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Single-particle coherent X-ray diffraction imaging using an X-ray free-electron

laser has the potential to reveal the three-dimensional structure of a biological

supra-molecule at sub-nanometer resolution. In order to realise this method, it is

necessary to analyze as many as 1 � 106 noisy X-ray diffraction patterns, each

for an unknown random target orientation. To cope with the severe quantum

noise, patterns need to be classified according to their similarities and average

similar patterns to improve the signal-to-noise ratio. A high-speed scalable

scheme has been developed to carry out classification on the K computer, a

10PFLOPS supercomputer at RIKEN Advanced Institute for Computational

Science. It is designed to work on the real-time basis with the experimental

diffraction pattern collection at the X-ray free-electron laser facility SACLA so

that the result of classification can be feedback for optimizing experimental

parameters during the experiment. The present status of our effort developing

the system and also a result of application to a set of simulated diffraction

patterns is reported. About 1 � 106 diffraction patterns were successfully

classificatied by running 255 separate 1 h jobs in 385-node mode.

Keywords: X-ray free-electron laser; K computer; single-particle coherent diffraction
imaging; classification of diffraction patterns; big-data analysis.

1. Introduction

The X-ray free-electron laser (XFEL) generates an intense

X-ray laser pulse as short as a few femtoseconds. This type

of light source is anticipated to offer a new possibility of

single-particle coherent X-ray diffraction imaging (CXDI) for

non-crystalline biomolecular samples (Neutze et al., 2000;

Schlichting & Miao, 2012). The intense X-ray laser pulse is

irradiated onto a single biomolecular target, and two-dimen-

sional coherent diffraction patterns are recorded repeatedly,

each for a random unknown orientation. Even with the use of

an intense XFEL, the diffraction intensity arising from a single

particle is weak, causing diffraction patterns deeply immersed

in quantum noise.

A decade ago, a basic scheme of data analysis for three-

dimensional structure determination was suggested (Huldt et

al., 2003). This scheme consists of three steps. At first, the

diffraction patterns are classified according to similarity and

averaged within each similarity group in order to improve

the signal-to-noise (S/N) ratio. Then, a three-dimensional
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diffraction intensity function is constructed by aligning signal-

enhanced two-dimensional diffraction patterns in reciprocal

space. Finally, the phase is retrieved by applying the over-

sampling method (Sayre, 1952; Gerchberg & Saxton, 1972;

Fienup, 1982).

Generally, along the suggested line, we reported a detailed

algorithm for classifying and assembling two-dimensional

noisy diffraction patterns to construct a three-dimensional

diffraction intensity function (Tokuhisa et al., 2012). The

algorithm enables signals immersed in the quantum noise to

be extracted, which is indispensable in constructing a near-

atomic-resolution three-dimensional structure. We have

reported that the algorithm can classify the diffraction data

with statistics as low as 0.1 photons pixel�1. To classify

diffraction patterns according to the similarity, a correlation

pattern is calculated for each pair of diffraction patterns. In

order to construct a structure with sub-nanometer resolution

for the case of 70S ribosome, it is necessary to analyze about

1 � 106 diffraction patterns.

All-pair calculation for this number of patterns is of high

computational cost. In this paper we report a representative-all

pair scheme in order to reduce the cost significantly. In this

scheme, correlation patterns are calculated between one from

two-dimensional diffraction patterns representing each simi-

larity group and the other from a set of whole observed two-

dimensional diffraction patterns. The number of correlation

patterns to be calculated is about 13 billion for the above

example. Even with this representative-all pair scheme, the

calculations take about 100 days in the case of a 10TFLOPS

computer.

