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MULTIPLICATIVE STRUCTURES ON CONES AND
DUALITY

KAI CIELIEBAK AND ALEXANDRU OANCEA

Abstract. We initiate the study of multiplicative structures on
cones and show that cones of Floer continuation maps fit natu-
rally in this framework. We apply this to give a new description
of the multiplicative structure on Rabinowitz Floer homology and
cohomology, and to give a new proof of the Poincaré duality the-
orem which relates the two. The underlying algebraic structure
admits two incarnations, both new, which we study and compare:
on the one hand the structure of A`

2
-algebra on the space A of

Floer chains, and on the other hand the structure of A2-algebra
involving A, its dual A_ and a continuation map from A_ to A.
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1. Introduction

Rabinowitz Floer homology was originally defined as the Floer homol-
ogy of the Rabinowitz action functional [7]. An alternative description
as “V-shaped symplectic homology” was found in [8], relating Rabi-
nowitz Floer homology to symplectic homology and cohomology. In [14]
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and [44] yet another description of Rabinowitz Floer homology was in-
troduced, as the homology of the cone of a Floer continuation map.
This proved crucial to understand its functoriality properties [14] and
to extend the definition to non-exact settings [44].

Surprisingly, these three points of view are not at all equally well
suited for the study of algebraic structures. Currently, the most ver-
satile version seems to be V-shaped symplectic homology: it carries
a product [14] which is a straightforward adaptation of the classical
pair-of-pants product in Floer theory, and also a secondary coproduct
which together with the product defines a graded Frobenius algebra
structure [11]. A similar statement holds for V-shaped symplectic co-
homology, the two being related by Poincaré duality [11]. A definition
of such product and coproduct structures in the original setting of the
Rabinowitz action functional is not available, although [1] and [18] may
independently lead there.

In this paper we define and study product structures on Rabinowitz
Floer homology from the perspective of cones. Besides another proof of
the Poincaré duality theorem [11] in this framework, we obtain new in-
sights into such structures that are not available by other approaches.
Notions and results from this paper serve as inputs in several other
articles: in [12] to relate the graded Frobenius algebra structure on
Rabinowitz Floer homology of a unit cotangent bundle to that on Ra-
binowitz loop homology, and in [11, 16] to prove the splitting theorem
for Rabinowitz Floer homology in terms of symplectic homology and
cohomology. As such, this paper plays a key role in the series of arti-
cles [10, 11, 12, 13, 15, 16] on Poincaré duality for loop spaces and its
applications.

Results of the paper. The cone of a chain map c : M Ñ A

is Conepcq “ A ‘ Mr´1s with differential BConepcqpa, xq “ pBAa `
cpxq,´BMxq. In §2 we begin by spelling out the data corresponding
to an A8-structure on the cone of a chain map c : M Ñ A such that
A Ă Conepcq is an A8-subalgebra. We call such data an A8-triple.
Ignoring higher homotopies, this leads to the notion of an A2-triple
pM, c,Aq. It consists of a degree 0 chain map c : M Ñ A together with
bilinear maps µ : A b A Ñ A, mL : A b M Ñ M, mR : M b A Ñ M

of degree 0, τL : M b A Ñ A, τR : A b M Ñ A, σ : M b M Ñ M

of degree 1 and β : M b M Ñ A of degree 2 satisfying suitable rela-
tions (see Definition 2.9). In our first result we denote an element of
Conepcq “ A ‘ Mr´1s by pa, x̄q, where x̄ P Mr´1s is the shift of an
element x P M.
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Theorem A (= Propositions 2.11, 2.13 and 2.17) For an A2-triple,
the formula

m
`
pa, x̄q, pa1, x̄1q

˘

“
`
µpa, a1q ` p´1q|a|τRpa, x1q ` τLpx, a1q ´ p´1q|x̄|βpx, x1q,

p´1q|a|mLpa, x1q ` mRpx, a1q ´ p´1q|x̄|σpx, x1q
˘

defines a degree 0 bilinear product on Conepcq which is a chain map
and thus descends to homology. This product is functorial with respect
to homotopy retracts and morphisms of A2-triples.

An important part of the discussion are sign conventions related to
multilinear degree shifts, tensor products, and algebraic duals, which
we defer to Appendices A and B.

In §3 we apply the results of §2 to Floer theory. This is based on the
observation that Floer continuation maps give rise to A8-triples which
are canonically defined up to homotopy equivalence. We prove in this
paper only the arity 2 version of this statement:

Theorem B (= Proposition 3.1). Floer continuation maps give rise to
A2-triples which are canonically defined up to homotopy equivalence.

The construction involves moduli spaces of solutions of Floer equations
parametrized by simplices of dimension 0, 1, and 2. The construction
of the A8-triple involves moduli spaces parametrized by higher dimen-
sional simplices, much in the manner of [17], which should correspond
to the assocoipahedra of Poirier and Tradler [34]. See the discussion
below and Remark 7.7.

Let nowW be a Liouville domain of dimension 2n with trivial canonical
bundle, SH˚ symplectic homology graded by Conley-Zehnder indices,
and SH˚ “ SH˚`n its degree shifted version. The power of the cone
perspective derives from its applicability to various families of Floer
continuation maps. Applying the construction of a product on the
cone to the three families of Floer continuation maps tKλu, H_ andH^

shown in Figure 1 gives rise to three rings SH˚ptKλuq, SH˚pH_q and
SH˚pH^q. The first two of these recover Rabinowitz Floer homology
SH˚pBW q with its product defined in [11]:

Theorem C. We have canonical ring isomorphisms

SH˚ptKλuq » SH˚pH_q » SH˚pBW q.

The third one corresponds to Rabinowitz Floer cohomology SH1´n´˚pBW q
with its product defined in [11]:

Theorem D. We have canonical ring isomorphisms

SH˚pH^q » ySH˚`n´1pBW q » SH1´n´˚pBW q.
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Figure 1. The families of Floer continuation maps
tKλu, H_ and H^.

Here ySH˚pBW q “ SH˚pV, BV q for the symplectic cobordism V “
r0, 1s ˆ BW in the terminology of [14]. In §4.2 and §4.3 we give di-

rect definitions of the product and its unit on ySH˚`n´1pBW q, and thus
on Rabinowitz Floer cohomology.

Theorem E (Cone duality). There is a canonical ring isomorphism

SH˚pH_q » SH˚pH^q.

The above ring isomorphisms are summarized in the following diagram:

SH1´n´˚pBW q
Thm. 4.1

❥❥
❥❥
❥❥
❥❥
❥❥
❥❥
❥❥

❥❥
❥❥
❥❥
❥❥
❥❥
❥❥
❥❥

Prop. 5.6

SH˚pBW q

Thm. 4.2

Thm. 5.2
ySH˚`n´1pBW q

Thm. 5.4

SH˚pH_q

Thm. 4.2

Thm. 5.1
SH˚pH^q

SH˚ptKλuq

Theorems C, D and E together give a new proof of the Poincaré duality
theorem from [11] (which we restate in this paper as Theorem 4.1).
Moreover, the preceding theorems are crucial inputs for the proof of the
splitting theorem for Rabinowitz Floer homology ([16, Proposition 7.6]
and [11, Theorem 1.5]). In turn, this splitting theorem serves as a
computational tool for the multiplicative structure on Rabinowitz Floer
homology, see [16, Theorem 7.8] and [11, §2].

The explicit description of the product on ySH˚`n´1pBW q allows us
to relate it to the varying weights secondary product, originally con-
structed by Seidel and further explored in [17, 2]:
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Theorem F (= Proposition 6.2). On negative action symplectic ho-

mology ySHă0

˚`n´1pBW q » SH1´n´˚
ą0 pBW q the product in Theorem D

agrees with the varying weights secondary product.

Rabinowitz Floer homology arises from an A2-triple pM, c,Aq in which
M is the algebraic dual A_ of A. This allows one to encode all the
structure on A alone. We formalize this in §7 in the notion of an A`

2 -
structure on A. It consists of a degree 0 copairing c0 P AbA, a degree
1 secondary copairing Q0 P AbA, a degree 0 product µ : AbA Ñ A,
a degree 1 secondary coproduct λ : A Ñ A b A and a degree 2 cubic
vector B P AbAbA satisfying suitable relations (see Definition 7.1).

Theorem G (= Propositions 7.6 and 7.11). An A`
2 -structure on A

gives rise to an A2-triple pA_, c,Aq, and a morphism of A`
2 -algebras

gives rise to a correspondence of A2-triples.

As a consequence, a quasi-isomorphism of A`
2 -algebras induces a ring

isomorphism between the homologies of the cones (Corollary 7.12).
This result is a crucial input for the proof of the Frobenius algebra
isomorphism between Rabinowitz Floer homology of a unit cotangent
bundle and Rabinowitz loop homology in [12]. Here the difficulty lies
in the fact that Rabinowitz homology is an amalgamation of homol-
ogy and cohomology, which are covariant resp. contravariant under the
Viterbo isomorphism. It is overcome by encoding the whole structure
as an A`

2 -structure on homology alone and using its functoriality above.

Since the notion of an A`
2 -structure is self-dual, in addition to a product

µ it also induces a coproduct λ on its cone. This product and coproduct
can be read as a coproduct µ_ and product λ_ on the dual of the cone.
The following result can be viewed as an algebraic counterpart of the
Poincaré Duality Theorem in [11].

Theorem H (Duality for A`
2 -algebras) (= Theorem 7.14). Let A

be an A`
2 -algebra which is free and finite dimensional in each degree.

Then we have a canonical isomorphism
´
H˚

`
Conepcq

˘
,µ,λ

¯
–
´
H˚´1

`
Conepcq_

˘
,λ_τ, τµ_

¯

intertwining the products and coproducts, where τ is the map flipping
the tensor factors with signs.

Extensions. The results in this paper have several straightforward
extensions. (a) In this paper we treat explicitly only products, but there
is an entirely parallel discussion of coproducts. (b) Sara Venkatesh de-
fined in [44] Rabinowitz Floer homology in non-exact settings as the
cone of such a continuation map at the additive level. The perspec-
tive on multiplicative structures that we adopt here is robust and would
carry over to such situations. (c) We formulate all our results for closed
strings, in terms of symplectic homology, but they have natural open
string counterparts with Lagangian boundary conditions in terms of
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wrapped Floer homology. See [14, 11] for a discussion of such exten-
sions, in particular regarding the gradings.

Relation to other work and future directions. The notion of an
A`

2 -algebra encodes only operations with up to 3 inputs and outputs,
which suffices for our applications on the level of homology. Consid-
ering Floer moduli spaces with more inputs and outputs leads to a
homotopical version of an A`

2 -algebra, which we may call an “A`
8-

algebra”. Special cases of this structure have appeared in the lit-
erature under various names: V8-algebras in Tradler–Zeinalian [42],
double Poisson algebras in Van den Bergh [43], and pre-Calabi-Yau al-
gebras in Iyudu–Kontsevich–Vlassopoulos [22] and Kontsevich-Takeda-
Vlassopoulos [25]. In fact, Leray and Vallette have proved that curved
versions of these three structures are equivalent [28]. The presence
of the copairing c0 in Definition 7.1 means that our structure is also
curved. What distinguishes it from the other structures is the presence
of the secondary copairing Q0 which measures the failure of c0 to be
symmetric. This is dictated to us by the applications in symplectic
homology and string topology, where a nontrivial Q0 occurs and is re-
sponsible for various subtleties concerning the algebraic structure on
reduced homology [16].

Poirier and Tradler have shown that the dioperad V8 is governed by
a family of polytopes called “assocoipahedra” [34, 35]. In view of the
preceding discussion, we expect that these can be realized as Floer
moduli spaces in the absence of Q0. This connection was first pro-
posed by T. Mazuir after observing the equivalence of Figure 7 in [16]
with Figure 9 in [34]. It is an interesting challenge to find polyhedral
descriptions of the Floer moduli spaces in the presence of Q0 and study
the resulting dioperad.

It is proved in [11] that Rabinowitz Floer homology of the boundary of
a Liouville domain carries the structure of a graded Frobenius algebra.
This structure emanates from the cone description of Rabinowitz Floer
homology if we enhance the underlying A`

2 -algebra to include opera-
tions with 4 inputs and outputs. Based on this, we conjecture that
an A`

8-algebra gives rise to a homotopy version of a graded Frobenius
algebra on its cone. The development of this homotopy theory is the
subject of ongoing work by Mazuir [31].

It has long been observed that the definition of Rabinowitz Floer ho-
mology resembles that of Tate homology, see e.g. [4] for an application
of this point of view in equivariant homology. We conjecture that our
Poincaré Duality Theorem 4.1 is an instantiation of Tate duality and we
intend to explore this in future work. For cotangent bundles of simply
connected manifolds, the structure we find on Rabinowitz Floer homol-
ogy should coincide with the structure found by Rivera and Wang [37]
on singular Hochschild cohomology of the dga of cochains. Our work
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should also be related to earlier work of Kaufmann such as [23], and to
Kontsevich graph complexes as studied by Merkulov–Willwacher [32].

In the closed string case, Rabinowitz Floer homology also carries a
natural BV operator, see [13]. To complete the algebraic picture, one
should therefore incorporate BV-structures in the formalisms developed
in this paper. The S1-equivariant versions of these structures should
give rise to a refinement of the IBL8 structures from [9].

The wrapped Floer homology groups have a categorical refinement
given by the wrapped Fukaya category [3]. Recently Ganatra-Gao-
Venkatesh [20] and Bae-Jeong-Kim [5] have defined a categorical refine-
ment of the Lagrangian Rabinowitz Floer homology groups called Ra-
binowitz Fukaya category. The cone perspective on Rabinowitz Floer
homology plays a key role, and it is an interesting question to compare
the moduli spaces used in those constructions with the moduli spaces
from this paper. In [5] it is proved that, under reasonable assumptions,
the Rabinowitz Fukaya category of a Liouville domain of dimension 2n
is pn´1q-Calabi-Yau. This raises the question whether, and how, such
a statement implies our Poincaré duality theorem. Legout [27] had
previously defined a categorical refinement of the Cthulhu homology of
Chantraine-Dimitroglou Rizell-Ghiggini-Golovko [6], in the setting of
Lagrangian cobordisms. We conjecture that, when transposed to the
context of Liouville domains, the Legout category is equivalent to the
Rabinowitz Fukaya category.

Acknowledgements. This paper is a split-off from our collab-
oration with Nancy Hingston on Poincaré duality. Without her far
reaching vision this could not have come into being. The authors ben-
efited from discussions with M. Abouzaid, B. Chantraine, F. Chapo-
ton, V. Dotsenko, P. Ghiggini, R. Kaufmann, T. Mazuir, M. Rivera,
and S. Venkatesh. The first author thanks Stanford University, Institut
Mittag–Leffler, and the Institute for Advanced Study for their hospital-
ity over the duration of this project. The second author acknowledges
the hospitality of Helmut Hofer and IAS in 2017, 2019, and 2022.

This work has benefited from financial support via the grants MI-
CROLOCAL ANR-15-CE40-0007, ENUMGEOM ANR-18-CE40-0009
and COSY ANR-21-CE40-0002. In its late stages, it has also benefited
from support provided to the second author by the University of Stras-
bourg Institute for Advanced Study (USIAS) for a Fellowship, within
the French national programme “Investment for the future” (IdEx-
Unistra).

2. Products on cones

Throughout this section we use homological conventions and coeffi-
cients in a principal ideal domain R. Recall that, given a degree 0
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chain map c : M˚ Ñ A˚ between chain complexes whose differentials
have degree ´1, the cone of a chain map c : M Ñ A is the chain
complex

Conepcq “ A ‘ Mr´1s, BConepcq “

ˆ
BA c

0 ´BM

˙

with Mr´1s˚ “ M˚´1 and BMr´1s “ ´BM. The inclusion A ãÑ
Conepcq, a ÞÑ pa, 0q is a chain map. We shall freely refer in this section
to the notation of Appendix A regarding degree shifts in the multilinear
setting.

Definition 2.1. An A8-algebra A is a Z-graded R-module endowed
with a collection of maps µd

A : Ar´1sbd Ñ Ar´1s, d ě 1 of degree ´1
satisfying the relations

ÿ

i`j“k`1

iÿ

t“1

µi
Ap1lb t´1 b µ

j
A

b 1lb i´tq “ 0, k ě 1. (1)

In the absence of the shift the structure maps µd
A : Abd Ñ A have

degree d ´ 2. The functional relation translates by evaluation into the
relation

ÿ

i`j“k`1

iÿ

t“1

p´1q}a1}`¨¨¨`}at´1}

µi
Apa1, . . . , at´1, µ

j
A

pat, . . . , at`j´1q, at`j, . . . aiq “ 0, k ě 1,

where }a} “ |a| ` 1 denotes the shifted degree. The data of an A8-
algebra on a Z-graded R-moduleA is equivalent to the data of a square-
zero coderivation on T

c
pAr´1sq “ ‘kě1Ar´1sbk, the reduced tensor

coalgebra on Ar´1s. This is because each µd
A
can be uniquely extended

as a coderivation µd
A : T

c
pAr´1sq Ñ T

c
pAr´1sq and, setting µA “ř

d µ
d
A, the A8-relations are equivalent to µA ˝ µA “ 0.

Definition 2.2. Given two A8-algebras A and A1, an A8-morphism
F : A Ñ A1 is a collection of maps Fd : Ar´1sbd Ñ A1r´1s, d ě 1 of
degree 0 which satisfy the relations

dÿ

i“1

ÿ

j,k,ℓ

F
ip1lb jbµk

Ab1lb ℓq “
ÿ

r

ÿ

i1,...,ir

µr
A1pF i1 b¨ ¨ ¨bF

irq, d ě 1. (2)

The data of the collection tFdu is equivalent to the data of a chain
map F : pT

c
pAr´1sq, µAq Ñ pT

c
pA1r´1sq, µA1q, i.e. F ˝ µA “ µA1 ˝ F .

If µd
A “ 0 for d ą 2 the A8-structure determines a dga structure on A

by the formulas

BA “ ´µ1
A “ µ1

Ar1s,

a ¨ a1 “ p´1q|a|µ2
Apa, a1q “ µ2

Ar1, 1; 1spa, a1q. (3)
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See Appendix A for an explanation of the notation µ2
Ar1, 1; 1s. In

the case where µd
A “ 0 for d ą 3 the same formulas determine an

associative-up-to-homotopy differential graded algebra structure on A.
More precisely, with hpa1, a2, a3q “ p´1q|a2|µ3

A
pa1, a2, a3q, i.e. h “

µ3
Ar1, 1, 1; 1s in the notation of Appendix A, we have 1

pa1 ¨ a2q ¨ a3 ´ a1 ¨ pa2 ¨ a3q “ rBA, hs. (4)

Similarly, given an A8-morphism F : A Ñ A1 the map f “ F1r1; 1s :
A Ñ A1 acts on elements as fpaq “ F1paq and is a chain map which
intertwines the products mA “ µ2

Ar1, 1; 1s and mA1 “ µ2
A1r1, 1; 1s on A

and A1 up to a homotopy k “ F2r1, 1; 1s, i.e.

mA1pf b fq ´ fmA “ rB, ks.

Our discussion evolves around the following refinement of the notion
of an A8-algebra and A8-morphism.

Definition 2.3. An A8-triple pM, c,Aq consists of an A8-algebra A,
a chain complex M and a degree 0 chain map

c : M Ñ A,

together with an A8-algebra structure on Conepcq extending the A8-
algebra structure on A via the inclusion A ãÑ Conepcq “ A ‘ Mr´1s,
and such that µ1

Conepcq “ BConepcqr´1s.

Definition 2.4. An A8-morphism F : pM, c,Aq Ñ pM1, c1,A1q be-
tween A8-triples is an A8-morphism Conepcq Ñ Conepc1q which re-
stricts to an A8-morphism A Ñ A1.

1The conventions for the definition of an A8-algebra vary greatly throughout the
literature, and the difference stems mainly from the point of view adopted: either
square-zero coderivation on T

c
pAr´1sq, or homotopy relaxation of dga structure.

All conventions are equivalent to one another by suitable sign changes, and the
short note by Polishchuk [36] contains a useful comparison. Our convention derives
the functional relation (1), which involves no signs, from the condition that the
associated coderivation on the reduced tensor coalgebra on Ar´1s squares to zero.
This is the point of view of Fukaya-Oh-Ohta-Ono [19, Definition 3.2.3] and Sei-
del [(2.1)][39]. Seidel’s convention in [40, (1.2)] is essentially the same except that
the maps µd

A are viewed as acting from the right, so one passes from one convention
to the other by defining µ̃d

A
pad, . . . , a1q “ µd

A
pa1, . . . , adq.

