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Abstract
Evaluation metrics such as precision, recall and normalized discounted cumulative gain 
have been widely applied in ad hoc retrieval experiments. They have facilitated the 
assessment of system performance in various topics over the past decade. However, the 
effectiveness of such metrics in capturing users’ in-situ search experience, especially in 
complex search tasks that trigger interactive search sessions, is limited. To address this 
challenge, it is necessary to adaptively adjust the evaluation strategies of search systems to 
better respond to users’ changing information needs and evaluation criteria. In this work, 
we adopt a taxonomy of search task states that a user goes through in different scenarios 
and moments of search sessions, and perform a meta-evaluation of existing metrics to bet-
ter understand their effectiveness in measuring user satisfaction. We then built models for 
predicting task states behind queries based on in-session signals. Furthermore, we con-
structed and meta-evaluated new state-aware evaluation metrics. Our analysis and experi-
mental evaluation are performed on two datasets collected from a field study and a labora-
tory study, respectively. Results demonstrate that the effectiveness of individual evaluation 
metrics varies across task states. Meanwhile, task states can be detected from in-session 
signals. Our new state-aware evaluation metrics could better reflect in-situ user satisfac-
tion than an extensive list of the widely used measures we analyzed in this work in certain 
states. Findings of our research can inspire the design and meta-evaluation of user-centered 
adaptive evaluation metrics, and also shed light on the development of state-aware interac-
tive search systems.
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1  Introduction

The batch-style evaluation approach integrated with one or two unified evaluation met-
rics (e.g. precision, recall, normalized discounted cumulative gain) has been widely 
applied in a large body of ad hoc retrieval tasks and evaluation experiments (Chen et al., 
2017; Harman, 2011). While employing one unified measure across different queries 
may facilitate the comparison of system performance in varying topics and search con-
texts, it may undermine the effectiveness of evaluation experiments in capturing users’ 
actual search experiences, especially in prolonged, interactive search sessions (Cole 
et al., 2009). When engaging in complex search tasks that involve ill-defined, ambigu-
ous goals, users often go through varying cognitive states, seek to fulfill different search 
intentions, and thereby evaluate system performances differently under varying queries 
(Liu et al., 2020; Sarkar et al., 2020). Under these circumstances, intelligent search sys-
tems will need to adaptively adjust the evaluation and re-ranking strategies to better 
respond to users’ changing information needs and search obstacles under overarching 
motivating tasks.

To achieve this, researchers need to deploy and meta-evaluate state-aware evalua-
tion metrics that can reliably connect the evaluation of search system performance with 
users’ actual experiences in search interactions and partially address the limitations of 
traditional offline evaluation procedures (Liu, 2022). Furthermore, it is critical to design 
and implement new evaluation metrics that can achieve better performance than exist-
ing metrics in capturing search satisfaction levels under specific states and search sce-
narios. The knowledge and techniques learned through state-aware evaluation research 
and practice will allow researchers to better capture the nuances hidden in the cognitive 
process behind IR and to develop more fine-grained user models to support adaptive 
ranking and search recommendations.

To address the research gap discussed above, our study sought to predict the var-
ying task states that a user goes through in different complex search tasks based on 
observable search signals and to identify appropriate evaluation metrics that best reflect 
user satisfaction under each state. Taking a step forward, we also explored and meta-
evaluated new evaluation metrics that could better reflect in-situ user satisfaction than 
all existing measures. To obtain robust and potentially generalizable evaluation results, 
our meta-evaluation experiments were conducted based on datasets collected from both 
controlled lab and naturalistic search settings.

Going beyond traditional multi-system evaluation setups built upon one or two cross-
session unified metrics, our study connects IR evaluation to dynamic task states and 
makes the following contributions:

•	 Our study demonstrates the relationships between in-situ user satisfaction and dif-
ferent evaluation metrics, and shows that the best-performing metrics vary across 
different task states within individual task-based search sessions.

•	 Based on observable search behavior and textual features that can be collected from 
the backend, we developed machine learning-based classifiers that can predict users’ 
task states during search sessions. These predictive models can serve as the basis for 
adaptive and even proactive search recommendations and evaluations.

•	 In addition to comparing and evaluating existing metrics under different states, we 
also developed new evaluation metrics that can outperform all current metrics under 
certain task states. Our new metrics could be replicated and reused in a wider range 
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of search evaluation scenarios and contribute to the enhancement of human-centered 
IR evaluations.

2 � Related works

Many evaluation metrics have been widely used throughout the years, the metrics were 
built under various assumptions and assessment goals, such as search result relevance, user 
perceived usefulness, user satisfaction. Based on the information needed for computing the 
evaluation metrics, we can categorize existing metrics into (1) online metrics, which can 
be computed based on system log files containing user interaction records, and (2) offline 
metrics, which rely on external knowledge such as human annotations. In this paper, we 
investigate a wide range of common evaluation metrics that can be computed on our exper-
imental dataset. The full list of metrics is presented in Sect. 5. In this section, we give an 
overview of the existing works investigating the relationship between common evaluation 
metrics, user satisfaction and search states.

2.1 � Task states in interactive search sessions

In contrast to the simulated scenarios of ad hoc retrieval tasks, users engaged in complex 
search tasks often experience the transitions between task states and aim to fulfill different 
subgoals or intentions at different moments of a search session (Liu et al., 2020; Rha et al., 
2016). Mitsui et al. (2016) examined users’ search intentions associated with different que-
ries in the same task and developed behavior-based prediction models for identifying users’ 
intentions in real-time. Chen et al. (2021) found that user reformulation is closely related to 
user intent and incorporated this knowledge into click-based metrics, improving the corre-
lation with user satisfaction. Vuong et al. (2019) introduced a categorization of queries by 
intention, task goal, and task substance. Similarly also Järvelin et al. (2015) looked at the 
different types of tasks and suggested that this should be included in IR. Borlund (2016) 
investigated which type of information is needed in which type of task. Liu et al. (2019b) 
developed a multilevel model of task-based information seeking and found that users’ 
search tactics and document judgments vary significantly across different intentions and 
task types. There is also some research investigating the use of user models to improve the 
correlation with user satisfaction (Moffat et al., 2022; Wicaksono & Moffat, 2020, 2021; 
Zhang et  al., 2020b). Researchers have also extracted four task states, i.e. exploration, 
exploitation, known-item and evaluation, from participants’ in-situ intention annotations, 
studied the transition patterns between different task states under complex tasks of different 
types (Liu et al., 2020), and developed state-aware search path recommendation algorithms 
that can improve the efficiency of search interactions in finding useful information (Liu 
& Shah, 2022). Urgo and Arguello (2022) applied a state-based approach to investigate 
the Search as Learning (SAL) process (apply, evaluate and create) and characterized the 
transitions between different knowledge types (factual, conceptual and procedural) during 
search. In addition to user-centered task modeling and evaluation, researchers have also 
adopted a similar state-based approach in offline simulation-based studies and demon-
strated the value of leveraging task state information in improving relevance-based ranking 
performance (Luo et al., 2014).

