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Abstract
Background: Improved evaluation methodologies have been identified as a necessary prerequisite
to the improvement of text mining theory and practice. This paper presents a publicly available
framework that facilitates thorough, structured, and large-scale evaluations of text mining
technologies. The extensibility of this framework and its ability to uncover system-wide
characteristics by analyzing component parts as well as its usefulness for facilitating third-party
application integration are demonstrated through examples in the biomedical domain.

Results: Our evaluation framework was assembled using the Unstructured Information
Management Architecture. It was used to analyze a set of gene mention identification systems
involving 225 combinations of system, evaluation corpus, and correctness measure. Interactions
between all three were found to affect the relative rankings of the systems. A second experiment
evaluated gene normalization system performance using as input 4,097 combinations of gene
mention systems and gene mention system-combining strategies. Gene mention system recall is
shown to affect gene normalization system performance much more than does gene mention
system precision, and high gene normalization performance is shown to be achievable with
remarkably low levels of gene mention system precision.

Conclusion: The software presented in this paper demonstrates the potential for novel discovery
resulting from the structured evaluation of biomedical language processing systems, as well as the
usefulness of such an evaluation framework for promoting collaboration between developers of
biomedical language processing technologies. The code base is available as part of the BioNLP
UIMA Component Repository on SourceForge.net.

Background
This paper investigates the hypothesis that structured eval-
uations are a valuable addition to the current paradigm
for performance testing of large language processing sys-
tems. Support for the claim that thorough, structured eval-
uations are a prerequisite for further advances in the field
of text mining has recently come from a surprising corner.

In a recent keynote speech at the 10th annual meeting of
the Conference on Natural Language Learning (CoNLL),
Walter Daelemans, a noted proponent of machine-learn-
ing-based approaches to natural language processing
(NLP), pointed out that the machine learning community
is falling short of its potential to ask and to answer inter-
esting and important questions not just about machine
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learning techniques, but about the light that machine
learning can shed on theoretical issues as well. Daelemans
points out that evaluations of machine learning algo-
rithms often produce deceptive or incomplete results due
to ignoring the complex interactions that characterize
both language and language processing tasks on one
hand, and machine learning algorithms on the other.
Some of these interactions are related to aspects of
machine learning systems specifically, such as interactions
between algorithm parameters and sample selection or
between algorithm parameters and feature selection.
Other interactions come from data – interactions between
training set contents and training set size, or between
training set and external knowledge sources.

Conducting better evaluations, then, requires complex
comparisons involving many alternative combinations of
software and data. This requires a framework that can sup-
port activities requiring complex combinations of applica-
tions that can be connected in flexible and configurable
workflows, as well as the ability to import, store, query,
reformat, and share a tremendous diversity of data types.
We have built an extensive code base that facilitates per-
forming exactly these functions for language processing in
general, and biomedical language processing in particu-
lar. This code base has been made available under an open
source license in the BioNLP UIMA Component Reposi-
tory on SourceForge.net [1] [see also Additional file 1].

The system uses UIMA [2-4], the open source Unstruc-
tured Information Management Architecture, as its infra-
structure. UIMA is a robust data management framework
for processing, or "annotating," unstructured data, the
prototypical example of which is free text. The essence of
our use of UIMA is as a middleware layer that facilitates
the smooth interaction of many different NLP tools that
were not originally designed to interoperate with each
other. The UIMA paradigm necessitates the use of a stand-
ardized interface, thus ensuring stable data transfer
among system components. It should be noted that the
use of UIMA in general is not limited to text processing
applications. It is intended for use with any type of
unstructured data, e.g. images, audio, video, etc. Our dis-
cussion of UIMA, however, will focus on its use in the text
processing domain.