The conventions of Lefèvre-Hasegawa [26, 1.2.1.1] and Markl [30, (2)], which
coincide, are such that the first three structure maps directly define on A an
associative-up-to-homotopy differential graded algebra structure. They are the
same as the original one of Stasheff [41], cf. [36]. Lefèvre-Hasegawa writes down
in [26, Lemma 1.2.2.1] a transformation through which this point of view is equiva-
lent to ours, and that transformation inspired our treatment of shifts in Appendix A.

The conventions by which one associates to an A8-algebra in the sense of Defi-
nition 2.1 an associative-up-to-homotopy dga structure vary greatly as well. Ours
is different from both the one of Fukaya-Oh-Ohta-Ono [19, (3.2.5)] and the one of
Seidel [40, (1.3)]. We favour it because it fits into a systematic procedure of shifting
multilinear maps, cf. Appendix A, and also because it realizes pA, BAq as the shift
of pAr´1s, µ1

A
q.
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2.1. The point of view of split pairs of A8-algebras. The data
of an A8-triple is equivalent to the data of an R-split pair of A8-
algebras, or simply split pair of A8-algebras, meaning an inclusion of
A8-algebras A Ă B together with a splitting (as graded R-modules)
s : B{A Ñ B of the short exact sequence 0 Ñ A Ñ B Ñ B{A Ñ 0.
Given such a pair we write the differential on B in upper triangular
form with respect to the decomposition B “ A ‘ pB{Aq induced by
the splitting, we set M “ pB{Aqr1s and we define c : M Ñ A to be
the pB{A,Aq-component of the differential. Then there is an induced
structure of A8-triple on pM, c,Aq such that Conepcq “ B. Conversely,
given an A8-triple pM, c,Aq the inclusion A Ă Conepcq is obviously
split.

The key property of A8-structures is that they obey the Homotopy
Transfer Theorem, see [30] for its most general form and [29, §9.4] for
a contextual discussion. In the context of split pairs of A8-algebras
A Ă B the homotopy transfer theorem adapts in an obvious way by
considering only maps which are upper triangular with respect to the
decomposition B “ A ‘ B{A provided by the splitting.

Definition 2.5. Let A Ă B and A1 Ă B1 be split pairs of chain com-
plexes. We say that the pair A1 Ă B1 is a homotopy retract of the pair
A Ă B if there are maps

B B1
H

P

I

which are upper triangular with respect to the decompositions B “ A‘
B{A and B1 “ A1 ‘ B1{A1 provided by the splittings and such that

rB, Hs “ 1l ´ IP.

The proof of the next theorem is the same as that of [30, Theorem 5].
It specifically uses the upper triangular form of the maps P, I,H , and
also the explicit formulas provided by Markl in [30].

Theorem 2.6 (Homotopy transfer for split pairs). Given a homotopy
retraction of pairs as above, and given an A8-algebra structure on B

such that A is a subalgebra, there is an A8-structure on B1 such that
A1 is a subalgebra, and there are extensions of P, I to A8-morphisms
of pairs P̃ , Ĩ and of H to an A8-homotopy H̃ between Ĩ P̃ and 1l which
preserves A. �

The transferred A8-structure and the extensions P̃ , Ĩ, H̃ are described
very explicitly in terms of summation over trees whose vertices are at
least trivalent, see [30] and also [24].

One particularly relevant situation is that in which the maps P, I defin-
ing a homotopy retract are actually homotopy inverses, with the ho-
motopy H 1 : B1 Ñ B1 such that rB, H 1s “ 1l ´ PI being also in upper
triangular form. The next result is the analogue of [30, Proposition 12].
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Proposition 2.7. In the preceding situation, the homotopy H 1 can be
extended to an A8-homotopy H̃ 1 between P̃ Ĩ and 1l which preserves A
if

rPH ´ H 1P s “ 0 P H1pHompB,B1qq,

and PH ´ H 1P admits a primitive which is upper triangular. �

2.2. The point of view of A8-bimodules. Recall that anA8-algebra
B is a graded R-module with operations µd

B : Br´1sbd Ñ Br´1s, d ě 1
of degree ´1 subject to the relations (1).

The data of an A8-triple pM, c,Aq can then be explicitly encoded in
two collections of operations

mi1|j1|...|ik|jk : Ar´1sbi1bMr´2sbj1b¨ ¨ ¨bAr´1sbikbMr´2sbjk Ñ Mr´2s,

and

τ i1|j1|...|ik|jk : Ar´1sbi1bMr´2sbj1b¨ ¨ ¨bAr´1sbikbMr´2sbjk Ñ Ar´1s

of degree ´1, indexed by tuples of non-negative integers i1, j1, . . . , ik, jk
such that the intermediate indices j1, i2, j2, . . . , ik are nonzero—a con-
vention which we adopt for non-redundancy of the notation— and such
that the following conditions hold:

‚ md|0 “ 0 and τd|0 “ µd
A

for all d ě 1, where µd
A
, d ě 1 are the

A8-operations for A;
‚ τ 0|1 “ ´cr´2;´1s : Mr´2s Ñ Ar´1s and m0|1 “ BMr´2s;
‚ the operations µd : Conepcqr´1sbd Ñ Conepcqr´1s, d ě 1 given by

µd|Ar´1sbi1 b Mr´2sbj1 b ¨ ¨ ¨ bAr´1sbik b Mr´2sbjk

“ τ i1|j1|...|ik|jk ‘ mi1|j1|...|ik|jk

define an A8-algebra structure on Conepcq.

The collections of operations tmi1|j1|...|ik|jku and tτ i1|j1|...|ik|jku can be
further partitioned according to the value of j “ j1 ` j2 ` ¨ ¨ ¨ ` jk.
It is instructive to spell out the meaning of the sub-collections which
correspond to the first two values of j.

‚ The case j “ 0 is covered by the first of the three conditions above.
This expresses the fact that A is an A8-subalgebra of Conepcq.

‚ The case j “ 1 exhibits two sub-collections. The first one is

mi1|1|i2 : Ar´1sbi1 b Mr´2s b Ar´1sbi2 Ñ Mr´2s

for i1, i2 ě 0 and exhibits Mr´1s as an A8-bimodule over A. Here
we slightly deviate from the above notational convention by allow-
ing i2 “ 0. The second sub-collection is

τ i1|1|i2 : Ar´1sbi1 b Mr´2s b Ar´1sbi2 Ñ Ar´1s

for i1, i2 ě 0. This describes an A-bimodule A8-homomorphism
Mr´1s Ñ Ar´1s, whose first term is ´cr´1s : Mr´1s Ñ Ar´1s.
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From this perspective, the data of an A8-triple can be equivalently
rephrased as consisting of anA8-algebraA, of anA8-bimoduleMr´1s,
and of anA-bimodule A8-homomorphismMr´1s Ñ Ar´1s whose first
term is ´cr´1s : Mr´1s Ñ Ar´1s, together with collections of maps
tmi1|j1|...|ik|jku and tτ i1|j1|...|ik|jku as above which extend the given data
and define an A8-structure on Conepcq.

The discussion of the Homotopy Transfer Theorem from §2.1 has an
obvious counterpart in this context, except that the amount of combi-
natorial data that one needs to track is significantly larger. For further
use we spell out the corresponding notion of homotopy retract.

Definition 2.8. A triple pM1, c1,A1q is a homotopy retract of a triple
pM, c,Aq if the pair A1 Ă Conepc1q is a homotopy retract of the pair
A Ă Conepcq in the sense of Definition 2.5.

Let us write in upper triangular form the maps P, I,H involved in the
definition as

P “

ˆ
p K

0 π

˙
, I “

ˆ
i H

0 ι

˙
, H “

ˆ
h a

0 ´χ

˙
,

so that we obtain the diagram

M M1

A A1

χ
π

c K

ι

c1H

h

p

i

(5)

It is straightforward to check that the homotopy retract condition is
equivalent to the following:

‚ (P , I are chain maps)

rB,Hs “ ic1 ´ cι, rB,Ks “ pc ´ c1π.

‚ (H is a homotopy between IP and 1l, i.e. 1l ´ IP “ rB, Hs)

1l ´ ιπ “ rBM, χs, 1l ´ ip “ rBA, hs,

rB, as “ cχ ´ hc ´ iK ´ Hπ.

2.3. A2-triples. Of particular interest for us will be the operations of
arity d “ 2. The previous discussion provides degree ´1 maps

τ 2|0 “ µ2
A : Ar´1s b Ar´1s Ñ Ar´1s,

m1|1|0 : Ar´1s b Mr´2s Ñ Mr´2s,

m0|1|1 : Mr´2s b Ar´1s Ñ Mr´2s (6)
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which, after an appropriate shift discussed below, induce an algebra
structure on HpAq and also an HpAq-bimodule structure on HpMq.
We also have the degree ´1 maps

τ 1|1|0 : Ar´1s b Mr´2s Ñ Ar´1s,

τ 0|1|1 : Mr´2s b Ar´1s Ñ Ar´1s (7)

which, also after an appropriate shift, provide homotopies ensuring that
c induces in homology a bimodule map HpMq Ñ HpAq. There are two
more degree ´1 operations of arity 2, namely

m0|2|0 : Mr´2s b Mr´2s Ñ Mr´2s (8)

and
τ 0|2|0 : Mr´2s b Mr´2s Ñ Ar´1s. (9)

Definition 2.9. An A2-triple pM, c,Aq consists of an associative up
to homotopy dg algebra pA, µq, of a chain complex M and of a degree
0 chain map c : M Ñ A, together with bilinear maps

mL : A b M Ñ M, mR : M b A Ñ M

of degree 0,

τL : M b A Ñ A, τR : A b M Ñ A,

σ : M b M Ñ M

of degree 1, and
β : M b M Ñ A

of degree 2, subject to the following conditions:

rB, µs “ 0, rB, mLs “ 0, rB, mRs “ 0,

rB, τLs “ µpc b 1lq ´ cmR, rB, τRs “ µp1l b cq ´ cmL,

rB, σs “ mRp1l b cq ´ mLpc b 1lq,

and
rB, βs “ ´cσ ` τRpc b 1lq ´ τLp1l b cq.

The brackets are understood with respect to the indicated degrees,
e.g. rB, mLs “ BMmL ´ mLpBA b 1lMq ´ mLp1lA b BMq and rB, τLs “
BAτL ` τLpBM b 1lAq ` τLp1lM b BAq.

The definition is motivated by Lemma 2.10 and Proposition 2.11 below.

Lemma 2.10. Given an A8-triple pM, c,Aq, the arity 2 operations
from (6–9) induce canonically the structure of an A2-triple on pM, c,Aq.

Proof. We define µ, mL etc. by suitable shifts of the arity 2 operations
of the A8-triple. As explained in Appendix A, the order of successive
shifts matters. Since our goal is to define an algebra structure on the
cone, we first shift uniformly all the arity 2 operations by r1, 1; 1s so
that all inputs and outputs are tensor products of A and Mr´1s; we
then further shift by `1 on the Mr´1s-factor in order to obtain arity
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2 operations whose inputs and outputs are tensor products of A and
M. This means that we define (with µ2

A “ τ 2|0)

µ “ µ2
Ar1, 1; 1s,

mL “ m1|1|0r1, 1; 1sr0, 1; 1s, mR “ m0|1|1r1, 1; 1sr1, 0; 1s,

τR “ τ 1|1|0r1, 1; 1sr0, 1; 0s, τL “ τ 0|1|1r1, 1; 1sr1, 0; 0s,

σ “ m0|2|0r1, 1; 1sr1, 1; 1s, β “ τ 0|2|0r1, 1; 1sr1, 1; 0s.

For further use, it is also convenient to define the maps (of degree 0)

µ “ µ “ µ2
Ar1, 1; 1s,

mL “ m1|1|0r1, 1; 1s, mR “ m0|1|1r1, 1; 1s,

τR “ τ 1|1|0r1, 1; 1s, τL “ τ 0|1|1r1, 1; 1s,

σ “ m0|2|0r1, 1; 1s, β “ τ 0|2|0r1, 1; 1s.

We claim that the maps µ,mL, mR, τL, τR, σ, β define the structure of
an A2-triple on pM, c,Aq. Denoting B “ A‘Mr´1s, the proof consists
of a direct verification by decomposing the A8-relation

µ1
Bµ

2
B ` µ2

Bpµ1
B b 1lq ` µ2

Bp1l b µ1
Bq “ 0 (10)

into components. We use that µ2
B “ pτ 2|0 `τ 1|1|0 `τ 0|1|1 `τ 0|2|0, m1|1|0 `

m0|1|1 ` m0|2|0q and

µ1
B “ BConepcqr´1s “

ˆ
BAr´1s ´cr´2;´1s
0 BMr´2s

˙
.

While the verification is straightforward, the signs are subtle and for
this reason we give the proof in detail.

Step 1. We prove that the maps µ “ µ,mL, mR, τL, τR, σ, β satisfy the
relations

rB, µs “ 0, rB, mLs “ 0, rB, mRs “ 0,

rB, τLs “ µpcr´1; 0s b 1lq ´ cr´1; 0smR,

rB, τRs “ µp1l b cr´1; 0sq ´ cr´1; 0smL,

rB, σs “ mRp1l b cr´1; 0sq ` mLpcr´1; 0s b 1lq,

rB, βs “ ´cr´1; 0sσ ` τRpcr´1; 0s b 1lq ` τLp1l b cr´1; 0sq.

The relation rB, µs “ 0 follows directly from the discussion in Appen-
dix A. Since µ2

A is a chain map, so is its shift.
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The relations for mL and τR are obtained by restricting equation (10)
to Ar´1s b Mr´2s, where it becomes

µ1
Bpτ 1|1|0, m1|1|0q ` pτ 1|1|0, m1|1|0qpµ1

A b 1lq

` pτ 1|1|0 ` τ 2|0, m1|1|0qp1l b µ1
Bq “ 0

ô prB, τ 1|1|0s ´ cr´2;´1sm1|1|0 ´ τ 2|0p1l b cr´2;´1sq, rB, m1|1|0sq “ 0

ô rB, τ 1|1|0s ´ cr´2;´1sm1|1|0 ´ τ 2|0p1l b cr´2;´1sq “ 0,

rB, m1|1|0s “ 0

ô prB, τ 1|1|0s ´ cr´2;´1sm1|1|0 ´ τ 2|0p1l b cr´2;´1sqqr1, 1; 1s “ 0,

rB, m1|1|0sr1, 1; 1s “ 0

ô ´ rB, τRs ´ cr´1; 0smL ` µp1l b cr´1; 0sq “ 0,

´ rB, mLs “ 0.

The relations for mR and τL are obtained by restricting equation (10)
to Mr´2s b Ar´1s, where it becomes

µ1
Bpτ 0|1|1, m0|1|1q ` pτ 0|1|1 ` τ 2|0, m0|1|1qpµ1

B b 1lq

` pτ 0|1|1, m0|1|1qp1l b µ1
Bq “ 0

ô prB, τ 0|1|1s ´ cr´2;´1sm0|1|1 ´ τ 2|0pcr´2;´1s b 1lq, rB, m0|1|1sq “ 0

ô rB, τ 0|1|1s ´ cr´2;´1sm0|1|1 ´ τ 2|0pcr´2;´1s b 1lq “ 0,

rB, m0|1|1s “ 0

ô prB, τ 0|1|1s ´ cr´2;´1sm0|1|1 ´ τ 2|0pcr´2;´1s b 1lqqr1, 1; 1s “ 0,

rB, m0|1|1sr1, 1; 1s “ 0

ô ´ rB, τLs ´ cr´1; 0smR ` µpcr´1; 0s b 1lq “ 0,

´ rB, mRs “ 0.
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The relations for σ and β are obtained by restricting equation (10) to
Mr´2s b Mr´2s, where it becomes

µ1
Bpτ 0|2|0, m0|2|0q ` pτ 0|2|0 ` τ 1|1|0, m0|2|0 ` m1|1|0qpµ1

B b 1lq

` pτ 0|2|0 ` τ 0|1|1, m0|2|0 ` m0|1|1qp1l b µ1
Bq “ 0

ô rB, τ 0|2|0s ´ cr´2;´1sm0|2|0 ´ τ 1|1|0pcr´2;´1s b 1lq

´ τ 0|1|1p1l b cr´2;´1sq “ 0,

rB, m0|2|0s ´ m1|1|0pcr´2;´1s b 1lq ´ m0|1|1p1l b cr´2;´1sq “ 0

ô prB, τ 0|2|0s ´ cr´2;´1sm0|2|0 ´ τ 1|1|0pcr´2;´1s b 1lq

´ τ 0|1|1p1l b cr´2;´1sqqr1, 1; 1s “ 0

prB, m0|2|0s ´ m1|1|0pcr´2;´1s b 1lq

´ m0|1|1p1l b cr´2;´1sqqr1, 1; 1s “ 0

ô ´ rB, βs ´ cr´1; 0sσ ` τRpcr´1; 0s b 1lq ` τLp1l b cr´1; 0sq “ 0,

´ rB, σs ` mLpcr´1; 0s b 1lq ` mRp1l b cr´1; 0sq “ 0.

Step 2. We prove the relations for µ,mL, mR, τL, τR, σ, β.

Recall that we have

mL “ mLr0, 1; 1s, mR “ mRr1, 0; 1s,

τR “ τRr0, 1; 0s, τL “ τLr1, 0; 0s,

σ “ σr1, 1; 1s, β “ βr1, 1; 0s.

We already proved rB, µs “ 0, i.e. µ is a chain map. That mL, mR are
also chain maps follows from the fact that they are shifts of the chain
maps mL, mR.

To derive the equation for rB, τLs we use the equation for rB, τLs:

rB, τLs ´ µpcr´1; 0s b 1lq ` cr´1; 0smR “ 0

ô prB, τLs ´ µpcr´1; 0s b 1lq ` cr´1; 0smRqr1, 0; 0s “ 0

ô rB, τLs ´ µpc b 1lq ` cmR “ 0.

In the last equivalence we use cr´1; 0sω1 “ c, where ω1 : M Ñ Mr´1s
is the shift.

To derive the equation for rB, τRs we use the equation for rB, τRs:

rB, τRs ´ µp1l b cr´1; 0sq ` cr´1; 0smL “ 0

ô prB, τRs ´ µp1l b cr´1; 0sq ` cr´1; 0smLqr0, 1; 0s “ 0

ô rB, τRs ´ µp1l b cq ` cmL “ 0.
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To derive the equation for rB, σs we use the equation for rB, σs:

rB, σs ´ mRp1l b cr´1; 0sq ´ mLpcr´1; 0s b 1lq “ 0

ô prB, σs ´ mRp1l b cr´1; 0sq ´ mLpcr´1; 0s b 1lqqr1, 1; 1s “ 0

ô ´ rB, σs ` mRp1l b cq ´ mLpc b 1lq “ 0.

Finally, to derive the equation for rB, βs we use the equation for rB, βs:

rB, βs ` cr´1; 0sσ ´ τRpcr´1; 0s b 1lq ´ τLp1l b cr´1; 0sq “ 0

ô prB, βs ` cr´1; 0sσ ´ τRpcr´1; 0s b 1lq

´ τLp1l b cr´1; 0sqqr1, 1; 0s “ 0

ô rB, βs ` cσ ´ τRpc b 1lq ` τLp1l b cq “ 0.

�

In the next statement we denote an element of Conepcq “ A‘Mr´1s
by pa, x̄q, meaning that x̄ P Mr´1s is the shift of an element x P M.
In particular |x̄| “ |x| ` 1.

Proposition 2.11. Let pM, c,Aq be an A2-triple with operations de-
noted µ,mL, mR, τL, τR, σ, β as above. The formula

m
`
pa, x̄q, pa1, x̄1q

˘
(11)

“
`
µpa, a1q ` p´1q|a|τRpa, x1q ` τLpx, a1q ´ p´1q|x̄|βpx, x1q,

p´1q|a|mLpa, x1q ` mRpx, a1q ´ p´1q|x̄|σpx, x1q
˘

defines a degree 0 bilinear product

m : Conepcq b Conepcq Ñ Conepcq

which is a chain map. This product coincides with the one from (3) if
the A2-triple is induced from an A8-triple as in Lemma 2.10.

Proof. That the formula defines a chain map can be checked directly.

Assume now that the A2-triple is induced from an A8-triple. The
product induced on Conepcq by the A8-structure is

m “ pµ ` τR ` τL ` β,mL ` mR ` σq.

We therefore merely need to express the maps τR, τL, β,mL, mR, σ in
terms of τR, τL, β,mL, mR, σ.

We work out in full detail the case of σ. We claim that

σ “ ´σr´1,´1;´1s, (12)

σpx̄, x̄1q “ ´p´1q|x̄|σpx, x1q.