Since users typically go through multiple task states and intentions during the same 
search session (Liu et al., 2020; Ruotsalo et al., 2014), the evaluation of search systems 
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should also be adaptive and customized based on the nature of local task states rather 
than relying on one or two unified measures across all search queries (e.g., nDCG, 
Reciprocal Rank) (Liu & Han, 2022). It is also unclear how and to what extent users’ 
criteria and thresholds of usefulness and satisfaction vary across states. To address 
these gaps, our study seeks to investigate heterogeneity across task states and construct 
state-aware evaluation metrics that best reflect users’ in-situ levels of search satisfac-
tion under each state, rather than simply optimizing predefined document relevance 
metrics. The implementation and meta-evaluation of adaptive evaluation measures will 
also facilitate the development and evaluation of personalized IR systems and search 
recommendations.

2.2 � Understanding and measuring user satisfaction

User satisfaction has been described in many papers as the golden standard for evaluat-
ing the quality of search results (Chen et al., 2017; Jiang et al., 2015; Zhang et al., 2018, 
2020c). Many studies have investigated the factors that affect user satisfaction. For exam-
ple, Jiang et al. (2015) concluded from their study that satisfaction can best be explained as 
the value of the search outcome compared to the degree of search effort. Liu et al. (2015) 
investigate whether there is a difference between assessors’ and users’ judgments of satis-
faction. They find that assessors’ and users’ judgments are moderately correlated. Liu et al. 
(2018) investigated the differences between user satisfaction and search success for com-
plex search queries. Their experiments indicate that there is a high discrepancy between 
user satisfaction and search success. These previous studies demonstrate that user satisfac-
tion can be influenced and reflected by many user and system features.

As attempts to measure user satisfaction, existing works study relationships between 
various metrics and user satisfaction. Chen et al. (2017) conducted a meta-evaluation of a 
set of existing online and offline metrics on datasets collected from task-based lab studies 
to study how they correlate with user satisfaction. They found that offline metrics are bet-
ter aligned with user satisfaction in homogeneous search, while online metrics outperform 
when vertical results are federated. Zhang et  al. (2020a) found that task difficulty influ-
ences the correlation between metrics and satisfaction. This shows that how well existing 
metrics reflect satisfaction varies by task type. Chuklin and de Rijke (2016) developed the 
CAS model, which combines user clicks and attention behavior on a SERP to capture user 
satisfaction. Mao et  al. (2016) attempted to use expert-annotated usefulness to measure 
user satisfaction and found that usefulness is strongly correlated with user satisfaction. This 
observation was also confirmed by Liu et al. (2019b). However, usefulness annotations are 
query dependent and subjective, the annotation of the same resource cannot be generalized 
to other queries or users, thus it is not an efficient metric for measuring satisfaction.

Despite efforts to measure user satisfaction through other metrics, existing works have 
not succeeded in finding an effective and efficient approach. Based on our investigation in 
existing works and datasets, we found the following potential reasons: previous works that 
attempted to measure user satisfaction did not consider the impact of task states; evaluation 
metrics created by combining existing metrics were fitted to a set of homogeneous data and 
investigated only a small set of features. Therefore, in this work, we investigate a larger set 
of features and take task state into account when analyzing existing metrics and fitting new 
evaluation metrics. In addition, we experiment on both lab study data and field study data 
to observe the impact of different data collection setups.
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3 � Task definition and research questions

In this paper, we consider the search task state for each individual query activity, which 
is defined by the sequence of a user’s actions starting with querying the Web, followed 
by browsing the search results, browsing the clicked Web resources, and clicking and 
scrolling activities.

3.1 � Evaluation metrics

To ensure a fair and thorough analysis, we researched the most commonly used evalu-
ation metrics for general IR systems. Based on the availability of the data needed to 
calculate each metric throughout the search process, we grouped them into 3 categories 
as follows:

•	 Query-based metrics: Metrics that can be calculated immediately after a search query 
is executed.

•	 Online metrics: Metrics that can be calculated based on system log files that record 
user interactions (e.g. mouse movements, clicks, timestamps of interactions, etc.). 
Query-based metrics are a subset of online metrics.

•	 Offline metrics: Metrics that rely on external knowledge, such as annotations based on 
human judgement, e.g., the relevance score of web documents in a search results list.

The full list of metrics we analyze in this paper and their descriptions are given in Sect. 5.

3.2 � Task states

Among the taxonomies discussed in Sect.  2.1, we found the taxonomy proposed by Liu 
et al. (2020) to be the most appropriate for the analysis in this paper, as it has been con-
ceptually developed and empirically validated with both external labeling and clustering 
results under complex search tasks involving prolonged search sessions and covering task 
states and user intentions of varying complexity at different moments of search. Also, com-
pared to existing taxonomies, Liu et al. (2020)’s task state taxonomy achieves a better bal-
ance between capturing the nuances of user intentions and being practically useful in par-
ticipants’ annotations. The taxonomy does not involve overly abstract or broad categories 
(cf. informational queries in Broder’s taxonomy (Broder, 2002)) and distinguishes different 
search focuses or task states (e.g., exploring a new topic or domain versus evaluating col-
lected information items) without requiring a detailed, cognitively challenging annotation 
process (cf. Rha et al. (2016)’s taxonomy).

Based on the labels and clustering results from two controlled lab studies, Liu et  al. 
(2020) found that a querying activity can be assigned to one of the following 4 states:

•	 Exploration state: The user wants to explore an unknown topic in this state. He uses 
general and short queries (e.g. “sports activities”).

•	 Exploitation state: The user knows exactly what topic he is looking for in this state. He 
follows his search path and looks for different pages that might provide relevant infor-
mation (e.g.“Football pitch nearby”).
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•	 Known-item state: The user knows exactly what his goal is and is looking for a specific 
page or information (e.g. “Location of the Football pitch in Friesdorf”).

•	 Learn and evaluate state: In the fourth state, the user not only wants to passively absorb 
information, but also wants to evaluate search results or expand his knowledge. As in 
the known-item state, the user is looking for specific information (e.g., “Difference 
between the soccer fields in Friesdorf and Bornheim”).

3.3 � User satisfaction

In this work, the level of user satisfaction refers to the extent to which a system informa-
tionally satisfies a user’s search goal(s) under the associated task. The satisfaction scores 
we use in this work are annotated by users directly.

We aim to investigate state-aware evaluation metrics for search systems in terms of user 
satisfaction. We approach the problem by answering the following research questions: 

RQ1:	� To what extent do existing evaluation metrics reflect user satisfaction under vary-
ing task states?

RQ2:	� Can we detect the task state of a query activity using in-session signals that can 
be collected automatically during a search session without explicit feedback and 
labels?

RQ3:	� Can we construct new evaluation metrics that better reflect user satisfaction under 
a specific task state?

