1,000132

trials and for each applied the agent’s strategy to make a choice.133
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Genetic Programming: Implementation and operators134

For the sake of brevity, given our ‘proof of concept’ focus, we will provide minimal135

reference to the core and most important aspects of GP for our application; readers136

interested in more details about GP should refer to exhaustive books and tutorials137

(Banzhaf et al., 1998; Koza, 1992; Langdon & Poli, 2013; Poli et al., 2008). We used138

GPLAB, an excellent and versatile MATLAB toolbox (Silva & Almeida, 2003), to run GP139

using as terminals the values of the two alternatives, a random integer number generator in140

the range 1-10, which captures the range of values of the alternatives, and a random141

number generator between zero and one. X1 is the value of the alternative on the left and142

X2 the value of the alternative on the right, while numerical values from the GPLAB’s143

random number generator are reported in the estimated trees.144

We adopted the following operators: ‘gt’ (i.e., greater) – this operator computes if145

element A is greater than element B and it outputs 0 or 1 depending on whether the result146

of the comparison is false or true; ‘le’ (i.e., less) – this operator computes if element A is147

lower than element B and it outputs 0 or 1 depending on whether the result of the148

comparison is false or true; ‘plus’ – this operator sums two elements; ‘minus’ – this149

operator subtracts the value of two elements; ‘times’ – this operator multiplies the value of150

two elements; and ‘mydivide’ – this operator divides the value of two elements. If the value151

of the divisor is equal to zero, ‘mydivide’ outputs the value of the dividend; that is, if B =152

0, then mydivide(A,B) = A.153

Given the simplicity of our simulated scenarios and of the type of policies that154

participants can adopt in these scenarios, in order to avoid ‘bloating’ (the tendency in GP155

for programs to grow very large) and overfitting, we imposed a strict limit of five nodes to156

solutions estimated using GP. We set default values for all other GP parameters; these can157

be accessed in Table 3.2 of GPLAB’s manual (Silva & Almeida, 2003). In order to158

minimise the discrepancy between actual choices and GP predicted choices, we ran GP159

with 500 individuals (i.e., 500 models) that were allowed to evolve for 500 generations. The160
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simulations were run with three different models that respectively used the following161

strategies: a ‘satisficing’ policy, a relative policy, and a relative policy with bias. In a162

second set of simulations, we removed the limit concerning the maximum number of nodes163

allowed for each individual.164

First scenario: A ‘satisficing’ policy165

One policy that may apply to value-based choices is a so-called ‘satisficing’ policy: if166

the value of one of the alternatives is higher than a threshold of acceptability, choose that167

alternative, otherwise choose the other alternative. Note that regardless of specific168

simplifications and assumptions that we are making, this is a simple policy for value-based169

decision-making that is known in economics (Simon, 1959) and behavioural ecology170

(Kacelnik et al., 2011; Pirrone et al., 2014) and that makes it possible to break decision171

deadlock over difficult discriminations, in the presence of time costs associated with longer172

decisions.173

Let Pvlefti
be the probability of choosing left for trial i. In this scenario, agents only174

focus on the alternative presented on the left, vlefti
and, after one second of presentation,175

they decide whether the value of the alternative plus that of arbitrary white Gaussian noise176

with variance .01 randomly sampled once every millisecond is higher than a threshold of177

acceptability, defined as the mean value of the possible range of alternatives µv(that is equal178

to 5.5 in our example). It is important to add noise in the decision making process for two179

reasons. First, it makes it possible to account for known across-trials variability in choices.180

That is, if the same trial is repeated multiple times, agents’ choice may vary. Second, if181

value representations are not noisy, it is not clear why a comparison process should even182

take place, as agents would be expected to make almost instantaneously a choice in favour183

of the most valuable alternative, which is not the case in value-based decision-making, nor184

in perceptual decision making (Bogacz et al., 2006; Krajbich et al., 2010).185

Put formally, for each trial the simulated choice probability (defined as the186
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probability to choose left) is given by187

Pvlefti
= vlefti

+ εi > µv (1)

