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ABSTRACT OF THE THESIS

Energy Scheduling for Task Execution on Intermittently-Powered Devices

by

Mohsen Karimi

Master of Science, Graduate Program in Electrical Engineering
University of California, Riverside, March 2021

Dr. Hyoseung Kim, Chairperson

Intermittently-powered embedded devices are getting widespread attention these

days. However, running real-time tasks on these devices remains a challenging problem

due to the lack of support for data freshness guarantee, time keeping, and schedulability

analysis. Furthermore, while many sensing applications require low-level sensor readings to

be done in an atomic way, meaning that the operations cannot be suspended and resumed

later, existing solutions for intermittently-powered devices assume compute-only workloads

and disregard such sensor operations. In this research, we provide an energy harvesting

model for intermittently-powered devices, and based on that, propose techniques to utilize

intermittent power sources efficiently and to schedule real-time periodic tasks that need

atomic operations. We present a hardware-software co-design scheme to keep track of time

and to ensure the periodic execution of sensing tasks. We provide schedulability analysis to

determine if a single task is schedulable in a given charging setup, and extend this idea to

scheduling multiple tasks. As a proof-of-concept, we design a custom programmable RFID

tag device, called R’tag, and demonstrate the effect of our proposed techniques in a realistic
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sensing application. We also show the device parameters’ effect on energy harvesting per-

formance in simulation. We compare the baseline approach and the proposed method both

in simulation and experimental evaluations. Evaluation results, both on simulation and

experiment, verify that the proposed method outperforms the baseline approach in terms

of task scheduling, time keeping, and periodic sensing.
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Chapter 1

Introduction

Battery-less intermittently-powered devices have gained much interest due to their

potential to facilitate wireless sensor networks and Internet of Things (IoT). These devices,

powered by an intermittent power source such as sunlight, heat, vibration, radio signal, etc.,

have widespread applications spanning from smart home and buildings to agriculture and

health monitoring[2, 5]. Owing to the fact that they don’t have a battery that needs to be

changed, they can continue to run more than a decade without so much maintenance, unless

they wear out physically. Furthermore, they can be deployed in extreme environments where

batteries do not perform well, e.g., hot or cold conditions.

Data freshness (timeliness of data/task) is the foremost requirement of many sens-

ing tasks, and this is also the case for those running on intermittently-powered devices. In

most of the sensing applications, sudden change in the environment should be detected and

reacted at the right time. If data sensed long after the actual occurrence of the event, the

reaction may not be effective or in some cases it can be harmful, e.g., in health monitor-

This work was presented at the Embedded Operating Systems Workshop (EWiLi), 2019. [10]
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ing. In many cases, if sensing operation is divided into multiple sub-tasks and executed

over multiple charging/discharging cycles of the device, then the data collected earlier may

become stale in the middle of processing. In such a case, it would be better to collect new

data instead of processing the remaining part using the stale data.

There are multiple challenges and limitations regarding sensing applications run-

ning on intermittently-powered devices. One of the challenges is the long indivisible execu-

tion time required for many sensor peripherals. In plenty of sensor devices, it takes a long

time to drive sensor and collect data out of it. Therefore, the device needs to run for a rel-

atively long time without intermittent power disruptions. In these cases, if the power goes

off, all the operation should start over again from the beginning. Prior work, has focused

on guaranteeing ”forward progress” of intermittently-powered devices, by checkpointing in-

termediate results in non-volatile memories[3, 15] or by providing a programming language

like MayFly[7] to divide the tasks into fragments to guarantee data consistency. However,

these methods cannot be used for sensor devices that need continuous execution time.

Another challenge regarding task execution on intermittently powered battery-less

devices is the burst execution without considering data freshness. These devices normally

can run whenever there is a power source available. In sensor reading applications, when

the charging period is small, we would having multiple samples that are alike each other

and do not have so much value in sensing applications. In these cases, the device also drains

all the energy accumulated by the energy storage and goes off until the next time energy

source becomes available again.