Indeed, we start with σ “ σr1, 1; 1s and then compute σr´1,´1;´1s “
σr1, 1; 1sr´1,´1;´1s “ ´σ. The explicit formula in terms of elements
is a consequence of the definition of the shift by r´1,´1;´1s.

Similarly, we compute:
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‚

mL “ mLr0,´1;´1s, (13)

mLpa, x̄1q “ p´1q|a|mLpa, x1q

since mLr0,´1;´1s “ mLr0, 1; 1sr0,´1;´1s “ mL.
‚

mR “ mRr´1, 0;´1s, (14)

mRpx̄, a1q “ mRpx, a1q

since mRr´1, 0;´1s “ mRr1, 0; 1sr´1, 0;´1s “ mR.
‚

τL “ τLr´1, 0; 0s, (15)

τLpx̄, a1q “ τLpx, a1q

since τLr´1, 0; 0s “ τLr1, 0; 0sr´1, 0; 0s “ τL.
‚

τR “ τRr0,´1; 0s, (16)

τRpa, x̄1q “ p´1q|a|τRpa, x1q

since τRr0,´1; 0s “ τRr0, 1; 0sr0,´1; 0s “ τR.
‚

β “ ´βr´1,´1; 0s,

βpx̄, x̄1q “ ´p´1q|x̄|βpx, x1q

since βr´1,´1; 0s “ βr1, 1; 0sr´1,´1; 0s “ ´β.

�

Remark 2.12. We chose to infer the equations for the maps mL, mR,
τR, τL, σ, β in Definition 2.9 from the A8-equations. As such, they
assemble canonically into the product structure on the cone induced
from the A8-structure. But even so, there is a small amount of choice
involved: we could have defined σ as m0|2|0r2, 2; 2s, which would have
changed its sign. We settled for our convention for the reasons men-
tioned in the preamble of the proof of Lemma 2.10.

The existence of this potential change of sign can also be understood
from the following perspective. Assume one wishes to determine equa-
tions for such a collection of maps so that they assemble into some
product structure on the cone. A close inspection of the formula defin-
ing the product m shows that, once we require that it restricts to the
product µ on A, the equations for mL, mR, τR, τL, σ, β are uniquely
determined up to obvious multiplications by ˘1 by the requirement
that the equation expressing the compatibility with the differential,
i.e. rBConepcq, ms “ 0, translates into functional equations for the var-
ious maps involved. Our procedure to define the maps from the A8-
structure can be seen as one convenient way to fix the signs.
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We call the product m the canonical product on the cone defined by
the A2-structure. Associativity up to homotopy for the product m is
not a priori guaranteed. For this, one would need to enhance the data
of an A2-triple precisely with the operations of arity 3 involved in the
definition of an A8-triple, see (4).

The A2-triples used in this paper will always be arity 2 restrictions
of genuine A8-triples canonically defined up to homotopy. While we
will not construct nor make use of the full A8-structure, it is impor-
tant to acknowledge its existence. In particular, the homotopy transfer
and homotopy invariance statements for A2-triples discussed below are
avatars of the homotopy transfer and homotopy invariance statements
for A8-structures.

Proposition 2.13. Let pM1, c1,A1q be a triple which is a homotopy
retract of the triple pM, c,Aq as in Definition 2.8. Given the structure
of an A2-triple on pM, c,Aq, there is an induced structure of an A2-
triple on pM1, c1,A1q such that the maps

Conepcq
P //

Conepc1q
I

oo

involved in the homotopy retract are compatible with the products on
Conepcq and Conepc1q. �

Very explicitly, and because we are in arity 2, the transfer of structure
is obtained by summing over the different ways of labeling the inputs
and output of the unique binary rooted tree with two leaves by A and
M, and inserting accordingly at the inputs the maps i, ι,H, and at
the output the maps p, π,K (compare to [30]). For example, the map
σ1 : M1 b M1 Ñ M1 is given by

σ1 “ ˘πσι b ι ˘ πmLH b ι ˘ πmRι b H.

See Figure 2, in which we see 3 different labelings contributing to the
transfer. In contrast, the map µ1 : A1 bA1 Ñ A1 is given by µ1 “ pµib i

since there is only one labeling contributing to the transfer because of
the upper triangular form of the maps P and I. The formula for the
transferred map β 1 involves 7 terms.

In the situation in which the maps P, I defining a homotopy retract are
homotopy inverses, with the homotopyH 1 : B1 Ñ B1 such that rB, H 1s “
1l ´ PI being also in upper triangular form, we obtain in particular
that the (non-associative) algebras pConepcq, mq and pConepc1q, m1q are
homotopy equivalent. In contrast to Proposition 2.7 above, this fact
is immediate and needs no additional assumption (because we do not
ask for any higher compatibilities of the homotopies). Thus, homotopy
invariance in the context of A2-triples is automatic.
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Figure 2. Trees for the transferred map σ1.

2.4. Morphisms of A2-triples. Consider two A2-triples pM, c,Aq
and pM1, c1,A1q with associated operations pmL, mR, τL, τR, σ, βq and
pm1

L, m
1
R, τ

1
L, τ

1
R, σ

1, β 1q, respectively.

Definition 2.14. A special morphism of A2-triples

pg, fq : pM, c,Aq Ñ pM1, c1,A1q

consists of the following maps:

(1) degree 0 chain maps g : M Ñ M1 and f : A Ñ A1 satisfying

fc “ c1g;

(2) degree 1 bilinear maps

pµ : A b A Ñ A
1, pmL : A b M Ñ M

1, pmR : M b A Ñ M
1

satisfying

rB, pµs “ µ1pf b fq ´ fµ,

rB, pmLs “ m1
Lpf b gq ´ gmL, rB, pmRs “ m1

Rpg b fq ´ gmR;

(3) degree 2 bilinear maps pσ : M b M Ñ M1 satisfying

rB, pσs “ σ1pg b gq ´ gσ ´ pmRp1 b cq ` pmLpc b 1q

and

pτL : M b A Ñ A
1, pτR : A b M Ñ A

1

satisfying

rB, pτLs “ τ 1
Lpg b fq ´ fτL ´ pµpc b 1q ` c1 pmR,

rB, pτRs “ τ 1
Rpf b gq ´ fτR ´ pµp1 b cq ` c1 pmL;

(4) a degree 3 bilinear map pβ : M b M Ñ A1 satisfying

rB, pβs “ β 1pg b gq ´ fβ ` c1pσ ´ pτRpc b 1q ` pτLp1 b cq.

Remark 2.15. We call a morphism of A2-triples special because we
require the equality fc “ c1g to be satisfied strictly. More generally,
one can relax this equality up to homotopy, in which case the rest of
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the identities need to be suitably corrected. Special morphisms of A2-
triples are enough for our applications to Rabinowitz Floer homology
and we therefore limit ourselves to this case.

The next result explains the genesis of this definition. The A8-morphisms
from the statement could also be called special.

Proposition 2.16. Let F : pM, c,Aq Ñ pM1, c1,A1q be an
A8-morphism between A8-triples such that F1 has no pMr´1s;A1q-
component, i.e. it has diagonal form

F
1 “

ˆ
F 1 0
0 G1

˙
.

The arity 1 and 2 components of F determine canonically a special
morphism between the A2-triples pM, c,Aq and pM1, c1,A1q.

Proof. The proof goes by direct verification using explicit formulas for
the various components, expressed in terms of shifts as in Appendix A.

Firstly, F1 acts as Conepcqr´1s “ Ar´1s ‘ Mr´2s Ñ Conepc1qr´1s “
A1r´1s ‘ M1r´2s, with components F 1 : Ar´1s Ñ A1r´1s and G1 :
Mr´2s Ñ M1r´2s. We define

f “ F 1r1; 1s, g “ G1r2; 2s.

Secondly, F2 acts as Conepcqr´1sb2 Ñ Conepc1qr´1s and we denote its
components F2

Ar´1sbAr´1s;A1r´1s, F
2
Mr´2sbAr´1s;M1r´2s etc. We define

pµ “ F
2
Ar´1sbAr´1s;A1r´1sr1, 1; 1s,

pmL “ ´F
2
Ar´1sbMr´2s;M1r´2sr1, 1; 1sr0, 1; 1s,

pmR “ ´F
2
Mr´2sbAr´1s;M1r´2sr1, 1; 1sr1, 0; 1s,

pσ “ ´F
2
Mr´2sbMr´2s;M1r´2sr1, 1; 1sr1, 1; 1s,

pτL “ F
2
Mr´2sbAr´1s;A1r´1sr1, 1; 1sr1, 0; 0s,

pτR “ F
2
Ar´1sbMr´2s;A1r´1sr1, 1; 1sr0, 1; 0s,

pβ “ F
2
Mr´2sbMr´2s;A1r´1sr1, 1; 1sr1, 1; 0s.

Recalling the definition of the A2-triple structures pµ,mL, mR, τL, τR,

σ, βq, resp. pµ1, m1
L, m

1
R, τ

1
L, τ

1
R, σ

1, β 1q from the proof of Lemma 2.10,
one then checks directly that the previous formulas indeed give rise to
a special A2-morphism. Since the calculations are very similar to those
in the proof of Lemma 2.10 we omit the details. �

Proposition 2.17. A special morphism of A2-triples
pg, fq : pM, c,Aq Ñ pM1, c1,A1q induces a degree 0 chain map

Conepg, fq : Conepcq Ñ Conepc1q
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intertwining the products m,m1 defined in Proposition 2.11 up to chain
homotopy. The induced map on homology fits into the commuting dia-
gram with exact sequences

¨ ¨ ¨H˚pMq
c˚ //

g˚

��

H˚pAq //

f˚

��

H˚pConepcqq //

Conepg,fq˚

��

H˚´1pMq ¨ ¨ ¨

g˚

��
¨ ¨ ¨H˚pM1q

c1
˚ // H˚pA1q // H˚pConepc1qq // H˚´1pM

1q ¨ ¨ ¨

If f and g induce isomorphisms on homology, then so does Conepg, fq.

Proof. The proposition is proved by inverting the formulas given in
the proof of Proposition 2.16. Indeed, the arity 1 and 2 components
of an A8-morphism can be recovered from the components of an A2-
morphism, and the first two equations defining an A8-morphism F :
Conepcq Ñ Conepc1q are equivalent to the first assertion of the propo-
sition: F1 : Conepcqr´1s Ñ Conepc1qr´1s is a chain map, and it inter-
twines the products µ2

Conepcq and µ2
Conepc1q up to a homotopy given by

F2, i.e.
F

1µ2
Conepcq ´ µ2

Conepc1qpF
1 b F

1q “ rB,F2s.

The second assertion follows by passing to homology in the commuting
diagram of short exact sequences

0 // A //

f

��

Conepcq //

Conepg,fq
��

Mr´1s //

g

��

0

0 // A1 // Conepc1q // M1r´1s // 0

The last assertion follows from the second one by the 5-lemma. �

2.5. Examples.

Example 2.18 (Ideals). Let pA, BA, µq be a dga and M Ă A be a dg
ideal. Let c “ incl : M ãÑ A be the inclusion. The triple pM, incl,Aq
has a canonical structure of an A2-triple defined as follows: the opera-
tions mL : A b M Ñ M and mR : M b A Ñ M are given by multi-
plication in A and endow M with the structure of a strict A-bimodule,
whereas the operations τR, τL, σ, β are all zero. The corresponding prod-
uct m on Conepinclq “ A ‘ Mr´1s is given by 2

m
`
pa, x̄q, pa1, x̄1q

˘
“
`
µpa, a1q, p´1q|a|µpa, x1q ` µpx, a1q

˘
.

2In [21, Lemma 2.1] the authors call it “Nagata product”. However, this termi-
nology is potentially misleading. Nagata defined in [33, p. 2] a product on the direct
sum between a module and its base ring in the context of his general procedure of
“idealization”, i.e. of turning a module into an ideal, which signed the beginning
of the theory of square zero extensions. In the dg setting, a square zero extension
is a surjective map of dga’s whose kernel squares to zero. In contrast, our setup
is concerned with injective maps of dga’s, i.e. with pairs consisting of an algebra
and a subalgebra. In the current setup, if M2 were zero then A would be a square
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The projection

proj : Conepinclq Ñ A{M, pa, xq ÞÑ ras

is clearly a ring map. Assuming that the short exact sequence of R-
modules 0 Ñ M Ñ A Ñ A{M Ñ 0 is split, it is a general fact
that proj is a homotopy equivalence with an explicit homotopy inverse
defined in terms of the splitting (see for example [14, Lemma 4.3]).

Example 2.19 (Quotients). Let now pM, c,Aq be an A2-triple with
operations µ,mL, mR, τL, τR, σ, β. Let m be the corresponding product
structure on Conepcq.

Assume c : M Ñ A to be surjective, denote K “ ker c and assume
that the short exact sequence 0 Ñ K Ñ M

c
Ñ A Ñ 0 is split. Writing

the differential BM in upper triangular form with respect to the split-
ting, denote f : A Ñ Kr´1s its pA, Kq-component. We then have a
homotopy equivalence

Conepcq “ A ‘ Kr´1s ‘ Ar´1s Kr´1s,H
Σ

T

where T is the inclusion on the Kr´1s-factor, Σpa, k̄, āq “ fpaq`k̄, and
ΣT “ 1l. The homotopy H acts by Hpa, k̄, āq “ p0, 0, aq. The shifted
kernel Kr´1s inherits the product structure σ̃ “ ΣmT b T . Explicitly

σ̃px̄K , x̄
1
Kq “ ´p´1q|x̄K |fβpxK , x

1
Kq ´ p´1q|x̄K |prKσpxK , x

1
Kq,

where prK : M Ñ K is the projection determined by the splitting.

In the presence of arity 3 data on the triple pM, c,Aq, this product is
associative up to homotopy and the maps Σ, T interchange σ̃ and m

up to homotopy.

Under the additional assumptions

β|KbK “ 0 and σpK b Kq Ă K,

we have

σ̃px̄K , x̄
1
Kq “ ´p´1q|x̄K |σpxK , x

1
Kq,

i.e.

σ̃ “ ´σr´1,´1;´1s.

In case the A2-triple is induced by an A8-structure as before, we obtain
σ̃ “ σ, the product on Mr´1s induced by the A8-operations.

zero extension of A{M, inheriting a “Nagata product”. In contrast, the cone of
the inclusion M ãÑ A always carries a dga structure.
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In any case, the map T is an algebra map (and a homotopy equiva-
lence), so that pConepcq, mq and pKr´1s, σ̃q are homotopy equivalent
as algebras.

Example 2.20 (Duality M “ A_). Let pA, Bq be a dg R-module and
A_

˚ “ HomRpA´˚, Rq its graded dual. In §7 we describe a structure on
A, called an A`

2 -structure, which gives rise to an A2-triple pA_, c,Aq.
It encodes all the information of the A2-triple in terms of operations on
A, which will be important in [12] to relate Rabinowitz Floer homology
of a unit cotangent bundle to Rabinowitz loop homology. We study in §7
the functoriality of A`

2 -structures and prove an algebraic counterpart of
our main Poincaré duality theorem for the cones of the associated A2-
triples.

3. Cones of Floer continuation maps

Floer continuation maps naturally give rise to A2-triples, and indeed
to A8-triples.

3.1. Closed symplectically aspherical manifolds. Although main-
ly interested in the noncompact case, we start with a discussion of the
compact symplectically aspherical case. In this situation the continua-
tion maps are homotopy equivalences and their cones are acyclic, but
it is interesting to see how the A2-triple arises. We work on a closed
symplectically aspherical manifold W of dimension 2n with trivial first
Chern class and a fixed choice of trivialization of its canonical bundle.
All our Floer chain complexes are graded by the Conley-Zehnder index,
computed in this trivialization. Whenever we write Floer chain com-
plexes, continuation maps, and more generally equations for pseudo-
holomorphic maps defined on Riemann surfaces, we tacitly mean that
there are choices of compatible almost complex structures involved. In
order not to burden the notation we will not make further reference to
these unless absolutely necessary.

Proposition 3.1. Let

M˚ “ FC˚pHqrns, A˚ “ FC˚pKqrns

be shifted Floer chain complexes determined by nondegenerate Hamil-
tonians H,K on a closed symplectically aspherical manifold W of di-
mension 2n. Recall that FC˚pHqrns “ FC˚`npHq. Let tHs : s P Ru
be a homotopy such that Hs “ K for s ! 0 and Hs “ H for s " 0, and
denote

c : M˚ Ñ A˚

the corresponding continuation map. Then pM, c,Aq carries the struc-
ture of an A2-triple, canonically defined up to homotopy.
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Proof. We need to define operations µ, mL, mR, τL, τR, σ and β.

The operations µ : AbA Ñ A, mL : AbM Ñ M, mR : MbA Ñ M

are pair-of-pants products. They are defined by counts of index 0 pairs-
of-pants with 2 inputs (positive punctures) and 1 output (negative
puncture). See Figure 3, in which we depict pairs-of-pants with two
inputs and one output schematically as binary rooted trees with two
leaves. The two inputs are ordered, the first one is depicted on the left
and the second one is depicted on the right.

µ

K H

H

mL

H K

H

mR

K K

K

Figure 3. Curves defining the maps µ, mL, mR in Floer theory.

The operations σ : M b M Ñ M, τL : M b A Ñ A, τR : A b M Ñ
A are defined by counts of index ´1 pairs-of-pants with 2 positive
punctures and 1 negative puncture in suitable 1-dimensional families
parametrized by the interval r0, 1s. See Figure 4.

The operation β : M b M Ñ A is defined by the count of index ´2
pairs-of-pants with 2 positive punctures and 1 negative puncture in a
2-dimensional family parametrized by the 2-simplex. See Figure 5.

The proof of the relations defining an A2-triple is straightforward. That
the resulting structure is canonically defined up to homotopy is also a
straightforward—though combinatorially involved—argument. �

Remark 3.2 (A8-triple). The above A2-triple is the arity 2 part of an
A8-triple. However, we will not construct the latter here.

Remark 3.3 (filtration on the cone). Assume H ď K and the ho-
motopy is monotone. Then all the maps defining the A2-triple can be
constructed such that they decrease the action. The cone then has a
canonical R-filtration

Conepcqďa “ FCďa
˚ pKqrns ‘ FCďa

˚´1pHqrns, a P R

and the product structure m defined by the A2-triple preserves this
filtration, meaning that

m
`
Conepcqďa b Conepcqďb

˘
Ď Conepcqďa`b.

Denote Conepcqpa,bq “ Conepcqăb{Conepcqďa. We obtain induced par-
tial products

m : Conepcqpa,bq b Conepcqpa1,b1q Ñ Conepcqpmaxta`b1,a1`bu,b`b1q.
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tHsu

0 1

K H

H

cmL

tHsu

K

K

H

K

K

µp1l b cq

tHsu

H K

K

τL

K H

K

τR

H H

H

σ

H

H

K

H

mRp1l b cq

tHsu

K

H

H

H

mLpc b 1lq

0 1

0 1

tHsu

H K

H

cmR

tHsu

K

K

H

K

K

µpc b 1lq

Figure 4. Curves defining the maps σ, τL, τR in Floer theory.

3.2. Completions of Liouville domains. Consider now the noncom-
pact case where the underlying manifold is the symplectic completion
xW of a Liouville domain W . One additional complication is added by
the fact that solutions of the relevant Cauchy-Riemann equations with
0-order Hamiltonian perturbation are required to obey a maximum
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1

H H

H

cσ

tHsu

K

K

H

H

K

τRpc b 1lq

tHsu

H

H

K

K

´τLp1l b cq

tHsu

H

H

K

H

cmRp1l b cq

tHsu

tHsu

K

K

H

H

H

cmLpc b 1lq

tHsu

tHsu

K

K

H

K

K

µpc b cq

tHsu tHsu

H

H H

K

β

0

2

Figure 5. Curves defining the map β in Floer theory.

principle. More precisely, given a map u : Σ Ñ xW defined on a (punc-
tured) Riemann surface Σ and solving the perturbed Cauchy-Riemann
equation

pdu ´ XH b βq0,1 “ 0,

where β P Ω1pΣ,Rq and H “ tHzu, z P Σ is a Σ-dependent family
of Hamiltonians, one requires that, outside a compact set, we have
dzpHβq ď 0 for all z P Σ. When restricting to admissible Hamiltonians,

i.e. Hamiltonians which are linear in the region tr ě 1u Ă xW , it
is enough to impose this condition in that region. If this condition
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holds on the entire completion xW , then in addition the relevant maps
decrease the action.

