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Abstract

We further generalize the generalized short pulse equation studied
recently in [Commun. Nonlinear Sci. Numer. Simulat. 39 (2016) 21–28;
arXiv:1510.08822], and find in this way two new integrable nonlinear wave
equations which are transformable to linear Klein–Gordon equations.

1 Introduction

In this paper, we study the integrability of the nonlinear wave equation

uxt = au2uxx + buu2x (1)

containing two arbitrary parameters, a and b, not equal zero simultaneously.
Actually, there is only one essential parameter in (1), the ratio a/b or b/a, which
is invariant under the scale transformations of u, x and t, while the values of a
and b are not invariant. We show that this equation (1) is integrable in two (and,
most probably, only two) distinct cases, namely, when a/b = 1/2 and a/b = 1,
which correspond via scale transformations of variables to the equations

uxt =
1

6

(

u3
)

xx
(2)

and

uxt =
1

2
u
(

u2
)

xx
, (3)

respectively.
There is the following reason to study the nonlinear equation (1). Recently,

in [1], we studied the integrability of the generalized short pulse equation

uxt = u+ au2uxx + buu2x (4)

containing two arbitrary parameters, a and b, not equal zero simultaneously.
We showed that there are two (and, most probably, only two) integrable cases
of (4), namely, those with a/b = 1/2 and a/b = 1, which can be written as

uxt = u+
1

6

(

u3
)

xx
(5)
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and

uxt = u+
1

2
u
(

u2
)

xx
(6)

via scale transformations of variables. The nonlinear equation (5) is the cele-
brated short pulse equation which appeared first in differential geometry [2, 3],
was later rediscovered in nonlinear optics [4, 5], and since then has been studied
in almost any aspect of its integrability [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17].
The nonlinear equation (6), called the single-cycle pulse equation (due to the
property of its smooth envelope soliton solution) [1] or the modified short pulse
equation [18], is a scalar reduction of the integrable system of coupled short pulse
equations of Feng [19]. One may wonder, looking at (4), why not to generalize
this equation further, as

uxt = au2uxx + buu2x + cu (7)

with arbitrary parameters a, b and c, in order to find new integrable nonlinear
wave equations in this way. It is easy to see, however, that there are only two
essentially different values of the parameter c in (7), namely, c = 0 and (with-
out loss of generality) c = 1, because one can always make c = 1 by a scale
transformation of variables if c 6= 0. Since the case of (7) with c = 1 is the
nonlinear equation (4) studied in [1], we concentrate in the present paper on the
remaining case of (7) with c = 0, which is the nonlinear equation (1).

In Section 2 of this paper, we transform the nonlinear equation (1) with
any finite value of a/b to a corresponding (in general, nonlinear) Klein–Gordon
equation whose nonlinearity depends on a/b, and we bring (1) with b = 0 into a
form suitable for the Painlevé analysis. In Section 3, using the known results on
integrability of nonlinear Klein–Gordon equations (for b 6= 0) and the Painlevé
test for integrability (for b = 0), we show that the nonlinear equation (1) is
integrable if (and, most probably, only if) a/b = 1/2 or a/b = 1, that is, when
the nonlinear equation (1) is transformable to linear Klein–Gordon equations.
This allows us to obtain parametric representations for general solutions of the
nonlinear equations (2) and (3) and discuss their properties. Section 4 contains
concluding remarks.

2 Transformation

In our experience, a transformation found to relate a new nonlinear equation
with a known old one is a powerful tool to derive the fact and character of
integrability or non-integrability of the new equation from what is known on
integrability or non-integrability of the old equation [1, 20, 21, 22, 23]. By means
of transformations relating new equations with known old ones, it is possible to
derive analytic properties of solutions [24], expressions for special and general
solutions [1, 9, 10, 25, 26], Lax pairs, Hamiltonian structures and recursion
operators [27, 28, 29, 30] of the new equations from the corresponding known
properties and objects of the old equations.