For a system of data analysis to be practically useful, it is

necessary to process the calculation concurrent to the data

collection in order to diagnose the data quality during the

experiments. The calculation results can then be used to

optimize the experimental parameters (Tokuhisa, 2013). To

achieve these goals we have implemented a code of high-speed

classification on the K computer, a 10PFLOPS supercomputer

at RIKEN Advanced Institute for Computational Science

(AICS; http://www.aics.riken.jp/en/). We report the present

status of our developments on (i) the non-visual automatic

similarity detection algorithm, (ii) the representative-all pair

classification scheme, (iii) program parallelization, and (iv) an

efficient diffraction data flow between the XFEL facility,

SACLA (Ishikawa et al., 2012), and the K computer.

Computation results obtained using a set of 1 � 106 simulated

diffraction patterns are also reported.

2. A high-speed classification system

2.1. Automatic similarity detection algorithm

In our method of detecting similarity between a pair of two-

dimensional diffraction patterns i and j, we calculate a corre-

lation pattern cij(�,�) as a function of two variables � and �
and defined as follows (Tokuhisa et al., 2012),

cij ¼
�ijð�; �Þ

�xxQði; �Þ �ssQð j; �Þ
� 1;

�ijð�; �Þ ¼
1

N�

PN��1

l¼ 0

sQ i; �;
2�l

N�

� �
sQ j; �;

2�l

N�

þ �

� �
;

�ssQð j; �Þ ¼
1

N�

PN��1

l¼ 0

sQ i; �;
2�l

N�

� �
: ð1Þ

Here � is the angle of diffraction, which is expressed as 2� in

the usual literature, � is the angle of rotation of the detector

plane around the incident beam axis, N� is the number of

Shannon pixels on a circle with a fixed value of �, sQ is the

photon number to be observed by a detector Shannon pixel

with solid angle !, and �ss is its mean over pixels on the above

circle. The quantum-mechanically expected mean s(k) of sQ is

given by

sðkÞ ¼ Iir
2
CE !iðkÞ; iðkÞ ¼ jFðkÞj2; ð2Þ

where Ii is the incident X-ray intensity, rCE is the classical

electron radius, F(k) is the structure factor, k is the momentum

transfer and i(k) is the diffraction intensity density. The

magnitude of momentum transfer is given as

k ¼ ð2=�Þ sinð�=2Þ; ð3Þ

where � is the wavelength of the incident X-ray.

Simulated examples of sQ and cij are shown in Fig. 1.

Reflecting the fact that the target is a single particle, the

experimentally observed diffraction pattern sQ(�,�) is

immersed deeply in the quantum noise especially in the

higher-angle range. This noisy nature of sQ is inherited in the

noisiness of cij. When a pair of sQs for i and j are similar, a high

correlation line appears in cij. The correlation line becomes

invisible against the noisy background at a high k region, k >

kN, where kN (subscript standing for ‘noise’) is the value of k

at which the standard deviation of the background noise

becomes as high as 0.6 ’ exp(�1/2) (Tokuhisa et al., 2012).

Detection of similarity between a pair of sQs is thus trans-

lated to detection of a high correlation line in cij . To do this

job at high speed, we developed an algorithm of non-visual

automatic similarity detection. The basic idea of the algorithm

is to use the following integral value of cij so that the quantum

noise is averaged out within a single figure and the positive

definite signals are enhanced by integration,

Icðkup; �Þ ¼
R�up

0

icð�; �Þ sin � d�

¼ �2
Rkup

0

icðk; �Þk dk; ð4Þ

icðk; �Þ ¼ ð2�=N�Þ
P2kC=k

��¼�2kC=k

cijð�; �þ��Þ: ð5Þ

Here, kC is the correlation length of the intensity data which is

approximately given by kC = 1/L with L being the length of

a sample molecule. In our method, the upper bound of the

integration kup is chosen in the range kup � kN where �ssðkNÞ =

Ii r 2
CE !�iiðkNÞ assumes the value of about 0.1. An example of
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this integrated correlation pattern, Ic, is also shown in Fig. 1. If

a significant maximum of Ic(kup,�) is detected at � = �̂�, it gives

the direction of the high correlation line. We then identify the

value of kup for which Ic(kup, �̂�) assumes the peak value within

the range kup� kN, write such a value as Icðk̂k; �̂�Þ, and will refer

to it as the peak value of the integrated correlation. This value

is used to judge the similarity between the pair of sQs for i and

j. A higher value of Icðk̂k; �̂�Þmeans a higher similarity. Use of Ic

contributed to improve the sensitivity of the method signifi-

cantly.