The UIMA framework is well-suited for the construction
of document processing pipelines. There are three basic
component types used in a UIMA pipeline. The Collection
Reader component acts as an input device for the pipeline.
The collection reader instantiates the data structure that is
shared by the different UIMA components, known as the
common analysis structure (CAS), and initializes it with the
document text. The CAS is a flexible data structure capable
of storing not only the document text, but annotations of

the text, as well as metadata. We define an annotation
simply as a pair of character offsets into the original doc-
ument text associated with a specific semantic type. The
pair of character offsets is said to define the span of text
covered by the annotation. Typically, a separate CAS is
generated for each document that is processed.

Once initialized, the CAS is sent down the processing
pipeline. Components that act on the contents of the CAS,
and in particular, those that add content to the CAS, are
known as Analysis Engines. Analysis engines come in two
forms: primitive and aggregate. An example of a primitive
analysis engine would be a tokenizer, which takes raw text
as its input and produces as output a set of annotations
that describe token boundaries. Aggregate analysis
engines consist of combinations of primitive analysis
engines where downstream analysis engines may rely on
annotations created during upstream processing. An
example of an aggregate analysis engine would be a part-
of-speech tagger that uses token annotations created by a
tokenizer as its input and adds part-of-speech tags to the
tokens.

The third major component in a UIMA pipeline is termed
the CAS Consumer. CAS consumers are similar to analysis
engines in that they act on the contents of the CAS. They
do not, however, add content to the CAS. CAS consumers
represent the end of the pipeline. An example CAS con-
sumer, particularly relevant to this paper, would be an
evaluation platform that compares annotations added to
the CAS by an upstream named entity recognizer analysis
engine to a set of predefined gold standard annotations.

The semantic types for annotations generated during
processing are specified through the creation of a UIMA
Type System. The type system facilitates inheritance of
annotation types, as well as specifications for metadata.
The released version of our evaluation platform uses a
general text annotation class to represent all semantic
types. Further details of our type system are available in
the evaluation platform documentation [1].

There are several advantages to using a framework such as
UIMA for NLP system evaluation. The common interface
for passing data among system components all but
removes the need to write custom code for stitching
together various text processing modules. The ramifica-
tions of this are two-fold. In terms of constructing code,
the text processing machinery can be isolated from the
communications and data transfer mechanisms. This pro-
motes more modular code and functional testing at the
individual component level. Furthermore, not only does
the use of a standardized interface among components
enable various tools that were not originally designed to
be used in concert, it promotes the sharing of such com-
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ponents among developers, and perhaps more impor-
tantly, among the NLP community. Recently, several
publicly available repositories for NLP tools integrated
into the UIMA framework have been created online: the
Tsujii Lab UIMA Repository [5], the JULIE lab tools page
[6], the CMU UIMA Component Repository [7], the
BioNLP UIMA Component Repository [1], and the UIMA
Sandbox [8]. Given that the UIMA paradigm necessitates
the use of a standardized interface, thus ensuring stable
data transfer among components, the framework enables
users to organize disparate tools into complex intercon-
necting workflows. It should be noted that availability of
source code is not a prerequisite for integrating an appli-
cation into UIMA. Access to the source code can make the
transition easier, however the only real requirement is
access to a working implementation of the application to
be integrated. The use of this infrastructure in combina-
tion with our code base makes plausible the large-scale
evaluation of NLP systems for which we see a need.

We demonstrate the capabilities of the evaluation plat-
form through two experiments. The first experiment
involves an intrinsic evaluation: we examine the perform-
ance of nine gene name taggers on five evaluation corpora
using five different definitions of correctness. The second
experiment involves an extrinsic evaluation: we examine
the effects of the different gene name taggers and three dif-
ferent methods for combining their outputs on a subse-
quent task – gene normalization.