Furthermore, in most of the work regarding the battery-less devices [13, 9] there
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is no notion of time because the device would go off when it exhausts the power and when

it wakes up again it cannot keep track of the last time it was turned off. The best work

that has considered time is [7]. However, it relies on the decaying effect of capacitors and

can measure for less than 20 minutes , which is not sufficient for devices that run for long

time and have long periodic sensor tasks.

We propose a scheduling approach to meet the timing requirements of sensor tasks

even under intermittent power-source availability. Unlike prior work, our work allows storing

more energy than what is required to just turn on the microcontroller. Our work computes

the required level of voltage level to complete the given amount of computation, including

sensor operations, and makes the device wait until that level is reached. This enables

the execution of a long indivisible sensor operation, which was not possibly doable by

existing approaches. Furthermore, our work enables time keeping, which is important to

check the freshness of obtained data from sensors. We provide analytical guarantees of

the schedulability of a single task with a formal proof which can also be extended to a

multi-task scenario. We develop a prototype hardware and software system (PCB) and do

the the experiment on chemiresistive nanosensor and commercial sensors on the prototype.

The experimental results also verifies the theory we provided.

3



Chapter 2

System Model

In this section we describe the hardware and software properties of the system

which we use in the rest of the thesis.

2.1 Hardware characteristics

Each energy harvesting device has four main units: energy harvester unit, energy

storage unit, power management unit, energy conversion unit, and processing unit. An

energy harvester unit converts the energy coming from the power source (e.g. light, wind,

vibration, and RF signal) to a type of energy, e.g. voltage and electrical current, that can

be accumulated in the energy storage unit. A storage unit, usually consists of capacitors,

that can store the energy that can be used to power the system. In energy conversion unit,

voltage converters, rectifier, and regulator are used to convert the energy source to desired

voltage usable for the electrical circuit. Power management unit controls when to store

energy and when to use the energy to power up the system. Finally, in the processing unit,
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microcontrollers and sensors are used to do the desired tasks. Fig. 2.1 shows a general

block diagram of a radio frequency identification (RFID) device.

In the hardware block diagram shown in Fig. 2.1, each unit is specifically designed

to harvest the RF energy to be used for the MCU and sensors. In harvester unit, the

RF signal is received from the antenna which is designed to have the highest gain at the

frequency of standard RF signal transmitted through RFID reader. The voltage received

by the antenna is amplified by multi-stage voltage doublers and the energy is stored in the

capacitor. When the stored energy, and correspondingly voltage of the capacitor, reaches

to some specific amount, the power management unit switches the circuit on so the the reg-

ulated voltage can power the MCU and sensors. When the voltage reaches to the minimum

voltage needed by the MCU and the rest of the circuit, power management unit turns off

the switch and all the processing and data gathering stops until next power cycle. There

are multiple types of discharging used in this research that are decaying, processing, and

waiting which are discharging while power source is not available before reaching to desired

voltage, while running the task, and while the system is in low power mode respectively.

Each type of discharging is also explained in more details in Section 4.

Antenna

Multi-stage 

voltage doublers

Voltage rectifier 

and regulator

MCU and 

Sensors

Power manager

Energy

storage

Capacitor

Figure 2.1: Block diagram of an RFID energy harvesting device
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RpP Cs

Figure 2.2: Equivalent charging circuit of the device

To find the voltage equations for the circuit, we assumed the energy source to be

a fixed power instead of a fixed voltage or current source because what is received from the

RFID reader is a fixed power. We also considered a parallel resistor Rp to the capacitor

which consists of the equivalent storage capacitor and also the rest of the circuit’s resistor

in parallel with capacitor. Thus, the power harvesting circuit can be simplified to a fixed

power source and a capacitor in parallel with a resistor which is shown in Fig. 2.2.