The resulting structure is the following. Given admissible Hamilto-
nians H1 ď H2 and H 1

1 ď H 1
2 together with monotone homotopies

tHsu and tH 1
su connecting H1 and H2, respectively H 1

1 and H 1
2, denote

c : FC˚pH1qrns Ñ FC˚pH2qrns and c1 : FC˚pH 1
1qrns Ñ FC˚pH 1

2qrns the
corresponding continuation maps. Denote H1#H2pt, xq “ H1pt, xq `
H2pt, pϕt

H1
q´1pxqq, where φt

H denotes the Hamiltonian flow of H . As-
sume further the conditions

H 1
1 ě H1#H2, H 1

2 ě 2H2 “ H2#H2. (17)

The equality 2H2 “ H2#H2 is a condition which holds for time-
independent Hamiltonians, hence for the Hamiltonians that we use
in the sequel. By modifying the moduli spaces considered in the proof
of Proposition 3.1 into moduli spaces with inputs 1-periodic orbits of
H1, H2 and outputs 1-periodic orbits ofH 1

1, H
1
2, we construct operations

µ, mL, mR, τL, τR, σ, β which assemble into a product

m : Conepcq b Conepcq Ñ Conepc1q.

Moreover, this product respects the canonical filtrations on the cones
and induces

m : Conepcqpa,bq b Conepcqpa1,b1q Ñ Conepc1qpmaxta`b1,a1`bu,b`b1q.

Thus, in the noncompact case there is strictly speaking no pre-subal-
gebra extension structure for a fixed pair of Hamiltonians. However,
there is a “directed system” of such, constructed as above.

Remark 3.4. That conditions (17) are indeed sufficient for the exis-
tence of continuation maps is a consequence of the following construc-
tion, originally due to Matthias Schwarz [38, Proposition 4.1 sqq.].
Given Hamiltonians H and K, it is possible to construct a perturbed
Floer equation on a pair-of-pants with two positive punctures and one
negative puncture such that: near the positive punctures it special-
izes to the Floer equation for H and K, near the negative puncture
it specializes to the Floer equation for the Hamiltonian H#Kpt, xq “
Hpt, xq`Kpt, pϕt

Hq´1xq, and the solutions of this Floer equation satisfy
the maximum principle and do not increase the Hamiltonian action.

Example 3.5 (Rabinowitz Floer homology). Given λ P R denote by
Kλ the Hamiltonian which is 0 on W and is linear of slope λ on tr ě 1u,
with a convex smoothing if λ ą 0, respectively a concave smoothing if
λ ă 0. See Figure 6.

Given parameters λ´ ď λ` we denote

cλ´,λ` : FC˚pKλ´qrns Ñ FC˚pKλ`qrns
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Kλ

r1

Figure 6. The family of Hamiltonians tKλu, λ P R.

the continuation map induced by a monotone homotopy. Given also
parameters λ1

´ ď λ1
` such that λ´ `λ` ď λ1

´ and 2λ` ď λ1
`, and given

action bounds ´8 ă a ă b ă 8, we obtain bilinear maps

m : Conepcλ´,λ`qpa,bq b Conepcλ´,λ`qpa,bq Ñ Conepcλ1
´,λ1

`
qpa`b,2bq. (18)

Let now pa, bq be fixed. Given λ´´ ď λ´ ď λ` we have a canonical
continuation map cont : Conepcλ´´,λ`q Ñ Conepcλ´,λ`q. This map is
compatible in homology with the bilinear maps m defined above, mean-
ing that we have commutative diagrams for allowable values of the pa-
rameters

H˚pConepcλ´,λ`
qpa,bqq b H˚pConepcλ´,λ`

qpa,bqq
m // H˚pConepcλ1

´
,λ1

`
qpa`b,2bqq

H˚pConepcλ´´,λ`
qpa,bqq b H˚pConepcλ´´,λ`

qpa,bqq
m //

contbcont

OO

H˚pConepcλ1
´´

,λ1
`

qpa`b,2bqq

cont

OO

Similarly, given λ´ ď λ` ď λ`` we have a canonical continuation
map cont : Conepcλ´,λ`q Ñ ConepCλ´,λ``q which is also compatible in
homology with the bilinear products m, with a similar meaning.

Note moreover that the canonical maps

lim
ÐÝ

λ´Ñ´8

H˚pConepcλ´,λ`qpa,bqq
»

ÝÑ H˚pConepca,λ`qpa,bqq

are isomorphisms for all a ď λ`, and similarly the maps

H˚pConepcλ´,bq
pa,bqq

»
ÝÑ lim

ÝÑ
λ`Ñ8

H˚pConepcλ´,λ`qpa,bqq

are isomorphisms for all λ´ ď b.
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Define3

SHpa,bq
˚ ptKλuq :“ lim

ÝÑ
λ`Ñ8

lim
ÐÝ

λ´Ñ´8

H˚pConepcλ´,λ`qpa,bqq.

We obtain in the first-inverse-then-direct limit bilinear maps m acting
as

SHpa,bq
˚ ptKλuq b SHpa,bq

˚ ptKλuq Ñ SHpa`b,2bq
˚ ptKλuq.

These maps are compatible with the canonical action truncation maps
in Floer theory. We therefore define

SH˚ptKλuq :“ lim
ÝÑ
bÑ8

lim
ÐÝ

aÑ´8

SHpa,bq
˚ ptKλuq,

and obtain a product

SH˚ptKλuq b SH˚ptKλuq Ñ SH˚ptKλuq.

The associativity of this product can be proved directly by incorporating
arity 3 operations in the above discussion. However, associativity also
follows a posteriori from Theorem 4.2 below, according to which we
have a natural isomorphism SH˚ptKλuq » SH˚pBW q compatible with
the products. In view of this, we will refer to SH˚ptKλuq as being a
ring.

Example 3.6 (Symplectic homology of filled Liouville cobordisms).
The previous construction can be generalized in the spirit of [14] in
order to describe product structures on the symplectic homology groups
of filled Liouville cobordisms.

Consider W a Liouville cobordism with a Liouville filling F of its neg-

ative boundary. Denote W 1 “ F Y W and further xW 1 its symplec-

tic completion. The symplectic completion pF naturally embeds into
xW 1 via the Liouville flow and we denote pFR “ F Y r1, Rs ˆ BF for

R ě 1. Given λ` ě 0 we consider the Hamiltonians Kλ` : xW 1 Ñ R

as in the previous example. Given λ´ ď 0 and R ě 1 we denote

Kλ´,R : xW 1 Ñ R the (smoothing of the) Hamiltonian which coincides

on pFR with Kλ´ : pF Ñ R from the previous example, and which is

constant equal to pR ´ 1qλ´ on xW 1 z pFR. See Figure 7.

Given parameters λ´ ď 0 ď λ` and R ě 1 we denote

cλ´,λ`,R : FC˚pKλ´,Rqrns Ñ FC˚pKλ`qrns

the continuation map induced by a monotone homotopy. Arguing as in
the previous example one defines for a finite action window pa, bq the
groups

SHpa,bq
˚ ptKλ´,Ru, tKλ` uq “ lim

ÝÑ
λ`Ñ8

lim
ÐÝ

λ´Ñ´8

lim
ÐÝ

RÑ8

H˚pConepcλ´,λ`,Rqpa,bqq,

3Recall that throughout this paper SH˚ “ SH˚`n denotes the degree shifted
version of symplectic homology.
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Figure 7. Hamiltonians for cobordisms

with product maps

SHpa,bq
˚ ptKλ´,Ru, tKλ` uqb2 Ñ SHpa`b,2bq

˚ ptKλ´,Ru, tKλ`uq.

These maps are compatible with the canonical action truncation maps
in Floer theory, and we define

SH˚ptKλ´,Ru, tKλ`uq :“ lim
ÝÑ
bÑ8

lim
ÐÝ

aÑ´8

SHpa,bq
˚ ptKλ´,Ru, tKλ` uq,

and obtain a product

SH˚ptKλ´,Ru, tKλ`uqbSH˚ptKλ´,Ru, tKλ`uq Ñ SH˚ptKλ´,Ru, tKλ` uq.

Theorem 4.2 can be generalized to an isomorphism of rings between
SH˚ptKλ´,Ru, tKλ`uq and SH˚pW q “ SH˚`npW q, the symplectic ho-
mology of the cobordism W as defined in [14]. As a matter of fact, the
entire Eilenberg-Steenrod framework from [14] could be rephrased and
simplified in the language of cones of the present paper. We will not
prove these statements here.

Example 3.7 (The family of Hamiltonians Hλ,µ, λ, µ P R). Consider

again a Liouville domain W with Liouville completion xW . Given real
parameters λ, µ which do not belong to the action spectrum of BW we

define a Hamiltonian Hλ,µ on xW to be a smoothing of the Hamiltonian
which is constant equal to ´λ{2 on tr ď 1{2u, equal to 0 at r “ 1,
linear of slope λ on t1{2 ď r ď 1u, and linear of slope µ on tr ě 1u.
See Figure 8. We denote Lλ “ Hλ,λ.

We have Hλ1,µ1 ě Hλ,µ for λ1 ď λ and µ1 ě µ. Also, we have

Hλ`λ1,µ`µ1 “ Hλ,µ ` Hλ1,µ1 (19)

for all λ, λ1, µ, µ1. See Figure 8.

As already seen before, the 1-periodic orbits of Hλ,µ fall into two groups:
orbits of type F which are located in a neighborhood of the region tr ď
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Hλ,µ

r

µ1

1

λ1

λ

µ

µλ

λ1

´λ1{2

1{2

´µ{2

´λ{2

Figure 8. The family of Hamiltonians tHλ,µu, λ, µ P R.

1{2u, and orbits of type I which are located in a neighborhood of the
region tr “ 1u. We will distinguish the following two cases:

Case (i): λ ă 0 ă µ. In this situation the orbits of type F form a sub-

complex, cf. [14, §2.3], and we denote

iHλ,µ
: FCF

˚ pHλ,µqrns Ñ FC˚pHλ,µqrns

the inclusion of this subcomplex, with quotient complex FCI
˚pHλ,µqrns.

Case (ii): λ ą 0 ą µ. In this situation the orbits of type I form a sub-

complex, cf. [14, §2.3], and we denote

pHλ,µ
: FC˚pHλ,µqrns Ñ FCF

˚ pHλ,µqrns (20)

the projection onto the quotient complex consisting of orbits of type F ,
with kernel the subcomplex generated by orbits of type I.
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In both cases, we have canonical identifications FCF
˚ pHλ,λq – FC˚pLλq.

Remark 3.8 (Subcomplexes from action vs. geometry). That orbits
of type F in case (i), or of type I in case (ii), form subcomplexes
follows from the geometric Lemmas 2.2 and 2.3 in [14]. Alternatively,
we could argue by Hamiltonian action: choosing the Hamiltonian Hλ,µ

to be constant on r0, δλs rather than r0, 1{2s, with δλ ą 0 sufficiently
small, we could arrange that in case (i) orbits of type F have smaller
action that orbits of type I (and similarly in case (ii)). However, such
a shape of Hamiltonian would not satisfy equality (19) which we need
in the sequel, so we prefer the geometric approach.

We now consider separately the families

H_ “ tHλ,µ : λ ă 0 ă µu

and

H^ “ tHλ,µ : λ ą 0 ą µu,

and define from each of them a certain symplectic homology ring.

Case (i). The family H_ “ tHλ,µ : λ ă 0 ă µu.

Given parameters λ ă 0 ă µ we denote

cpλ,λq,pλ,µq : FC˚pLλqrns Ñ FC˚pHλ,µqrns

the continuation map induced by a monotone homotopy. Note that we
can choose the homotopy to be constant in the region tr ď 1u, and with
this choice the continuation map cpλ,λq,pλ,µq is canonically identified with
the inclusion iHλ,µ

from above. We obtain bilinear maps

m “ m`
pλ,λq,pλ,µq

˘
,

`
p2λ,λ`µq,p2λ,2µq

˘ :

Conepcpλ,λq,pλ,µqqpa,bq b Conepcpλ,λq,pλ,µqqpa,bq Ñ Conepcp2λ,λ`µq,p2λ,2µqqpa`b,2bq. (21)

We claim that, given pa, bq, the above maps canonically stabilize in ho-
mology for µ fixed and λ negative enough. To prove the claim, consider
λ1 ď λ ă 0 ă µ. We then have homotopy commutative diagrams of
continuation maps

FC˚pLλ1
qrns //

��

FC˚pHλ1,µqrns

FC˚pHλ1,λqrns // FC˚pHλ1,µqrns

FC˚pLλqrns

OO

// FC˚pHλ,µqrns

OO
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and

FC˚pH2λ1,λ1`µqrns //

��

FC˚pH2λ1,2µqrns

FC˚pH2λ1,λ`µqrns // FC˚pH2λ1,2µqrns

FC˚pH2λ,λ`µqrns

OO

// FC˚pH2λ,2µqrns

OO

The vertical maps induce maps between the cones of the horizontal
maps, and we obtain homology commutative diagrams for the prod-
uct structures involving the horizontal continuation maps. We denote
symbolically the resulting diagram

m`
pλ1,λ1q,pλ1,µq

˘
,

`
p2λ1,λ1`µq,p2λ1,2µq

˘

��
m`

pλ1,λq,pλ1,µq
˘
,

`
p2λ1,λ`µq,p2λ1,2µq

˘

m`
pλ,λq,pλ,µq

˘
,

`
p2λ,λ`µq,p2λ,2µq

˘.

OO

For pa, bq fixed, µ fixed and λ1 ď λ ! 0, all the above maps are isomor-
phisms. This shows that the products stabilize.

Similarly, we claim that, for pa, bq fixed, diagram (21) stabilizes in
homology for λ ! 0 and b ď µ ď |λ|. The argument is similar, based
on the homotopy commutative diagrams of continuation maps in which
b ď µ ď µ1 ď |λ|:

FC˚pLλqrns // FC˚pHλ,µqrns

��
FC˚pLλqrns // FC˚pHλ,µ1

qrns

and

FC˚pH2λ,λ`µqrns //

��

FC˚pH2λ,2µqrns

��
FC˚pH2λ,λ`µ1

qrns // FC˚pH2λ,2µ1
qrns



MULTIPLICATIVE STRUCTURES ON CONES AND DUALITY 35

These induce homology commutative diagrams for the product struc-
tures involving the horizontal continuation maps, which we denote sym-
bolically

m`
pλ,λq,pλ,µq

˘
,

`
p2λ,λ`µq,p2λ,2µq

˘

��
m`

pλ,λq,pλ,µ1q
˘
,

`
p2λ,λ`µ1q,p2λ,2µ1q

˘

The outcome of this discussion is that the groups defined by

SHpa,bq
˚ pH_q :“ lim

ÝÑ
µÑ8

lim
ÐÝ

λÑ´8

H˚pConepcpλ,λq,pλ,µqq
pa,bqq

inherit a product

m : SHpa,bq
˚ pH_q b SHpa,bq

˚ pH_q Ñ SHpa`b,2bq
˚ pH_q.

We define

SH˚pH_q :“ lim
ÝÑ

bÑ8

lim
ÐÝ

aÑ´8

SHpa,bq
˚ pH_q

and this inherits a bilinear product

m : SH˚pH_q b SH˚pH_q Ñ SH˚pH_q.

Case (ii). The family H^ “ tHλ,µ : λ ą 0 ą µu.

Given parameters λ ą 0 ą µ we denote

cpλ,µq,pλ,λq : FC˚pHλ,µqrns Ñ FC˚pLλqrns

the continuation map induced by a monotone homotopy. We can choose
the homotopy to be constant in the region tr ď 1u, and with this choice
the continuation map cpλ,µq,pλ,λq is canonically identified with the pro-
jection pHλ,µ

from (20). We obtain bilinear maps

m “ m`
pλ,µq,pλ,λq

˘
,

`
p2λ,λ`µq,p2λ,2λq

˘ :

Conepcpλ,µq,pλ,λqqpa,bq b Conepcpλ,µq,pλ,λqqpa,bq Ñ Conepcp2λ,λ`µq,p2λ,2λqqpa`b,2bq. (22)

Given pa, bq, the above maps canonically stabilize in homology for λ

fixed and µ negative enough. To prove this, consider λ ą 0 ą µ ě µ1.
We then have homotopy commutative diagrams of continuation maps

FC˚pHλ,µqrns // FC˚pHλ,λqrns

FC˚pHλ,µ1
qrns //

OO

FC˚pHλ,λqrns
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and

FC˚pH2λ,λ`µqrns // FC˚pH2λ,2λqrns

FC˚pH2λ,λ`µ1
qrns //

OO

FC˚pH2λ,2λqrns

The vertical maps induce maps between the cones of the horizontal
maps, and we obtain homology commutative diagrams for the prod-
uct structures involving the horizontal continuation maps. We denote
symbolically the resulting diagram

m`
pλ,µq,pλ,λq

˘
,

`
p2λ,λ`µq,p2λ,2λq

˘

m`
pλ,µ1q,pλ,λq

˘
,

`
p2λ,λ`µ1q,p2λ,2λq

˘

OO

For pa, bq fixed, λ fixed and 0 " µ ě µ1, these maps are isomorphisms.
This shows that the products stabilize.

Similarly, for pa, bq fixed, diagram (22) stabilizes in homology for 0 " µ

and b ď λ ď |µ|. The argument is similar, based on the homotopy
commutative diagrams of continuation maps for parameters |µ| ě λ1 ě
λ ą 0 ą µ:

FC˚pHλ,µqrns // FC˚pHλ,λqrns

��
FC˚pHλ,µqrns // FC˚pHλ,λ1

qrns

FC˚pHλ1,µqrns

OO

// FC˚pHλ1,λ1
qrns

OO

and

FC˚pH2λ,λ`µqrns //

��

FC˚pH2λ,2λqrns

��
FC˚pH2λ,λ1`µqrns // FC˚pH2λ,2λ1

qrns

FC˚pH2λ1,λ1`µqrns

OO

// FC˚pH2λ1,2λ1
qrns

OO
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The corresponding homology commutative diagram between products on
cones is

m`
pλ,µq,pλ,λq

˘
,

`
p2λ,λ`µq,p2λ,2λq

˘

��
m`

pλ,µq,pλ,λ1q
˘
,

`
p2λ,λ1`µq,p2λ,2λ1q

˘

m`
pλ1,µq,pλ1,λ1q

˘
,

`
p2λ1,λ1`µq,p2λ1,2λ1q

˘.

OO

The outcome of the discussion is that the groups defined by

SHpa,bq
˚ pH^q :“ lim

ÝÑ
λÑ8

lim
ÐÝ

µÑ´8

H˚pConepcpλ,µq,pλ,λqq
pa,bqq

inherit a product

m : SHpa,bq
˚ pH^q b SHpa,bq

˚ pH^q Ñ SHpa`b,2bq
˚ pH^q.

We define

SH˚pH^q :“ lim
ÝÑ

bÑ8

lim
ÐÝ

aÑ´8

SHpa,bq
˚ pH^q

and this inherits a product

m : SH˚pH^q b SH˚pH^q Ñ SH˚pH^q.

As in Example 3.5, the associativity of the products on SH˚pH_q and
SH˚pH^q can be proved directly by incorporating arity 3 operations in
the discussion. However, associativity also follows a posteriori from
Theorems 5.1 and 4.2 below, according to which we have natural iso-
morphisms SH˚pH_q » SH˚pH^q » SH˚pBW q compatible with the
products. In view of this, we will refer to SH˚pH_q and SH˚pH^q as
being rings.

4. Rabinowitz Floer homology and cohomology rings via
cones

In this section we discuss Rabinowitz Floer homology and cohomology
rings from the cone perspective. In §4.1 we give two cone descriptions of
the Rabinowitz Floer homology ring, in §4.2 we use a cone description
to define the continuation product on Rabinowitz Floer cohomology,
and in §4.3 we construct the unit for this product.

4.1. The Rabinowitz Floer homology ring. Let W be a Liouville

domain with symplectic completion xW . Let us recall the definition of
the Rabinowitz Floer homology ring SH˚pBW q from [14] in terms of
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the family of Hamiltonians Hλ,µ, λ ă 0 ă µ from Example 3.7. For a
fixed finite action interval pa, bq we set

SHpa,bq
˚ pBW q “ lim

ÝÑ
µÑ8

lim
ÐÝ

λÑ´8

FHpa,bq
˚ pHλ,µqrns,

and further

SH˚pBW q “ lim
ÝÑ

bÑ8

lim
ÐÝ

aÑ´8

SHpa,bq
˚ pBW q.

The product is defined from the pair-of-pants product

FHpa,bq
˚ pHλ,µqrns b FHpa,bq

˚ pHλ,µqrns Ñ FHpa`b,2bq
˚ pH2λ,2µqrns,

which induces

SHpa,bq
˚ pBW q b SHpa,bq

˚ pBW q Ñ SHpa`b,2bq
˚ pBW q

and further

SH˚pBW q b SH˚pBW q Ñ SH˚pBW q.