Gene mention (GM) identification is a classic named
entity recognition problem in the biomedical natural lan-
guage processing (BioNLP) field, and one that has been
studied extensively [9,10]. The task of gene mention iden-
tification is to detect where gene names appear in text. For
example, given the following input text: p53 induces mono-
cytic differentiation... [PubMedID:17309603], a gene tagger
should detect the gene name p53, and (optionally) that it
starts at character 0 and ends at character 3. The difficulty
in identifying gene mentions in biomedical text stems
from a number of factors. First, there is no standard
nomenclature for naming genes or distinguishing
between genes and gene products (proteins). The latter
issue is typically ignored, treating gene names and protein
names mentioned in text as equals. For the former, the
yeast community is one exception. Its systematic gene
names typically begin with Y and encode information
such as where the gene is located in the yeast genome [11],
e.g. YAL001C, which corresponds to the first open reading
frame to the left of the centromere on chromosome I.
Many Drosophila genes are particularly difficult to recog-
nize automatically in text, e.g. a [EntrezGene:43852], lush
[EntrezGene:40136], and van gogh [EntrezGene:35922].
Ambiguities exists among genes and other entity types as
well, e.g. the gene corneal endothelial dystrophy 1 [Entrez-

Gene:8197] has official symbol CHED1 and alias symbol
CHED, while the abbreviation CHED is also used in the
literature to refer to a specific cell type, the Chinese hamster
embryonic diploid cell line [PubMed:2398816]. Various
approaches to solving this problem have been attempted,
ranging from trying to match text to a list of known gene
names (the dictionary approach) to using machine learn-
ing techniques to create a statistical model that can be
used to identify genes in text. The dictionary approach has
the obvious disadvantage of being unable to identify a
gene that is not explicitly mentioned in the dictionary,
and thus is potentially out-of-date from the moment the
dictionary is created, while the machine learning
approach must rely on a training corpus that is typically
expensive to generate. The machine learning approach has
generally been shown to out-perform the dictionary
approach [9,10].

Comparing GM systems via the published literature is
often difficult because they are evaluated on different cor-
pora, modified corpora, or worse, proprietary corpora,
thus making impossible direct comparison with other
published systems. A further complication, as Daelemans
points out, is the all too frequent unfairness seen in the lit-
erature when optimized systems are compared to systems
using their default configuration. This difficulty moti-
vated the creation of the BioCreative [9,10]. and JNLPBA
[12] shared tasks.

For some applications, e.g. detecting the presence of a
statement about protein-protein interaction, having out-
put from a GM system, i.e. knowing that a gene mention
is present, may be sufficient. The usefulness of GM system
output, however, will not be realized to its utmost until
the output can be reliably grounded to an external
resource, such as a database. The task of gene normaliza-
tion (GN) addresses this issue by linking a gene name
mentioned in text to a specific gene identifier in a data-
base. For example, using our sample text from the GM
task: p53 induces monocytic diffierentiation...
[PubMed:17309603], the output of a GN system should
provide a link from [EntrezGene:7157] (assuming the text
is discussing the Homo sapiens p53 gene) to the entire text
string, or preferably to the text p53 itself. Approaches to
the GN task have varied. Some work directly on the input
text itself, while others use GM systems to identify poten-
tial genes and then try to normalize the gene mentions
that were found. The latter approach has the advantage of
being able to know where exactly in the text a particular
gene is being discussed. This knowledge aids in further
extraction tasks, such as determining the relationship
between a pair of gene mentions. Some of the difficulties
in the GN task, as in the GM task, also lie in ambiguity
among gene names. The ambiguity from the GN perspec-
tive, however, is not between gene names and other entity
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types, but rather between the gene names themselves.
There are numerous examples of species ambiguity
among gene names, i.e. two or more species sharing the
same gene name. For example, cdc2l5 is used as a gene
symbol for cell division cycle 2-like 5 in both human [Ent-
rezGene:8621] and in mouse [EntrezGene:69562]. There
are also examples of gene name ambiguity found in a sin-
gle species, i.e. two different genes sharing the same name
or symbol. The human gene corneal endothelial dystrophy 1
[EntrezGene:8197] has official symbol CHED1, and alias
symbol CHED, while human cell division cycle 2-like 5 [Ent-
rezGene:8621] also has CHED as an alias symbol.