Therefore, voltage of the capacitor can be calculated by solving the following

equation:

P

V
= Cs

dV

dt
+

V

Rp
(2.1)

By solving the equation the voltage of the capacitor at time t can be calculated

as:

V =

√
PRp − e

−2t
CsRp ∗

(
PRp − V 2

0

)
(2.2)

Where V0 is the voltage of capacitor at t = 0, and P is the power received from

power source after going through all the voltage douber stages. Based on 2.2 time to reach

6



from voltage V0 to V , where V > V0, can be calculated as:

tcharging =
CsRp

2
Ln

(
PRp − V 2

0

PRp − V 2

)
(2.3)

2.2 Software characteristics

In real-time systems, in general, a task τi is a characterized by its worst case

execution time Ci, released time ri, absolute or relative deadline di or Di respectively, and

in case of being periodic its period Ti. In this research, we only consider periodic task and

for multiple task considerations we assume the arrival or released time of all the task to be

at time 0. We also consider the implicit deadline which means Di = Ti. Accordingly, task

i can be expressed as τi : (Ci, Ti).

In multi-task scheduling, we considered the the tasked to be scheduled in non-

preemptive manner. Hence, higher priority tasks cannot preempt a lower priority task

when the lower priority task is running on the device. due to the nature of intermittently-

powered devices. This is due to the nature of intermittently powered devices and it is also

common scheduling model in prior work such as [4, 21].
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Chapter 3

Challenges

To explain the challenges of using an intermittently powered device in sensing

applications, we consider a case study on WISP, an RFID programmable tag which is

introduced in [17]. Based on [6] the power received by WISP can be calculated as:

Pr =
GsGrη

Lp

(
λ

4π(d+ β)

)2

Pt (3.1)

Where Gr is the reception antenna gain, Gs is the transmission antenna gain, Lp is the

polarization loss, λ is the wavelength of the RF signal, d is the distance from tag to reader,

wavelength of the RF signal, pt is the transmission power, and β is the adjustment parameter

to adjust Friis’ free space equation for short distance.

Based on WISP specifications, the parameters would become as follows: We use

a RFMAX S9028PCL polarized directional antenna which has the transmission gain of

Gs = 8dBi. WISP has a linear dipole antenna therefore the reception gain is Gr = 2dBi.

WISP works on 915MHz frequency so wavelength would be about λ = 0.327. Polarization

Loss, noted as Lp; rectifier efficiency, noted as η; and distance compensation parameter,
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noted as β should be measured in practice. We use WISP values based on [6] which sets

β = 0.2316, η = 0.125, and Lp = 2. Since all the parameters except d are constant I can

rewrite the equation to:

Pr = α

(
1

d+ β

)2

Pt (3.2)

Where α and β are the constant values that should be measure based on experi-

ments. Given the variables mentioned above the equation would become:

Pr = 0.001354

(
1

d+ 0.2316

)2

Pt (3.3)

As it can be inferred from 3.3 the power received by the tag is fixed when it is located

in fixed distance to reader. By assuming the distance to be about 60cm and the power

transmission of 1W power reception would be about 1mW .

We consider that the power reception circuit follows as Fig. 2.2 with Rp = 1GΩ,

and Cs = 100µF .

Fig. 3.1 shows the result of the tasks running on this case study when the tag is

always getting charged by the reader. In this figure, red lines are charging cycles and blue

lines are the discharging or processing cycles. The power on threshold which is defined by

the hardware is 2.2V and power off threshold is set to 1.8V which is the minimum voltage

required by MCU.

One of the problems in using intermittently powered device for sensing applications

is when the tasks needs to be done atomically and without any power disruptions. As it

can be found from Fig. 3.1 the maximum execution of a task is about 40ms. Therefore, any

task that needs more than 40ms atomic execution never can finish its job. As an example,
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Figure 3.1: Charging and discharging cycles of a regular energy harvesting device

most of the gas sensors are designed to work on specific temperature, since cooling is more

difficult, there is a micro-heater inside these sensors to keep the temperature on that specific

temperature. These heaters need some time to provide enough heat to attain the desired

temperature. As an example, a BME680 commercial gas sensor needs about 100ms to

output a valid gas value. Any power loss during sensing would lead the failure of the job

and there is not way to pause the sensing procedure. Therefore, these types of applications

cannot run on the current intermittently powered devices.

Another problem that tasks running on battery-less devices suffer from is that

they are unable to capture samples at specific times because the device can only sample

data whenever it receives enough power from the power source. In the example shown in

Fig. 3.1, the device can only capture samples during the time when the MCU is processing

(blue lines). In many applications, capturing samples exactly at specific time is required

to guarantee the validity of data and the process. For example, in the aforementioned case

study, it is impossible for the device to capture samples every 8 seconds. Even though it

wakes up multiple time during time from 0 to 8 seconds, any sample captured in those times
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is unusable and at the time of 8 second the device is not powered on to capture the sample

which would lead to failure of the task.

