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ABSTRACT 

We present a complete set of chemo-structural descriptors to significantly extend the applicability 

of machine-learning (ML) in material screening and mapping energy landscape for 

multicomponent systems. These new descriptors allow differentiating between structural 

prototypes, which is not possible using the commonly used chemical-only descriptors.   

Specifically, we demonstrate that the combination of pairwise radial, nearest neighbor, bond-angle, 

dihedral-angle and core-charge distributions plays an important role in predicting formation 

energies, bandgaps, static refractive indices, magnetic properties, and modulus of elasticity for 

three-dimensional (3D) materials as well as exfoliation energies of two-dimensional (2D) layered 

materials. The training data consists of 24549 bulk and 616 monolayer materials taken from 

JARVIS-DFT database. We obtained very accurate ML models using gradient boosting algorithm. 

Then we use the trained models to discover exfoliable 2D-layered materials satisfying specific 

property requirements. Additionally, we integrate our formation energy ML model with a genetic 

algorithm for structure search to verify if the ML model reproduces the DFT convex hull. This 

verification establishes a more stringent evaluation metric for the ML model than what commonly 

used in data sciences. Our learnt model is publicly available on the JARVIS-ML website 

(https://www.ctcms.nist.gov/jarvisml ) property predictions of generalized materials.  
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I. INTRODUCTION 

Machine learning has shown a great potential for rapid screening and discovery of materials [1]. 

Application of machine learning methods to predict material properties has started to gain 

importance in the last few years, especially due to the emergence of publicly available databases 

[2-6] and easily applied ML algorithms [7-9]. Chemical descriptors based on elemental properties 

(for instance, the average of electronegativity and ionization potentials in a compound)  have been 

successfully applied for various computational discoveries such as alloy-formation [10]. 

Nevertheless, this approach is not suitable for modeling different structure-prototypes with the 

same composition because they ignore structural information. Structural features have been 

recently proposed based on Coulomb matrix [11], partial radial distribution function [12], Voronoi 

tessellation [13], Fourier-series [14], graph convolution networks  [15] and several other recent 

works [16-20]. However, none of these representations explicitly include information such as 

bond-angles and dihedral angles, which have been proven to be very important during traditional 

computational methods such as classical force-fields (FFs) [21] at least for the extended solids. 

Hence, we introduced those descriptors in our ML model. Additionally, we are also introducing 

charge-based descriptors, inspired by classical-force field community such as charge-optimized 

many-body potentials (COMB) [22], reaction-force fields (ReaxFF) [23] and Assisted Model 

Building with Energy Refinement (AMBER) [24]. We first introduce a unique set of classical 

force-field inspired descriptors (CFID). Then, we give a brief overview of gradient boosting 

decision tree algorithm (GBDT) and JARVIS-DFT database on which CFID is applied. After that, 

we train two classification and twelve regression models for materials properties. We use the 

regression models to screen new 2D-layered materials based on chemical complexity, energetics 

and bandgap. We verify the machine learning predictions with actual density functional theory 
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calculations. Finally, we integrate a genetic algorithm with formation energy machine learning 

model to generate all possible structures of few selected systems. The energy landscape in terms 

of convex hull plot from the machine learning model is in great agreement with that from actually 

density functional theory calculations. This leads to a new computationally less expensive way to 

map energy landscape for multicomponent systems.  

II. CLASSICAL FORCE-FIELD INSPIRED DESCRIPTORS (CFID) 

We focus on development of structural descriptors such as radial distribution function, nearest 

neighbor distribution, angle and dihedral distributions, and we combine them with chemical 

descriptors, such as averages of chemical properties of constituent elements and average of atomic 

radial charge (like COMB/ReaxFF formalisms), to produce a complete set of generalized classical 

force-field inspired descriptors (CFID). The radial distribution function (RDF) and neighbor 

distribution function are calculated for each material up to 10Å distance. Bond-angle distributions 

(ADF) are calculated for “global” nearest neighbors (ADF-a) and for “absolute” second neighbor 