In recent years, several community-wide evaluations
[9,10,12] have addressed these issues, yielding valuable
insight into some of the factors that affect both GM and
GN performance. Nonetheless, they have left many issues
unexplored, and we will show that their results are not
sufficient to provide a nuanced understanding of GM and
GN systems.

It will be seen that this work has relevance both to the
nature of discovery in biomedical text mining and to the
facilitation of collaboration in the BioNLP field. Struc-
tured evaluation has not generally been practiced by the
text mining community; we present here a novel and sur-
prising discovery about the interaction between gene
mention detection and gene normalization for one GN
system and about the high tolerance of this gene normal-
ization system for low gene mention system precision.
This would not be supportable without performing the
sort of structured evaluation described here. Furthermore,
the particular evaluation performed would have been pos-
sible without the availability of an architecture like the one
described here, but it would not have been practical, due
both to the scale of the evaluation – it involved 4,097 dif-
ferent configurations of tools and algorithms – and to the
technical issues involved in coordinating the input
requirements and output formats of nine different gene
mention recognition systems. We return to the relevance
of this work to scientific collaboration in the Conclusion.

Implementation
Evaluation methodology
Appropriate scoring of the output of information extrac-
tion systems in general, and BioNLP systems in particular,
is not a straightforward proposition [13]. There are many
ways to classify the matching criteria. Our system uses a
variety of comparison metrics described by Olsson et al.
[13] for scoring annotations. The code itself is modular in
construction, promoting extensibility and ease of incor-
poration of other comparison metrics.

A UIMA wrapper was created for each of the tools and
resources that we used in the evaluation – nine gene tag-

gers, three methods for combining GM system output, a
GN system, and an evaluation platform with five scoring
measures – enabling them to interact with the UIMA
framework. Collection readers for each of five GM evalua-
tion corpora and the BioCreative II GN task data set capa-
ble of extracting the gold standard annotations and
original document text from the various evaluation cor-
pora were also constructed. Comparison of all of the tools
was conducted in parallel by plugging each into the eval-
uation system. The evaluation component, which exists as
a CAS consumer, computes the precision, recall, and F-
measure for each upstream analysis engine by comparing
the results to those pre-defined in the evaluation corpora.

Evaluating a collection of named entity recognizers
We demonstrate the scalability and versatility of our eval-
uation platform through the evaluation of multiple GM
systems (gene taggers) using multiple biomedical corpora
and multiple evaluation metrics. For this demonstration,
we evaluated nine gene taggers on five biomedical corpora
that have been manually annotated for gene and/or pro-
tein names. The gene taggers are evaluated in parallel,
with each evaluation corpus requiring a separate run. All
taggers were used "out-of-the-box" – no optimization was
performed for any of the taggers during the evaluation.

The experiments reported here required using many GM
tools, which were generously made available by their cre-
ators. Some performed much better, and some much
worse, than others. The aim of this paper is to demon-
strate the utility of our evaluation system and its ability to
handle large-scale complex evaluations that would other-
wise be prohibitive to conduct. For this reason, we do not
identify the resulting scores with the systems that pro-
duced them. Furthermore, we did not re-train the
machine-learning-based methods on the test corpora,
choosing instead to use the tools as they are provided out-
of-the-box. Our motivation for this is two-fold. First, the
focus of this paper is the framework that we are introduc-
ing for evaluating NLP tools and not the performances of
the individual tools. The tools merely serve to provide a
use-case for this system. Second, we feel that using tools
out-of-the-box is an accurate depiction of how the tools
are typically used. Since many of them require a training
corpus to retrain, and since training corpora are expensive
to create, we assume that they are commonly used as they
are distributed. This assumption is based mainly on our
use of the tools in the past and on published descriptions
of uses of such tools. Although we have generally not
identified specific systems here, for purposes of reproduc-
ibility we list the publicly available GM systems that were
used to demonstrate the evaluation platform: AbGene
[14], ABNER [15], GeneTaggerCRF [16], KeX [17], Ling-
Pipe [18], and the Penn BioTagger [19]. Two other gene
taggers that are not currently publicly available were also
Page 4 of 10
(page number not for citation purposes)



Journal of Biomedical Discovery and Collaboration 2008, 3:1 http://www.j-biomed-discovery.com/content/3/1/1
used: the CCP gene tagger [20], and a dictionary-based
tagger built using gene names from the Entrez Gene data-
base.

