# **Online Supplementary Material**

Does regional air-sea coupling improve the simulation of the summer monsoon over the western North Pacific in the WRF4 model?

#### Liwei ZOU

State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

## This file includes: Supplementary Texts and Figures S1–S2

#### WRF4 model physical configurations

The following model physics were employed: the Noah multiphysics land surface model (Niu et al. 2011); the WRF single-moment 6-class (WSM6) microphysics scheme (Hong and Lim 2006); the Rapid Radiative Transfer Model for General Circulation Models (RRTMG) for longwave and shortwave radiation parameterizations (Iacono et al. 2008); the Yonsei University (YSU) planetary boundary layer scheme (Hong, Noh, and Dudhia 2006); the COARE ocean–atmosphere flux algorithm (Fairall et al. 2003); the cloud scheme proposed by Xu and Randall (1996); and the Tiedtke cumulus parameterization (Tiedtke 1989; Nordeng 1994).

#### **Observational datasets**

The following observational datasets were employed: (1) the satellite-retrieved 0.25 ° rainfall dataset of the Tropical Rainfall Measuring Mission (TRMM) 3B42 (Huffman et al. 2007); (2) the daily mean circulation field (e.g., u, v, q, w, h) with a 0.75 ° × 0.75 ° grid derived from ERA-Interim; (3) the daily high horizontal resolution (0.25 °) Optimal Interpolation Sea Surface Temperature (OISST) data derived from the National Oceanic and Atmospheric

Administration (Reynolds et al. 2007); (4) the monthly mean surface and top of the atmosphere solar and longwave radiation fluxes derived from Clouds and the Earth's Radiant Energy System (CERES) (Wielicki et al. 1996); (5) the sea surface latent and sensible heat fluxes derived from the Objectively Analyzed air–sea heat fluxes (OAFlux), version 3 (Yu, Jin, and Weller 2008); and (6) the daily mean surface radiation derived from the International Satellite Cloud Climatology Project (ISCCP) (Zhang et al., 2004).

### References

- Fairall, C. W., E. F. Bradley, J. E. Hare, A. A Grachev, J. B. Edson. 2003. "Bulk parameterization of Air-Sea Fluxes: updates and verification for the COARE algorithm." *Journal of Climate* 16: 571-591.
- Hong, S. Y., J. O. J. Lim. 2006. "The WRF single-moment 6-Class microphysics scheme (WSM6)." Journal of the Korean Meteorological Society 42: 129-151.
- Hong, S.Y., Y. Noh, J. Dudhia. 2006. "A new vertical diffusion package with an explicit treatment of entrainment processes." *Monthly Weather Review* 134: 2318–2341
- Iacono, M.J., J.S. Delamere, E.J. Mlawer, M.W. Shephard, S.A. Clough, W.D. Collins. 2008. "Radiative forcing by long-lived greenhouse gases: calculations with the AER radiative transfer models." *Journal of Geophysical Research-Atmosphere* 113, D13103, Doi:/10.1029/2008JD009944
- Nordeng, T. E., 1994. "Extended versions of the convective parameterization scheme at ECMWF and their impact on the mean and transient activity of the model in the Tropics." *ECMWF. TechMemo* 206: 41.
- Niu, G. Y., Z.-L. Yang, K. E. Mitchell, F. Chen, M. B. Ek, M. Barlag, A. Kumar, et al. 2011.
  "The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements." *Journal of Geophysical Research-Atmosphere* 116, D12, doi: 10.1029/2010JD015139
- Tiedtke, M. 1989. "A comprehensive mass flux scheme for cumulus parameterization in large-scale models." *Monthly Weather Review* 117: 1779–1800.
- Xu, K. M., and D. A. Randall. 1996. "A semiempirical cloudiness parameterization for use in climate models." *Journal of Atmospheric Sciences* 53: 3084-3102.

- Huffman, G. J., R. F. Adler, D. T. Bolvin, G. Gu, E. J. Nelkin, K. P. Bowman, Y. Hong, et al.
  2007. "The TRMM Multisatellite Precipitation Analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales." *Journal of Hydrometeorology* 8: 38–55.
- Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, M. G. Schlax. 2007.
  "Daily High-Resolution-Blended Analyses for Sea Surface Temperature." *Journal of Climate* 20: 5473-5496.
- Wielicki, B.A., B. R. Barkstrom, E. F. Harrison, III. R. B. Lee, G. L. Smith, and J. E. Cooper.
  1996. "Clouds and the Earth's Radiant Energy System (CERES): An Earth observing system experiment." *Bulletin of the American Meteorological Society* 77: 853–868
- Yu, L., X. Jin, R. Weller. 2008. "Multidecade global flux datasets from the objectively analyzed air-sea fluxes (OAFlux) project: Latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables." Tech. Rep. OA-2008-01, Woods Hole Oceanographic Institution. 2008. 64
- Zhang, Y., W. B. Rossow, A. A. Lacis, V. Oinas, and M. I. Mishchenko. 2004. "Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data." *Journal* of Geophysical Research 109, D19105, doi:10.1029/2003JD004457.



**Figure S1.** Spatial distribution of the biases of the simulated SST (units:  $^{\circ}$ C) by LICOM\_np averaged from June to August 2005 over the WNP.



**Figure S2.** Time–latitude cross sections of the rainfall (shading; mm  $d^{-1}$ ) averaged between 105  $\oplus$  and 140  $\oplus$  from 1 May to 31 August 2005 derived from (a) observation, (b) WRF4\_CTRL, and (c) WRF4\_CPL.