(ADF-b). For multi-component systems, we define as “global nearest neighbor distance” as the 

distance that includes at least one pair interaction for each combination of the species (AA, AB, 

and BB for an AB system, for instance). Conversely, the “absolute second neighbor distance” only 

includes the first two shells of neighbors, irrespective of their specie-type. Dihedral angle 

distributions (DDF) are included to capture four-body effects and are only calculated for the global 

first neighbors. We assume that the interatomic interactions are important only up to four-body 

terms, and higher order contributions are negligibly small. For every single element, we obtained 

the atomic radial charge distribution from 0 to 10 Å from the pseudopotential library [25]. The 

average of the charge distributions for all constituent elements in a system gives a fixed-length 

descriptor for the material. A pictorial representation of the CFID descriptors used here is given in 



4 
 

Fig. 1. A full list of chemical features is given in Table S1 [26]. We also take the sum, difference, 

product, and quotient of these properties leading to additional chemical descriptors. We cover 82 

elements in the periodic table for chemical descriptors. The total number of descriptors found by 

combining the structural and chemical descriptors is 1557. It is to be noted that the CFID is 

independent of using primitive, conventional or supercell structures of a material, hence, it 

provides great advantage over many conventional methods such as Coulomb matrix where 

primitive structure must be used for representing a material [27]. 

 

 

 

Fig. 1 Figure showing different components of classical force-field inspired descriptors (CFID) 

for Si diamond structure. a) average radial-charge density distribution of constituent elements. b) 

total radial distribution function of the crystal structure, c) total angle distribution function up to 
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the first-nearest neighbor, d) total dihedral-angle distribution up to the first-nearest neighbor, e) 

average chemical properties of constituent elements. The nearest neighbor distribution was 

obtained like the RDF.  

III. TRAINING DATA AND ALGORITHM 

For model training, we use our publicly available JARVIS-DFT database [5] which (at the time of 

writing) consists of 24549 bulk and 616 monolayer 2D materials with  24549 formation energies, 

22404 OptB88vdW (OPT) and 10499 TBmBJ (MBJ) bandgaps and static dielectric constants [28], 

10954 bulk and shear modulus [29] and 616 exfoliation energies for 2D layered materials. The 

database consists of multi-species materials up to 6 components, 201 space groups, and 7 crystal 

systems. Moreover, the dataset covers 1.5 % unary, 26% binary, 56 % ternary, 13 % quaternary, 2 

% quinary and 1% senary compounds. The number of atoms in the simulation cell ranges from 1 

to 96. To visualize the descriptor data, we perform- t-distributed stochastic neighbor embedding 

(t-SNE) [30]. The t-SNE reveals local structure in high dimensional data, placing points in the 

low-dimensional visualization close to each other with high probability if they have similar high-

dimensional feature vectors. Results obtained with complete CFID descriptors for all the materials 

in our dataset are shown in Fig. 2a; the marker colors indicate the crystal system of each material. 

These plots clearly demonstrate that our database is well-dispersed, and that the data are not biased 

in favor of a particular type of material. Additionally, materials with similar chemical descriptors 

tend to be correlated in terms of crystal structure as well. We also visualize the range of target 

property data. An example of formation energy is shown in Fig. 2b. Clearly, the data is more 

centered around -4 to 2 eV/atom. Target property distributions of other properties are given in the 

supplementary information (Fig. S1 [26]). 
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Of the many ML algorithms available to date, only a small fraction offers high interpretability.  To 

enhance interpretability of the ML models we chose gradient boosting decision trees (GBDT) 

method [25]. The GBDT method allows obtaining the feature importance for training which can 

be used to interpret the guiding physics of a model. In this work, we use two classifications and 

twelve independent regression models with gradient boosting decision tree (GBDT) [9,31,32]. The 

GBDT model takes the form of an ensemble of weak decision tree models. Unlike common 

ensemble techniques such as AdaBoost and random forests [32], the gradient boosting learning 

procedure consecutively fits new models to provide a more accurate estimate of the response 

variables. The principal idea behind this algorithm is to build the new base learners to be 

maximally correlated with the negative gradient of the loss function, associated with the whole 

ensemble. Suppose there are N training examples:  {(xi, yi)}N then GBDT model estimates the 

function of future variable x by the linear combination of the individual decision trees using: 

fm(x) = ∑ T(x; θm)M
m=1                                                                                                              (1) 

Where T(x; θm) is the i-th decision tree, θmis its parameters and M is the number of decision trees. 