When a = 0 in (1), we have b 6= 0, and we make b = 1 by a scale transfor-
mation of variables, without loss of generality,

uxt = uu2x. (8)
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If ux 6= 0, we rewrite (8) as

(

1

ux

)

t

+ u = 0, (9)

introduce the new dependent variable v(x, t),

v =
1

ux
, (10)

and get the nonlinear Klein–Gordon equation

vxt = −
1

v
. (11)

The inverse transformation from (11) to (8),

u = −vt, (12)

is also a local transformation, that is, like (10), it requires no integration. Note
that the transformations (10) and (12) between the equations (8) and (11) do
not cover the case of ux = 0. However, u = u(t) with any function u(t) satisfies
the nonlinear equation (1) with any values of a and b, and this set of special
solutions tells nothing about the integrability of (8).

When a 6= 0 in (1), we introduce the new independent variable y,

x = x(y, t), u(x, t) = p(y, t), (13)

and impose the condition

xt = −ap2 (14)

on the function x(y, t) to considerably simplify the result. Then the studied
equation (1) takes the form

xypyt + (2a− b)pp2y = 0. (15)

This equation (15) is invariant under the transformation y 7→ Y (y) with any
function Y , which means that solutions of the system (14) and (15) determine
solutions u(x, t) of (1) parametrically, with y being the parameter. Next, we
make use of the new dependent variable q(y, t), such that

xy =
1

q
py, (16)

which means that q(y, t) = ux(x, t). Since q 6= 0 in (16), our transformation does
not cover the evident special solutions of (1) with ux = 0. The compatibility
condition (xt)y = (xy)t for (14) and (16) reads

pyt =
1

q
pyqt − 2apqpy. (17)

Eliminating xy from (15) and (16), and using (17), we get

qt = bpq2. (18)
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Due to (18), we have to consider the cases of b 6= 0 and b = 0 separately.
If b 6= 0, we make b = 1 by a scale transformation of variables, without loss

of generality. Using the new dependent variable r(y, t),

r =
1

q
, (19)

we get

p = −rt (20)

from (18), and

rytt =
2a− 1

r
rtryt (21)

from (17). Dividing the left- and right-hand sides of (21) by ryt (ryt 6= 0 if
xy 6= 0, owing to (20) and (16)), and integrating over t, we get

ryt = h(y)r2a−1 (22)

with any nonzero function h(y), which appeared as the (exponent of) “constant”
of integration. Finally, we make h(y) = 1 in (22) by the transformation y 7→ Y (y)
with a properly chosen Y (y) (thus suppressing the arbitrariness of the parameter
y down to y 7→ y + constant), and obtain the following result. All solutions of
the considered case of (1),

uxt = au2uxx + uu2x, (23)

except for solutions with ux = 0, are determined parametrically by solutions of
the nonlinear Klein–Gordon equation

ryt = r2a−1 (24)

via the relations

u(x, t) = −rt(y, t),

x = x(y, t) : xy = −r2a, xt = −ar2t , (25)

where y serves as the parameter, and a is an arbitrary nonzero constant.
If b = 0, we have a 6= 0, and we make a = 1 by a scale transformation of

variables, without loss of generality. In this case, we get qt = 0 from (18), that
is, q = q(y) with any nonzero function q(y), and the equation (17) takes the
form

pyt + 2q(y)ppy = 0. (26)

Consequently, all solutions of the considered case of (1),

uxt = u2uxx, (27)

except for solutions with ux = 0, are determined parametrically by solutions of
the nonlinear equation (26) with any q(y) 6= 0 via the relations

u(x, t) = p(y, t),

x = x(y, t) : xy =
1

q(y)
py, xt = −p2, (28)

where y serves as the parameter. Note that the arbitrariness of q(y) in (26)
cannot be suppressed by the change of parametrization y 7→ Y (y).
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3 Integrability

Integrability of nonlinear Klein–Gordon equations is very well studied. It was
shown in [31] that the equation

zξη = w(z) (29)

possesses a nontrivial group of higher symmetries if and only if the function
w(z) satisfies either the condition

w′ = αw (30)

or the condition

w′′ = αw + βw′, (31)

where z = z(ξ, η), the prime denotes the derivative with respect to z, the con-
stant α in (30) is arbitrary, while the constants α and β in (31) must satisfy the
condition

β
(

α− 2β2
)

= 0. (32)

No more integrable cases of (29) have been discovered by various methods as
yet.