4 � Experimental data

4.1 � Datasets

In order to study the characteristics of more diverse search sessions and to improve the 
generalizability of the results of this work, we consider two datasets collected under differ-
ent setups: one from the field study (TianGong) and one from a lab study (KDD).

4.1.1 � TianGong

This dataset was published by Zhang et al. (2020c). The authors conducted a field study 
that lasted for one month with 30 participants (13 females and 17 males) whose ages ranged 
from 18 to 41. The participants installed a browser extension to track their search activities. 
The Participants rate their satisfaction with the search result for each search query on a 
5-point Likert scale, with 0 for dissatisfied and 4 for very satisfied. After the study, nine 
external annotators rated the relevance of the documents with respect to the correspond-
ing query on a scale of 0–3, where 0 means a document is irrelevant and 3 means a docu-
ment is very relevant. We use TianGong to refer to this dataset in the rest of this paper for 
simplicity.

The TianGong dataset contains 3875 queries. Each query is associated with logs con-
taining the query string, the corresponding SERP, mouse movements (clicks and scrolls), 
switching between SERP and other browsed pages, and the corresponding timestamps or 
dwell times of the above activities. On average, 55 actions are recorded in the search logs 
for each query.
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4.1.2 � KDD19

This dataset was collected in a laboratory study and was published by Liu et al. (2019b). 
Fifty undergraduate students (24 female, 26 male) were recruited from the campus, rang-
ing in age from 18 to 27. All participants were familiar with the basic use of web search 
engines and used them on a daily basis. Nine search tasks were given to each participant. 
Similar to the TianGong dataset, participants rated their satisfaction with the search result 
corresponding to each search query on a 5-point Likert scale, with 1 being dissatisfied and 
5 being very satisfied. To obtain the relevance ratings for each document, the authors used 
a crowdsourcing platform. Each crowd worker was given a “query-document” pair. Then 
they were asked to assign a relevance score (0–3) to each document, 0 if they think the 
document is not relevant or a spam webpage, 1 if there is only a small amount of informa-
tion in the document related to the query, 2 if there is important information related to the 
query in this document, 3 if the document should be a top result in the SERP because the 
content is dedicated to the query. A total of 1548 queries with search logs were recorded. 
On average, there are 188 actions per query. We use KDD to refer to this dataset in the rest 
of this paper for simplicity.

The distribution of the annotated search satisfaction and document relevance of the two 
datasets is shown in Fig. 1. The difference in the study setup can potentially explain the 

Fig. 1   Distribution of user satisfaction (query level) and document relevance (document level) based on 
existing annotations in the TianGong and KDD19 datasets
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difference in the relevance and satisfaction distribution of the two datasets, i.e. the Tian-
Gong dataset has a higher percentage of irrelevant documents while having higher satis-
faction. In the field study, where the tasks are not clearly defined, users are likely to be 
satisfied if some relevant information can be found with the self-formulated queries, while 
in the lab study, with a clear task in mind and queries that can be extracted from the task 
description, more relevant web resources are recalled, but users are not satisfied as long as 
the current task goal is not completed. 

4.2 � Task state annotation

The task state of the KDD dataset was published by Liu and Yu (2021). We applied the 
same coding frame used in their paper to the TianGong dataset. More specifically, the task 
states used in the annotation task, including: (1) Exploration state—users explore unknown 
topics and seek to open new search paths; (2) Exploitation state—users may have a clear 
topic in mind and try to follow the current search path and continue to exploit the infor-
mation patch at hand; (3) Known-item state—users know exactly what item(s) they are 
looking for. Queries tend to be very specific, and the target item(s) are usually obvious in 
the queries and the first documents visited; (4) Learning and evaluation state—users try to 
evaluate, extract and synthesize useful knowledge from retrieved documents and pages. At 
this state, they tend to have long, specific queries involving multiple subtopics and items, 
and move between and compare multiple documents.  Two annotators annotated a subset of 
the data together in three rounds (100 unique queries in each round), discussing and resolv-
ing disagreements after each round. In the second and third round of annotation, the agree-
ment between the two annotators  in each round is both above 70%, the Cohen’s Kappa is 
above 0.559. Then one of the annotators finished the annotation for the rest of the dataset. 
The distributions of the task state labels in the two datasets are shown in Fig. 2.

We found that the distribution of task states is unbalanced in both datasets. In the Tian-
Gong dataset, the exploitation state has the highest number of queries. In the KDD data-
set, there are more known-item searches compared to other states, which could be due to 
the setup of the lab study, where search tasks are given and therefore the goals are more 
straightforward compared to natural search sessions. Similar observations can be made on 
the TianGong dataset as Liu and Yu (2021) made on the KDD dataset, that the last two 
states are hardly distinguishable based on the queries. Therefore, we use the same approach 
to merge the known-item and evaluation states in the experiments, and refer to the merged 

Fig. 2   Task states distribution in TianGong and KDD datasets
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state as known-item in later sections. Finally, we obtain the ground truth label of task states 
for the two datasets, where there are 301, 514, 733 queries in the KDD dataset and 356, 
2266, 1252 queries in the TianGong dataset for the exploration, exploitation, and known-
item states, respectively.

5 � Analysis of existing evaluation metrics

In this section, we will investigate RQ1 using the annotated data as described in Sect. 4 to see 
how well existing evaluation metrics reflect user satisfaction and explore whether there are dif-
ferences for task states.

5.1 � Evaluation metrics

As described in Sect. 3, we group the metrics into three categories according to the availability 
of information for their computation. The query-based category includes features that can be 
computed immediately after a user’s query behavior; the considered metrics and their descrip-
tions are shown in Table 1. The list of online metrics that are extracted based on information 
in the search system log is shown in Table 2. Offline metrics are listed in Table 3. Note that 
we focus on query level evaluation, so all features are computed for each individual query. For 
query-based features, the terms appeared in previous queries and the order of the query has 
been considered as contextual information for the feature calculation of the current query.

Table 1   Query-based metrics

Notation Description

NewTerms Number of new terms in a query that are not in the previous query
QuerySim Proportion of shared terms with last query
QueryOrder The order of the current query within the associated session
QueryLength Number of terms in a query

Table 2   Online metrics

Notation Description

ActionCount Number of actions associated with the query
MouseMoveCount Total number of mouse moves
ScrollDistanceance Total scroll distance
MaxScroll Maximum of scroll distance for query
TimeTo{First, Last}Click Dwell time to first/last click in milliseconds
#Clicks Total number of clicks for query
{Highest, Avg, Lowest} ClickRank Highest/average/lowest rank of clicked result
{Max, Min, Mean}RR Maximum/minimum/mean for the reciprocal ranks of the clicks
PLC #Clicks divided by LowestClickRank
SessionEnd If the query is the last query in session
TotalContentTime Total time on landing and content pages in milliseconds
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5.2 � Correlation analysis

To understand the relationship between the evaluation metrics introduced in Sect. 5.1, we 
compute the Pearson correlation between the user satisfaction score and each individual 
metric on both datasets for each task state. The results are shown in Table 4.