Another challenge in using battery-less devices is time keeping. The device goes

off after each charging and execution cycle and it loses the track of time it is working. Even

if a real time clock exists on the device, it would also go off after each power loss. Therefore,

any application that needs the notion of time would not be able to run in these type of

devices. In this case, it is not possible to check data freshness when using the data which

in many applications causes improper or even harmful reactions.
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Chapter 4

Proposed Method

In this research, we define three types of discharging: decaying, processing, and

waiting. we assume all the discharging rates to be linear which is also confirmed by the

experimental results. Decaying is the time when the device is not receiving any power from

the power source but the voltage threshold of the storage unit is below the minimum voltage

needed for turning on the MCU. In this case, while the circuit in not ideally open circuit and

also because of the parallel equivalent resistor exists in the capacitor, the device loses some

amount of energy gradually. Processing is the time when voltage of the capacitor becomes

above the minimum threshold, power management unit turns on the system, and MCU is

running the task. We also added another mode where the power management unit turns

on the system, however, since there is not enough energy in the capacitor to keep the MCU

continuously running for the time required by the task to be finished, the MCU goes to low

power mode. We named this time as waiting time when the MCU waiting for the system

to store enough energy to be able to run the task continuously. We consider mD, mP , and

12



mW to be decreasing slope of voltage while discharging during decaying, processing, and

waiting respectively.

During the waiting time, the system is consuming some amount of energy but we

consider the power reception from the power source to be always higher than the power

consumption in waiting time which causes the voltage to increase in charging cycle. The

whole purpose of adding the waiting time is to keep the voltage of the capacitor increasing

even when the system is turned on by the power management. When the power management

turns on the device based on the execution time of the task, the voltage required for the

task to run continuously with the discharging rate of mP is calculated. According to this

voltage and the charging and discharging rates during waiting time, the time required for

the system to reach that voltage is calculated. Afterward, a timer is initialized to turn on

the MCU after that amount of time and then MCU goes to low power mode.

As mentioned previously, for simplicity of the analysis, all the discharging types are

considered to decrease the voltage of the capacitor linearly with different slopes. Charging

curve of the device also can be approximated to be linear by slope of mc where mc can be

calculated based on Eq. (2.3) when V0 is the minimum voltage threshold of the device and V

is the maximum voltage that the capacitor can hold based on its specifications. Therefore,

the charging slope can be calculated as:

mc =
Vmin th − Vmax

CsRp

2 Ln
(
PRp−V 2

min th
PRp−V 2

max

) (4.1)

where Cc and Tc are charging time and charging period of each charging cycle respectively.

Thus, worst case accumulation voltage during each charging period, Tc, can be

13



calculated as:

∆V =
mc ∗ Cc −md ∗ (Tc − Cc)

Tc
∗∆t (4.2)

where md = max{mW ,mD} is the worst case discharging rate and mW and mD are dis-

charging slope of voltage drop during waiting and decaying time respectively. If we consider

accumulation rate ma = mc∗Cc−md∗(Tc−Cc)
Tc

, the voltage of the capacitor at time t when there

are n tasks can be calculated as:

V = ma ∗ t−
n∑

i=1

(⌊
t

Ti

⌋
+ si

)
∗ Ci ∗mPi + V0 (4.3)

where mPi is the processing discharging rate for task i. si is 1 or 0 if the task i’s last released

job is serviced or not respectively. It should be noted that Eq. (4.3) is valid before or after

each task execution and not while the task is running on the MCU. That is a reasonable

criteria since voltage level calculation is needed only after each task execution and before

putting the MCU to sleep mode or running another task.

4.1 Single Task Schedulability

Based on the aforementioned charging methods and voltage calculations, we first

assume there is only one periodic task in the system and analyze the schedulability of the

single task case. We will show in the next subsection that how this analysis can be extended

for multi-task systems.