The GBDT algorithm calculates the final estimation in a forward stage-wise fashion. Suppose the 

initial model of x is f0(x), then the model in m step can be obtained by the following relation: 

fm(x) = fm−1(x) + T(x; θm)                                                                                                      (2) 

where fm−1(x) is the model in (m−1) step. The parameter θm is learned by the principle of 

empirical risk minimization using: 

θm̂ = arg θm

min ∑ L(yi, fm−1(x) + T(x; θm))N
i=1                                                                             (3) 
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where L is the loss-function. Because of the assumption of linear additivity of the base function, 

we estimate the θm for best fitting the residual L(yi, fm−1(x)). 

The parameters of a decision tree model are used to partition the space of input variables into 

homogeneous rectangular areas by a tree-based rule system. Each tree split corresponds to an if- 

then rule over some input variables. This structure of a decision tree naturally models the 

interactions between predictor variables. At each stage, parameters are chosen to minimize loss 

function of the previous model using steepest descent. As a standard practice, we use train-test 

split (90 %:10 %) [33,34] , five-fold cross-validation [10] and examining learning curve (Fig. S2 

[26]) in applying the GBDT with CFID. The 10 % independent test set is never used in the 

hyperparameter optimization or model training so that the model can be evaluated on them. We 

performed five-fold cross-validation on the 90 % training set to select model hyperparameters. 

During training, we use the early stopping regularization technique to choose the number of 

decision trees (T(x; θm) ): we grow the GBDT model by 10 trees at a time until the mean absolute 

error (MAE) on the validation set converges. Then other hyperparameters such as learning rate 

and the number of leaves of GBDT are optimized via the random search of five-fold cross-

validation with the optimal number of trees from the previous step. The optimized model is used 

to produce learning curve of the model to check if the model can improve by addition of data. 

Finally, the feature importance of all the descriptors is obtained with GBDT to interpret the 

importance of various descriptors in training a model. Additionally, we provide comparison of 

learning curves for OPT and MBJ bandgap learning curves in Fig. S3 [32]. We observe that for 

similar data-sizes, the MBJ bandgap ML model still has higher MAEs than OPT ML model.  The 

learning curves in Fig. S2 [35] can be used to examine training size dependent accuracies of 

various models. 
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Fig. 2 Visualization of data and classification problems. a) t-SNE plot, b) histograms for formation 

energy distribution, c) ROC-curve for metal/insulator classification and d) ROC-curve for 

magnetic/non-magnetic material classification. 

IV. MODEL PERFORMANCE AND INTERPRETATIONS 

To apply the CFID descriptors, we tested metal/insulator and magnetic/non-magnetic 

classification problems. The performance of the classification model is measured from the area 

under the receiver operating characteristic (ROC) curve. For metal/insulator and magnetic/non-

magnetic classification problems, we obtained the area as 0.95 and 0.96, respectively (fig. 2c and 

2d). The results clearly show that the successful applications of CFID for material classifications. 
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In addition to predicting exact bandgap (Eg) values (using regression) and then screen materials, 

we can simply classify materials into metallic (Eg=0) and non-metals (Eg>0). Similar classification 

can be applied for magnetic/non-magnetic systems. 

   

Table. 1: Statistical summary of different regression models. We report the number of data points 

and mean absolute error (MAE) of classical force-field inspired descriptor (CFID) models on 10% 

held data, MAE of DFT predictions compared to experiments, mean absolute deviation (MAD) of 

the test data (DFT). The bandgaps and refractive indices were obtained with OptB88vdW (OPT) 

and Tran-Blaha modified Becke-Johnson potential (MBJ). All other quantities were obtained with 

OPT only. 