5.2.1 � Results on TianGong dataset

The results indicate that the metrics perform differently under different task states, there 
is no single metric that achieves the highest correlation across all task states. The gap 
between different metrics is quite large, with the highest correlations being 0.422, 0.265, 
0.267, and the median correlations being 0.252, 0.192, 0.194 on the exploration, exploita-
tion, and known-item states, respectively. In terms of the metrics that have the highest cor-
relation with user satisfaction in each task state, MaxR achieved the highest scores in the 
exploitation and known-item states, as in these two states users have a clearer goal in mind 
and are likely to be satisfied by the most relevant result. While for the exploration state, 
users consider more search results to get a better overview of the topic, therefore RBP and 
DCG based metrics achieve the highest correlation as they consider the relevance and rank-
ings of multiple results.

The offline metrics generally have a higher correlation with user satisfaction in the 
exploration state than in the other task states. For example, for the CG@3 we have a cor-
relation of 0.405 in the exploration state and only 0.232 and 0.233 for the other two task 
states. This is probably because users in the exploration state have less prior knowledge 
about the topic and are satisfied if documents of general relevance are returned. On the 
other hand, a user in the known-item state knows exactly what he is looking for. For exam-
ple, if a user is only looking for a specific formula, all search results are likely to have 
higher relevance scores and would have less impact on user satisfaction, as other factors 
such as efficiency and quality of the web resource may be more important.

There is no clear pattern for online and query metrics. For example, PLC has the highest 
correlation with user satisfaction in the known-item state, while SessionEnd has the highest 

Table 3   Offline metrics

Notation Description

MaxR, MeanR, MinR Maximum, Mean and Minimum value of relevance for result pages in query
CG@k Cumulative gain, k ∈ {3, 5, 10}

DCG@k Discounted cumulative gain, k ∈ {3, 5, 10}

NDCG@k Normalized discounted cumulative gain, k ∈ {3, 5, 10}

RBP(x) Rank-biased precision, x ∈ {0.1, 0.5, 0.8, 0.95}

ERR Expected reciprocal rank
Precision@k Proportion of relevant pages in top k ranked results, k ∈ {3, 5, 10}

AvgClickRel Average relevance of clicked pages
ClickPrecision Proportion of clicked relevant pages
QueryCost-Benefit-2 Number of clicked relevant pages/LowestClickRank
QueryCost-Benefit-3 (Number of clicked useful pages/LowestClickRank)*SERPtime
RelDocCount1 Number of documents with query relevance > 1
RelDocCount2 Number of documents with query relevance > 2
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correlation for the exploration state. PLC is higher when a user gets there with fewer clicks 
on the top results. A user in the exploitation and known-item states has a clearer idea of 
the goal and is likely to be more satisfied if a result is found quickly. In the exploration 
state, the user does not have a clear goal and therefore has to try different queries until a 
document satisfies his information needs and he reaches the end of the session. There are 
negative correlations in the online metrics and only positive correlations in the offline met-
rics because the offline metrics are computed based on relevance annotations, so the more 
relevant the documents in the search result, the higher the offline metrics and the more 
satisfied the user is. For online metrics, on the other hand, the intuitions are more varied 
across metrics.

5.2.2 � Results on KDD dataset

Similar to the TianGong dataset, it can be concluded that how well a metric reflects user 
satisfaction depends on the task state. The gap between the correlations of different metrics 
is also high, with the highest correlations being 0.529, 0.559, and 0.385, and the median 
correlations being 0.325, 0.343, and 0.219, on the exploration, exploitation, and known-
item states, respectively. However, with respect to the best metric for measuring user sat-
isfaction in different task states, the results are different from the TianGong dataset. The 
highest correlation in the exploration state is achieved by MaxR, while in the exploitation 
and known-item states it is achieved by RBP (x=0.8). By observing both datasets, we think 
that this may be caused by the different study setup. The KDD dataset is collected from a 
lab study where the search goals are given in the task description, the initial challenge is to 
formulate an appropriate query rather than exploring the different aspects of a topic. In this 
case, a highly relevant result in the exploration state that helps formulate the next query 
would satisfy the user’s search intent, which explains why MaxR has a higher correlation 
compared to other metrics that consider more search results. Since the given tasks usually 
have more than one sub-goal, users consider several results to cover all the information 
needs in the exploitation and known-item states, resulting in the RBP metric having higher 
correlations with user satisfaction compared to MaxR.

The correlation between online metrics and user satisfaction is overall higher on the 
KDD dataset than on the TianGong dataset. As mentioned in Sect. 4, users in the lab study 
exert more effort per query than in the field study, resulting in more user interactions. This 
may cause the online metrics to be more informative on the KDD dataset. MinRR even out-
performs some offline metrics, resulting in the highest correlation for exploration state and 
exploitation state among all online metrics.

5.2.3 � Implications

With the result of the correlation analysis, we can answer RQ1. First, different existing eval-
uation metrics reflect user satisfaction to different extents under the same task states. Taking 
exploration state as an example, Table 4 shows that on the KDD dataset, the offline metric 
MaxR has a correlation of 0.529 with user satisfaction, while the online metric ActionCount 
has a correlation of only 0.121. Second, the same metric reflects user satisfaction differently 
under different task states. For example, the SessionEnd metric achieves a correlation of 
0.252 in the exploration state on the TianGong dataset, it has a correlation of only 0.084 and 
0.087 in the exploitation and known-item states, respectively. We can find another example 
of this in the KDD dataset. Here we see a drop in correlation for the MaxRR metric of 0.432 
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in the exploration state, 0.356 in the exploitation state, and only 0.263 in the known-item 
state. Meanwhile, we have found stronger correlations to user satisfaction for offline met-
rics compared to online metrics. We also see substantial differences in the correlation of 
metrics across different datasets. This suggests that the way the search task is set up has a 
strong impact on how users search and evaluate search results, and therefore conclusions 
drawn from laboratory studies alone may be biased when applied to the real world scenario. 
Overall, desipite that some metrics achive moderate correlation with user satisfaction, there 
is still a large gap in using existing metrics for measuring user satisfaction, which demon-
strates the neccasity of investigation on new metrics in this respect.

6 � Search state detection

Our analysis in Sect. 5 demonstrates that the evaluation metrics reflect user satisfaction to 
different degrees under different task states. In order to use this result for a more precise 
evaluation of user satisfaction, we first need to answer RQ2: can we detect the task state of 
a query activity using in-session signals that can be collected automatically? In this sec-
tion, we present our approach for detecting task states, which we formulate as a classifica-
tion task, i.e., classifying a query into one of the defined task states. We have experimented 
with both feature-based machine learning models (Sect. 6.1) and deep learning-based mod-
els (Sect. 6.2).

6.1 � Feature‑based machine learning models

We consider four of the most commonly used feature-based classification models in our 
experiments, namely logistic regression (LR), k-nearest neighbors (KNN), support vector 
machines (SVMs), and random forest (RF). The features used by these models are:

6.1.1 � Query‑based features

We computed several sets of features based on query related information as follows.