The main result of [11] is the following.

Theorem 4.1 (Poincaré duality [11, Theorem 4.8]). Let W be a Liou-
ville domain of dimension 2n.

(i) Rabinowitz Floer cohomology SH˚pBW q carries a canonical unital
degree n ´ 1 product.

(ii) There is a canonical Poincaré duality isomorphism of unital rings

PD : SH˚pBW q » SH1´n´˚pBW q.

From the perspective of [11] the proofs of (i) and (ii) are inextrica-
bly related: the canonical isomorphism PD induces a canonical unital
product on Rabinowitz Floer cohomology. One goal of the present
paper is to disconnect these two sides of Theorem 4.1 and give an
independent proof of Poincaré duality in terms of cones.

We begin by realizing Rabinowitz Floer homology in terms of cones.

Theorem 4.2. We have canonical isomorphisms which respect the
products

SH˚ptKλuq » SH˚pH_q » SH˚pBW q.

Proof. Step 1. We prove the first isomorphism SH˚ptKλuq » SH˚pH_q.

Denote for convenience

H0,λ “ Kλ.
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Consider λ ă 0 ă µ. Then we have a homotopy commutative diagram
of continuation maps

FC˚pKλqrns

c

��

π

„
//
FC˚pLλqrns

c_

��

ι
oo

FC˚pKµqrns
p

„
//
FC˚pHλ,µqrns

i
oo

in which the horizontal maps are chain homotopy equivalences, and
where the maps π and p preserve the filtration, but the maps ι and i

do not. The left vertical map c “ cp0,λq,p0,µq is involved in the definition
of SH˚ptKλuq. The right vertical map c_ “ cpλ,λq,pλ,µq is involved in the
definition of SH˚pH_q. See Figure 9.

Hλ,µ

»

»

λ

Lλ “ Hλ,λ

λ

Kλ “ H0,λ

µ

Kµ “ H0,µ

c_c

λ µ

Figure 9. Isomorphism SH˚ptKλuq » SH˚pH_q: con-
tinuation diagram at the source.

Consider also the homotopy commutative diagram of continuation maps
(Figure 10)

FC˚pKλ`µqrns

c^

��

π

„
//
FC˚pH2λ,λ`µqrns

c_

��

ι
oo

FC˚pK2µqrns
p

„
//
FC˚pH2λ,2µqrns

i
oo

By Proposition 2.13 and the subsequent discussion on homotopy in-
variance for A2-triples, we obtain an isomorphism between product
structures

m`
p0,λq,p0,µq

˘
,

`
p0,λ`µq,p0,2µq

˘ » m`
pλ,λq,pλ,µq

˘
,

`
p2λ,λ`µq,p2λ,2µq

˘. (23)
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2λ

»

»

Lλ “ Hλ,λKλ`µ

2µ

K2µ

c_c

2µ

H2λ,2µ

λ ` µλ ` µ

2λ

Figure 10. Isomorphism SH˚ptKλuq » SH˚pH_q: con-
tinuation diagram at the target.

In order to conclude the proof, we fix an action interval pa, bq with
a ă 0 ă b and consider the parameter values λ “ a, µ “ b in the
previous setup. A stabilization argument as in Example 3.7 shows that
we have isomorphisms

H˚pConepcpa,aq,pa,bqqq b H˚pConepcpa,aq,pa,bqqq
m //

»

��

H˚pConepcp2a,a`bq,p2a,2bqqq

»

��
SH

pa,bq
˚ pH_q b SH

pa,bq
˚ pH_q

m // SHpa`b,2bq
˚ pH_q

and

H˚pConepcp0,aq,p0,bqqq b H˚pConepcp0,aq,p0,bqqq
m //

»

��

H˚pConepcp0,a`bq,p0,2bqqq

»

��
SH

pa,bq
˚ ptKλuq b SH

pa,bq
˚ ptKλuq

m // SHpa`b,2bq
˚ ptKλuq

The top lines in the above two diagrams are isomorphic by (23), and
we infer the isomorphism of the bottom lines. This isomorphism is
compatible with action truncation maps and yields an isomorphism of
rings

SH˚pH_q » SH˚ptKλuq.

Step 2. We prove the second isomorphism SH˚pH_q » SH˚pBW q.
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Consider parameters λ ă 0 ă µ. The group and product structure on
SH˚pH_q are built from the cone of the continuation map

c_ “ cpλ,λq,pλ,µq : FC˚pLλqrns Ñ FC˚pHλ,µqrns.

Recall that the 1-periodic orbits of Hλ,µ fall into two classes, F consist-
ing of orbits located in a neighborhood of tr ď 1{2u and I consisting
of orbits located in a neighborhood of tr “ 1u, giving rise to a sub-
complex FCF

˚ pHλ,µq and to a quotient complex FCI
˚pHλ,µq. We have

a canonical identification FC˚pLλq ” FCF
˚ pHλ,µq and c_r´ns ” iHλ,µ

,

the inclusion of FCF
˚ pHλ,µq into FC˚pHλ,µq.

The projection π : ConepiHλ,µ
q Ñ FCI

˚pHλ,µqrns is a homotopy equiv-
alence (see for example [14, Lemma 4.3]). Moreover, the map π does
not increase the action, and also its homotopy inverse
¨
˝

0
1l

´BI,F

˛
‚r´ns : FCI

˚pHλ,µq Ñ FCF
˚ pHλ,µq‘FCI

˚pHλ,µq‘FCF
˚´1pHλ,µq

does not increase the action. As a consequence, the induced maps

πpa,bq : ConepiHλ,µ
qpa,bq Ñ FCI,pa,bq

˚ pHλ,µqrns

are also homotopy equivalences for any action interval pa, bq.

Let us now fix such a finite action interval pa, bq. For λ ! 0 the action
of the orbits in the group F falls below the action window. Thus the
only elements in ConepiHλ,µ

qpa,bq are of the form pA, 0q, where A P

FC˚pHλ,µqrns, and actually A P FCI
˚pHλ,µqrns. The product of two

such elements in ConepiH2λ,2µ
q is considered modulo action ď a`b, and

as such is also represented for λ ! 0 by elements in FC˚pH2λ,2µqrns,
and actually in FCI

˚pH2λ,2µqrns. We then have

πpa`b,2bqmppA, 0q, pA1, 0qq “ πpa`b,2bqpµpA,A1q, 0q

“ µpA,A1qmod ď a ` b.

Thus π interchanges in the relevant action window the product m on

ConepiHλ,µ
qpa,bq with the pair-of-pants product µ on FH

pa,bq
˚ pHλ,µqrns.

These identifications are compatible with the limits involved in the
definitions of SH˚pH_q and SH˚pBW q. The desired isomorphism of
rings follows. �

4.2. The Rabinowitz Floer cohomology ring. Our original defi-
nition of the secondary product on SH˚pBW q was intimately tied to
the proof of Poincaré duality. We give here an alternative definition
which is independent of that proof. We prove the equivalence of the
two definitions in Proposition 5.6 and its Corollary 5.7.
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We consider the family of Hamiltonians H^ “ tHµ,λ : µ ą 0 ą λu.
Define

ySH˚pBW q :“ lim
ÝÑ
bÑ8

lim
ÐÝ

aÑ´8

lim
ÐÝ

µÑ8, λÑ´8

FHpa,bq
˚ pHµ,λq. (24)

(This is the same as SH˚pBW ˆ I, BW ˆ BIq from [14].)

We consider the continuation map c^ “ cpµ,λq,pµ,µq : FC˚pHµ,λqrns Ñ
FC˚pLµqrns and the associated map σ from the definition of the mul-
tiplication m : Conepcpµ,λq,pµ,µqq

b2 Ñ Conepcp2µ,λ`µq,p2µ,2µqq. Thus

σ : FC˚pHµ,λqrns b FC˚pHµ,λqrns Ñ FC˚`1pH2µ,λ`µqrns.

(We could have taken the target of σ to be also FC˚`1pH2µ,2λqrns, but
the above choice is in line with the previous discussion.)

Recall that the map σ satisfies the relation rB, σs “ mRp1l b c^q ´
mLpc^ b 1lq. The relevant observation now is that, for a fixed finite
action interval pa, bq, the filtered map

σpa,bq : FCpa,bq
˚ pHµ,λqrns b FCpa,bq

˚ pHµ,λqrns Ñ FC
pa`b,2bq
˚`1 pH2µ,λ`µqrns

is actually a chain map as soon as µ ą 2b. Indeed, for µ ą 2b the 1-
periodic orbits of the Hamiltonian Lµ have action larger than b, hence
the continuation map c^ vanishes on FCďb

˚ pHµ,λqrns. We obtain a
degree 1 product

σpa,bq : FHpa,bq
˚ pHµ,λqrnsb2 Ñ FH

pa`b,2bq
˚`1 pH2µ,λ`µqrns

for µ ą 2b. This product stabilizes for pa, bq fixed as λ Ñ ´8 and
µ Ñ 8, and it is compatible with the tautological maps given by
enlarging the action window. As such, it induces a degree 1 product

σ : ySH˚pBW qrns b ySH˚pBW qrns Ñ ySH˚`1pBW qrns.

In view of the canonical isomorphism ySH˚pBW q » SH´˚pBW q, we
infer a degree ´1 product

σ_ : SH˚pBW qr´ns b SH˚pBW qr´ns Ñ SH˚pBW qr´ns.

It is useful to recast σ and σ_ as degree 0 products. Our convention is
to use the shift σ “ ´σr´1,´1;´1s, i.e. σ “ σr1, 1; 1s, which defines
a degree 0 product

σ : ySH˚pBW qrn ´ 1s b ySH˚pBW qrn ´ 1s Ñ ySH˚`1pBW qrn ´ 1s.

Dually, we have a degree 0 product in cohomology

σ_ : SH˚pBW qr1 ´ ns b SH˚pBW qr1 ´ ns Ñ SH˚pBW qr1 ´ ns.

This is our alternative definition of the product on SH˚pBW qr1 ´ ns.

Definition 4.3. We call the products σ and σ_ the continuation sec-

ondary products on ySH˚pBW qrn ´ 1s and SH˚pBW qr1 ´ ns. In order
to emphasize the role played by continuation maps, we denote them by
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σc and σc in the Introduction and in §6. Their unshifted versions are
then denoted σc and σc.

4.3. The unit in cohomology. The ring pySH˚pBW qrn´1s, σq is uni-
tal and we give in this section a description of the unit. As before, we
consider the family of Hamiltonians H^ “ tHµ,λ : µ ą 0 ą λu. The
starting point of the construction is to consider the family of cycles

Uµ,λ P FC0pHµ,λqrn ´ 1s

defined as follows.

Consider a Morse perturbation of Hµ,λ in the region tr ď 1{2u with a
single minimum denoted 1µ. (We can assume w.l.o.g. that the pertur-
bation is independent of λ and also independent of µ up to translating
the values of the function. Also, for further use, we can assume w.l.o.g.
that the actions of all the constant orbits are slightly larger than µ{2.)
The Conley-Zehnder degree of 1µ is equal to n, and we define

Uµ,λ “ Bp1µq,

where B is the Floer differential for the complex FC˚pHµ,λqrn ´ 1s.
The reason for denoting the minimum 1µ is that it is a Floer cycle in
FC˚pLµqrns which defines the unit-up-to-continuation for FH˚pLµqrns.
Note also that Uµ,λ P FCI

˚pHµ,λq, the subcomplex generated by orbits
located in a neighborhood of tr “ 1u. Moreover, since Uµ,λ is the
differential of an element of action (slightly larger than) µ{2, we have

Uµ,λ P FC
ďµ

2

0 pHµ,λqrn ´ 1s.

Given a ă µ{2 we denote

Ua
µ,λ P FC

pa,µ
2

q

0 pHµ,λqrn ´ 1s

the truncation of the cycle Uµ,λ in action ą a.

The following Lemma is a variant of [14, Lemma 7.4].

Lemma 4.4. The group ySH˚pBW q defined by (24) coincides with

lim
ÝÑ
bÑ8

lim
ÐÝ

aÑ´8

lim
ÐÝ

λÑ´8

FHpa,bq
˚ pH2b,λq.

�

Lemma 4.5. The collection of classes rUa
2b,λs P FH

pa,bq
0 pH2b,λqrn ´ 1s,

a ă 0 ă b, λ ă 0 defines a class

U “ lim
ÝÑ

bÑ8

lim
ÐÝ

aÑ´8

lim
ÐÝ

λÑ´8

rUa
2b,λs P ySH0pBW qrn ´ 1s.

Proof. The key observation is the following. Let µ1 ě µ ą 0 ą
λ ě λ1 and consider the shifted continuation map c “ cpµ1,λ1q,pµ,λq :
FC˚pHµ1,λ1qrn ´ 1s Ñ FC˚pHµ,λqrn ´ 1s. Then

c˚rUµ1,λ1s “ rUµ,λs. (25)
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To prove this we choose the homotopy fromHµ1,λ1 toHµ,λ to be constant
up to translation in a small neighborhood of the region tr ď 1{2u that
contains the constant 1-periodic orbits and the nonconstant 1-periodic
orbits of Hµ1,λ1 that correspond to Reeb orbits with period ď µ. Then

cp1µ1q “ 1µ ` β

with β P FCI
˚pHµ,λqrn ´ 1s, and we obtain

cpUµ1,λ1q “ cBp1µ1q “ Bcp1µ1q “ Bp1µ ` βq “ Uµ,λ ` Bβ.

Equation (25) has filtered variants. For a finite action window pa, bq and
a choice of parameters 0 ą λ ě λ1, the continuation map c “ cp2b,λ1q,p2b,λq

satisfies c˚rUa
2b,λ1s “ rUa

2b,λs, so that we can define the limit

U pa,bq “ lim
ÐÝ

λÑ´8

rUa
2b,λs P lim

ÐÝ
λÑ´8

FH
pa,bq
0 pH2b,λqrn´1s “ ySHpa,bq

˚ pBW qrn´1s.

The rest of the proof is formal. The classes rU pa,bqs are compatible with
the morphisms given by enlarging the action windows, hence the class
U is well-defined. �

Proposition 4.6. The class U from Lemma 4.5 is the unit of the ring

pySH˚pBW qrn ´ 1s, σq.

Proof. Recall the fundamental relation rB, σs “ mRp1lbc^q´mLpc^b1lq,
which translates into 4 rB, σs “ mRp1lbc^q`mLpc^ b1lq in the notation
of Lemma 2.10, where c^ “ c^r´1; 0s. Let us evaluate both sides at
12b at the first entry and denote

ζ “ σp12b b 1lq : FC˚pH2b,λqrn ´ 1s Ñ FC˚pH4b,λ`2bqrn ´ 1s.

This is a linear map of degree 1, the shifted degree of 12b. The relation
for rB, σs becomes

rB, ζs ` σpU2b,λ b 1lq “ mRp12b b c^q ` mLpc^p12bq b 1lq. (26)

This is a relation between degree 0 maps defined on FC˚pH2b,λqrn´ 1s
and taking values in FC˚pH4b,λ`2bqrn ´ 1s.

The filtered version of relation (26) is

rB, ζs ` σpUa
2b,λ b 1lq “ mRp12b b c^q ` mLpc^p12bq b 1lq

and holds at the level of filtered maps acting as

FCpa,bq
˚ pH2b,λqrn ´ 1s Ñ FCpa`b,2bq

˚ pH4b,λ`2bqrn ´ 1s.

The term mRp12b b c^q vanishes because the map c^ acts as c^ :

FC
pa,bq
˚ pH2b,λqrn ´ 1s Ñ FC

pa,bq
˚ pL2bqrn ´ 1s and the latter complex

is zero because all the orbits of L2b have action larger than b. On the
other hand c^p12bq “ 12b and the second term on the right hand side
is therefore equal to mLp12b b 1lq. This is precisely the continuation

4Note the sign change.
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map FC
pa,bq
˚ pH2b,λqrn ´ 1s Ñ FC

pa`b,2bq
˚ pH4b,λ`2bqrn ´ 1s induced by a

homotopy which is non-increasing on tr ě 1u and non-decreasing with
gap equal to b on tr ď 1u. The outcome of the discussion is that
σpUa

2b,λ b 1lq induces in homology the continuation map

c˚ : FHpa,bq
˚ pH2b,λqrn ´ 1s Ñ FHpa`b,2bq

˚ pH4b,λ`2bqrn ´ 1s.

As a consequence of Lemma 4.4, the limit

lim
ÝÑ

bÑ8

lim
ÐÝ

aÑ´8

lim
ÐÝ

λÑ´8

´
c˚ : FHpa,bq

˚ pH2b,λqrn´1s Ñ FHpa`b,2bq
˚ pH4b,λ`2bqrn´1s

¯

is equal to IdySH˚pBW qrn´1s. However, the previous discussion shows that

the above limit is also equal to σpU b1lq. This shows that U is the unit

for the ring pySH˚pBW qrn ´ 1s, σq. �

5. Poincaré duality

In this section we prove the Cone Duality Theorem 5.1, derive from it
the cone version of Poincaré duality (Theorem 5.2), and show that it
coincides with the Poincaré Duality Theorem 4.1.

5.1. Cone duality theorem.

Theorem 5.1 (Cone duality). There is a canonical isomorphism which
respects the products

SH˚pH_q » SH˚pH^q.

Proof. The proof is essentially the same as that of Step 1 in Theo-
rem 4.2.

Consider λ ă 0 ă µ. Then we have a homotopy commutative diagram
of continuation maps

FC˚pHµ,λqrns

c^

��

π

„
//
FC˚pLλqrns

c_

��

ι
oo

FC˚pLµqrns
p

„
//
FC˚pHλ,µqrns

i
oo

in which the horizontal maps are chain homotopy equivalences. (The
maps π and p preserve the filtration, but the maps ι and i do not.
However, in the proof below we will use the total complexes for suitable
choices of the parameters, which will palliate to this ailment.) The left
vertical map c^ “ cpµ,λq,pµ,µq is involved in the definition of SH˚pH^q.
The right vertical map c_ “ cpλ,λq,pλ,µq is involved in the definition of
SH˚pH_q. See Figure 11.
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c^

λ µ

Hλ,µ

»

»

λ

Lλ

λ

Hµ,λ

µ

µ

Lµ

c_

Figure 11. Duality theorem via cones: continuation di-
agram at the source.

Consider also the homotopy commutative diagram of continuation maps
(Figure 12)

FC˚pH2µ,λ`µqrns

c^

��

π

„
//
FC˚pH2λ,λ`µqrns

c_

��

ι
oo

FC˚pL2µqrns
p

„
//
FC˚pH2λ,2µqrns

i
oo

λ ` µ

»

»

2µ

L2µ

c_c^

2λ

λ ` µ

H2λ,λ`µ

2µ

H2µ,λ`µ

2µ

H2λ,2µ

2λ

Figure 12. Duality theorem via cones: continuation di-
agram at the target.
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By Proposition 2.13 and the subsequent discussion on homotopy in-
variance for A2-triples, we obtain an isomorphism between product
structures

m`
pµ,λq,pµ,µq

˘
,

`
p2µ,λ`µq,p2µ,2µq

˘ » m`
pλ,λq,pλ,µq

˘
,

`
p2λ,λ`µq,p2λ,2µq

˘. (27)

In order to conclude the proof, we fix an action interval pa, bq with
a ă 0 ă b and consider the parameter values λ “ a, µ “ b in the
previous setup. A stabilization argument as in Example 3.7 shows that
we have isomorphisms

H˚pConepcpa,aq,pa,bqq b H˚pConepcpa,aq,pa,bqq
m //

»

��

H˚pConepcp2a,a`bq,p2a,2bqq

»

��
SH

pa,bq
˚ pH_q b SH

pa,bq
˚ pH_q

m // SHpa`b,2bq
˚ pH_q

and

H˚pConepcpb,aq,pb,bqq b H˚pConepcpb,aq,pb,bqq
m //

»

��

H˚pConepcp2b,a`bq,p2b,2bqq

»

��
SH

pa,bq
˚ pH^q b SH

pa,bq
˚ pH^q

m // SHpa`b,2bq
˚ pH^q

The top lines in the above two diagrams are isomorphic by (27), and
we infer the isomorphism of the bottom lines. This isomorphism is
compatible with action truncation maps and yields an isomorphism of
rings

SH˚pH_q » SH˚pH^q.

�

5.2. Poincaré duality theorem. Now we can state the cone version

of Poincaré duality. Recall that ySH˚pBW qrn´1s is canonically isomor-
phic to SH1´n´˚pBW q.

Theorem 5.2 (Poincaré duality redux). We have a canonical isomor-
phism of rings

pSH˚pBW q, µq » pySH˚pBW qrn ´ 1s, σq.