Property #Data-

points 

MAECFID-DFT MAEDFT-Exp MADDFT 

Formation energy 

(eV/atom) 

24549 0.12 0.136 [13] 0.809 

Exfoliation energy 

(meV/atom) 

616 37.3 - 46.09 

OPT-bandgap (eV) 22404 0.32 1.33 [28] 1.046 

MBJ-bandgap (eV) 10499 0.44 0.51 [28] 1.603 

Bulk modulus (GPa) 10954 10.5 8.5-10.0 

[29,36] 

49.95 

Shear modulus 

(GPa) 

10954 9.5 10.0 [29,36] 23.26 

OPT-nx (no unit) 12299 0.54 1.78 [28] 1.152 



10 
 

OPT-ny (no unit) 12299 0.55 - 1.207 

OPT-nz (no unit) 12299 0.55 - 1.099 

MBJ-nx (no unit) 6628 0.45 1.6 [28] 1.025 

MBJ-ny (no unit) 6628 0.50 - 0.963 

MBJ-nz (no unit) 6628 0.46 - 0.973 

 

 

Fig. 3 Performance and interpretation of formation energy ML model. a) learning curve, b) ML 

prediction on 10 % held samples, c) group wise feature importance of descriptors, d) comparison 

of model performance by incrementally adding various structural descriptors. 

Next, we perform twelve independent regression tasks on above-mentioned properties. The mean 

absolute error (MAE) results obtained from applying the models on 10 % held set) are shown in 
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Table. 1. Because each property has different units and in general a different variance, we also 

report the mean absolute deviation (MAD) for each property to facilitate unbiased comparison of 

the model performance between different properties. The MAE and MAD values were computed 

as: 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑥𝑖 − 𝑦𝑖|

𝑛
𝑖=1                         (4) 

𝑀𝐴𝐷 =
1

𝑛
∑ |𝑥𝑖 − 𝑥̅|𝑛

𝑖=1              (5) 

𝑥̅ =
1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1                (6) 

 For MAE calculations, xi represents the predicted ML predicted data and yi the DFT data for the 

i-th sample. The MAD calculations (MADDFT) are intended as a robust estimate of the DFT values. 

While MAE shows the accuracy of the models, the MAD helps understand the statistical variability 

in the data. Clearly, all the ML model-uncertainties (MAECFID-DFT, δML) are comparable to the 

experimental error of DFT predictions (MAEDFT-Exp, δDFT). We assert that the MAEs obtained here 

are acceptable for screening purposes. The ML MAE values do not directly compare with DFT, 

because the reference data for DFT is experimental data while the reference for ML models is the 

DFT data. However, the MAEs can help identify the range in predicted values: our CFID GBDT 

model fits the DFT training data about as well as the DFT itself matches experimental data. Also, 

assuming the error in DFT and ML to be independent, the compound uncertainties can be given 

as: 

 δ = √(δML
2 + δDFT

2 )                (7) 

Currently, there are several formation energy ML models in the literature [13,15] with MAE (δML)  

ranging from 0.039 to 0.25 eV/atom. We assume that the MAE should be independent of different 
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datasets because the structures originate from the ICSD database. The MAE of our model (0.12 

eV/atom) is in the same range as all of those, and its learning curve (shown in Fig. 3a) clearly 

shows that the model can be further improved by adding more data. We have achieved comparable 

ML model accuracy by incorporating additional domain knowledge (i.e. structural features in 

addition to chemical features).  

Our bandgap model predictions for OPT (0.32 eV) is better than MBJ (0.44 eV) mainly because 

of the number of data points included during training (19782 for OPT versus 9546 for MBJ). In 

both cases, metals and non-metals were included during training.  In general, MBJ ML model 

should be preferred to predict band gaps because of the inherent band gap underestimation problem 

in OPT [28]. However, the MAE of this model is slightly larger than the OPT one right now 

because its training set is almost half. As we add more data, we expect to decrease the MAE.  