•	 We consider all metrics in Table 1 to be descriptive features.
•	 Term frequency We also consider the original terms in the query string. The terms are 

represented as a term frequency vector.
•	 Readability scores Query complexity has been found to evolve during the search pro-

cess (Eickhoff et al., 2014) and thus may provide clues to the search state of the current 
query. In this work, we compute a set of query readability and complexity scores and 
use them as features. Many readability scores and complexity metrics have been pro-
posed over the years. In this work, we consider the most commonly used ones, accord-
ing to the findings in (Eltorai et al., 2015) and (Zhou et al., 2017):

–	 The Flesch Reading Ease (FRES) (Flesch, 1979) is computed based on sentence and 
word length to measure whether a text is in plain English. The higher the number, 
the easier the text is to read. It is computed as shown in Eq. 1. 

(1)FRES = 206.835 −

(

1.015 ∗
#Words

#Sentences

)

−

(

84.6 ∗
#Syllables

#Words

)
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–	 The Flesch-Kincaid Grade Level (FKGL) (Kincaid et al., 1975) measures the edu-
cation (equivalent to U.S. grade level) required to understand a text. It takes into 
account the relative number of words per sentence and the number of syllables per 
word. The higher the result, the easier the text is to read. The calculation is shown in 
the Eq. 2. 

–	 The Gunning Fog Index (GFI) introduces the concept of complex words. A complex 
word is defined as a word with more than three syllables. In addition to the relative 
proportion of complex words, the length of sentences is also considered. If the result 
is over 20, the text is considered difficult to read. A text with a score of 5 is readable 
(Eltorai et al., 2015). 

–	 The SMOG Index (SMOG) adopts the concept of complex words (Mc  Laughlin, 
1969) and measures how many years of education the average person needs to 
understand a text. 

–	 The Automated Readability Index also provides a grade. It was developed for the 
U.S. Air Force to determine how readable text is as it is typed. Senter and Smith 
chose the number of characters per word and words per sentence to assess readabil-
ity. Regression analysis is used to determine the weight of the parts was based on 24 
books labeled with readability (Zhou et al., 2017). 

–	 The Cole-Liau Index is based on a regression analysis of 36 150-word passages 
with cloze percentages. The authors included the average number of letters per 100 
words and the number of sentences per 100 words. The result represents the U.S. 
grade level of the reader’s reading skills (Zhou et al., 2017).

6.1.2 � Online metrics as features

User interaction signals are easily obtained from the search engine log and can potentially 
be indicators of task state. Therefore, in addition to query-based features, we also use 
online metrics (see Table 2) computed from in-session signals as features.

(2)FKGL =

(

0.39 ∗
#Words

#Sentences

)

+

(

11.8 ∗
#Syllables

#Words

)

− 15.59

(3)GFI = 0.4 ∗

[

(

#Words

#Sentences

)

+ 100 ∗

(

#ComplexWords

#Words

)]

(4)SMOG = 1.043 ∗

√

#ComplexWords ∗
(

30

#Sentences

)

+ 3.1291

(5)ARI = 4.71 ∗

(

#Characters

#Words

)

+ 0.5 ∗

(

#Words

#Sentences

)

− 21.43

(6)
CLI =

[

0.0588 ∗

(

#Characters

#Words
∗ 100

)]

−

[

0.296 ∗

(

#Sentences

#Words
∗ 100

)]

− 15.8
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6.2 � BERT‑based language models

Detecting the search state early in a search session, i.e., when query terms are entered, 
can enable search systems to adjust ranking optimizations accordingly. Therefore, in 
addition to the feature-based classification approach that uses various signals in a search 
session as introduced in Sect. 6.1, we tried to apply the advanced language models to 
understand the semantics in query terms for detecting search state. Models based on 
Bidirectional Encoder Representation from Transformers (BERT) have been applied to 
many natural language processing tasks and have achieved superior performance (Dev-
lin et al., 2018). Based on it, we develop a two-step pipeline: a pre-training step with 
unlabeled data, and a fine-tuning step with task-specific labeled data.

There are two different tasks in pre-training. The first task is to train the Masked Lan-
guage Model (MLM). Existing systems have taken a unidirectional approach by exam-
ining the language from left to right. This approach has been further developed in the 
BERT model by examining the context bidirectionally. To do this, 15% of the input 
tokens are masked. The system then predicts the words behind the masked tokens. The 
second task in pre-training is Next Sentence Prediction (NSP), where the probability 
that sentence B follows sentence A is determined. In the fine-tuning phase, task-spe-
cific data and labels are provided to the model. The texts are encoded with pre-trained 
embeddings, which are then fed into an output layer for classification. The task state 
labels are used to train the classification model. The BERT model we realized is based 
on the implementation of the multi-layer bidirectional transformer encoder by Vaswani 
et al. (2017) from the tensor2tensor (Vaswani et al., 2018) library. The model used in 
this work corresponds to the BERTBASE model with 12 layers, a hidden size of 768 and 
12 self-attention heads (Devlin et al., 2018).

6.3 � Experimental evaluation of task state prediction

To evaluate the prediction performance of the models, we compute the standard precision 
(P), recall (R) and F1 score for each class. To evaluate the overall result, we compute the 
accuracy (acc) and the macro average of precision, recall and F1 score. We perform 10-fold 
cross-validation on each of the two experimental datasets. The evaluation results of the 
search state prediction models obtained on both datasets are shown in Table 5.

To answer RQ2, we observed in the result that the applied models achieved over 
59.8% accuracy on both datasets, demonstrating that the signals we chose are effective 
and that task states can be predicted from user interactions. Comparing different mod-
els, the BERT-based model using query terms achieved the best performance in terms 
of both accuracy and average F1 score on both datasets. Among the results of the BERT 
model, the highest F1 score is achieved in the known-item state, while exploration and 
exploitation are harder to distinguish.

With respect to the different datasets, we notice a generally lower performance on 
TianGong dataset. After investigating the original dataset, we think that the reasons for 
the low performance of the state detection models on TianGong dataset, especially for 
the exploration state, are due to the high topic diversity and the smaller number of sam-
ples. In terms of topic diversity, the KDD dataset is collected under the setup that all 
search activities are related to the 9 predefined topics, while the TianGong dataset is 
collected in a field study, the topics are very diverse, the overlap of search topics among 
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participants is very small. Meanwhile, the exploration state has the least number of 
samples, i.e. 356, 2266, 1252 samples inexploration, exploitation and known-item state 
respectively in TianGong dataset. This resulted in the model not being fully trained. 
This can also explain that after adding online features, the performance of the model 
decreased even further, as there are not enough samples to train a robust model. For 
the feature-based classifier on the KDD dataset, adding online features on top of query-
based features improves the performance of the models, suggesting that user interaction 
with the search engine can provide signals that indicate the task state.