In our method, sQs are classified according to similarity and

averaged within each similarity group. The similarity is judged

by Icðk̂k; �̂�Þ. If we employ a higher threshold value of Icðk̂k; �̂�Þ
for a pair of sQs to be classified into one group, the number of

similarity groups will become larger. But, at the expense of a

large number of groups, we can attain higher structural reso-

lution of the final result. We can control the obtainable

structural resolution by the threshold value of Icðk̂k; �̂�Þ.

2.2. Representative-all pair classification scheme

To avoid the necessity of carrying out cij calculations for all

pairs of 1� 106 sQs, we adopt the representative-all pair scheme

mentioned in the Introduction. This scheme contains two

tasks: (i) selection of representative sQs and (ii) implementa-

tion of similarity detection for pairs, each pair consisting

of one from a set of the representative sQs and the other from

the set of whole sQs. Even though it is conceivable to design a

scheme to solve task (i) while processing task (ii), we none-

theless developed a simple scheme in which the two tasks are

carried out in two separate steps in sequence. This simple

scheme has the merit of being quick and flexible. Because of

its quickness, this scheme is suited for the real time application

of the analysis system.

In step 1, task (i) is carried out as follows. We start from

defining a targeted structural resolution. In the simulation

calculation for 70S ribosome, a particle with length L of about

270 Å, we set the targeted resolution r to be about 5 Å. This

value is translated to an allowed solid angle !G = �� 2
G of a

circular disc on the Ewald sphere for each similarity group,

where �G = r/L (Tokuhisa et al., 2012) turns out to be about 1�.

In order to select a good set of representative sQs, the

respective beam directions of the associated patterns should

not be close. Here we select a set of representative sQs that

satisfies all the angles between the respective beam directions

larger than �G on the Ewald sphere. We estimate the

maximum number of points on the sphere satisfying this

requirement by 4�/!G, where 4� is the solid angle of the

whole sphere. This number turns out to be about 13000. Thus

the targeted resolution is translated to the number of repre-

sentative sQs. We then prepare a set of relatively small number

of sQs sampled from uniform random orientations for which

all pair cij calculation is possible. In our simulation we

prepared tentatively a set of about 1.5 times as many

diffraction patterns as compared with the number of targeted

representative sQs. It should be noted that such a set of

relatively small number of sQs can be prepared at an early

stage of an on-going experiment. For this small set we carried

out all pair cij calculations to obtain Icðk̂k; �̂�Þ. By referring to

Icðk̂k; �̂�Þ sorted in descending order, we identify pairs of sQs in

each of Icðk̂k; �̂�Þ, and erase one of the pair of sQs in this order

from the list of candidates of representatives until the

remaining number of candidates becomes exactly the number

of targeted groups. Icðk̂k; �̂�Þ, where this occurs, is recorded

as the threshold peak value Ic,representative to be referred to in

task (ii).

In step 2, task (ii) is carried out as follows. At first Icðk̂k; �̂�Þ is

calculated for all pairs, each pair consisting of one from the

representative sQs and the other from the whole set of about

1 � 106 sQs. This part of the calculation can be divided into

independent separate jobs by dividing the large set of whole

sQs into subsets; or, even while the whole set is being gener-

ated during the experiment, calculation can be started for a

part of the growing set. This flexible feature is a result of the

two-step scheme we adopted.

As a result of step 2, about 80 sQs on average are expected

to be assigned to belong to each similarity group. This is the

number needed to improve the S/N ratio so that mutual

alignment of signal-enhanced sQs in the reciprocal space can

be performed.
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Figure 1
(a) Simulated diffraction pattern sQ with quantum noise for the 70S ribosome by assuming the incident X-ray intensity to be Ii = 2.55 � 1020 photons
pulse�1 mm�2. (b) Correlation pattern cij for a pair of between diffraction patterns i and j. (c) Integrated correlation pattern Ic.