We also demonstrate the applicability of ML models for predicting static refractive indices and 

exfoliation energies. The OPT and MBJ refractive index models were trained for non-metallic 

systems only because DFT methods generally do not consider intra-band optoelectronic 

transitions. To our knowledge, we are the first to apply ML to predictions of refractive indices and 

exfoliation energies. Our MAE for the refractive indices is between 0.45 to 0.55, depending on the 

model (OPT or MBJ) and crystallographic direction.  We monitor the MAE during the learning 

curves as they reach a plateau. Interestingly, we achieved a very accurate refractive index model 

(reaching the plateau) with training sets of the order of 103, while the models for all the other 

examined quantities required training sets of the order of 104 to achieve high accuracy. However, 

specific hyperparameter and learning curve dependence on a particular type of target data in a ML 

model is beyond the scope the present paper. Generally, these axes are well-defined from 

experiments (X-ray diffraction, ellipsometry and similar techniques), so the average of the 
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refractive indices in x, y and z-crystallographic dimensions can be compared to experimental data. 

Also, training on individual refractive indices allow to predict anisotropy in optical property data. 

Our work proves that though having relatively smaller dataset, highly accurate ML models can be 

obtained with CFID descriptors because of the chemo-structural information. Generally, more the 

data more accurate the ML models, but we show by adding detailed domain knowledge can also 

improve accuracy in the materials domain. Additionally, the idea is to screen materials based on 

several properties such as formation, energy, bandgap, refractive index, exfoliation energy and 

magnetic moment etc. with fast ML models, which in regular DFT or other methods require 

separate calculations and hence ML can accelerate the process.  

Recently, 4079 materials have been predicted to be layered using the data-mining and lattice 

constant approach [5,37]. Exfoliation energies are ultimately needed to computationally confirm 

whether a material is exfoliable or not. A material is considered exfoliable if its exfoliation energy 

is less than 200 meV/atom. As such DFT calculations are very expensive, we only have 616 DFT 

calculated exfoliation energies, which makes for a very small training set. Our MAE for exfoliation 

energy ML model is 37 meV/atom. Given that the threshold for a material to be exfoliable is 200 

meV/atom, our MAE is reasonable for initial screening of exfoliable materials. Our bulk and shear 

modulus models have MAEs that are comparable to DFT MAE (10 GPa) [29,36] and previous ML 

models (9 GPa and10 GPa) [38]. It is to be noted that 2494 descriptors were used in Isayev et al.  

[38] model, while a comparable accuracy was achieved here with fewer descriptors. 

Next, we interpret our ML models using feature importance analysis for structural, chemical and 

charge descriptors, as shown in Fig. 3c in the case of formation energies. Not surprisingly, the 

chemical features are found to be the most important during training. Chemical descriptors such 

as average of heat of fusion, boiling and melting point of constituent elements along with cell size 
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based descriptors such as packing fraction and density of the simulation cell play very important 

role in providing accurate models. Although chemical descriptors are the major players in 

determining the accurate model, RDF and ADF are also found to be very important. Interestingly, 

the charge descriptors were found to be the least important. Further analysis shows that radial 

distribution function (6.8 Å bin, 5.5 Å bin), nearest neighbor (5.5 Å bin) angle distribution (178o, 

68o) and DDF (43o and 178o) were found as some of the most important structural features of the 

formation energy model. This is intuitively tangible because angles such as 60 o and 180 o are key 

in differentiating materials such as FCC and BCC crystals. The RDF and NN contribution for 0 Å 

to 0.6 Å play the least important role among all the RDF and NN descriptors. This is also obvious 

as no bond-length exists at such small distances. We find that number of unfilled d and f orbitals-

based descriptors play important roles in classifying magnetic/non-magnetic nature of a material. 