7 � Construction of state‑aware evaluation metrics

We found that evaluation metrics correlate differently with user satisfaction under dif-
ferent task states and that it is possible to predict task states based on in-session signals. 
We now try to develop new evaluation metrics that can better assess user satisfaction 
and answer RQ3.

7.1 � Task formulation

As a preliminary attempt, we aim at creating explainable state-aware evaluation met-
rics. Hence we choose to use a linear regression model to combine existing metrics and 
features to better measure satisfaction. The basic linear regression model for multiple 
features is as follows:

X = {x0, x1,… , xp} is the set of features we are using. The � s are the coefficients for each 
feature, � is the bias, and y is our target, i.e., user satisfaction. We perform least squares on 
this formula and try to optimize the � s. The method we use to perform the linear regression 
is implemented in the scikit-learn library. To construct the new evaluation metrics by linear 
regression, we consider the query, online and offline evaluation metrics as introduced in 
Sect. 5.1 and the readability scores computed from query terms as described in Sect. 6.1 as 
input features. We start by fitting the linear model with all considered features on the two 
datasets and for each search state, respectively.

7.2 � Experimental results

We fitted new metrics under two settings: (1) general metrics ( new − all ) that do not 
distinguish between task states, and (2) state-specific metrics ( new − st ) that are trained 
on state-specific data. To fit the linear model, we split the data into 70% for model fit-
ting and 30% for evaluation. To improve the interoperability and efficiency of the fitted 
linear model, we applied the sequential forward selection strategy (John et  al., 1994; 
Last et al., 2001). The highest correlations obtained under different setups are shown in 
Table 6.

Based on the results, we can answer RQ3—compared to existing metrics in the gen-
eral setting and in different task states, we observe that the highest correlations (bolded 

y = �0x0 + �1x1 +⋯ + �pxp + �
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in Table  6) are all achieved by new metrics, demonstrating that user satisfaction can 
be better measured by combining online signals and existing metrics. The general met-
rics ( new − all ) achieved higher correlation with user satisfaction compared to the exist-
ing metrics in most cases, with one exception (underlined in table 6) on the TianGong 
dataset. One possible reason is that the TianGong dataset contains fewer online sig-
nals, more diverse topics and user behavior, while the task state distribution is unbal-
anced. Therefore, without enough meaningful signals to distinguish the characteristics 
of different search states, the trained metrics are better at capturing easier patterns in the 
larger class known-item state, resulting in less predictive power for user satisfaction in 
other search states. Comparing the general and state-specific metrics, the state-specific 
metrics outperformed the general metrics in more cases, even with less training data. 
Results suggest that having state-specific metrics for certain task states can be useful to 
better measure user satisfaction.

Comparing between different feature groups, we observe that on both datasets and in all 
states, the highest correlations are obtained by using both online and offline features. Over-
all, the correlation values between the new metrics and user satisfaction are lower on the 
TianGong dataset compared to the KDD dataset. The metrics are less stable on the Tian-
Gong dataset when only online features are used. A possible reason could be that due to the 
diversity of tasks in the TianGong dataset, more training data is needed for the models to 
learn robust metrics.

The result of selecting a different number of features is shown in Fig.  3, where the 
x-axis shows the number of features used by the linear function, and the corresponding 
value on the y-axis is the correlation between the new metric and user satisfaction on the 
validation set.

On the KDD dataset (Fig. 3a and b), we observe that the correlations between the 
new metrics and user satisfaction increase up to a point as the number of features 
increases. This suggests that we can better assess user satisfaction with the search 
result by considering multiple metrics simultaneously. While for the exploration state, 
the correlation starts to drop rapidly after reaching a certain number of features. The 
drop in correlation is likely caused by model overfitting, as the exploration state has 
the least number of samples.

Similar trends are shown on the TianGong dataset (Fig. 3c and d), where the combina-
tion of multiple metrics can better reflect user satisfaction than a single metric. A possible 
overfitting effect is shown by increasing the number of features for the exploration state 
in both feature settings, i.e. the class with fewer samples compared to the exploitation and 
known-item states.

8 � Discussion and conclusions

People increasingly rely on search and recommendation technologies to perform 
information-intensive tasks and make complex decisions. In contrast to simple, fact-
finding retrieval tasks, complex search tasks often involve prolonged search sessions 
and motivate users to achieve different intentions and subgoals across different task 
states in information seeking and search episodes (Mitsui et al., 2016). While differ-
ent states and intentions may affect the way users evaluate the performance of search 
systems (Liu et al., 2019b), how to adaptively evaluate systems and employ the appro-
priate metric(s) that best reflect task states and user satisfaction criteria currently 
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remains an open challenge. This gap is unlikely to be addressed by applying one or 
two mainstream “unified metrics” such as precision and nDCG.

To address this challenge, our study goes beyond the mainstream Cranfield-style 
offline evaluation approach (Voorhees, 2001) and seeks to develop an adaptive eval-
uation approach by (1) meta-evaluating the performance of different metrics under 
different task states and (2) developing new metrics that better capture user in-situ 
satisfaction. In this paper, we first investigate the correlation between existing IR 
evaluation metrics and user satisfaction under different task states and find that the 
degree to which a metric can reflect user satisfaction varies across task states. The 
analysis extends previous work (Liu & Yu, 2021) not only by considering a more 
complete set of evaluation metrics but also by conducting the analysis on datasets 
collected from different search scenarios, i.e. both field study and task-oriented lab 
studies, to mitigate the impact of the experimental setup. In the next step, we experi-
ment with the automatic detection of the task state of a search query based on in-
session signals. In addition to the models used in the baseline work (Liu & Yu, 2021), 
we also applied a BERT-based classification model to query terms and achieved 
superior performance compared to other feature-based models. To better assess user 
satisfaction, we constructed a set of new evaluation metrics using linear regression. 
The results demonstrate that the new metrics can better reflect satisfaction than the 
existing metrics in the same category, i.e., online or offline metrics. In this study, we 

Fig. 3   Pearson correlation between new evaluation metrics and user satisfaction. Blue: exploration state; 
Green: exploitation state, Red: known-item state; All: without distinguishing task states (Color figure 
online)
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experimentally found the best-combined metric in each configuration. When applying 
the combined metric to support real-world applications, such as real-time satisfaction 
prediction or search result re-ranking, the metric could be further reduced depend-
ing on the objective and feature availability. For example, in real-world applications, 
offline metrics are not available, so it may be necessary to construct an evaluation 
metric based only on online signals.