After the correlation calculations, we proceed to identify

pairs judged to be similar. This is done by comparing Icðk̂k; �̂�Þ
for each pair with a certain threshold value of Ic,group. In this

paper, values of Ic,group were chosen so that the average

number of sQs in the similarity groups is larger than 80 and

Ic,group < Ic,representative.

2.3. Assessment of the algorithm

The algorithm we propose in this paper carries out simi-

larity detection among a large number of experimentally

observed diffraction patterns. The algorithm also gives a

relative rotation angle �ij of the detector plane for each pair. A

pair of sQs for i and j is defined to be similar, when the angle �ij

between the respective beam directions is less than a certain

cut-off value �0. We are applying the proposed algorithm for

a set of sQs. Because sQs in this paper are the simulated

diffraction patterns, the values of �ij and �ij are in fact known

precisely beforehand. We can assess the quality of the

proposed algorithm by comparing its result with precise values

from the simulation.

The result of assessment is expressed in terms of two

probabilities, Pright, the probability that a result of classifica-

tion is right, and, Pcapture, the probability that a right pair is

captured, which are expressed, respectively, as follows,

Pright ¼ NA\B\C =NC; ð6Þ

Pcapture ¼ NA\B\C =NA: ð7Þ

Here the quantities appearing on the right-hand-sides are

defined as follows. A set of pairs whose simulation �ij values

are smaller than a certain value �0 is defined as A with its

number of elements denoted as NA. Set B is defined as a set of

pairs whose �̂� value is within such a narrow range around �ij as

j�̂�� �ijj < ��0, where ��0 is a small value of angle taken to

be 1� in this paper. A set of pairs that are judged by the

algorithm to have high Icðk̂k; �̂�Þ is defined as C with its number

of elements denoted as NC. A set of pairs that are correctly

captured and judged as a right pair is given by the product set

A \ B \ C with its number of elements designated as NA\B\C .

2.4. Parallelization of the classification program

Basically, the correlation calculation must be applied to any

possible combination of two sQs. This procedure can be easily

parallelized by decomposing the diffraction data set; however,

a naı̈ve implementation cannot avoid reading the same file

multiple times and this file I/O can be a severe performance

bottleneck.

The K computer consists of 82944 nodes. Since each node

has 16 GB of memory, the total amount of memory of the K

computer is approximately 1.3 PB. The total size of 1 � 106

diffraction patterns is approximately 14 TB, much smaller than

the whole memory size of the K computer. Thus, all diffraction

data can be loaded into the memory of the K computer. The

first prototype program was developed by using the MPI

(Message Passing Interface) library. Each MPI process reads a

dedicated file and then the read data is passed to the other

nodes upon request. In this way, the file I/O bottleneck can

successfully be avoided. Based on this prototype, a new

program is under development to achieve better performance.

3. Result of application of developed classification
scheme

In this section, we report the result of application of the

developed scheme and algorithm for diffraction data simu-

lated for 70S ribosome. The incident X-ray wavelength � = 1 Å

and intensity Ii = 2.55 � 1020 photons pulse�1 mm�2 are

assumed in the simulation. This intensity can be realised when

the XFEL beam emitted at SACLA is fully transported and

focused down to 50 nm � 50 nm. Note that this focusing

condition will make the hit rate of the XFEL pulse to the

molecule lower and may require novel experimental metho-

dology. For this molecule, we set the targeted resolution r to be

4.7 Å. This value corresponds exactly to �G being 1.0�. This

resolution is translated to the number of similarity groups to

be 13146 and to the necessary number of sQs to be 1.05 million.