The five corpora used to evaluate the GM systems were
chosen based on public availability and broadness of
scope and size. The corpora used were the Bio1 corpus
[21,22] (100 documents); the PennBioIE oncology corpus
[23,24], consisting of 1158 abstracts about molecular
genetics of oncology; the iProLink corpus [25,26] anno-
tated for proteins using two sets of annotation guidelines
over the identical set of 300 abstracts; the Texas corpus
[27,28], consisting of 750 Medline articles containing the
word "human;" and the Yapex corpus [29-31], composed
of 99 abstracts resulting from a query requiring the "pro-
tein binding" MeSH term and the words "interaction" and
"molecular." All five corpora are comprised of titles and
abstracts of biomedical articles.

Evaluating a complex BioNLP system
The interplay between components in BioNLP systems
can be critical, and is often unexplored fully due to the dif-
ficulty of testing the many potential component combina-
tions. Using a structured data management architecture in
conjunction with the evaluation system under discussion
addresses many of these issues inherently. We have taken
advantage of the nature of our system to conduct an eval-
uation that would otherwise be challenging both in terms
of creating the various combinations of components and
in terms of keeping track of the output.

The test case for this more complex evaluation is a gene
name normalization system [32] constructed for the 2006
BioCreative Gene Name Normalization task [33]. The GN
system used in this example relies on gene annotations as
input, and we will use many of the components generated
for the gene tagger evaluation discussed in the previous
section to produce these annotations. The GN system
evaluated is discussed in detail in Baumgartner et al. [32];
here we provide a brief synopsis of its design.

The basic methodology of the GN system is a dictionary
matching approach. A lexicon of gene names was created
using the gene names and synonyms found in the Entrez
Gene database [34]. Each gene name and synonym under-
went a regularizing procedure that removed punctuation,
converted Roman numerals to Arabic numerals, and con-
verted Greek symbols to single characters, among other
things. Gene mentions identified by the GM systems were
regularized in an identical manner after a conjunction res-
olution step. Exact string matching was used to link gene
mentions and the gene lexicon. If a gene mention
matched to more than a single lexicon entry a disam-
biguation procedure was performed.

This GN component is complex in itself, having multiple
parameters that can be adjusted. For the purposes of this
demonstration and to increase the clarity of our output,
we fixed the parameter settings on the GN system and var-
ied the selection of gene taggers only. The same collection
of nine gene name taggers was used as input to the GN sys-
tem [14-20] as were evaluated in the previous section.

Two different analysis engines were constructed for com-
bining the results of the gene taggers prior to GN input.
Combining gene tagger results is not crucial to the GN
task if we are only interested in document-level annota-
tions (as we are in this case). We have previously shown,
however, that it is possible to increase aggregate tagger
performance by combining gene tagger output [32]. The
overlapping-mention-resolving component aims to maxi-
mize recall by keeping all gene annotations, but resolving
those that overlap. When an overlap between two gene
mentions is detected the gene mention with the longer
span is kept, and the other discarded.

The second analysis engine created for combining gene
tagger output is a consensus filter. The consensus filter is
analogous to a voting scheme. Each tagger votes, and a
gene annotation is kept if it accumulates a certain thresh-
old of votes. If the threshold is not met, the gene mention
is removed from the gene tagger output. The only con-
straint on the threshold is that it must be greater than one
and less than or equal to the number of gene taggers being
used. For simplicity, each tagger is weighted equally in this
analysis. The combination of the consensus filter followed
by the overlapping filter is also an option that is explored.
Given that we have nine gene taggers and the choice of
one of three filters plus the variable consensus threshold,
there are 4,097 different possible combinations to
explore. It is important to note that although this GN sys-
tem is somewhat complex, it is actually quite simple when
compared to some other BioNLP systems; an information
extraction system for the BioCreative protein-protein
interaction task [35] would likely include components for
GM, GN, relation extraction, and many lower-level
processing tasks, such as sentence segmentation, tokeniza-
tion, etc., all of which potentially interact in unexpected
ways.