The best model estimated from GPLAB is reported in Figure 2A. This simple tree188

estimates whether X1 (the alternative on the left) is greater than 5. Note that the rule189

estimated by the tree is the one that we have used to generate the data; that is, agents190

choose the left alternative if this is higher than five, otherwise they choose right. Thus,191

even in the presence of non-modelled noise, GP can accurately estimate the true process192

that has generated the data.193

Figure 3 shows a psychometric function for each of the three experimental scenarios194

with the probability of choosing left as a function of the difference in value between the195

item on the left and the item on the right (left panel), and as a function of the item on the196

left only (right panel). The data are displayed in black, and the predictions of the best tree197

estimated by GP are displayed in red. It is important to visually inspect the goodness of fit198

in order to understand mismatches between data and model predictions.199

As expected, the simple policy of Figure 2A predicts choices well (it explains 95% of200

the variance of the data). The top-right panel of Figure 3 shows mean choice as a function201

of the left rating only. Prima facie, this panel might be interpreted as a mismatch between202

the model and the data when the value of the left rating is five. However, in the absence of203

noise, the trend predicted by the true generating process is the one estimated by GP. If204

anything, the fact that the best model does not overfit the noise is a reassurance of GP’s205

ability to estimate the simple policy for value-based decision-making that generated the206

data.207

Second scenario: Relative policy208

In the second scenario, agents do not compare one alternative to a threshold of209

acceptability, as in the first scenario, but compute the difference in evidence between the210
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value of the left and the value on the right; when prompted to make a decision, they choose211

left if the difference between the two items is positive, and right otherwise.212

Hence, this time the choice policy (i.e., the probability to choose left) is213

Pvlefti
= vlefti

− vrighti
+ εi > 0 (2)

Note that this simple rule represents the core of celebrated and widely popular drift214

diffusion models (Ratcliff & McKoon, 2008; Ratcliff et al., 2016) of decision making, which215

have been applied to a large number of tasks in decision making and are statistically216

optimal for managing speed-accuracy trade-offs for decisions with stationary distributions217

of evidence (Bogacz et al., 2006) and for value-based decision-making under specific218

constraints (Tajima et al., 2016).219

Figure 2B shows the best tree evolved by GP. Again, GP can correctly estimate the220

true policy that has generated the data, since the tree computes whether the left item value221

is higher than the right item. That is, if the value of the left alternative is higher than the222

value of the right alternative, the left alternative is selected, otherwise the right alternative223

is selected. The middle panel of Figure 3 shows good agreement between the data and the224

model’s predictions; in this case, the model accounts for about 95% of the data.225

Third scenario: Relative policy with bias226

The third policy is a simple mathematical modification of the second policy. We227

assume that agents assign different weights to the value of the alternatives; in particular,228

agents discount the value of the right alternative by a factor of .3. Put formally, the229

probability to choose left for a trial is determined by230

Pvlefti
= vlefti

− .3 · vrighti
+ εi > 0 (3)

This policy is qualitatively similar to that of attentional drift diffusion models231

(Krajbich et al., 2010), in which visual fixations play a key role in the decision-making232
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process. In particular, in this model, the value of the non-fixated item is discounted by a233

factor of about .3 (Krajbich et al., 2010; Smith & Krajbich, 2018), giving rise to a number234

of interesting fixation-dependent biases in decision making, such as last fixation biases.235

Hence, we again are simulating a psychologically plausible policy for making a decision.236

Figure 2C shows that GP estimates the policy of Equation 3 correctly, since the tree237

can be simplified to the policy of Equation 3. The tree of Figure 2C computes whether X1238

is greater than X2 divided 4; this is equivalent to the rule that we have simulated (however,239

note that the discount factor is estimated as 0.25, while in Equation 3 it is 0.3). The240

bottom panel of Figure 2C shows good agreement between the data and the model, which241

accounts for about 97% of the variance.242

Qualitatively equivalent solutions and overfitting243

In the previous run, we imposed on GP a strict limit regarding the maximum number244

of nodes allowed to avoid bloating and overfitting of noise. We now show the results from a245

second run in which we removed this strict limit on GP solutions. This second run allows246

us to show (a) the ability of GP to estimate different, qualitatively similar, solutions to a247

specific problem, and (b) the importance of avoiding overfitting of results.248

Figure 4 shows the trees estimated by a second run of GP without a strict limit,249

while Figure 5 shows the comparison between the data and the model. For the first250

scenario, Figure 4A, the policy estimated is similar to the true generating process, in which251

participants choose the left alternative if it is higher than a threshold of acceptability –252

although in this case the threshold of acceptability is estimated as four, rather than five.253