In our treatment in this paper we do not explicitly pay

attention to the centrosymmetric property of i(k). When we

take this symmetry into account (which we should in real

experiments), a single sQ is to be subjected to the classification

twice, the first time as the pattern itself and the second time as

its centrosymmetric pattern. In this treatment, 1.05 million sQs

for classification can be prepared from the half number of sQs

(Tokuhisa et al., 2012). In this paper we prepared 1.05 million

sQs by using equation (2) and the PDB coordinate of 70S

ribosome, 1yl3 and 1yl4 (Jenner et al., 2005). Each sQ consists

of photon-count data by pixels arranged in a two-dimensional

square lattice. The photon-count data are given up to the

diffraction angle corresponding to 0.74 Å�1, a value far

enough to achieve 4.7 Å resolution. These sQs on a square

lattice were then converted into a form suitable for the cij

computation, i.e. photon-count data by fictitious pixels on a

circle with fixed value of �. In fact, in order to compute cij

rapidly using a fast Fourier transform library, a Fourier

transform of such data is prepared and stored in place of the

original sQ. The size of the data for the whole 1.05 million sQs

is 14 TB.

In step 1 for selection of the representative sQs, 13252

patterns (slightly different from the targeted number 13146 for

a very technical reason) were selected from a set of exactly

20000 sQs by the method described in x2.2. The obtained value

of Ic,representative is 0.00111. The distance to the nearest repre-

sentative is found distributed roughly between 0.4 and 2.2�

with the average being 1.1�, which is very near to our target

value of 1.0�. The result shows that our algorithm can detect

the similarity between a pair of sQs with an accuracy of about

1�. The calculation of this step was carried out in one job using

the computational resource of 3.8 M nodes s.

The calculation of Ic for classification of 1.05 million

diffraction patterns into 13252 groups was carried out by

dividing the whole calculation into 255 independent 1 h jobs,

each using 385 nodes, with the total computational resource

used being 207 M nodes s. The total number of correlation
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calculations is thus 13.8 billion. The input data for each job is

(i) the data set of all representative sQs, common for all jobs,

and (ii) a part of the data set from the whole sQs allocated to

the job. If we use all of the 82944 nodes of the K computer, the

whole calculation can be finished in 71 min.

After calculation of Icðk̂k; �̂�Þ for all representative-all pairs,

we proceed to judge whether or not each sQ from the whole set

belongs to the similarity group of each representative. This

judgement is done by comparing Icðk̂k; �̂�Þ for each pair with a

threshold value, Ic,group, for the judgement. In this paper,

Ic,group is set to be 0.0010 as described in x2.2, yielding the

average number of sQs in the similarity groups to be 82.8. Here

we allowed one sQ to belong to more than one group. In this

treatment, a total of 1097672 pairs are assigned as similar (set

C). For each pair thus judged to be similar, the exact value of

similarity �ij is in fact known from the record of simulation.

The distribution of the similarity value �ij versus Ic is shown in

Fig. 2(a). Almost all �ij are less than 2.0�, indicating that the

attainable resolution of our analysis is better than 9.4 Å. This

shows that our method can achieve sub-nanometer-resolution

three-dimensional imaging of biomolecules with an XFEL.

For higher-resolution imaging, we should solve a few

problems. It is noted that about 28% of sQs were found to be

orphans, i.e. to belong to no similarity groups of the repre-

sentatives. Upgrading of the method for the selection of the

representatives should reduce the number of orphans. Our

algorithm failed to identify 133387 pairs with �ij < 1� as

belonging to set C. Out of the pairs in set C, 713248 pairs are

found to belong to set NA\B\C. Pright and Pcapture are found to

be 0.65 and 0.68, respectively. Revision of the automatic

similarity detection method, e.g. equation (4), should improve

these values.

Fig. 2(b) shows the distribution of the number of sQs clas-

sified in each similarity group. In cases where the classification

calculation is carried out on a real-time basis, the diffraction

pattern collection experiment should be carried out by

monitoring such a graph as in Fig. 2(b) until the average

becomes larger than 80.