We have added feature importance of different models to compare their importance in training 

different models in the supplementary information [26]. We observe that quantities such as 

formation energy, modulus of elasticity, refractive index are highly dependent on density of the 

simulation cell, RDF, ADF, packing fraction while quantities such as bandgap, magnetic moment 

are mainly dependent on chemical property data, as seen by top ten descriptors of each model in 

SI. Based on the above argument, we claim that our models can capture important physical insights 

of a problem though they are primarily data-driven.  

To quantify the effect of introducing structural descriptors, we train four different formation 

energy models by incrementally adding structural descriptors: a) average chemical and charge 

descriptors (Chm) only, b) Chm with RDF and NN, c) Chm with RDF, NN and ADF, and d) 

including all the descriptors. The MAE of these models is shown in Fig. 3d. We observe that as 

we add more structural descriptors, the MAE gradually decreases. The lower MAE values clearly 
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establish that there is indeed improvement due to the introduction of structural descriptors.  The 

trained model parameters for each model was saved and can be used to make predictions on 

arbitrary materials. An interactive web app for predicting the formation energy and properties of 

arbitrary materials based on the trained CFID GBDT models is available at 

https://www.ctcms.nist.gov/jarvisml/ . The training data and code for ML training is already 

available at: https://github.com/usnistgov/jarvis  . 

V. SCREENING OF 2D-MATERIALS AND INTEGRATING GENETIC 

ALGORITHM 

As an application, we use the ML models to discover new semiconducting 2D layered materials. 

We first obtain all the 2D materials predicted from lattice constant approach [5] and the data-

mining [37] approaches. This results in 4079 possible candidates. Only a few hundreds of them 

have been computationally proven to be exfoliable yet because exfoliation energy calculations in 

DFT are computationally expensive. The above-mentioned approaches can be combined with ML 

models to screen 2D layered materials. For example, using out trained ML models, we successively 

screen materials to have MBJ bandgaps in the range of 1.2 eV to 3 eV, then negative formation 

energies and lastly exfoliation energies less than 200 meV/atom. This procedure quickly narrows 

down the options to 482. At this point, we chose structures with the number of unique atom-types 

less than 3 (to lessen complexity in future experimental synthesis), which resulted in 65 candidates. 

Some of the materials identified by this screening procedure were CuI (JVASP-5164), Mo2O5 

(JVASP-9660) and InS (JVASP-3414). To validate, we calculated exfoliation energy for CuI using 

DFT (as an example case) on bulk and single layer counterparts and found the exfoliation energy 

to be 80.0 meV/atom, which confirmed that it should be exfoliable 2D materials. However, we 

found that for InS and Mo2O5, the DFT exfoliation energy were 250 and 207 meV/atom, which is 

https://www.ctcms.nist.gov/jarvisml/
https://github.com/usnistgov/jarvis
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not too high from 200 meV/atom cut-off. We have already found several other iodide, oxide and 

chalcogenide materials using the lattice constant criteria [5]. These examples show that the DFT 

application, in series, of the ML models for various physical properties can significantly accelerate 

the search for new materials for technological applications. 

Lastly, we feel it is important to point out that, although the accuracy metrics presented in Table 1 

are compelling from a data science perspective, the metrics may not be sufficient for materials 

science applications, as there are many physical constraints that should be satisfied as well. The 

most important of them is the identification of the correct ground state structure. For instance, a 

face-centered cubic (FCC) Cu should be ground state among all the possible 

combinations/rearrangement of Cu atoms. To include this metric in our models, we integrate our 

ML model with genetic algorithm (GA) search [39,40] to produce a large number of possible 

structures. In the Cu example, we start with Cu structure prototypes such as FCC, body-centered 

cubic (BCC) Cu and let it evolve using GA. After 5000 structure-evaluations, we found only one 

phase of Cu in ML prediction to be more stable than FCC Cu. This phase turns out to be the 

metastable tetragonal Cu phase (space group I4/mmm) shown in Fig. S4 [26].  The tetragonal 

structure was also observed during Bain-path study of Cu-system [41]. We carried out DFT 

calculation on this structure and found that the structure was only 0.01 eV/atom higher in energy 

than the FCC phase. This energy difference value lies much below than MAE of our ML formation 

energy model, and therefore validate the applicability of our ML approach. Such a GA-search is 

not feasible in ML models with only chemical descriptors. We did a similar search for Mo-S 

system as well. We used the known prototypes of Mo-S systems as parents and produced offspring 

structures using GA. Our goal was to check if the ML models find the same ground state structure 

as DFT. The GA allows the opportunity to predict ground-state structure by just calculating energy 
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of different off-spring structures without calculating forces on atoms or explicitly performing 

structure relaxations. The 2H-MoS2  structure is known to be the ground state for the Mo-S system 