The right-hand side of the nonlinear Klein–Gordon equation (11) satisfies
neither (30) nor (31). Therefore this equation, together with the corresponding
case (8) of the studied equation (1), must be non-integrable. The right-hand side
of the nonlinear Klein–Gordon equation (24) satisfies (30) or (31) for two values
of a only, a = 1/2 or a = 1, when (24) is actually a linear equation, while the
corresponding nonlinear equation (23) takes the form (2) or (3), respectively.

The case of (24) with a = 1/2 is the Darboux integrable linear equation

ryt = 1 (33)

whose solutions parametrically determine all solutions (except for solutions with
ux = 0) of the nonlinear equation (2) via the relations

u(x, t) = −rt(y, t),

x = x(y, t) : xy = −r, xt = −
1

2
r2t , (34)

where y serves as the parameter. Taking the general solution of (33)

r = yt+ f(y) + g(t), (35)

where f(y) and g(t) are arbitrary functions, we obtain via (34) the following
parametric representation for the general solution of the nonlinear equation (2):

u(x, t) = −y − g′(t),

x = −
1

2
y2t−

∫

f(y) dy − yg(t)−
1

2

∫

[g′(t)]2 dt, (36)

where the prime stands for the derivative. It follows from (36) that

ux =
1

yt+ f(y) + g(t)
, (37)
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which shows that the general solution (36) does not cover the evident special
solutions of (2) with ux = 0. Also, due to (37), there are apparently no solutions
of (2) without singularities of the type ux → ∞, besides the solutions with
ux = 0. We do not see how to choose the functions f(y) and g(t) to make the
denominator in (37) not equal zero for all values of y and t.

The case of (24) with a = 1 is the Fourier integrable linear equation

ryt = r (38)

whose solutions parametrically determine all solutions (except for solutions with
ux = 0) of the nonlinear equation (3) via the relations

u(x, t) = −rt(y, t),

x = x(y, t) : xy = −r2, xt = −r2t , (39)

where y serves as the parameter. Since

ux =
1

r
(40)

due to (39), the parametric representation (39) of the general solution of (3)
does not cover the evident special solutions of (3) with ux = 0. It is easy to see
from (40) that a solution u(x, t) of (3) contains singularities of the type ux → ∞
if the corresponding solution r(y, t) of (38) contains zeroes. For example, if we
take

r = sin(y − t), (41)

we get from (39) the solution

u = cos(y − t), x = −
1

2
(y + t) +

1

4
sin 2(y − t) (42)

containing singularities, as shown in Figure 1. On the contrary, taking

r = cosh(y + t), (43)

we get the smooth solution

u = − sinh(y + t), x = −
1

2
(y − t)−

1

4
sinh 2(y + t), (44)

shown in Figure 2. Note that, in (42) and (44), the constant of integration in x
has been fixed so that x|y=t=0 = 0.

It only remains to test the integrability of the nonlinear equation (27),
because the case of (1) with b = 0 could not be transformed into a Klein–
Gordon equation. We have found the transformation (28) which relates (27)
with the nonlinear equation (26). Let us study the integrability of (26) by
means of the Painlevé analysis [32, 33, 34], which is, in our experience, a
reliable and easy-to-use tool to test the integrability of nonlinear equations
[35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50]. The reliability of the
Painlevé test for integrability has been empirically verified in numerous stud-
ies of multi-parameter families of nonlinear equations, including the fifth-order
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Figure 1: The singular solution (42): t = 0 (solid) and t = 1 (dashed).
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Figure 2: The smooth solution (44): t = 0 (solid) and t = 1 (dashed).
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KdV-type equation [51], the coupled KdV equations [52, 53, 54, 55, 56], the sym-
metrically coupled higher-order nonlinear Schrödinger equations [57, 58, 59], the
generalized Ito system [60], the sixth-order bidirectional wave equation [61], and
the seventh-order KdV-type equation [62].