4. An efficient data flow between SACLA and the
K computer

The SACLA facility is located 60 km in a straight line from the

K computer. Both facilities are connected via the Wide Area

Network, SINET4 (http://www.sinet.ad.jp/index_en.html). The

data transfer system is now under construction. In Fig. 3 we

show the data flow diagram. First, the diffraction data are

saved to a storage device in SACLA in a run data format.

Next, sQs not suitable for analysis are excluded by applying a

filtering algorithm. Data sets of sQs, each with a proper size,

are then transferred from SACLA to the K computer in a

certain interval by using SINET4, where 10 Gbps bandwidth

is reserved from the SACLA facility to the edge node of

SINET4. A dedicated network is also in the proposal phase

to secure the on-line data-transmission bandwidth. In the K

computer, each sQ is then converted into a Fourier-trans-

formed format suitable for subsequent calculation of cij before

the two-step classification computation is executed. During

the classification calculations, the temporal results can be

monitored remotely from the SACLA beamline endstation so
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Figure 2
Result of classification of a set of about 1 � 106 diffraction patterns for
70S ribosome obtained by simulation assuming the intensity of incident
X-ray is Ii = 2.55� 1020 photons pulse�1 mm�2. (a) Distribution of values
of ½�ij; Icðk̂k; �̂�Þ�, where pairs with Icðk̂k; �̂�Þ > Ic,group = 0.0010 are judged
similar and �ij, the angle between each incident beam direction for a pair,
is the value known from the simulations. (b) Distribution of the number
of members in each similarity group.

Figure 3
Schematic diagram showing an efficient data flow between the XFEL
facility SACLA and the K computer.



that data quality can be diagnosed by the experimentalists.

The run data format and the similarity list are implemented on

HDF5 (HDF group, http://www.hdfgroup.org/). The complete

system of the above data flow will be operational in the near

future.

5. Conclusion

We developed a code with a classification algorithm (Tokuhisa

et al., 2012) compatible with data as large as 1� 106 diffraction

patterns. The code is designed so as to be able (i) to finish the

whole classification calculation within about 1 h of computa-

tion by the K computer, and (ii) to conduct the classification

concurrent to the experimental data collection. The bench-

mark with simulated data demonstrated the speed and flex-

ibility that enables the target experimental scheme. It is shown

that our method can achieve a sub-nanometer resolution

imaging by the synergistic use of SACLA and the K computer.

We have found a rather large number (about 28%) of

diffraction patterns (orphans) which were not classified into

any similarity groups. An ad hoc improvement would be to

select additional representatives from the orphans, and re-

calculate grouping for those additional representatives. A

more serious improvement would be to re-examine the esti-

mation of the number of representative diffraction patterns by

4�/!G and the size of a relatively small set of diffraction

patterns (currently 1.5 times the targeted number) from which

the targeted number of representatives are selected. We

expect that the above change would also contribute to

improve the observed Pright and Pcapture. Revision of the

automatic similarity detection method is also under consid-

eration for the improvement of these quantities. Use of a high-

performance I/O library will reduce the reading and the

writing time of the data which occupy half of the execution

time in this work.

Recently, illumination of multiple molecules to increase the

scattering intensity has been proposed to overcome the low

statistics of each diffraction pattern (Oroguchi & Nakasako,

2013). In this case, the analysis of the diffraction patterns

becomes more complex, and makes the attribution of

diffraction patterns to the structure of each molecule limited.

On the other hand, single-particle coherent X-ray imaging,

which has been discussed in this paper, has a clear physical

relation between the diffraction pattern and the structure of

each molecule. The latter has several technological issues to be

overcome, such as a low hit rate of particles by the XFEL

pulse. One of them is the diagnostics of the data quality. The

present study shows that data diagnostics during the data

acquisition can be executed by the dedicated code imple-

mented on the state-of-art computation infrastructure.

Part of the results were obtained using the K computer at

the RIKEN Advanced Institute for Computational Science

(proposal Nos. hp120213 and hp120214).
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