For a single task (n = 1), the waiting time for the task can be calculated as:

∆tw = max

{
V − (Vmin th +mP1 ∗ C1)

ma
, T1 ∗

⌈
t

Ti

⌉}
(4.4)
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where V is the current voltage of the capacitor that can be calculated from Eq. (4.3).

For a single task to be schedulable based on aforementioned criteria, first it is

needed to check if the accumulation slope ma is positive or not. Being the ma positive,

complies with the previous assumptions that the voltage level increases during each charging

cycle. In this case, the task is guaranteed to be schedulable if the voltage can reach to the

desired voltage for the task to run continuously during each period of the task which means

the following condition should be met:

ma ∗ T1 > mP1 ∗ C1 (4.5)

There are multiple ways to implement waiting discharging. During waiting time,

the device is still on but it is maintained in low power mode so that it can store more

energy. It can be implemented on the MCU itself like the low power mode (LPM3) exists

in famous MSP430 low power TI microcontrollers or it can be implemented by adding an

external low-power real time clock (RTC) that can be programmed so that it can wake the

MCU up by an interrupt after a specific time which can be calculated using Eq. (4.4). In

either case, MCU would be kept at low power or sleep mode, however, the depth of the

sleep depends on the implementation.

When the ma is nonpositive the charging rate is not enough to keep the device on

during each charging period thus it would cause the device to turn off before start of next

charging period and there is no way to avoid that. In this case, we cannot keep track of the

time and cannot used the aforementioned methods to find the schedulability of the task.
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4.2 Multi-Task Scheduling and Analysis

In order to ensure the schedulability of multiple periodic tasks, we propose to

abstract the resource demand of the tasks as a periodic server [18, 20, 19] and schedule

them by using the budget of the server. The periodic server is characterized by the two

parameters, budget and budget replenishment period, which correspond to the execution

time and the period of a periodic task, respectively. Hence, once the server parameters are

chosen, the schedulability of the server can be analyzed with Eqs. (4.4) and (4.5).

The scheduling of tasks within the periodic server in an intermittently-powered

device should be done in a non-preemptive manner and is different from that in conventional

real-time systems. Thus, existing hierarchical schedulability analysis for preemptive tasks

in periodic servers [16, 11, 12, 8] are inapplicable to our problem. Instead, we formulate

this as a variant of the bin-packing problem with additional constraints. The items to be

packed are the jobs of tasks, and the amount of budget per period is the size of a bin. The

number of bins in this problem is given by Tgcd/Ts, where Tgcd is the hyperperiod of all

periodic tasks and Ts is the server period. Each task i has m items where m is the number

of jobs arriving during the hyperperiod, i.e., Tgcd/Ti. An important thing here is that no

more than one item (job) from the same task can be allocated to the same bin, and the

items should be spaced across bins with respect to their task period. This add complexity

to the original bin-packing problem which is already NP-hard. Hence, we plan to develop

heuristic approaches for this problem.

Another approach that can also be pursued is to define a charging time for each

task and define a pseudo-task for each charging that needs to be completed before each
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non-preemptive task. This can be done by assigning the priorities for pseudo-tasks and

execution-tasks properly. Further scheduling analysis can also be expanded from regular

preemptive scheduling methods with shared resources such as [1] to model non-preemptive

tasks as well as preemptive charging pseudo-tasks.
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Chapter 5

Implementation

In this section, we describe the hardware and software setup we use to simulate

and implement the methods we discussed in previous sections.

We designed a RFID tag, R’tag, to do the experiment. It is designed based on

WISP tag which is introduced in [17]. It features the same MSP430 MCU to do the

processing, and the same RF circuit and antenna to receive power and send data to the

RFID reader. In addition, we integrated the tag with extra external I/Os that can be used

for ADC reading for analog and digital measurements. Furthermore, we added a large super

capacitor that can be used to store more energy that enables the device to run for longer

time.