The characteristics of users, such as their level of knowledge about the topic and 
their familiarity with search engines, can have a strong impact on their level of sat-
isfaction with different search results. Incorporating user characteristics into the 
evaluation metric could potentially increase its effectiveness in measuring satisfac-
tion. Limited by the availability of user information and the diversity of users in the 
available datasets, we did not experiment with user features in this work. Since it is 
costly to obtain user satisfaction, document relevance, and task state annotations, the 
main limitation of our work is the size of our experimental dataset. Meanwhile, the 
task state classes are unbalanced, and some of the classes have few training examples 
for building the classifiers in Sect.  6. For these reasons, we believe that the power 
of the features and classifiers is limited. However, our experiments manifested the 
potential of a state-aware approach in understanding users’ intentions and support-
ing interactive IR activities and presented new metrics that can more accurately char-
acterize users’ in-situ experiences. Together, the behavioral features, classifiers, and 
state-aware evaluation metrics provide a methodological and empirical foundation for 
more fine-grained user modeling, adaptive search recommendations, and dynamic IR 
evaluation. In future work, we plan to work on heuristics that enable user search and 
annotation data collection on a larger scale. We will also seek to verify our results, 
fine-tune the task state classifiers, and meta-evaluate the new metrics on more diverse 
datasets, task types, and user populations.

Appendix A: New evaluation metrics

Here we list the formulas of the 12 new evaluation metrics corresponding to Table 6. The new 
metrics are denoted as F_statefeature , where state ∈ {exploration, exploitation, known − item} , 
feature ∈ {online(on), online&offline(on + off )}.

A.1 Metrics fitted on the TianGong dataset

(A1)
F_explorationon = 0.5360 ∗ MinRR − 0.0006 ∗ MaxScroll

+ 0.7023 ∗ SessionEnd − 0.1885 ∗ GFI + 2.7479

(A2)

F_explorationon+off = −0.0017 ∗ ActionCount − 0.0005 ∗ MaxScroll

+ 0.3973 ∗ MinRR − 0.0070 ∗ NewTerms

+ 0.5844 ∗ SessionEnd + 0.0765 ∗ DCG@3

+ 0.1992 ∗ NDCG@5 + 0.1774 ∗ MeanR + 2.0224
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(A3)

F_exploitationon = −10.2405 ∗ MeanRR + 0.8970 ∗ MinRR

− 0.1267 ∗ MaxRR − 0.7848 ∗ AvgClickRank

+ 0.0596 ∗ LowestClickRrank + 0.1776 ∗ PLC

− 0.0393 ∗ HighestClickRank + 0.6746 ∗ #Clicks

− 0.1987 ∗ QuerySim − 0.0302 ∗ ActionCount

+ 0.0282 ∗ MouseMoveCount + 0.0003 ∗ ScrollDistanceance

− 0.0007 ∗ MaxScroll + 2.022e − 06 ∗ TimeToFirstClick

+ 4.481e − 9 ∗ TimeToLastClick

+ 5.500e − 6 ∗ TotalContentTime

+ 0.3660 ∗ SessionEnd + 0.2318 ∗ FRES + 1.6966 ∗ FKGL

− 0.9548 ∗ GFI − 0.0329 ∗ SMOG − 6.019e − 6 ∗ ARI

− 0.0077 ∗ CLI − 19.2787

(A4)

F_exploitationon+off = −0.0272 ∗ ActionCount + 0.0269 ∗ MouseMoveCount

+ 0.0003 ∗ ScrollDistance − 0.0008 ∗ MaxScroll

+ 9.6017 ∗ MeanRR + 0.4054 ∗ MinRR

− 1.7495 ∗ MaxRR − 0.7617 ∗ AvgClickRank

+ 0.0847 ∗ LowestClickRank + 0.3343 ∗ PLC

− 0.0550 ∗ HighestClickRank + 0.4838 ∗ #Clicks

− 0.0049 ∗ NewTerms − 0.2170 ∗ QuerySim

+ 0.3975 ∗ SessionEnd + 0.0750 ∗ FRES + 0.5696 ∗ FKGL

− 0.1836 ∗ GFI − 0.0504 ∗ SMOG + 0.0001 ∗ ARI

− 0.0069 ∗ CLI + 2.7225 ∗ CG@3 − 8.2646 ∗ CG@10

− 5.9392 ∗ DCG@3 + 26.7016 ∗ DCG@10 + 0.0247 ∗ NDCG@3

+ 0.2429 ∗ MaxR + 3.6601 ∗ MeanR + −5.0641 ∗ RBP(x = 0.1)

− 6.8486 ∗ RBP(x = 0.5) − 47.4918 ∗ RBP(x = 0.8)

+ 29.0866 ∗ RBP(x = 0.95) − 0.0586 ∗ ERR

+ 0.0175 ∗ Precision@3 − 0.2638 ∗ Precision@5

+ 24.7966 ∗ Precision@10 + 0.1349 ∗ RelDocCount1

+ 0.1157 ∗ RelDocCount2 − 11.6368 ∗ ClickPrecision

− 11.6368 ∗ QueryCostBenefit2 + 3.6601 ∗ AvgClickRel

− 5.1123

(A5)

F_known − itemon = 0.5708 ∗ PLC − 0.2833 ∗ QuerySim

− 0.0030 ∗ ActionCount − 0.0006 ∗ MaxScroll

− 1.344e − 05 ∗ TimeToFirstClick

+ 6.420e − 6 ∗ TotalContentTime

− 0.0026 ∗ FRES − 0.0084 ∗ CLI

+ 3.1930
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(A6)

F_known − itemon+off = −0.0001 ∗ ScrollDistance − 0.0004 ∗ MaxScroll

+ 0.4191 ∗ MinRR − 0.2262 ∗ AvgClickRank

+ 0.0679 ∗ PLC + 0.0346 ∗ HighestClickRank

− 0.1210 ∗ QuerySim + 0.0234 ∗ FKGL − 0.0371 ∗ SMOG

+ 0.0003 ∗ ARI − 0.0091 ∗ CLI + 0.2452 ∗ MaxR

− 0.0775 ∗ MinR + 0.0173 ∗ RelDocCount2

+ 2.2506

(A7)

F_allon = −0.001795 ∗ ActionCount − 0.002198 ∗ MaxScroll

− 2.9299 ∗ MeanRR + 1.0501 ∗ MinRR

− 0.3766 ∗ AvgClickRank − 0.0191 ∗ LowestClickRank

+ 0.4014 ∗ PLC + 0.1795 ∗ HighestClickRank

+ 0.3193 ∗ #Clicks − 0.3826 ∗ QuerySim

+ 0.7985 ∗ SessionEnd + 0.1325 ∗ SMOG

+ 2.0223

(A8)