For the second scenario, the policy in Figure 4B attempts to overfit the noise as254

shown in the middle panel of Figure 5; this is achieved by adding an unreasonable number255

of operations to the best solution in order to account, for example, for the fact that when256

the difference between left and right alternative is zero, choice is at chance level. However,257

a simulation of this policy over all the combinations of possible left and right alternatives258
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(excluding cases for which the left and right alternatives are identical) has shown that this259

policy is qualitatively equivalent to the data generating process, given that it always260

chooses the alternative with a higher value. However, the complexity of the tree does not261

provide a direct insight into the policy that generated the data.262

For the third scenario, the policy in Figure 4C computes whether the ratio between263

the discounted value on the right and the value on the left is bigger than four. In this case,264

this tree is equivalent to computing whether the difference between the value on the left265

and the discounted value on the right is higher than zero. Mathematically, this rule is266

undistinguishable from the rule that we used to generate the model.267

Discussion268

We simulated three different decision making policies and estimated the ability of GP269

to correctly find the known data-generating processes. In all cases in which we set a strict270

limit to GP, such policies were successfully recovered.271

Given the high stochasticity of GP, different runs can give rise to different solutions.272

This means that GP will find different solutions over different runs. However, in the case of273

non-highly dimensional problems, such as policies for simple two-alternative forced-choice274

decisions, different trees will often represent qualitatively similar solutions. Also, since we275

decided not to model the noise in the data, GP estimates will vary across runs because of276

the different ways in which the noise affects the data or the tree represents the variance277

that is due to the noise. For example, over two different runs, we have shown that the278

solution found by GP was qualitatively correct, but estimated a threshold of acceptability279

of four, rather than five, for the first scenario. This is expected given non-modelled noisy280

variations in the data and high stochasticity of GP. In disciplines such as cognitive science,281

data have multiple sources of noise, both at the individual and inter-individual level.282

Setting strict limits to GP results can overcome the overfitting of noisy variations, and283

optimise the trade-off between simplicity and goodness of fit of solutions.284
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It is also possible, however, in the case of high dimensional problems, that data are285

explained by a number of contrasting and not necessarily qualitatively similar286

explanations. Take the example of the second scenario; a policy in which participants287

choose left if the difference between items is higher than zero is undistinguishable from a288

policy in which participants choose the left item if the ratio between left and right values is289

higher than one. Also, given our simulated data, the tree estimated in Figure 2C is290

undistinguishable from that estimated in Figure 4C. For the researcher interested in291

understanding policies for decision making, choosing between equally good solutions292

translates into collecting more data to identify the model or, even better, conducting293

studies with specific experimental manipulations that can only be met by one policy.294

Hence, GP makes falsifiable predictions that can be used to drive future experiments in295

order to discriminate among alternative models. However, it is also possible to discard296

solutions found by GP on the basis of knowledge from previous reliable results/theories.297

For example, while this is not the case (Pirrone et al., 2018), assume that previous research298

excluded the possibility that participants compute over the course of a trial the overall299

magnitude of the alternatives; in this case, a GP solution that computes the overall300

magnitude of alternatives may be excluded based on theoretical grounds.301

Often, GP trees can be difficult to interpret and need to be post-processed in order to302

be simplified, for example by removing redundancies. In our study, trees were simple303

enough to be interpreted without the need of post-processing. However, for complex trees,304

the result from dozens, or even hundreds, of operations can be greatly simplified (for305

example when the result of a number of operations is always equal to a constant) but often306

this cannot be understood by visual inspection of the tree. In the case of complex trees,307

dedicated algorithms can support and automate the post-processing of trees308

(Garcia-Almanza & Tsang, 2006; Rockett, 2020).309

Although the simple policies that we have simulated here could have also been310

estimated through general linear models, which are known to most researchers in cognitive311
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science, GP offers a number of advantages. First, GP does not require any assumptions312

regarding the data as opposed to general linear models (e.g., normally distributed313

dependent variable, normally distributed errors). This is particularly important for314

analyses of reaction times, a key dependent variable in cognitive science, which are315

generally positively skewed and for which transformations such as log-transformation to316

approximate a normal distribution can produce detrimental outcomes (Schramm & Rouder,317