Remark 5.3. The unitality of the ring pySH˚pBW qrn ´ 1s, σq also fol-
lows from the above isomorphism. However, this point of view is round-
about and the direct description of the unit given in §4.3 is important
for applications.

Another proof of the existence of the unit comes—in view of the iso-

morphism SH˚pH^q » ySH˚pBW qrn ´ 1s below—from a discussion of
unitality for products on cones. More specifically, given an A2-triple
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pM, c,Aq and assuming that the algebra A is unital, one can write
down conditions under which the ring pConepcq, mq is unital with unit
equal to p1, 0q, 1 P A. More generally, this is related to the notion of
homological unitality for A8-algebras.

Theorem 5.2 is an immediate consequence of Theorems 5.1 and 4.2
together with

Theorem 5.4. We have a canonical isomorphism of rings

SH˚pH^q » ySH˚pBW qrn ´ 1s.

Proof. The proof follows exactly the same lines as those of Theorem 4.2.

Given a Hamiltonian Hµ,λ as in the definition of ySH˚pBW q, its 1-
periodic orbits are of two types: type F located in a neighborhood
of the region tr ď 1{2u or type I located in a neighborhood of the re-
gion tr “ 1u. Accordingly, the free module FC˚pHµ,λq splits as a direct
sum FCI

˚pHµ,λq ‘ FCF
˚ pHµ,λq, and FCI

˚pHµ,λq is a subcomplex, while
FCF

˚ pHµ,λq is a quotient complex. There is a canonical identification
FCF

˚ pHµ,λq ” FC˚pLµq.

Denote c^ “ cpµ,λq,pµ,µq : FC˚pHµ,λqrns Ñ FC˚pLµqrns the continu-
ation map. We choose the homotopy from Hµ,λ to be constant in
the region tr ď 3{4u, so that c^ coincides with the projection pHµ,λ

:

FC˚pHµ,λqrns Ñ FCF
˚ pHµ,λqrns. It is then a general fact that the in-

clusion ι : FCI
˚pHµ,λqrn ´ 1s “ ker pHµ,λ

r´1s ãÑ ConeppHµ,λ
q is a chain

homotopy equivalence which preserves the action filtration, and so does
its explicit homotopy inverse (see [14, Lemma 4.3] and Example 2.19).
We therefore obtain chain homotopy equivalences

ιpa,bq : FCI,pa,bq
˚ pHµ,λqrn ´ 1s

„
ÝÑ ConeppHµ,λ

qpa,bq “ Conepc^qpa,bq

for all action intervals pa, bq.

Let us now fix such a finite action interval pa, bq. For µ " 0 the
action of the orbits in the group F rises above the action window.
Thus the only elements in ConeppHµ,λ

qpa,bq are of the form p0, x̄q, where

x̄ P FC˚pHµ,λqrn ´ 1s, and actually x̄ P FCI
˚pHµ,λqrn ´ 1s. The prod-

uct of two such elements in ConeppH2µ,λ`µ
q is therefore also repre-

sented for µ " 0 by elements in FC˚pH2µ,λ`µqrn ´ 1s, and actually
in FCI

˚pH2µ,λ`µqrn ´ 1s. We thus have

ιpa`b,2bqσpx̄, x̄1q “ p0, σpx̄, x̄1qq “ mpp0, x̄q, p0, x̄1qq.

Thus ι interchanges in the relevant action window the product σ on

FH
pa,bq
˚ pHλ,µqrn ´ 1s with the product m on ConeppHµ,λ

qpa,bq.

These identifications and products are compatible with the limits in-

volved in the definitions of SH˚pH^q and ySH˚pBW qrn ´ 1s, so the
desired isomorphism of rings follows. This concludes the proof of The-
orem 5.4, and therefore of Theorem 5.2. �
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The products µ and σ preserve the action filtration at chain level. As a
consequence, the homology groups truncated in negative values of the

action SHă0
˚ pBW q and ySHă0

˚ pBW qrn´1s inherit products still denoted
µ and σ. We refer to [14] for the formal definitions of SHă0

˚ pBW q and

ySHă0

˚ pBW q. The following statement is a direct consequence of the fact
that the isomorphism from Theorem 5.2 preserves the action filtration.

Corollary 5.5. We have a canonical isomorphism of rings

pSHă0
˚ pBW q, µq » pySHă0

˚ pBW qrn ´ 1s, σq.

�

5.3. The two Poincaré duality theorems are the same. Recall

that ySH˚pBW q “ SH˚pBW ˆI, BW ˆBIq » SH´˚pBW q. We proved in
the Poincaré Duality Theorem 4.1(i) that SH˚pBW q carries a product

of degree n´1, or alternatively that ySH˚pBW qrn´1s carries a product
of degree 0. Part (ii) of the Poincaré Duality Theorem 4.1 can then be

rephrased as an isomorphism of rings SH˚pBW q » ySH˚pBW qrn ´ 1s.
On the other hand, we constructed in §4.2 another degree 0 product

on ySH˚pBW qrn´1s and the Poincaré Duality Theorem Redux 5.2 also

provides an isomorphism of rings SH˚pBW q » ySH˚pBW qrn ´ 1s.

Proposition 5.6. The isomorphisms SH˚pBW q » ySH˚pBW qrn ´ 1s
from Theorems 4.1 and 5.2 coincide.

Corollary 5.7. The two products on ySH˚pBW qrn´1s, defined in The-
orem 4.1 and in §4.2, coincide. �

Proof of Proposition 5.6. Consider parameters µ ą 0 ą λ and denote
by λ´ a real number slightly smaller but very close to λ. Denote
Hλ´,pµ,λq a Hamiltonian obtained from Lλ by replacing the linear part
of slope λ on the interval r1{2, 1s by a “dent” of slopes pλ´, µq, i.e. a
continuous function which is linear of slope λ´ on r1{2, r0s and linear
of slope µ on rr0, 1s for a suitable value r0 “ r0pλ

´, µq. See Figure 13.

λ´

µ
λ

Hλ´,pµ,λq

Lλ

1
1

2

r0

Figure 13. The Hamiltonian Hλ´,pµ,λq.
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We use the graphical notation

Hλ´,pµ,λq “
λ´

µ λ
, Hλ´,µ “

λ´

µ , Lλ “
λ
.

We also denote the corresponding Floer complexes FC˚p
λ´

µ λ
q etc.

The module FC˚p
λ´

µ λ
qrns splits as a direct sum FC˚p µ λ

qrns ‘

FC˚p
λ´

qrns ‘ FC˚p λ´

µ qrns and the differential is upper triangular

with respect to this splitting. Here the factors denote respectively the
orbits appearing in the concave part, in the neighborhood of tr ď 1{2u,
and in the convex part. We denote the diagonal terms of the differential
B , B , B and the mixed terms B , etc. We use the same subscripts
for the components of maps acting between complexes that are split in
this way.

We prove the statement of the Proposition in an arbitrary finite action
window pa, bq. The statement in the limit a Ñ ´8, b Ñ 8 follows by
arguments similar to the ones encountered before. Also as before, it is
enough to discuss the case of a single set of parameters µ " 0 " λ. We
first claim that the isomorphism from the Duality Theorem Redux 5.2
is described at finite energy as the composition of the chain homotopy
equivalences

FC˚p µ λ
qrn ´ 1s » Cone

´
proj : FC˚p

λ´

µ λ
qrns Ñ FC˚p

λ´

µ qrns
¯

» Cone
´
incl : FC˚p

λ
qrns Ñ FC˚p

λ

µ qrns
¯

» FC˚p λ

µ qrns.

Indeed, although the shapes of Hamiltonians used in that proof were
slightly different, their slopes at infinity were the same as the ones of
the Hamiltonians used above, so that the claim follows by homotopy in-
variance of the cone construction. On the other hand, the isomorphism
from the Poincaré Duality Theorem 4.1 was induced by the p , q-

component of the differential of the Floer complex FC˚p qrns.
We are thus left to show that the above composition of chain homo-
topy equivalences induces in the action window pa, bq the same map in
homology, denoted

Φpa,bq : FCpa,bq
˚ p λ

µ qrns Ñ FC
pa,bq
˚´1 p µ λ

qrns.

We write

Cone
´
incl :FC˚p

λ
qrns Ñ FC˚p

λ

µ qrns
¯

“ FC˚p qrns ‘ FC˚p qrn ´ 1s

“ FC˚p qrns ‘ FC˚p qrns ‘ FC˚´1p qrn ´ 1s,
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Cone
´
proj :FC˚p

λ´

µ λ
qrns Ñ FC˚p

λ´

µ qrns
¯

“ FC˚p qrns ‘ FC˚p qrn ´ 1s

“ FC˚p qrns ‘ FC˚p qrn ´ 1s ‘ FC˚p qrn ´ 1s.

The above composition is explicitly expressed in matrix form as follows
(for the middle map we only write a 2 ˆ 2 matrix for readability):

Φ “
`

B , 1l 0
˘ˆ 1l H ,

0 c ,

˙¨
˝

0
1l

´B ,

˛
‚.

Here H , denotes a homotopy between two possible continuation

maps from to as in the discussion following Definition 2.8,
and c , is a continuation map induced by a small homotopy. The
map H , decreases the action, and the map c , distorts the action
by an arbitrarily small amount.

Given an element A P FC˚p λ

µ q its image under Φ is

ΦpAq “ B , A ´ B , H , B , A ´ c , B , A.

The point now is that we work in a finite action window pa, bq. For
a choice of the parameter λ such that λ{2 ă a, all the generators

of the complex FC˚p
λ

q have action ă a. Since c , distorts the
action by an arbitrarily small amount and all the other maps involved
in the expression of ΦpAq decrease the action, it follows that, given

A P FC
pa,bq
˚ p

µ

λ
q, the truncation of ΦpAq in action pa, bq is

Φpa,bqpAq “ Bpa,bq
, A.

This proves that the isomorphisms from Theorems 5.2 and 4.1 coincide
in the finite action range pa, bq. As already indicated, the statement in
the limit a Ñ ´8, b Ñ 8 follows by standard arguments which were
already seen before. �

6. The pair-of-pants product via varying weights

We restrict in this section to the homology in negative action range

ySHă0

˚ pBW q – SHă0
˚ pW, BW q – SH´˚

ą0 pW q.

We introduce in §6.1 the varying weights secondary product σw on
SHă0

˚ pW, BW qrn ´ 1s. We show in §6.2 that it coincides with the
Poincaré duality product σPD and with the continuation product σc.
The product σw is not used elsewhere in the paper but, unlike the
Poincaré duality product σPD and the continuation product σc, it did
appear previously in the literature. Its construction goes back to Sei-
del and was further explored in [17], see also [2]. The purpose of this
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section is to clarify its relationship to the constructions of the present
paper.

6.1. Definition of the varying weights secondary product. Let
Σ be the genus zero Riemann surface with three punctures, two of
them labeled as positive z0`, z

1
` and the third one labeled as negative

z´, endowed with cylindrical ends r0,8qˆS1 at the positive punctures
and p´8, 0s ˆ S1 at the negative puncture. Denote ps, tq, t P S1 the
induced cylindrical coordinates at each of the punctures. Consider a
smooth family of 1-forms βǫ P Ω1pΣq, ǫ P p0, 1q satisfying the following
conditions:

‚ (nonnegative) dβǫ ě 0;
‚ (weights) βǫ “ dt near each of the punctures;
‚ (interpolation) we have βǫ “ ǫdt on r0, Rpǫqs ˆ S1 in the cylin-
drical end near z0`, and βǫ “ p1 ´ ǫqdt on r0, Rp1 ´ ǫqs ˆ S1 in the
cylindrical end near z1`, for some smooth function R : p0, 1q Ñ Rą0.
In other words, the family tβǫu interpolates between a 1-form which
varies a lot near z0` and very little near z1`, and a 1-form which varies
a lot near z1` and very little near z0`;

‚ (neck stretching) we have Rpǫq Ñ `8 as ǫ Ñ 0.

We can assume without loss of generality that for ǫ close to 0 we have
βǫ “ fǫpsqdt in the cylindrical end at the positive puncture z0`, with
f 1
ǫ ě 0, fǫ “ 1 near `8, and fǫ “ ǫ on r0, Rpǫqs, and similarly for ǫ

close to 1 on the end at z1`.

dt

0

Rpǫq

1

ǫdt

dt dtdt

p1 ´ ǫqdt Rp1 ´ ǫq

dtdt

ǫ P p0, 1q

Figure 14. Interpolating family of 1-forms with varying weights.

Let H : xW Ñ R be a concave smoothing localized near BW of a Hamil-
tonian which is zero on W and linear of negative slope on r1,8q ˆ BW .
The Hamiltonian H further includes a small time-dependent perturba-
tion localized near BW , so that all 1-periodic orbits are nondegenerate.
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Assume the absolute value of the slope is not equal to the period of a
closed Reeb orbit. Denote PpHq the set of 1-periodic orbits of H . The
elements of PpHq are contained in a compact set close to W .

Remark 6.1. The Hamiltonian H above has the standard shape used
in the definition of symplectic homology SH˚pW, BW q. However, the
construction can accommodate more general Hamiltonians using meth-
ods from [14, Lemmas 2.2 and 2.3].

Let J “ pJz
ǫ q, z P Σ, ǫ P p0, 1q be a generic family of compatible

almost complex structures, independent of ǫ and s near the punctures,
cylindrical and independent of ǫ and z in the symplectization r1,8q ˆ
BW . For x0, x1, y P PpHq denote

M
1px0, x1; yq :“

 
pǫ, uq

ˇ̌
ǫ P p0, 1q, u : Σ Ñ xW,

pdu ´ XH b βǫq
0,1 “ 0,

lim
sÑ`8

z“ps,tqÑzi`

upzq “ xiptq, i “ 0, 1,

lim
sÑ´8

z“ps,tqÑz´

upzq “ yptq
(
.

In the symplectization r1,8q ˆ BW we have H ď 0 and therefore
dpHβq ď 0, so that elements of the above moduli space are contained
in a compact set. The dimension of the moduli space is

dim M
1px0, x1; yq “ CZpx0q ` CZpx1q ´ CZpyq ´ n ` 1.

When it has dimension zero the moduli space M1
dim“0px0, x1; yq is com-

pact. When it has dimension 1 the moduli space M1
dim“1px0, x1; yq

admits a natural compactification into a manifold with boundary

BM1
dim“1px

0, x1; yq “
ž

CZpx1q“CZpx0q´1

Mpx0; x1q ˆ M
1
dim“0px

1, x1; yq

>
ž

CZpx1q“CZpx1q´1

Mpx1; x1q ˆ M
1
dim“0px

0, x1; yq

>
ž

CZpy1q“CZpyq`1

M
1
dim“0px0, x1; y1q ˆ Mpy1; yq

> M
1
ǫ“1px

0, x1; yq > M
1
ǫ“0px

0, x1; yq.

Here M1
ǫ“1px

0, x1; yq and M1
ǫ“0px

0, x1; yq denote the fibers of the first
projection M1

dim“1px0, x1; yq Ñ p0, 1q, pǫ, uq ÞÑ ǫ near 1, respectively
near 0. (By a standard gluing argument the projection is a trivial
fibration with finite fiber near the endpoints of the interval p0, 1q.)

Consider the degree 1 operation

σw : FC˚pHqrns b FC˚pHqrns Ñ FC˚pHqrns
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defined on generators by

σwpx0 b x1q “
ÿ

CZpyq“CZpx0q`CZpx1q´n`1

#M
1
dim“0px0, x1; yqy,

where #M1
dim“0px0, x1; yq denotes the count of elements in the 0-dimen-

sional moduli spaceM1
dim“0px

0, x1; yq with signs determined by a choice
of coherent orientations. Consider also the degree 0 operations

σi
w : FC˚pHqrns b FC˚pHqrns Ñ FC˚pHqrns, i “ 0, 1

defined on generators by

σi
wpx0 b x1q “

ÿ

CZpyq“CZpx0q`CZpx1q´n

#M
1
ǫ“ipx

0, x1; yqy,

where #M1
ǫ“ipx

0, x1; yq denotes the count of elements in the 0-dimen-
sional moduli space M1

ǫ“ipx
0, x1; yq with signs determined by a choice

of coherent orientations.

The formula for BM1
dim“1px0, x1; yq translates into the algebraic relation

BFσw ` σwpBF b id ` id b BF q “ σ1
w ´ σ0

w. (28)

We now claim that

σ0
w|FCă0

˚ pHqrnsbFC˚pHqrns “ 0, σ1
w|FC˚pHqrnsbFCă0

˚ pHqrns “ 0.
(29)

To prove the claim for σ0
w, note that this map can be expressed as a com-

position µ˝pcb idq, where µ : FC˚pǫHqrnsbFC˚pHqrns Ñ FC˚pHqrns
is a pair-of-pants product, and c : FC˚pHqrns Ñ FC˚pǫHqrns is a con-
tinuation map. The action decreases along continuation maps, hence
cpFCă0

˚ pHqrnsq Ă FCă0
˚ pǫHqrns. At the same time this last group van-

ishes because ǫH has no nontrivial 1-periodic orbits of negative action
for ǫ small enough. The argument for σ1

w is similar.

It follows that σw restricts to a degree 1 chain map

σw : FCă0
˚ pHqrns b FCă0

˚ pHqrns Ñ FCă0
˚ pHqrns. (30)

(This map lands in FCă0
˚ pHqrns for action reasons.) Passing to the

limit we obtain a degree 1 product

σw : SHă0
˚ pW, BW qrns b SHă0

˚ pW, BW qrns Ñ SHă0
˚ pW, BW qrns.

Finally we apply a shift as in (12), namely σw “ ´σwr´1,´1;´1s, in
order to obtain a degree 0 product

σw : SHă0
˚ pW, BW qrn ´ 1sb2 Ñ SHă0

˚ pW, BW qrn ´ 1s.

Explicitly σwpx̄, x̄1q “ ´p´1q|x̄|σpx, x1q, where x, x1 P SHă0
˚ pW, BW qrns

and x̄, x̄1 P SHă0
˚ pW, BW qrn ´ 1s denote their shifted images. We call

σw the varying weights degree ´n ` 1 secondary product on
SHă0

˚ pW, BW q.

Equivalently, in view of the canonical isomorphism SHă0
˚ pW, BW q »

SH´˚
ą0 pW q from [14], the above construction defines a degree n ´ 1
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secondary product on SH˚
ą0pW q, denoted σw. At the level of moduli

spaces this is described by exchanging the roles of the positive and
negative punctures, and reversing the sign of the Hamiltonian. Thus
one considers curves with 2 negative punctures with varying weights
treated as cohomological inputs and 1 positive puncture treated as a
cohomological output. In this framework, the relevant Floer equation

involves Hamiltonians on xW with positive slope on r1,8q ˆ BW .

In yet another equivalent formulation, the above construction defines a
degree ´n`1 secondary coproduct on SHą0

˚ pW q, denoted λw. The
moduli spaces are the same as for the secondary product on SH˚

ą0pW q
(2 negative punctures with varying weights and 1 positive puncture),
except that the positive puncture is treated as a homological input and
the negative punctures are treated as homological outputs.

6.2. Secondary products: varying weights and continuation
maps. In view of Corollary 5.5 and Proposition 5.6, the negative ac-

tion homology group SHă0
˚ pW, BW qrn´1s – ySHă0

˚ pBW qrn´1s carries
two other products of degree 0 which coincide :

‚ the Poincaré duality product σPD, induced from the primary
product on Rabinowitz Floer homology via the Poincaré duality
isomorphism from Theorem 4.1 restricted in negative action.

‚ the continuation product σc “ σ constructed in §4.2 restricted
in negative action.

Proposition 6.2. The continuation product σc and the varying weights
product σw coincide on SHă0

˚ pW, BW qrn ´ 1s.

Proof. Going back to the definition of the unshifted varying weights
product σw, we recall that the vanishing of the left boundary term
in (29), i.e.

σ0
w|FCă0

˚ pHqrns b FC˚pHqrns “ 0,

was ensured by the fact that σ0
w could be expressed as a composition

µ˝pcbidq, where µ : FC˚pǫHqrnsbFC˚pHqrns Ñ FC˚pHqrns is a pair-
of-pants product, and c : FC˚pHqrns Ñ FC˚pǫHqrns is a continuation
map. Since the action decreases along continuation maps, we have
cpFCă0

˚ pHqrnsq Ă FCă0
˚ pǫHqrns, and the last group vanishes because

ǫH has no nontrivial 1-periodic orbits of negative action for ǫ small
enough. Similarly, the boundary term σ1

w can be expressed as µ˝pidbcq.