For the sensing purpose, we designed a sensor board PCB that can be mounted

on the R’tag and measure high resistance values that are generated by resistive sensors

that are used for variety of applications. It is also equipped with BME680, a commercial

integrated environmental sensor that can measure the temperature, pressure, humidity, and

18



Figure 5.1: R’tag and Sensor board designed for experiment

total volatile organic compounds in the air. Both R’tag board and the designed sensor board

are shown in Fig. 5.1

For the reader, we use an Impinj Speedway Revolution R420 UHF RFID Reader

that can generate up to 30dBm power to charge the tag and -84dBm reception sensitivity

to receive the messages sent from the tag. The ethernet interface is used to connect RFID

Reader to the PC to read data received from the tag by the reader. We also use RFMAX

S9028PCL polarized directional antenna which has the transmission gain of Gs = 8dBi.

On the software side, we use MATLAB for the simulation purpose, Code Composer

Studio as the IDE to compile the codes for MSP430 microcontroller, Altium Desginer too

design the PCB boards, and Impinj Multitool to manage the RFID reader to charge the

tag and send data.
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Chapter 6

Evaluation

In this section, we describe the experimental results for one scenario that have

been performed on our hardware platform to show that the proposed method works in real

applications. We also provide simulation results to show the effect of different parameters

based the designed platform and the proposed system model.

6.1 Experimental Results

Our experimental setup consists of the Impinj RFID reader which is connected

to the PC via Ethernet cable, a R’tag that is located about 25cm away from the reader’s

antenna, our sensor board attached to the R’tag, and a 10MΩ resistor connected to the

sensor board as an example of a resistive sensor. A 47µF capacitor is used in the storage unit

to store energy during each charging period. The voltage is measured by an Oscilloscope

attached to the R’tag via some wired soldered to the R’tag. Fig. 6.1 show the Experimental

setup that is used in this project.
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Figure 6.1: Experimental setup used for evaluation

One of the widespread kind of sensors are resistive sensors that their electrical

resistance is a function of sensing value. In many of the these types of sensors, the resistance

value is so high that cannot be measure by some regular methods like voltage dividers due to

current leakage of the I/O and ADCs. For that purpose, we use a capacitor in parallel with

the measuring resistance and by measuring the time that it takes to charge the capacitor

and based on charging rate of the parallel RC circuit we find the resistance value. In our

case, for a 10MΩ it takes about 120ms to charge the capacitor and finish the measurement.

We assume this measurement to be done every 1s.

Fig. 6.2 shows when running the resistance measurment task on with baseline

approach. Where blue line is the voltage of the storage unit capacitor and yellow line

is the voltage of the last regulator that powers the system. As it can be inferred from
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the figure, by using the baseline approach that allows MCU to run the task whenever the

power is available, there is no way to finish such task that has the execution time of 120ms.

Since the task is not resumable in the next power sequence, MCU start the task from the

beginning in each power cycles and fails to finish the task.

To do the proposed approach we first need to find the charging and discharging

rates. Based on the Fig. 6.2 the discharging rate of the task can be approximated as

about 12V/s. To find mc and md we put the task in sleep mode and find the charging and

discharging rate of the capacitor. Fig. 6.3 shows the charging and discharging rate based

on the charging cycles. Then Eq. (4.4) is used to find the next waiting time to run the task.

We set one of the I/Os high during the measurement to see the timings of the running task

on the tag on oscilloscope. Fig. 6.4 shows that the task can meets the deadline and the

voltage never goes down bellow the threshold to turn off the device. Therefore, the device

always keeps running, the task meets the deadlines, and the MCU can keep track of time.

6.2 Simulation Results

In this section we describe the effect of some of the parameter on the proposed

system model. We also compare the baseline and proposed method based on the simulation.

The parameters we change includes the capacitor size, distance from power reception, and

execution and period of the task.

In one scenario, we use the same parameters that has been used for the experi-

ments. Fig. 6.5 shows the result when baseline approach is used compared to the proposed
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Figure 6.2: Running task fails on baseline approach. Blue line: capacitor’s voltage, Yellow
line: Regulator’s output
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Figure 6.3: Charging curve of the capacitor when the MCU is on LPM3 mode. Blue line:
capacitor’s voltage, Yellow line: Regulator’s output
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method. Green lines show the arrival times of the task. As it is shown in the figure, baseline

approach fails to run the task continuously for 120ms and since the task is not resumable

it restarts in every power cycle. However, using the proposed method the task can finish

its job before the deadline and is schedulable on the current platform.