2019). Second, decision-making dynamics are often characterised by non-linearity (for318

value-based decision-making, see for example Pais et al., 2013); compared to linear models319

that by definition cannot account for those dynamics, GP can naturally be applied to320

model non-linear dynamics. Third, GP can provide various solutions to a problem, and as321

such can innovate previous accounts in cognitive science, while results from general linear322

models would always account for a unique solution to a specific problem. Furthermore, GP,323

compared to methods that are theory-driven and require an a priori formulation of324

candidate models from which to identify strategies (Bröder & Schiffer, 2003; Glöckner,325

2009; Hilbig & Moshagen, 2014; Jekel et al., 2010; Lee, 2016), allows a ‘theory-free’326

estimation of strategies; compared to classical black-box machine learning algorithms327

(Alpaydin, 2020), GP exposes the relationship between inputs in an explainable fashion.328

In our simulations, decision time was exogenously triggered by a hypothetical329

experimenter and agents provided an answer only when asked to do so, after one second.330

Since information regarding decision times was uninformative, we focused on choice and331

not on the reaction times associated with the choice. In free-response paradigms, in which332

participants can make a decision in their own time, policies for decision making need to333

account simultaneously for the distribution of choices and reaction times; this will be a334

focus of future research using a similar approach.335

For the future, we propose a body of work that will extend the simple, yet effective,336

rationale that we have applied here. In particular, research using GP in decision making337

could apply the methodology used here to data from human/animal studies in both338
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laboratory and ecological settings. In those scenarios, the true data-generating process is339

unknown and a number of qualitatively similar models could have generated such models,340

an aspect known as model mimicry (Bose et al., 2020).341

Furthermore, future research could investigate decision making policies when342

additional factors are taken into consideration; for example, visual fixations that can guide343

the computation and comparison of values (Krajbich et al., 2010), or individual differences344

in decision making that may be explained by different strategies for different clusters of345

participants. While existing models have been proposed for such factors, we believe that a346

more principled approach requires evaluating such models against a large number of347

candidate models, given a number of plausible operators.348

In addition, future research will be aimed at creating and extending psychologically349

plausible operators, rather than simple algebraic and logical operations adopted here. For350

example, a psychologically plausible operator could be one that writes inputs into a visual351

short-term memory buffer as proposed in the literature (Frias-Martinez & Gobet, 2007;352

Gobet & Parker, 2005), or one that directs visual fixations to one of two items under353

consideration. Also, parameters such as leak in evidence accumulation or competition354

between alternatives (Bogacz et al., 2006), which can play a role in decision making, could355

be added to GP.356

An interesting area of application for future research is that of decision-making with357

multiple alternatives (Gluth et al., 2020), that is, scenarios in which agents are presented358

with more than two alternatives, as is often the case in real life settings. As the number of359

alternatives increases, the number of policies that participants could adopt increases360

exponentially, and GP will undoubtedly provide useful insights for these high-dimensional361

complex problems.362

We want to emphasise that our results do not represent a theoretical innovation per363

se. Since GP is agnostic about the nature of the data, showing that GP can account for364

models that generated data is expected on the basis of previous numerous application of365
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this technique to various domains. However, here we address mainly psychologists,366

cognitive scientists and decision making modellers to make GP, and evolutionary367

computation in general, more accessible to them and thus motivate further research and368

applications using this technique. The assumption, explored in another line of research369

(Frias-Martinez & Gobet, 2007; Gobet & Parker, 2005; Lane et al., 2016), is that GP can370

also identify (unknown) models from real data. When it comes to develop computational371

models of human behaviour, GP and other forms of evolutionary computation provide a372

powerful means of searching through the immense space of possible models.373



MODELLING DECISION-MAKING USING GP 17

References374

Alpaydin, E. (2020). Introduction to machine learning. MIT press.375

Banzhaf, W., Nordin, P., Keller, R. E., & Francone, F. D. (1998). Genetic programming.376

Springer.377

Bilalić, M., McLeod, P., & Gobet, F. (2010). The mechanism of the Einstellung (set) effect:378

A pervasive source of cognitive bias. Current Directions in Psychological Science,379