[35,42] and this structure was indeed found to be the most stable one during the GA search as 

shown in Fig. 4a. In addition, the ML model also identified new Mo-S configurations as stable 

structures. These structures were MoS29, MoS27, Mo29S, and Mo21S. A snapshot of Mo21S is shown 

in Fig. S5. We carried out similar searches for W-S and Mo-W-S system. We found that 2H-WS2  

structure is indeed stable [43] in ML model based convex hull plot as shown in Fig. 4b. High W 

and high-S containing structures (W29S, WS20, W22S, W28S and W21S) were also observed in W-

S convex hull plot similar to Mo-S system. The stable and unstable structures are denoted with 

blue and red spheres respectively. The Mo-W-S convex hull diagram in Fig. 4c shows the 

applicability of ML and GA combined model to map energy space of multicomponent system as 

well.  The ML based GA method is quite inexpensive due to fast formation energy ML model. 

 

It is to be noted that classical force-fields ( such as COMB [44] and ReaxFF [45]) are also prone 

to finding unphysical metastable structures during GA search. Also, using the current methodology 

it is possible to map energy landscape of all possible multicomponent systems of 82 elements as 

mentioned above. For FF training, this would be unfeasible because of high-dimensional chemical 

combinations. After the GA with ML model, DFT calculations should be carried out only on low 

energy structures to reduce computational cost as an application. The ML-screened and DFT-

validated structures can then be used in higher scale modeling method such as CALPHAD [46]. 

Most importantly, phase space mapping such as with the GA search cannot be performed with the 

chemical descriptors only, because it doesn’t have any insight on the crystal structure. This shows 

an excellent field of application for our formation-energy ML model.  
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Fig. 4) Convex-hull plot using machine learning formation energy model as energy calculator in 

genetic algorithm. a) Mo-S system, b) W-S system, and c) Mo-W-S system. 

 

 

 

VI. CONCLUSIONS 

In conclusion, we have introduced a complete set of chemo-structural descriptors and applied it to 

learning a wide variety of material properties, obtaining very high accuracy while training on a 

relatively small dataset for multicomponent systems. Although in this work the ML models were 

trained on specific properties, the same descriptors can be used for any other physical property as 

well. We have demonstrated the application of ML in materials to screen exfoliable 

semiconducting materials with specific requirements (like energy gap), which can drastically 
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expedite material discovery. Integration with the evolutionary search algorithm (GA) opens a new 

paradigm for the accelerated investigation of high-dimensional structure and energy landscape. It 

also helps us understand the gap between the conventional data science and materials specific 

application of ML techniques. We envision that ML can be used a pre-screening tool for DFT like 

DFT is often used as screening tool for experiments. Genetic algorithm test for formation energy 

model shows some unphysical structures but those are also encountered in classical-forcefields. 

However, compared to intensive training process involved in conventional FFs, the present 

methodology should be preferred.   The learnt model parameters and the computational framework 

are distributed publicly on the web as they can play a significant role in advancing the application 

of ML techniques to material science. 
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Fig. S1 Data distribution of material properties.  
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Fig. S2 Learning curve, prediction on 10 % held samples and five-fold cross-validation results of 

models. 
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Fig S3. Comparison of learning curves for OPT and MBJ ML models. 
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Table S1a. Components of classical force-field inspired descriptors (CFID) 