In another scenario, we use different parameters for the task so that it can be

finished even with baseline approach. Fig. 6.6 shows the result for task with τ : (25ms, 5s).

Even in the baseline approach the task can finish its job in every power cycle. However,

since it goes off in every power cycle it does the sensing over and over in each power cycle

with cause redundant measurements. Furthermore, the action regarding the sensing cannot

be done at the right time at t = 5s which is the period of sensing and data freshness cannot

be satisfied. On the other hand, by using the proposed method, the MCU can keep track

of time since it is always on and also does the sensing at the right time which satisfies the

data freshness and correctness of the sensed data.

In real applications, sudden power loss is sometimes unavoidable. By deploying

a low power RTC like Ambiq Micro RTCs [14] and using the proposed method the device

can still keep track of time for a long period even with some sudden power losses. Fig. 6.7

shows the same scenario as shown in Fig. 6.6 with a sudden power loss between 6s to 10.5s.

To find out the effect of the distance of the tag from RFID reader, we used the

model proposed on [6] which is explained in Section 3. For voltage calculation we used the

model shown in Fig. 2.2 and 2.2 with Rp = 120MΩ, Cs = 47µF , and P calculated using
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Figure 6.4: Charging curve of the capacitor when using the proposed methond. Blue line:
capacitor’s voltage, Yellow line: I/O indicating the running task
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Figure 6.5: Charging and discharging behavior of the tag when running a task with τ :
(120ms, 1s)
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Figure 6.6: Charging and discharging behavior of the tag when running a task with τ :
(25ms, 5s)
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Figure 6.7: Charging and discharging behavior of the tag when running a task with τ :
(25ms, 5s) in presence of power loss
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Figure 6.8: Power reception of the tag on different distance from RFID reader
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Figure 6.9: Power reception of the tag with different storage capacitors
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3.3. As it can be inferred from 3.3, increasing the distance would lead to reduction in the

power reception and respectively voltage increase rate. Fig. 6.8 shows this effect in multiple

distances of the tag from RFID reader.

Another parameter that affects the charging rate is the storage capacitor size. The

larger the capacitor, the longer it takes to charge and respectively the longer it can last.

Fig. 6.9 shows the effect of capacitor size on charging rate.
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Chapter 7

Conclusion

In this thesis, we provided an energy harvesting model that can be used to analyze

the charging and discharging behavior of intermittently powered devices. This model was

used to derive the voltage of the energy harvesting unit and schedulability analysis of a

task on the device. To schedule the task on the device, overcharging and using the low

power mode on the device was considered to store the required energy for the task to run

continuously for a relatively large amount of time which was required by the task to satisfy

its correctness and functionality of the system. Time keeping and periodic sampling was

also addressed by keeping the device on using the same method and finding the right time

to run the task by keeping the notion of time on the device.

R’tag board, a custom designed programmable RFID tag, and a sensor board was

designed and used as a case study in the evaluation to show the functionality of the method

provided in the thesis. We showed in the experimental results that with the same charging

rate from RFID reader, the baseline method failed to finish the task that had a relatively
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long atomic execution time and lost the notion of time while by using the proposed method

the device could schedule the task while keeping the notion of time.

We also provided the simulation to analyze the same scenario on simulation and

also to see the effect of each parameter on the behavior of the device. Simulation results

was also matched with the experimental results showing that the failure of baseline method

and the success of the proposed method. Furthermore, we showed that even with some

occasional power loss the device can keep track of time and execute the task at the right

time.

The proposed method has multiple interesting direction for the future work. First,

multi-task scheduling using server based approach can be done by designing the server based

on the charging and discharging rate and also task set. Second, a chemiresistive nanosensor

measurement is going to be used as real application for health monitoring. Some filtering

should also be applied to filter the out of order fluctuations on the sensor value readings.

Third, better antenna design and more efficient power harvesting circuit that can harvest

energy from other sources than RFID as a backup energy source and also a long range and

more efficient communication channel than RFID communication to ensure the success of

transmitted data.
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