In the case of the unshifted continuation product σ, the boundary
terms are expressed as µ ˝ pc1 b idq, respectively µ ˝ pid b c1q, where
c1 : FC˚pHqrns Ñ FC˚pKνqrns is the continuation map towards a
Hamiltonian Kν which vanishes on W and has positive slope ν on
r1,8q ˆ BW . The continuation map c1 factors as FC˚pHqrns

c
ÝÑ

FC˚pǫHqrns Ñ FC˚pKνqrns and, when restricted to negative action,
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vanishes for all positive values of ν. As such, the 1-parameter family
of Floer problems with source a genus 0 Riemann surface with two
positive punctures and one negative puncture which defines σ can be
chosen as follows: on a first interval we interpolate near the first posi-
tive puncture from the continuation map c1 to the continuation map c.
On a second interval we follow the 1-parameter family which defines σw.
And on a third interval we interpolate near the second positive punc-
ture from the continuation map c to the continuation map c1. When
restricted to negative action, the first and third parametrizing intervals
bring no contribution, so that σc “ σw for this choice of defining data.

Finally, the continuation product σc and the varying weights product
σw are defined by the same shift ´r´1,´1;´1s from σc and respectively
σw, so that they coincide as well. �

7. A`
2 -structures

The goal of this section is to define the notion of an A`
2 -structure on a

chain complex A and show how it induces an A2-triple pA_, c,Aq. The
R-module A need not be free or of finite rank. Of particular interest
for the applications to string topology in [12] is the case where A is
free over R, but possibly of infinite rank. We also discuss morphisms
of A`

2 -algebras.

7.1. A`
2 -algebras. Let pA, Bq be a dg R-module. We denote by τ :

A b A Ñ A b A the twist a b b ÞÑ p´1q|a|¨|b|b b a.

Definition 7.1. An A`
2 -structure on pA, Bq consists of the following

maps:

‚ the copairing c0 : R Ñ A b A, of degree 0;
‚ the secondary copairing Q0 : R Ñ A b A, of degree 1;
‚ the product µ : A b A Ñ A, of degree 0;
‚ the secondary coproduct λ : A Ñ A b A, of degree 1;
‚ the cubic vector B : R Ñ A b A b A, of degree 2.

These maps are subject to the following conditions:

(1) c0 is a cycle.
(2) c0 is symmetric up to a homotopy given by Q0, i.e.

τc0 ´ c0 “ rB, Q0s.

(3) µ is a chain map.
(4) λ satisfies the relation

rB, λs “ pµ b 1qp1 b c0q ´ p1 b µqpτc0 b 1q.

(5) B satisfies the relation

BB “ pλc0,τc0 b 1qτc0 ` p312qpλτc0,c0 b 1qτc0 ` p231qpλτc0,τc0 b 1qc0.
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Figure 15. Conventions for inputs and outputs of µ, λ, B

Here for the last relation we denote λ “ λc0,c0 and define

λτc0,τc0 “ λc0,c0 ` pµ b 1qp1 b Q0q ´ p1 b µqpτQ0 b 1q,

λc0,τc0 “ λc0,c0 ` pµ b 1qp1 b Q0q,

λτc0,c0 “ λc0,c0 ´ p1 b µqpτQ0 b 1q.

By p312q we denote the permutation on Ab3 given by the product of
transpositions τ23τ12, by p231q the permutation given by the product
of transpositions τ12τ23 “ pτ23τ12q2, and by p123q the identity.5 The
relation satisfied by B can be rewritten

BB “
ÿ

σ cyclic

σ
`
pλaσ,bσ b 1qcσ

˘
,

where the meaning of “cyclic” is that σ P tp123q, p231q, p312qu and we
denote paσ, bσ, cσq “ σpc0, τc0, τc0q.

Conventions. We depict the operation µ as a trivalent tree with
two inputs and one output, where the inputs are read in clockwise
order with respect to the output. We depict the operation λ as a
trivalent tree with one input and two outputs, where the outputs are
read in counterclockwise order with respect to the input. We depict
the operation B with outputs ordered cyclically counterclockwise. This
is consistent with the operadic and co-operadic conventions, in which
inputs or outputs are both read horizontally from left to right. See
Figure 15. We depict the inputs and outputs as lying on a circle.

The relations involving c0, Q0, λ, B are depicted in Fig. 16, 17 and 18.

In these figures and in the sequel we use the following

Pictorial convention: copairings are represented as Ø, and we al-
ways feed their first component as input for some other operations.

The notation λ “ λc0,c0 is motivated by Figure 17, in which the copair-
ing c0 appears at both ends of the parametrizing interval. The relations

5Note that this does not correspond to the cycle notation of permutations.
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Figure 16. The homotopy Q0 between c0 and τc0.

Figure 17. Two equivalent descriptions of λ

satisfied by the other elements λa,b, a, b “ c0 or τc0 are depicted in
Fig. 19.

Remark 7.2. The copairing c0 gives rise to the map

c :“ pev b 1qp1 b c0q : A_ Ñ A.

That c0 is a cycle implies that c is a chain map. The fact that c

originates in c0 P A b A implies that c_ takes values in A – ιpAq Ă
A__, where ι : A Ñ A__ is the canonical map from §B.2. Moreover,
under this identification c_ can be expressed in terms of τc0 as

c_ “ pev b 1qp1 b τc0q.

The condition τc0 ´ c0 “ rB, Q0s is therefore equivalent to

c_ ´ c “ rB, Qs,

with

Q “ pev b 1qp1 b Q0q.

If ι is an isomorphism, then c0 can be recovered from c by the formula
c0 “ p1 b cqev_.

It is useful to spell out the unital variant of the notion of A`
2 -structure.

Definition 7.3. Let pA, Bq be a dg R-module. A unital A`
2 -structure

on pA, Bq consists of the following maps:
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Figure 18. The cubic vector B

‚ the copairing c0 : R Ñ A b A, of degree 0;
‚ the product µ : A b A Ñ A, of degree 0;
‚ the unit η : R Ñ A, of degree 0;
‚ the secondary coproduct λ : A Ñ A b A, of degree 1;
‚ the cubic vector B : R Ñ A b A b A, of degree 2.
‚ the left- and right unit homotopies Left : A Ñ A and Right : A Ñ
A, of degree 1.

These maps are subject to the following conditions:

(1) c0 and η are cycles.
(2) µ is a chain map.
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Figure 19. The operations λa,b, a, b “ c0 or τc0

(3) η is a two-sided homotopy unit for µ, i.e.

µpη b 1q “ 1 ` rB,Lefts, µp1 b ηq “ 1 ` rB,Rights.

(4) λ satisfies the relation

rB, λs “ pµ b 1qp1 b c0q ´ p1 b µqpτc0 b 1q.
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(5) B satisfies the relation (in the notation of Definition 7.1)

BB “
ÿ

σ cyclic

σ
`
pλaσ,bσ b 1qcσ

˘
.

Remark 7.4. A unital A`
2 -structure is also an A`

2 -structure in the
sense of Definition 7.1. To see this, apply relation (4) to η in order to
obtain

τc0 ´ c0 “ rB, Q0s,

where we define the secondary copairing Q0 as

Q0 “ ´λη ` pLeft b 1qc0 ´ p1 b Rightqτc0 : R Ñ A b A.

A further simplification arises if there exists a dg submodule A0 Ă A

which is stable under µ, such that η P A0, c0 P A0 b A0, and η is a
strict two-sided unit for µ on A0 (more specifically, if the homotopies
Left and Right vanish on A0). In that case it is enough to set

Q0 “ ´λη.

Remark 7.5. The terminology “unital A`
2 -structure” is motivated as

follows. We prove in Proposition 7.6 that an A`
2 -structure on A de-

termines canonically an A2-triple pA_, c,Aq, and further a product
structure on Conepcq. For a unital A`

2 -structure the product on the
cone will be unital.

7.2. From A`
2 -algebras to A2-triples.

Proposition 7.6. An A`
2 -structure on pA, Bq canonically gives rise to

an A2-triple pA_, c,Aq.

Proof. The A2-triple operations have two inputs and one output. Ac-
cording to our conventions, the inputs are to be read clockwise with
respect to the output. Some of these operations are obtained by dual-
izing λ and B, and it is therefore important to reorder the outputs of
λ and B. We therefore define

λ “ ´τλ, B “ ´p1 b τqB.

Thus λ and B satisfy the relations depicted in Figures 20 and 21. More
generally, we denote

λa,b “ ´τλb,a, a, b “ c0 or τc0.

In particular λ “ λc0,c0. The relations satisfied by the other elements

λa,b, a, b “ c0 or τc0 are depicted in Fig. 22.

The maps mL, mR, τL, τR, σ, β defining the A2-triple are given by ex-
plicit formulas in terms of µ, λ, B as follows.

1. The degree 0 chain maps mL and mR are defined in terms of
µ by Figure 23, in which we depict the inputs and outputs on a circle



62 KAI CIELIEBAK AND ALEXANDRU OANCEA

Figure 20. The map λ

as above. See also Figure 43. According to §B.3, the formulas which
express the content of Figure 23 read

evpmL b 1q “ evp1 b µqτ23τ12, evpmR b 1q “ evp1 b µq,

which in terms of elements means

xb,mLpa, fqy “ xµpb, aq, fy, xmRpf, aq, by “ xf, µpa, bqy.

2. The degree 1 map σ : A_ b A_ Ñ A_ is determined by λτc0,τc0

and is defined by Figure 24, to be compared with Figure 22. The
relation rB, σs “ mRp1 b cq ´ mLpc b 1q is readily seen on the figure.
The formula which expresses the content of Figure 24 reads

evpσ b 1q “ pev b evqp1 b τ b 1qp1 b 1 b λτc0,τc0q

for maps A_ b A_ b A Ñ R, or in terms of elements

xσpf, gq, ay “ p´1q|f |`|g|xf b g, λτc0,τc0paqy

“ p´1qp|f |`1qp|g|`1qxg b f, λτc0,τc0paqy.

Equivalently, σ equals the compositionA_bA_ Ñ pAbAq_
λ

_
τc0,τc0ÝÑ A_,

see §B.2.3 for the first canonical map. Thus “σ is the dual of λτc0,τc0”.

3. The degree 1 map τL : A_ bA Ñ A is defined by Figure 25. The
relation rB, τLs “ µpc b 1q ´ cmR is again readily visible on the figure.
The explicit formula is

τL “ pev b 1qp1 b τqp1 b λc0,τc0q,

which means in terms of elements

τLpf, aq “ p´1q|f |xf b 1, τλc0,τc0paqy “ p´1q|f |`1xf b 1, λτc0,c0paqy.

4. The degree 1 map τR : AbA_ Ñ A is defined by Figure 26 (note
the minus sign!) and satisfies the relation rB, τRs “ µp1 b cq ´ cmL.
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Figure 21. The map B

The explicit formula is

τR “ ´p1 b evqpτ b 1qpλτc0,c0 b 1q,

which means in terms of elements

τRpa, fq “ ´xτλτc0,c0paq, 1 b fy “ xλc0,τc0paq, 1 b fy.

5. The degree 2 map β : A_ b A_ Ñ A is defined by Figure 27
(note the minus sign!) and satisfies the relation rB, βs “ τRpc b 1q ´
cσ ´ τLp1 b cq. The explicit formula is

β “ ´p1 b ev ˝ τ b ev ˝ τqp1 b 1 b τ b 1qpB b 1 b 1q,
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Figure 22. The operations λa,b, a, b “ c0 or τc0

which in terms of elements means

βpf, gq “ ´x1 b f b g, By.

This concludes the proof of Proposition 7.6. �

Remark 7.7. We chose the terminology A`
2 -structure because such a

structure comprises a product µ, and additional operations needed to
induce a product on the mapping cone. Note that the operations are
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Figure 23. The maps mL and mR

Figure 24. The map σ

Figure 25. The map τL

parametrized by simplices of dimension 0 (the product µ with 1 out-
put), of dimension 1 (the secondary coproduct λ with 2 outputs), and
of dimension 2 (the cubic vector B with 3 outputs). The construction
of the full A8 structure on the cone makes use of the full enrichment
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Figure 26. The map ´τR

Figure 27. The map ´β
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Figure 28. Ψ intertwines c0 and c1
0, and also Q0 and Q1

0

by simplices of arbitrary dimension. More generally, one can consider
(noncompact) TQFT-type structures with operations parametrized by
topological types of 2-dimensional surfaces with boundary and enriched
in simplices: whenever a given surface has k outputs, we attach to it
a pk ´ 1q-dimensional simplex. This perspective is related to the as-
socoipahedra of Poirier and Tradler [34], and is currently studied by
Mazuir [31]. The paper [17] is also relevant for this line of thought.

7.3. Morphisms of A`
2 -algebras and correspondences. Consider

an A`
2 -algebra

A “ pA, c0, Q0, µ, λ, Bq.

Recall that c0 gives rise to the map c “ pev b 1qp1 b c0q : A
_ Ñ A.

Definition 7.8. We call A special if

B “ 0

and

pλc0,τc0 b 1qτc0 “ pλτc0,c0 b 1qτc0 “ pλτc0,τc0 b 1qc0 “ 0.

For a special A`
2 -algebra we will drop B “ 0 from the notation. Con-

sider now two special A`
2 -algebras pA, c0, Q0, µ, λq and pA1, c1

0, Q
1
0, µ

1, λ1q.

Definition 7.9. A special morphism of special A`
2 -algebras

pΨ,Γ,Θq : A Ñ A
1

consists of the following maps (see Figures 28, 29 and 30):

(i) a degree 0 chain map Ψ : A Ñ A1 satisfying

c1
0 “ pΨ b Ψqc0 and Q1

0 “ pΨ b ΨqQ0;

(ii) a degree 1 bilinear map Γ : A b A Ñ A1 such that

rB,Γs “ µ1pΨ b Ψq ´ Ψµ;

(iii) a degree 2 bilinear map Θ : A Ñ A1 b A1 satisfying

Θc “ 0

and

rB,Θs “ λ1Ψ ´ pΨ b Ψqλ ´ pΓ b Ψqp1 b c0q ` pΨ b Γqpτc0 b 1q.
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Figure 29. The map Γ

Figure 30. The map Θ
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Note that the first part of property (i) of a special morphism implies

ΨcΨ_ “ c1. (31)

Remark 7.10. For a general morphism of A`
2 -algebras, the two rela-

tions forming condition (i) only need to hold up to chain homotopy and
the other conditions have to be adjusted accordingly. Also, the con-
dition Θc “ 0 would not be needed at all if the setup were upgraded
to include arity 3 operations. We restrict our discussion to special
A2-algebras and special morphisms because these suffice for our appli-
cations in Rabinowitz Floer homology.

Recall that by Proposition 7.6 the A`
2 -algebra A canonically gives rise

to an A2-triple pA_, c,Aq, and similarly for A1. Note that a chain map
Ψ : A Ñ A1 induces a chain map Ψ_ : A1_ Ñ A_.

Proposition 7.11. A special morphism of special A`
2 -algebras pΨ,Γ,Θq :

A Ñ A1 canonically induces an A2-structure on the triple pA1_, cΨ_,Aq,
as well as special morphisms of A2-triples

pA1_, cΨ_,Aq
pΨ_,1q

ww♥♥♥
♥♥
♥♥
♥♥
♥♥
♥

p1,Ψq

((◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

pA_, c,Aq pA1_, c1,A1q.

(32)

Combining this proposition with Proposition 2.17 yields the following
immediate corollary.

Corollary 7.12. Let pΨ,Γ,Θq : A Ñ A1 be a special morphism of
special A`

2 -algebras. Then there is a correspondence of chain maps

ConepcΨ_q
ConepΨ_,1q

xx♣♣♣
♣♣
♣♣
♣♣
♣♣ Conep1,Ψq

''❖❖
❖❖

❖❖
❖❖

❖❖
❖

Conepcq Conepc1q .

Their induced maps on homology are ring maps and fit into the com-
muting diagram with exact sequences

¨ ¨ ¨H´˚pAq
c˚ // H˚pAq // H˚pConepcqq // H1´˚pAq ¨ ¨ ¨

¨ ¨ ¨H´˚pA1q
c˚Ψ

˚

//

Ψ˚

OO

H˚pAq //

Ψ˚

��

H˚pConepcΨ_qq //

OO

��

H1´˚pA1q ¨ ¨ ¨

Ψ˚

OO

¨ ¨ ¨H´˚pA1q
c1

˚ // H˚pA1q // H˚pConepc1qq // H1´˚pA1q ¨ ¨ ¨
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Figure 31. Definition of rmL and rmR

If Ψ induces an isomorphism on homology, then so do the maps between
the cones and the commuting diagram simplifies to

¨ ¨ ¨H´˚pAq
c˚ // H˚pAq //

Ψ˚–

��

H˚pConepcqq //

–

��

H1´˚pAq ¨ ¨ ¨

¨ ¨ ¨H´˚pA1q
c1

˚ //

Ψ˚–

OO

H˚pA1q // H˚pConepc1qq // H1´˚pA1q ¨ ¨ ¨

Ψ˚–

OO

where the second and third vertical maps are ring isomorphisms. �

Proof of Proposition 7.11. The A2-structure prµ, rmL, rmR, rτL, rτR, rσ, rβq on
the triple pA1_, cΨ_,Aq is defined as follows. We set rµ :“ µ. The maps
rmL and rmR are defined in Figure 31. The maps rτL, rτR and rσ are
defined in Figures 32, 33 and 34, in which we denote

λa,b “ ´τλb,a, a, b “ c0 or τc0,

λ
1

a,b “ ´τλ1
b,a, a, b “ c1

0 or τc1
0.

Note in particular that rmL “ m1
LpΨb1q, rmR “ m1

Rp1bΨq and σ̃ “ σ1.

The map rβ is defined in Figure 36. It uses the auxiliary map

Θτc0,τc0 “ ´τΘτc0,τc0,

with Θτc0,τc0 defined by Figure 35.

All the relations of an A2-triple are clear from the figures. Note that,
although we have B “ 0 and Θc “ 0, the map β̃ may be nonzero. This
finishes the construction of the A2-structure on pA1_, cΨ_,Aq.

We remark that Figure 36 shows that the conditions B “ 0 and Θc “
0 are not necessary in order to construct the A2-triple structure on
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Figure 32. Definition of rσ

Figure 33. Definition of rτL



72 KAI CIELIEBAK AND ALEXANDRU OANCEA

Figure 34. Definition of rτR

Figure 35. Definition of Θτc0,τc0

pA1_, cΨ_,Aq. However, we will use them below in defining the special
morphisms of A2-triples p1,Ψq and pΨ_, 1q.



MULTIPLICATIVE STRUCTURES ON CONES AND DUALITY 73

Figure 36. Definition of ´rβ

Consider now the right hand map in (32) corresponding to the com-
muting diagram

A1_ cΨ_
//

1
��

A

Ψ
��

A1_ c1
// A1.

The maps defining the A2-triple pA1_, cΨ_,Aq are decorated with r,
while the maps defining the A2-triple pA1_, c1,A1q are decorated with 1.

We need to define maps ppµ, pmL, pmR, pτL, pτR, pσ, pβq making p1,Ψq a special
morphism of A2-triples. So we need to verify conditions (1)–(5) in
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Figure 37. Definition of Θc0,τc0

Definition 2.14 with f “ Ψ, g “ 1, and pA1_, cΨ_,Aq in place of
pM, c,Aq.

Condition (1) holds in view of ΨcΨ_ “ c1 from (31). Since rB,Γs “
µ1pΨ b Ψq ´ Ψµ, the first equation in condition (2) holds with pµ :“ Γ.
By definition of rmL, rmR, rσ we have

m1
LpΨ b 1q “ 1 ˝ rmL, m1

Rp1 b Ψq “ 1 ˝ rmR,

σ1p1 b 1q “ 1 ˝ rσ.
Thus the remaining two equations in condition (2) and the first equa-
tion in condition (3) are satisfied with pmL “ pmR “ pσ :“ 0.

To define the other maps we introduce Θc0,τc0 and Θτc0,c0 defined in
Figures 37 and 38, and we denote

Θa,b “ ´τΘb,a, a, b “ c0 or τc0.

The definition of pτL is shown in Figure 39. We read off that it satisfies
the second equation in condition (3), which with f “ Ψ, g “ 1, pµ “ Γ
and pmL “ 0 takes the form

rB, pτLs “ τ 1
Lp1 b Ψq ´ ΨrτL ´ ΓpcΨ_ b 1q.
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Figure 38. Definition of Θτc0,c0

The definition of pτR such that it satisfies the last equation in condition
(3) is analogous. It is shown in Figure 40.

With pβ :“ 0 and f “ Ψ, g “ 1 and β 1 “ pσ “ 0, condition (4) becomes

´Ψrβ ´ pτRpcΨ_ b 1q ` pτLp1 b cΨ_q “ 0.