Descriptor name Array 

index 

Total 

number 

Chemical (mean_chem) 0-437 438 

Simulation cell-size (cell) 438-441 4 

Radial charge (mean_chg) 442-819 378 

Radial distribution function (rdf) 820-919 100 

Angular distribution upto first nearest neighbor cutoff (adfa) 920-1098 179 

Angular distribution upto second nearest neighbor cutoff (adfb) 1099-1277 179 

Dihedral distribution upto first nearest neighbor cutoff (ddf) 1278-1456 179 

Nearest neighbor distribution (nn) 1457-1556 100 

Total  1557 

 

Table S1b. Details of element based chemical descriptors  

Descriptor name Details 

jv_enp Energy per atom of an element from JARVIS-DFT 

KV Bulk modulus of an element from JARVIS-DFT 

GV Shear modulus of an element from JARVIS-DFT 

C-m (m=0 to 35) Elastic constants of an element from JARVIS-DFT (total 36) 

op_eg OptB88vdW bandgap during SCF for an element 

mop_eg OptB88vdW bandgap during linear optics for an element  

voro_coord Voronoi coordination number of an elemental-crystal structure 

ndunfilled Number of unfilled d-orbitals 

ndvalence Number of valence d-orbitals 

nsunfilled Number of unfilled s-orbitals 

nsunfilled Number of valence s-orbitals 

npunfilled Number of unfilled p-orbitals 

npvalence Number of valence p-orbitals 

nfunfilled Number of unfilled f-orbitals 

nfvalence Number of valence f-orbitals 

first_ion First ionization energy of an element 

oq_bg OQMD bandgap for an element 

elec_aff Electron affinity 

vol_pa Volume per atom of an element 

hfus Heat of fusion of an element 

oq_enp OQMD energy per atom 

Polariz Polarizability 

Z Atomic number 

X Electronegativity 

row Row number in the periodic table 

column Column number in the periodic table 

max_oxid_s Maximum oxidation state 

min_oxid_s Minimum oxidation state 
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block s,p,d,f block assigned to 0,1,2,3 blocks 

is_alkali Is it alkali element 0/1 

is_alkaline Is it alkaline element 0/1 

is_metalloid Is it metalloid element 0/1 

is_noble_gas Is it noble gas element 0/1 

is_transition_metal Is it transition element 0/1 

is_metalloid Is it metalloid element 0/1 

is_halogen Is it halogen element 0/1 

is_lanthanoid Is it lanthanoid element 0/1 

is_actinoid Is it actinoid element 0/1 

atom_mass Atomic mass 

atom_rad Atomic radii 

therm_cond Thermal conductivity 

mol_vol Molar volume 

bp Boiling point 

mp Melting point 

avg_ion_rad Average ionic radii 

polzbl Polarizability 

e1 Static dielectric function in x-direction from JARVIS-DFT using 

OptB88vdW functional 

e2 Static dielectric function in y-direction from JARVIS-DFT using 

OptB88vdW functional 

e3 Static dielectric function in z-direction from JARVIS-DFT using 

OptB88vdW functional 

me1 Static dielectric function in x-direction from JARVIS-DFT using 

TB-mBJ potential 

me2 Static dielectric function in y-direction from JARVIS-DFT using 

TB-mBJ potential 

me3 Static dielectric function in z-direction from JARVIS-DFT using 

TB-mBJ potential 

 

Addition (‘add’), multiplications (‘mult’), subtraction (‘subs’) and quotient (‘divi’) of hfus, 

polzbl, first_ion_en, mol_vol, bp,mp, mol_vol, mol_vol, therm_cond and  voro_coord were 

performed to give additional chemical descriptors. 

Table S1c. Details of simulation cell-size based descriptors 

Descriptor name Details 

cell_0 Volume per atom of the cell 

cell_1 Logarithm of volume per atom of the cell 

cell_2 Packing fraction 

cell_3 Density 
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Fig. S4 Atomic structure of Cu (I4/mmm) obtained during GA search of ML assisted GA 

training of Cu. 

 

Fig. S5 Atomic structure of Mo21S obtained during GA search of ML assisted GA training of 

Mo-S system. 

 