The gold standard for this experiment was the training
data from the BioCreative 2006 GN task. The data set con-
sists of 281 titles and abstracts. Gene names and associ-
ated Entrez Gene identifiers are located in a separate file.
The BioCreative task was evaluated on a document-level
basis, and our evaluation system will do the same. To
avoid the complication of determining species the corpus
was intentionally designed and annotated with only
human genes.
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With the goal of quantifying the relationship between the
quality of input to the GN system and GN system per-
formance as a whole, all 4,097 system combinations were
tested. All combinations were run over the course of two
days on a single workstation (Linux, dual 2.8 GHz Xeon
processors, 2 GB RAM).

Results
Evaluating named-entity recognition systems against 
different corpora with varying match criteria
The corpus used to test a language processing system is a
critical decision, as is evident from the results of the gene
tagger evaluation (Figure 1). The nine taggers evaluated
are distinguished by color in Figure 1. Although intra-tag-
ger trends appear consistent when comparing among cor-
pora – the best performance is seen with the Sloppy match
criterion (S), followed by the EitherMatch (E) criterion,
then either the LeftMatch (L) or RightMatch (R) criterion,
and finally the Strict (X) criterion – overall tagger perform-
ance can change substantially. Note the differences in the
precision scales for the two graphs – performance is dra-
matically reduced overall in the PennBioIE Oncology cor-
pus [23] (left) when compared to the Bio1 corpus [22]
(right). Further, relative tagger performance can vary
depending on the test corpus. Note the separation
between the red and cyan taggers when evaluating on the
PennBioIE corpus that is not evident when using the Bio1

corpus, as well as the decrease of the gray tagger perform-
ance relative to the red tagger when using the Bio1 corpus.
The patterns seen in Figure 1 illustrate the importance of
corpus selection. Each corpus used was developed by a
different research group, and potentially for a different
purpose. The annotation guidelines used during corpus
construction shape the end result, and it is likely that each
corpus has a slightly different definition for marking up
genes and proteins. Determining the differences among
these corpora that result in the observed gene tagger per-
formance differences is non-trivial and is not addressed in
this paper. It is clear from Figure 1, however, that evalua-
tion corpus selection can influence gene tagger perform-
ance greatly. Consequently, the performance of a system
on a single evaluation corpus probably should not be gen-
eralized to its performance on other evaluation corpora.

Downstream consequences of lower-level processing: 
effect of gene tagging choice on GN performance
Results from 4,097 unique combinations of gene taggers
and the three combining approaches were generated. Fig-
ure 2A shows the performance of the GN system relative
to the performance of the combined gene taggers. As
might be expected, a definite correlation between gene
tagger performance and gene normalization system per-
formance exists (Pearson's correlation coefficient = 0.917,
p < 0.0001). Interestingly, however, the graph is not as

GM system evaluationFigure 1
GM system evaluation. Evaluation results for nine gene taggers are shown for two of the five corpora used (PennBioIE 
Oncology, left; Bio1, right). There are 45 data points in each graph. Five evaluation metrics – X, Strict: spans must match 
exactly; S, Sloppy: spans must overlap; L, LeftMatch: span starts must match; R, RightMatch: span ends must match; E, Either-
Match: span start or end must match – were used to evaluate each tagger. Different colors are used to distinguish between the 
taggers. F-measure contour lines are displayed in gray, with the corresponding value listed on the right, also in gray.
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GN system evaluationFigure 2
GN system evaluation. Results from the GN system evaluation. (A) GN system performance (F-measure) as it relates to 
the combined gene tagger performance. (B) GN system performance based on each of the three methods for combining gene 
tagger output (Overlapping, Consensus, Consensus followed by Overlapping). (C) GN System performance highlighting the 
combination of the overlapping filter with and without use of the dictionary-based GM system. Data points generated using the 
other filters are shown in gray. (D) Same as C, with the presence/absence of another representative tagger shown. (E) and 
(F): GN system performance as it relates to combined gene tagger precision and recall, respectively.