19 (2), 111–115.380

Bogacz, R., Brown, E., Moehlis, J., Holmes, P., & Cohen, J. D. (2006). The physics of381

optimal decision making: A formal analysis of models of performance in382

two-alternative forced-choice tasks. Psychological Review, 113 (4), 700–765.383

Bose, T., Pirrone, A., Reina, A., & Marshall, J. A. (2020). Comparison of384

magnitude-sensitive sequential sampling models in a simulation-based study.385

Journal of Mathematical Psychology, 94, 102298.386

Bröder, A., & Schiffer, S. (2003). Bayesian strategy assessment in multi-attribute decision387

making. Journal of Behavioral Decision Making, 16 (3), 193–213.388

Churchland, A. K., & Ditterich, J. (2012). New advances in understanding decisions among389

multiple alternatives. Current Opinion in Neurobiology, 22 (6), 920–926.390

Deaven, D. M., & Ho, K.-M. (1995). Molecular geometry optimization with a genetic391

algorithm. Physical Review Letters, 75 (2), 288–291.392

Frias-Martinez, E., & Gobet, F. (2007). Automatic generation of cognitive theories using393

genetic programming. Minds and Machines, 17 (3), 287–309.394

Garcia-Almanza, A. L., & Tsang, E. P. (2006). Simplifying decision trees learned by genetic395

programming. 2006 IEEE International Conference on Evolutionary Computation,396

2142–2148.397

Glöckner, A. (2009). Investigating intuitive and deliberate processes statistically: The398

multiple-measure maximum likelihood strategy classification method. Judgment and399

Decision Making, 4 (3), 186.400



MODELLING DECISION-MAKING USING GP 18

Gluth, S., Kern, N., Kortmann, M., & Vitali, C. L. (2020). Value-based attention but not401

divisive normalization influences decisions with multiple alternatives. Nature Human402

Behaviour, 1–12.403

Gobet, F., Chassy, P., & Bilalić, M. (2011). Foundations of cognitive psychology. London,404

McGraw Hill.405

Gobet, F., & Parker, A. (2005). Evolving structure-function mappings in cognitive406

neuroscience using genetic programming. Swiss Journal of Psychology, 64, 231–239.407

Hilbig, B. E., & Moshagen, M. (2014). Generalized outcome-based strategy classification:408

Comparing deterministic and probabilistic choice models. Psychonomic Bulletin &409

Review, 21 (6), 1431–1443.410

Hollis, G., Westbury, C. F., & Peterson, J. B. (2006). Nuance 3.0: Using genetic411

programming to model variable relationships. Behavior Research Methods, 38 (2),412

218–228.413

Jekel, M., Nicklisch, A., & Glöckner, A. (2010). Implementation of the multiple-measure414

maximum likelihood strategy classification method in R: Addendum to Glöckner415

(2009) and practical guide for application. Judgment and Decision Making, 5 (1), 54.416

Kacelnik, A., Vasconcelos, M., Monteiro, T., & Aw, J. (2011). Darwin’s “tug-of-war” vs.417

starlings’ “horse-racing”: How adaptations for sequential encounters drive418

simultaneous choice. Behavioral Ecology and Sociobiology, 65 (3), 547–558.419

Koza, J. R. (1992). Genetic Programming: On the programming of computers by means of420

natural selection. MIT press.421

Koza, J. R., Keane, M. A., & Streeter, M. J. (2004). Routine automated synthesis of five422

patented analog circuits using genetic programming. Soft Computing, 8 (5), 318–324.423

Krajbich, I., Armel, C., & Rangel, A. (2010). Visual fixations and the computation and424

comparison of value in simple choice. Nature Neuroscience, 13 (10), 1292–1298.425

Krajbich, I., Lu, D., Camerer, C., & Rangel, A. (2012). The attentional drift-diffusion426

model extends to simple purchasing decisions. Frontiers in Psychology, 3, 193.427



MODELLING DECISION-MAKING USING GP 19

Lane, P. C. R., Sozou, P. D., Gobet, F., & Addis, M. (2016). Analysing psychological data428

by evolving computational models. In A. Wilhelm & H. Kestler (Eds.), Analysis of429

large and complex data (pp. 587–597). New York, Springer.430

Langdon, W. B., & Poli, R. (2013). Foundations of genetic programming. Springer Science431

& Business Media.432

Lee, M. D. (2016). Bayesian outcome-based strategy classification. Behavior Research433