F_allon+off = −0.0174 ∗ ActionCount + 0.0171 ∗ MouseMoveCount

+ 0.0002 ∗ ScrollDistance − 0.0006 ∗ MaxScroll

− 2.8137 ∗ MeanRR + 0.6774 ∗ MinRR − 0.1579 ∗ MaxRR

− 0.5110 ∗ AvgClickRank + 0.0345 ∗ LowestClickRank

− 0.1179 ∗ PLC + 0.2335 ∗ #Clicks + 0.0010 ∗ NewTerms

− 0.1527 ∗ QuerySim + 0.2915 ∗ SessionEnd + 0.1621 ∗ FRES

+ 1.1837 ∗ FKGL + −0.6682 ∗ GFI + 0.0080 ∗ SMOG

+ 0.0000 ∗ ARI − 0.0069 ∗ CLI + 23.7345 ∗ CG@3

+ 13.6403 ∗ CG@5 − 33.4357 ∗ CG@10 − 51.3511 ∗ DCG@3

− 36.4389 ∗ DCG@5 + 118.0293 ∗ DCG@10 + 0.0483 ∗ NDCG@3

− 0.1431 ∗ NDCG@5 + 0.1519 ∗ NDCG@10 + 0.1604 ∗ MaxR

− 0.0281 ∗ MinR + 3.8755 ∗ MeanR − 13.4478 ∗ RBP(x = 0.1)

+ 36.9579 ∗ RBP(x = 0.5) − 246.4284 ∗ RBP(x = 0.8)

+ 158.0059 ∗ RBP(x = 0.95) + 0.1633 ∗ ERR

+ 0.1528 ∗ Precision@3 − 0.2735 ∗ Precision@5

+ 25.2055 ∗ Precision@10 + 0.1274 ∗ RelDocCount1

+ 0.0840 ∗ RelDocCount2 − 11.9427 ∗ ClickPrecision

− 11.9427 ∗ QueryCostBenefit2 + 3.8755 ∗ AvgClickRel

− 13.7308
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A.2 Metrics fitted on the KDD dataset

(A9)
F_explorationon = 0.0139 ∗ MaxRR − 0.9012 ∗ AvgClickRank

+ 1.0712 ∗ PLC + 0.1727 ∗ HighestClickRank

+ 0.3714 ∗ #Clicks + 0.8835 ∗ SessionEnd + 1.9670

(A10)

F_explorationon+off = −0.0002 ∗ ScrollDistance + 0.6656 ∗ PLC

+ 0.8788 ∗ SessionEnd − 0.4733 ∗ GFI

+ 0.0084 ∗ ARI − 0.3873 ∗ CG@3 + 0.4381 ∗ DCG@5

+ 0.4669 ∗ NDCG@10 + 0.2880 ∗ MaxR + 1.1829

(A11)

F_exploitationon = −0.0018 ∗ ActionCount − 0.0011 ∗ MaxScroll

− 1.7031 ∗ MeanRR + 1.0807 ∗ MinRR

+ 0.0116 ∗ LowestClickRank + 0.5176 ∗ PLC

+ 0.1537 ∗ HighestClickRank + 0.1320 ∗ #Click

− 0.6024 ∗ QuerySim + 1.0086 ∗ SessionEnd

+ 0.1314 ∗ SMOG + 1.5640

(A12)

F_exploitationon+off = −0.0013 ∗ ActionCount + 0.0001 ∗ MaxScroll

+ 0.8984 ∗ MinRR + 0.1291 ∗ PLC

+ 0.1149 ∗ HighestClickRank − 0.3129 ∗ QuerySim

+ 0.8929 ∗ SessionEnd + 0.0229 ∗ FKGL

− 0.0242 ∗ GFI + 0.8032 ∗ CG@3 + 0.3682 ∗ CG@10

− 2.2387 ∗ DCG@3 − 1.3680 ∗ DCG@10

+ 0.4560 ∗ NDCG@3 − 0.3209 ∗ NDCG@5

− 0.1335 ∗ NDCG@10 − 0.5525 ∗ MeanR

− 0.1330 ∗ RBP(x = 0.1) + 5.3020 ∗ RBP(x = 0.5)

− 0.1488 ∗ ERR − 0.5917 ∗ Precision@3

+ 0.0402 ∗ RelDocCount1 + 1.0027 ∗ ClickPrecision

+ 1.0702 ∗ QueryCostBenefit2 + 0.4251 ∗ AvgClickRel

+ 1.1105

(A13)
F_known − itemon = −0.0007 ∗ ScrollDistance − 4.3411 ∗ MeanRR

+ 0.1078 ∗ LowestClickRank + 1.6888 ∗ PLC

+ 0.6119 ∗ SessionEnd − 0.0035 ∗ FRES + 2.9388
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(A14)

F_known − itemon+off = −0.0008 ∗ ActionCount + −0.0017 ∗ MouseMoveCount

− 0.0003 ∗ ScrollDistance − 0.0029 ∗ MaxScroll

− 0.3455 ∗ MeanRR + 1.3413 ∗ MinRR

− 0.9586 ∗ MaxRR − 0.4687 ∗ AvgClickRank

− 0.0273 ∗ LowestClickRank + 0.1549 ∗ PLC

+ 0.1413 ∗ HighestClickRank + 0.5481 ∗ #Clicks

− 0.0604 ∗ NewTerms − 0.9784 ∗ QuerySim

+ 0.4799 ∗ SessionEnd + 0.5366 ∗ FRES

+ 3.8820 ∗ FKGL − 2.6873 ∗ GFI

+ 0.1093 ∗ SMOG + 0.0006 ∗ ARI + 0.0096 ∗ CLI

− 5.0538 ∗ CG@3 − 5.5758 ∗ CG@5 − 2.0028 ∗ CG@10

+ 10.6242 ∗ DCG@3 + 15.1764 ∗ DCG@5

+ 6.8286 ∗ DCG@10 − 0.2600 ∗ NDCG@3

+ 0.0545 ∗ NDCG@5 + −0.2418 ∗ NDCG@10

− 0.0284 ∗ MaxR − 0.0424 ∗ MinR − 0.1541 ∗ MeanR

− 5.7473 ∗ RBP(x = 0.1) − 29.4309 ∗ RBP(x = 0.5)

+ 0.4429 ∗ RBP(x = 0.8) − 1.1266 ∗ RBP(x = 0.95)

+ 0.7724 ∗ Precision@3 − 0.9949 ∗ Precision@5

+ 2.2600 ∗ Precision@10 + 0.0662 ∗ RelDocCount1

+ 0.0489 ∗ RelDocCount2 − 0.8741 ∗ ClickPrecision

− 0.6607 ∗ QueryCostBenefit2 + 0.2771 ∗ AvgClickRel

− 48.5396

(A15)

F_allon = −0.0017 ∗ ActionCount − 0.0001 ∗ ScrollDistance

− 0.0019 ∗ MaxScroll − 1.1029 ∗ MeanRR

+ 1.6565 ∗ MinRR − 1.0159 ∗ MaxRR − 0.6754 ∗ AvgClickRank

+ 0.5492 ∗ PLC + 0.1892 ∗ HighestClickRank

+ 0.5866 ∗ #Clicks − 0.3657 ∗ QuerySim

+ 0.7161 ∗ SessionEnd − 0.0042 ∗ FRES + 2.6961

(A16)
F_allon+off = −0.0004 ∗ ScrollDistance + 0.0527 ∗ LowestClickRank

+ 0.9360 ∗ PLC + 0.5567 ∗ SessionEnd

+ 0.8777 ∗ RBP(x = 0.8) + 1.1917
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