Journal of Biomedical Discovery and Collaboration 2008, 3:1 http://www.j-biomed-discovery.com/content/3/1/1
uniform as might be expected. For example, note the clus-
ter of data points detached from the main curve with
increased GN system performance at a lower gene tagger
performance.

Plotting performance with regards to the three different
gene tagger combination methods (Figure 2B) provides a
clue as to the nature of this island of data points – each
point in the island is associated with use of the overlap-
ping filter. Other points generated using the overlapping
filter can be seen in the main curve, however, so use of the
overlapping filter cannot be the sole explanation for the
observed clustering. The rest of our analysis focusses on
the performances when the overlapping filter was used
(Figures 2C and 2D). When we label the points based on
the presence or absence of the individual gene taggers, fur-
ther information is revealed. Figure 2C shows that the iso-
lated grouping of data points includes only gene tagging
systems that used the dictionary-based gene tagger, and
that none of the points on the main curve were generated
from systems using the dictionary-based tagger in con-
junction with the overlapping filter. Figure 2D is a repre-
sentative plot of one of the other eight taggers, showing a
mixture of presence and absence in both the main curve
and isolated cluster when using the overlapping filter. Fig-
ure 2D provides further evidence that the presence of the
dictionary-based tagger plays a role in the island of data
points away from the main curve; the isolated data points
are a result of the combination of gene tagging systems
that use the overlapping filter in conjunction with the dic-
tionary-based tagger. As dictionary matching has been
shown to favor recall over precision (Figure 2 in [36]), and
the overlapping filter is geared towards preserving recall
by keeping all gene mentions, we hypothesize that this
island of points suggests that the performance of the GN
system under test is influenced greatly by the gene tagger
recall, and less so by gene tagger precision. This hypothe-
sis is confirmed when we plot GN system performance rel-
ative to the gene tagger precision and recall in Figures 2E
and 2F, respectively. Figure 2E demonstrates a negative
correlation between gene tagger precision and GN system
performance (Pearson's correlation coefficient = -0.7103,
p < 0.0001), while Figure 2F shows a strong positive cor-
relation between gene tagger recall and GN system per-
formance (Pearson's correlation coefficient = 0.8725, p <
0.0001).

From this analysis, we can conclude that the performance
of the GN system tested here is largely reflective of the
combined gene tagger recall and less dependent on how
the gene tagger system performs overall (i.e. as reflected by
the F-measure, which also takes precision into account).
Although there initially appeared to be a straightforward
relationship between GN system performance and overall
gene tagger performance (Figure 2A), our structured eval-

uation has given us a more nuanced understanding of the
relation between GM performance and GN performance.
This finding suggests that the GN system itself is filtering
out false positive gene mentions to a large degree, a previ-
ously unknown characteristic of this system, and one that
can be leveraged in future GN system development. It is
this inherent filtering that is responsible for increased
overall performance with reduced precision on the input
GM data. With this new insight, gene tagging systems that
were previously avoided due to their mediocre perform-
ance levels in terms of F-measure can now be added to the
system, as long as their recall is relatively high.

Discussion
The language processing community has a long history of
concern with evaluation [37], and evaluation remains an
ongoing focus of the community through competitive
evaluations and focused conferences [38]. While recogniz-
ing that these shared tasks have been highly beneficial for
the field, there are at least two reasons that they do not
produce as much insight as they could. First, the competi-
tions tend to conflate team-specific factors (e.g. limits in
computational or labor resources) with the performance
of the approach that a team used. While good perform-
ance in a competition is clearly indicative of merit, poorer
performance may be more indicative of some confound-
ing factor than of a lack of technical innovation or insight.
A related concern is the narrowing over time of the tools
and techniques used. In pursuit of high performance,
many teams try minor variations on the winning formula
from the previous year, rather than working to ensure that
a broad diversity of tools and approaches is being evalu-
ated.