Methods, 48 (1), 29–41.434

Lohn, J., Hornby, G., & Linden, D. (2004). Evolutionary antenna design for a NASA435

spacecraft. Genetic Programming Theory and Practice II, 301–315.436

Pais, D., Hogan, P. M., Schlegel, T., Franks, N. R., Leonard, N. E., & Marshall, J. A.437

(2013). A mechanism for value-sensitive decision-making. PloS One, 8 (9).438

Pirrone, A., Azab, H., Hayden, B. Y., Stafford, T., & Marshall, J. A. (2018). Evidence for439

the speed–value trade-off: Human and monkey decision making is magnitude440

sensitive. Decision, 5 (2), 129.441

Pirrone, A., Stafford, T., & Marshall, J. A. (2014). When natural selection should optimize442

speed-accuracy trade-offs. Frontiers in Neuroscience, 8, 73.443

Poli, R., Langdon, W. B., McPhee, N. F., & Koza, J. R. (2008). A field guide to genetic444

programming. Lulu.com.445

Ratcliff, R., & McKoon, G. (2008). The diffusion decision model: Theory and data for446

two-choice decision tasks. Neural Computation, 20 (4), 873–922.447

Ratcliff, R., Smith, P. L., Brown, S. D., & McKoon, G. (2016). Diffusion decision model:448

Current issues and history. Trends in Cognitive Sciences, 20 (4), 260–281.449

Rockett, P. (2020). Pruning of genetic programming trees using permutation tests.450

Evolutionary Intelligence.451

Schramm, P., & Rouder, J. (2019). Are reaction time transformations really beneficial?452

PsyArXiv.453



MODELLING DECISION-MAKING USING GP 20

Silva, S., & Almeida, J. (2003). GPLAB - a genetic programming toolbox for MATLAB.454

Proceedings of the Nordic MATLAB Conference, 273–278.455

Simon, H. A. (1959). Theories of decision-making in economics and behavioral science. The456

American Economic Review, 49 (3), 253–283.457

Simon, H. A. (1977). Models of discovery: And other topics in the methods of science.458

Dordrecht: Reidel.459

Smith, S. M., & Krajbich, I. (2018). Attention and choice across domains. Journal of460

Experimental Psychology: General, 147 (12), 1810–1826.461

Tajima, S., Drugowitsch, J., Patel, N., & Pouget, A. (2019). Optimal policy for462

multi-alternative decisions. Nature Neuroscience, 22 (9), 1503–1511.463

Tajima, S., Drugowitsch, J., & Pouget, A. (2016). Optimal policy for value-based464

decision-making. Nature Communications, 7 (1), 1–12.465

Westbury, C., Buchanan, L., Sanderson, M., Rhemtulla, M., & Phillips, L. (2003). Using466

genetic programming to discover nonlinear variable interactions. Behavior Research467

Methods, Instruments, & Computers, 35 (2), 202–216.468



MODELLING DECISION-MAKING USING GP 21
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X2 X2

  minus

  minus
X4

  times

Figure 1 . Example of a GP tree. This tree was generated using the GPLAB toolbox (Silva

& Almeida, 2003) for MATLAB.
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(A)
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Figure 2 . The best trees from the first scenario (A), second scenario (B) and third scenario

(C) estimated by GP with a population of 500 individuals which evolves for 500

generations. A strict limit of five nodes was imposed.
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Figure 3 . Comparison of mean choice (defined as the probability of choosing left) as a

function of the difference in value between the two alternatives (left plots), and as a

function of the value of the left alternative alone (right plots), for the first scenario (top

panel), second scenario (middle panel) and third scenario (bottom panel). The data are

reported in black and GP’s predictions in red. Error bars are standard errors of the mean.
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Figure 4 . The best trees from the first scenario (A), second scenario (B) and third scenario

(C) estimated with a second run of GP with a population of 500 individuals which evolves

for 500 generations. No strict limit was imposed.
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Figure 5 . Comparison of mean choice (defined as the probability of choosing left) as a

function of the difference in value between the two alternatives (left plots), and as a

function of the value of the left alternative alone (right plots), for the first scenario (top

panel), second scenario (middle panel) and third scenario (bottom panel). The data are

reported in black and GP’s predictions in red. Error bars are standard errors of the mean.