The condition Θc “ 0 in Definition 7.9 implies that this expression
reduces to a sum involving the side terms in the definition of Θτc0,τc0

from Figure 35, each appearing twice and with opposite signs. The
above expression therefore vanishes. This finishes the construction of
the right hand special A2-morphism in (32).

Consider now the left hand map in (32) corresponding to the commut-
ing diagram

A1_ cΨ_
//

Ψ_

��

A

1
��

A_ c // A.
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Figure 39. Definition of pτL

The maps defining the A2-triple pA1_, cΨ_,Aq are decorated with r,
while the maps defining the A2-triple pA_, c,Aq are not decorated

with anything. We need to define maps ppµ, pmL, pmR, pτL, pτR, pσ, pβq making
pΨ_, 1q a special morphism of A2-triples. So we need to verify condi-
tions (1)–(4) in Definition 2.14 with f “ 1, g “ Ψ_, pA1_, cΨ_,Aq in
place of pM, c,Aq, and pA_, c,Aq in place of pM1, c1,A1q.

Condition (1) holds trivially. Since µp1b1q “ µ “ rµ, the first equation
in condition (2) holds with pµ :“ 0. The definition of ´pmL is shown in
Figure 41. We read off that it satisfies the second equation in condition
(2). The definition of pmR such that it satisfies the third equation in
condition (2) is analogous.

The definition of ´pσ is shown in Figure 42 and uses the map Θτc0,τc0

from Figure 35. We read off that it satisfies condition (3) which takes
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Figure 40. Definition of ´pτR

Figure 41. The map ´pmL
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Figure 42. The map ´pσ

the form

rB, pσs “ σpΨ_ b Ψ_q ´ Ψ_rσ ´ pmRp1 b cΨ_q ` pmLpcΨ_ b 1q.

With pτL :“ 0 and f “ 1, g “ Ψ_ and pµ “ 0, the second equation in
condition (3) becomes

rτL “ τLpΨ_ b 1q ` cpmR.

This equality is seen by inspection of Figure 33 for rτL, where the left
half of the homotopy corresponds to cpmR and the right half corresponds
to τLpΨ_ b 1q. Similarly, the last equation in condition (3) holds with
pτR :“ 0.

With pβ :“ 0 and f “ 1, g “ Ψ_ and β “ pτL “ pτR “ 0, condition (5)
becomes

´rβ ` cpσ “ 0,

which holds due to the condition Θc “ 0 in Definition 7.9. Indeed, this
expression reduces to a sum involving as before the side terms in the
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definition of Θτc0,τc0 from Figure 35, each appearing twice and with
opposite signs. The expression therefore vanishes.

This finishes the construction of the left hand special A2-morphism
in (32), and thus the proof of Proposition 7.11. �

Remark 7.13. The proof of Proposition 7.11 does not use the condi-
tion λc “ 0 in the definition of a special A`

2 -algebra. We have chosen
to include it in the definition in order to put it on an equal footing
with the condition Θc “ 0 in the definition of a special morphism, and
because it is satisfied in our main examples in [12].

7.4. Duality for A`
2 -algebras. Let pA, B, c0, Q0, µ, λ, Bq be an A`

2 -
algebra and assume that A is free and finite dimensional over R in
each degree. Then we have a canonical isomorphism A – A__ under
which the maps c, Q : A_ Ñ A induced by c0, Q0 satisfy c_ ´c “ rB, Qs
and canonical chain isomorphisms

Conepcq – Conepc_q – Conepcq_r´1s.

Here the first chain isomorphism isˆ
1 ´Q

0 1

˙
:

ˆ
A ‘ A

_r´1s,

ˆ
B c

0 ´B_

˙˙
Ñ

ˆ
A ‘ A

_r´1s,

ˆ
B c_

0 ´B_

˙˙

and the second one simply interchanges to two direct summands,ˆ
A ‘ A

_r´1s,

ˆ
B c_

0 ´B_

˙˙
–

ˆ
A

_r´1s ‘ A,

ˆ
´B_ 0
c_ B

˙˙
.

Let us denote by µ the chain level product on Conepcq arising from
Proposition 7.6 and Proposition 2.11. It is algebraically dual to a chain
level coproduct τµ_ on Conepcq_r´1s, which under the chain isomor-
phisms above corresponds to a coproduct λ on Conepcq. This coprod-
uct is in turn algebraically dual to a product λ_τ on Conepcq_r´1s,
which under the chain isomorphisms above corresponds to the original
product µ on Conepcq. On the level of homology we thus obtain the
following algebraic counterpart of our main Poincaré duality theorem:

Theorem 7.14 (Duality for A`
2 -algebras). Let pA, B, c0, Q0, µ, λ, Bq

be an A`
2 -algebra which is free and finite dimensional over R in each

degree. Then Conepcq carries a canonical product µ and coproduct λ
and we have a canonical isomorphism´

H˚

`
Conepcq

˘
,µ,λ

¯
–
´
H˚´1

`
Conepcq_

˘
,λ_τ, τµ_

¯

intertwining the products and coproducts. �

By construction, the components of the product µ as well as the co-
product λ on the cone are obtained by dualizing the operations µ, λ
of the A`

2 -structure at some of their inputs and outputs, together with
contributions from the secondary copairing Q0.
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Appendix A. Multilinear shifts

We describe in this section our convention for shifts of multilinear maps.
It is inspired by Lefèvre-Hasegawa’s discussion of shifts in the context
of A8-algebras [26, §1.2.2]. In this section the notation | ¨ | stands for
degree (of an element, resp. of a linear map).

Given a chain complex pV, Bq, recall that V rks is the chain complex in
which we shift the degree down by k P Z and multiply the differential
by p´1qk, i.e.

V rksi “ Vi`k, Brks “ p´1qkB.

We denote
sk : V Ñ V rks

the map induced by IdV . This is a chain isomorphism of degree ´k,
and we denote its inverse, which is a chain isomorphism of degree k,
by

ωk : V rks Ñ V.

Definition A.1. Let V1, . . . , Vℓ and V be chain complexes and let

α : V1 b ¨ ¨ ¨ b Vℓ Ñ V

be a multilinear map. Given k1, . . . , kℓ, k P Z we denote

k “ pk1, . . . , kℓ; kq

and define the k-shift of α to be

αrks : V1rk1s b ¨ ¨ ¨ b Vℓrkℓs Ñ V rks,

αrks “ skαωk1 b ¨ ¨ ¨ b ωkℓ.

In an equivalent formulation, the shift αrks is defined from the com-
mutative diagram

Â
i Virkis

αrks
//

biωki

��

V rks

Â
i Vi α

// V

sk

OO

Yet equivalently, given elements xi P Vi and x P V , denote xi “ skixi P
V rkis and x “ skx P V rks. We then have

αrkspx̄1, . . . , x̄ℓq “ p´1q|x1|pk2`¨¨¨`kℓq`¨¨¨`|xℓ´1|kℓαpx1, . . . , xℓq.

The degrees of α and αrks are related by

|αrks| “ |α| ` k1 ` ¨ ¨ ¨ ` kℓ ´ k,

and we have “
B, αrks

‰
“ p´1qkrB, αsrks.

In particular, if α is a chain map then so is αrks.
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Example A.2. Let tµd
Au, d ě 1 be an A8-algebra structure on A, with

µd
A : Ar´1sbd Ñ Ar´1s of degree ´1 and rµ, µs “ 0. Denoting

B “ µ1
Ar1s “ ´µ1

A

the shifted differential on A “ Ar´1sr1s, the shifted product

µ “ µ2
Ar1, 1; 1s : A b A Ñ A

is a chain map with respect to B and is defined on elements as

µpa, bq “ p´1q|a|µ2
Apa, bq.

This is exactly our convention (3). Moreover, formula (4) shows that
the associator for µ is precisely given by f “ µ3

Ar1, 1, 1; 1s, i.e.

µpµpa1, a2q, a3q ´ µpa1, µpa2, a3qq “ rB, f spa1, a2, a3q.

Example A.3. If f : V Ñ V is a graded map, then f rksi “ fi`k. In
particular f rksr´ks “ f (the shift is “involutive” on linear maps).

Remark A.4 (Non-involutivity). Given k “ pk1, . . . , kℓ; kq, denote
´k “ p´k1, . . . ,´kℓ;´kq. Then

αrksr´ks “ p´1qk1pk2`¨¨¨`kℓq`¨¨¨`kℓ´1kℓα.

Therefore the shift on multilinear maps is only involutive up to sign.

Remark A.5 (Non-commutativity). Given k “ pk1, . . . , kℓ; kq and t “
pt1, . . . , tℓ; tq, define k ` t “ pk1 ` t1, . . . , kℓ ` tℓ; k ` ℓq. Then

p´1qt1pk2`¨¨¨`kℓq`¨¨¨`tℓ´1kℓαrksrts

“ αrk ` ts “ p´1qk1pt2`¨¨¨`tℓq`¨¨¨`kℓ´1tℓαrtsrks,

and thus αrksrts differs in general from αrtsrks, and from αrk ` ts, by
a sign. (This is also the reason for non-involutivity.)

Remark A.6 (Associativity). Let us view the shift rks as acting from
the right on the space of multilinear maps LpV1 b ¨ ¨ ¨ b Vℓ, V q. Then

prksrtsqrss “ rksprtsrssq.

Indeed, a straightforward computation shows that both terms are equal
to

p´1qs1pt2`¨¨¨`tℓq`...sℓ´1tℓp´1qs1pk2`¨¨¨`kℓq`...sℓ´1kℓ

ˆ p´1qt1pk2`¨¨¨`kℓq`¨¨¨`tℓ´1kℓrk ` t ` ss.
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Appendix B. DG conventions

In this section we discuss the Koszul sign rule, we deduce the differential
graded (dg) sign conventions from the single rule for the differential on
a tensor product, and discuss a useful pictorial representation.

Let R be a commutative ring. The notions of left R-module, right
R-module and symmetric R-bimodule coincide, so that we use the sim-
plified terminology “R-module”. We denote generically the differential
of a dg R-module by B, and will further specify the notation only if
necessary. We work in homological grading convention: the differential
B has degree ´1. The degree of elements or maps is denoted | ¨ |.

B.1. Fundamental conventions. Let A, B, C, D be dg R-modules.
The fundamental conventions of dg linear algebra are the following.

1. Differential on the tensor product. Let A b B be the R-
module whose degree k part is ‘i`j“kAibBj . One defines a differential
by the formula6

Bpa b bq “ Ba b b ` p´1q|a|a b Bb. (33)

In view of the Koszul sign rule below, this can also be rewritten

BAbB “ BA b IdB ` IdA bBB.

2. Differential on the Hom module. We denote HompA,Bq the
R-module whose degree r part consists of R-module maps f : A˚ Ñ
B˚`r. The differential is defined to be

Bf “ B ˝ f ´ p´1q|f |f ˝ B.

We also write Bf “ rB, f s.

2bis. Differential on the dual module. A particular case of
the previous construction is that of the dual R-module

A
_ “ HompA, Rq.

Here the base ring R is understood to be supported in degree 0. As
a consequence A_ is graded as A_

˚ “ HompA´˚, Rq (note the minus
sign!), and is endowed with the differential

Bf “ ´p´1q|f |f ˝ B.

3. The evaluation map is a chain map. The evaluation map is

ev : HompA,Bq b A Ñ B, f b a ÞÑ fpaq.

We also write fpaq “ xf, ay. This has degree 0 and is a chain map
under conventions 1 and 2.

6This formula has geometric roots. From a purely algebraic perspective, it is the
essentially unique possible choice in order to achieve the relation B2 “ 0. The other
possibility would be Bpa b bq “ p´1q|b|Ba b b ` a b Bb, which is equivalent to (33)

under the twist isomorphism A b B
»

ÝÑ B b A, a b b ÞÑ p´1q|a|¨|b|b b a.
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Lemma B.1. Assuming any of the conventions 1, 2 or 3, the two other
conventions are equivalent. (For the implication 2 ` 3 ñ 1 we assume
that BAbB has the form a b b ÞÑ ˘Ba b b ˘ a b Bb.) �

3bis. The evaluation pairing is a chain map. The evaluation
pairing is

ev : A_ b A Ñ R, f b a ÞÑ fpaq “: xf, ay.

This has degree 0 and is a chain map under conventions 1 and 2bis.

Lemma B.2. Assuming convention 1, conventions 2bis and 3bis are
equivalent. �

4. The twist isomorphism is a chain map. The twist isomorphism
is the dg R-module isomorphism

τ : A b B
»

ÝÑ B b A, a b b ÞÑ p´1q|a|¨|b|b b a. (34)

Under convention 1, a chain isomorphism A b B
»

ÝÑ B b A of the
form a b b ÞÑ εp|a|, |b|qb b a with εp|a|, |b|q P t˘1u is necessarily of the
form (34) up to global sign change. As an example, while ab b ÞÑ bba

is an R-module isomorphism, it is not in general a chain map.

5. The Koszul sign rule. There is a chain map

T : HompA,Bq b HompC,Dq Ñ HompA b C,B b Dq

defined by the commutative diagram

HompA,Bq b HompC,Dq b A b C
1bτ23b1 //

Tb1b1

��

HompA,Bq b A b HompC,Dq b C

evbev

��
HompA b C,B b Dq b A b C

ev

// B b D.

(35)

Here τ23 is the twist isomorphism applied on the 2nd and 3rd factors of
the tensor product. With a slight abuse of notation we denote T pf bgq
by f b g. Then the previous commutative diagram amounts to the
familiar Koszul sign rule

xf b g, a b cy “ p´1q|g|¨|a|fpaq b gpcq.

We thus see that the Koszul sign rule is a consequence of convention 4
for the twist map, which in turn is a consequence of convention 1 for
the differential on the tensor product.

The bottom line of the discussion is the following:

‚ conventions 4 and 5 are consequences of convention 1.
‚ assuming any one of the conventions 1, 2 or 3, the two other ones
are equivalent.
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At this point it is instructive to quote Loday-Vallette [29, 1.5.3]: “[The
Koszul convention] permits us to avoid complicated signs in the formu-
las provided one works with the maps (or functions) without evaluating
them on the elements. When all the involved operations are of degree
0, the formulas in the nongraded case apply mutatis mutandis to the
graded case.” The point of the previous discussion was to deduce the
convention for the twist isomorphism and for the Koszul sign rule from
convention 1, which is ultimately of geometric nature.

B.2. Consequences of the fundamental conventions. From this
point on we will be able to avoid all signs by working exclusively with
functional equalities, or commutative diagrams.

1. We have a canonical chain map

T : B b C
_ ÝÑ HompC,Bq

obtained by specializing (35) with A “ D “ R. This is equivalently
defined by the commutative diagram

B b C_ b C
1bev //

Tb1
��

B

HompC,Bq b C
ev

// B.

If C is free and finite dimensional over R in each degree the map T is
a chain isomorphism. We have T pb b fqpcq “ b ¨ fpcq.

There is of course also a canonical chain map

rT : C_ b B ÝÑ HompC,Bq

obtained by suitably specializing (35). This is alternatively defined by
the commutative diagram

C_ b B b C
τ12b1 //

rTb1
��

B b C_ b C
1bev // B

HompC,Bq b C
ev

// B.

Thus rT “ T ˝ τ and rT pf b bqpcq “ p´1q|b|¨|f |b ¨ fpcq. As expected,
there is no sign involved when expressing the operation in terms of a
commutative diagram, i.e. in functional terms. The sign appears only
when explicitly evaluating on elements.

2. We have canonical adjunction isomorphisms

F : HompA,HompB, Cqq
»

ÐÑ HompA b B, Cq : G.

The map F acts by F pfqpa b bq “ fpaqpbq. Its inverse G “ F´1 acts
by Gpgqpaqpbq “ gpa b bq. The fact that the adjunction isomorphisms
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are chain maps ties together conventions 1 and 2 in the same manner
as does convention 3.

3. There is a canonical map

A
_ b B

_ Ñ pA b Bq_

realized by the composition F rT : A_bB_ Ñ HompA,B_q
»
Ñ pAbBq_.

Also, there is a canonical map

B
_ b A

_ Ñ pA b Bq_

obtained from the previous one by pre-composing with τ , and thus
realized by FT : B_ b A_ Ñ HompA,B_q

»
Ñ pA b Bq_. These maps

are isomorphisms if either A or B is free and finite dimensional over R.

4. For sequel use, it is useful to consider the coevaluation map

ev_ : R Ñ pA_ b Aq_,

dual to the evaluation map, and also the canonical map

ι : A Ñ A
__

defined by the commutative diagram

A b A_ τ //

ιb1

��

A_ b A
ev // R

A__ b A_
ev

// R.

Explicitly, the map ι acts as a ÞÑ
`
f ÞÑ p´1q|a|¨|f |xf, ay

˘
. (Formally we

have xa, fy “ p´1q|a|¨|f |xf, ay.)

If A is free and finite dimensional over R then the map ι : A Ñ A__

is an isomorphism, the modules A_ and A__ are also free and finite
dimensional over R, and ev_ can be interpreted as a chain map7

ev_ : R Ñ A b A
_.

We then have pev b 1qp1 b ev_q “ IdA_ and p1 b evqpev_ b 1q “ IdA.

B.3. The language of trees. We depict operations involving multiple
inputs and outputs in A and A_ by trees whose half-edges carry two
different labels: 1. input or output, signified by an ingoing or outgoing
arrow, and 2. A or A_. In our graphical representation, the input
edges labeled A or A_ are directed “upwards”, resp. “downwards”,
and the output edges labeled A or A_ are directed “downwards”, resp.
“upwards”. The composition of operations is represented by stacking
trees one on top of the other.

For example, the graphical representation of the maps ev and ev_ in
the case where ι is an isomorphism is

7In this situation, given a basis e1, . . . , eℓ of A and denoting e˚
1
, . . . , e˚

ℓ the dual
basis of A_, we have ev_p1q “

ř
i ei b e˚

i . This is the so-called Casimir element.
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A_

A

ev

A

A_

ev_

The relations pev b 1qp1 b ev_q “ IdA_ and p1 b evqpev_ b 1q “ IdA

become graphically

A_

A

ev

A_

ev_

“

A_

A_

IdA_

A

A_

ev_

A

ev

“

A

A

IdA

The graphical representation is more suggestive than the formulas.

Using the evaluation map, an input (output) in A can be converted to
an output (input) in A_: add a tensor factor A for each new output
in A_, and apply the evaluation map as dictated by the tree. For
example, suppose we are given a bilinear product µ on A (which is not
assumed to be commutative or associative) depicted by the trivalent
tree with one vertex:

1 2

µ

A A

A

Here the labels 1 and 2 on the incoming edges express the order of the
arguments for the product µ : AbA Ñ A. The same tree then defines
left and right multiplications

mL : A b A
_ Ñ A

_ and mR : A_ b A Ñ A
_
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Figure 43. Definition of mL and mR

by converting inputs and outputs as in Figure 43: According to our
rules, the operation mL is defined by the commuting diagram

A b A_ b A

τ23τ12

��

mLb1 // A_ b A

ev

$$❍
❍
❍
❍
❍
❍
❍❍

❍
❍

A_ b A b A
1bµ // A_ b A

ev // R,

where τ23τ12 is the permutation moving the first tensor factor to the
third position. This writes out as

evpmL b 1q “ evp1 b µqτ23τ12,

which means xmLpa, fq, by “ p´1q|a|¨p|f |`|b|qxf, µpb, aqy in terms of ele-
ments. In accordance with the discussion in §B.1, the defining formula
does not involve signs when written in functional terms: the signs
appear only when the formula is evaluated on elements. Using the no-
tation xa, fy “ p´1q|a|¨|f |xf, ay from above, the last formula can also be
written in equivalent form without signs as

xb,mLpa, fqy “ xµpb, aq, fy. (36)

Similarly, the right multiplication reads

evpmR b 1q “ evp1 b µq,

which in terms of elements means

xmRpf, aq, by “ xf, µpa, bqy. (37)

Remark B.3. Let us emphasize that in the preceding discussion as
well as in the sequel we use only the evaluation map and not its dual,
so everything works in the infinite dimensional case. If A is free and
finite dimensional, then we can view the conversion of inputs/outputs
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in A to outputs/inputs in A_ as adding the pictures for ev resp. ev_

at the corresponding edge.

Remark B.4. One remarkable aspect about the language of trees is
that the definitions are forced upon us by TQFT-type relations: two
composite expressions which give rise to the same tree by formal gluing
are equal. In the situation at hand, this requirement leaves as an
available choice the order on the input half-edges of µ, but this is fixed
by the requirement that mL defines a left module structure, and mR

defines a right module structure, in the case that the product µ is
associative (so in this case A_ becomes a bimodule over A).
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[26] K. Lefèvre-Hasegawa. Sur les A8-catégories. Thesis, Université Paris-Diderot
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