While the shared task paradigm gives clear data on the
state of the art in a particular task and whether it has
advanced from year to year, it provides much less detailed
information about why a certain system did well (or
poorly) and which aspects of a system are the limiting fac-
tors that deserve research attention. Hirschman and
Thompson [39] contrast performance evaluation, which
compares multiple programs to each other in terms of
some metric, and diagnostic evaluation, a systematic explo-
ration of performance of one or more programs with
respect to some problem space. Cohen et al. [40] showed
that diagnostic evaluation is a powerful tool for uncover-
ing text mining performance problems that are not
revealed by the standard paradigm of calculating F-meas-
ure on a corpus, i.e. performance evaluation. They ran five
entity identification systems against a synthetic test set
designed to explore linguistic aspects of the GM input
space. This form of testing identified a variety of undocu-
mented and unsuspected problems in the systems under
test. Such diagnostic evaluation is demonstrably valuable;
so is global performance evaluation via the standard met-
Page 8 of 10
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rics in shared community challenge tasks. We show in this
paper that there is still more insight to be gained into text
mining tools than either of these paradigms provide.

Discovering insights into these systems is a complicated
task. Adoption of UIMA is not trivial – it is not a light-
weight architecture, and it requires considerable software
engineering abilities. Despite these costs, the use of UIMA
in general, and this evaluation platform in particular, can
provide gains in efficiency over time for the NLP commu-
nity as a whole if it is adopted by the community at large.
By necessitating a standardized interface between compo-
nents the framework inherently promotes the sharing of
NLP tools and eases the workload typically involved with
integrating third-party software. It is likely that as time
passes, if the framework is adopted by our community, it
will become progressively easier to combine various lan-
guage processing components that have been released
publicly. Our initial download serves as a starting point
for this process. We have included most components used
in the example evaluations discussed in this paper.

Systematic understanding of the causes of performance
differentials, particularly those that involve interactions
among subtasks or between processes and particular
classes of text, is necessary to reach the performance
required for text mining to have a substantial impact on
biomedical research. To achieve this understanding, a
robust architecture for performing large-scale, flexible
evaluations is essential. The code base demonstrated in
this paper and made freely available on SourceForge.net is
such an architecture. The BioCreative organizers are cur-
rently attempting to build a similar platform for evalua-
tion of text mining systems on the BioCreative 2006 tasks.
We have contributed to that effort and are also collaborat-
ing with the UK National Centre for Text Mining and the
University of Tokyo Tsujii Lab. to develop a web-based
interface to an architecture similar to the one described in
this paper [41]. Both of these efforts underscore the signif-
icance of the work reported here.

Conclusion
Scientific collaboration is hindered by disparities in data
formats at multiple levels – minimally, those of inputs
and of outputs. Conversely, collaboration is facilitated
when such disparities can be factored away. One of the
significance claims for this work comes from the ability of
the software artifacts that we have released to facilitate col-
laboration by enabling a common interface between sys-
tems with otherwise disparate input requirements and
output formats. It has already enabled collaborations
between our group and groups in the US, Japan, and the
United Kingdom, and work is underway to construct pub-
licly available interfaces to similar systems in Europe and
Japan. The potential for this architecture to facilitate both

discovery and collaboration has only barely begun to be
realized.

Availability and requirements
• Project name: BioNLP-UIMA Component Repository

• Project home page: http://bionlp-uima.source
forge.net/

• Operating system(s): Platform Independent

• Programming language: Java

• Other requirements: Java 1.5 or higher

• License: GNU GPL v2.0

• Any restrictions to use by non-academics: None
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