A hypersurface φ(y, t) = 0 is non-characteristic for the studied equation (26)
if φyφt 6= 0, and we choose φt = 1 without loss of generality, that is, φ = t+ψ(y)
with ψy 6= 0. Using the expansion

p = p0(y)φ
γ + · · ·+ pn(y)φ

γ+n + · · · , (45)

we find the dominant singular behavior of solutions of (26) near φ = 0,

γ = −1, p0 =
1

q(y)
, (46)

together with the corresponding positions of resonances,

n = −1, 2, (47)

where n = −1 refers to the arbitrariness of ψ(y). Substituting the expansion

p = p0(y)φ
−1 + p1(y) + p2(y)φ+ · · · (48)

to (26), and collecting terms with equal degrees of φ, we get the following. The
terms with φ−3, of course, give the expression (46) for p0. The terms with φ−2

give the expression

p1 =
−qy
2q2ψy

. (49)

The terms with φ−1, however, do not determine p2(y) (here we have the reso-
nance) but lead to the nontrivial compatibility condition

qqyψyy − qqyyψy + 3q2yψy = 0. (50)

In order to satisfy this condition (50) for all functions ψ(y) (ψy 6= 0), we must set
qy = 0. Otherwise, for qy 6= 0, the compatibility condition (50) is not satisfied
identically, and we must introduce logarithmic terms to the expansion (48),
starting from the term proportional to φ logφ, which is a clear indication of
non-integrability. Consequently, the nonlinear equation (26) is integrable for q =
constant only, not for any nonzero function q(y). Therefore the corresponding
equation (27) is not integrable. Moreover, since q(y, t) = ux(x, t), we believe
that the only solutions of the nonlinear equation (27) obtainable in a closed
form are the evident solutions with ux = constant.

4 Conclusion

In this paper, we have generalized further the generalized short pulse equation
studied recently in [1], and found in this way two new integrable nonlinear wave
equations, namely, (2) and (3), which are transformable to linear Klein–Gordon
equations. These new equations (2) and (3), due to the absence of the linear term
“u” in them, can be considered as “massless” counterparts of the short pulse
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equation (5) and the single-cycle pulse equation (6), respectively. Let us note,
however, that the types of integrability of (2) and (3) are essentially different
from the type of integrability of (5) and (6). While the equations (5) and (6)
are two “avatars” (in the sense of transformations) of the sine-Gordon equation,
the new nonlinear equation (2) is an “avatar” of a Darboux integrable linear
Klein–Gordon equation, and the new nonlinear equation (3) is an “avatar” of a
Fourier integrable linear Klein–Gordon equation. Taking this into account, we
expect that the integrability properties of the new equation (2) are similar to
those of the Liouville equation (continual sets of generalized symmetries and
conservation laws, and several mutually non-equivalent Lax pairs [63]), whereas
the properties of (3) may be similar to those of linear wave equations (a discrete
hierarchy of symmetries, a finite set of conservation laws, and no phase shifts
in wave interactions). We believe that these new equations (2) and (3) can be
useful, as integrable scalar reductions, for classifications of integrable vector
short pulse equations.

Let us also note that our equations (2) and (3) did not appear in the most
recent integrability classification of generalized short pulse equations of Hone,
Novikov and Wang [64] because equations without the linear term “u” were not
studied there.
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[38] S.Yu. Sakovich, Painlevé analysis of a higher-order nonlinear Schrödinger equa-
tion, J. Phys. Soc. Jpn. 66 (1997) 2527–2529.

[39] S.Yu. Sakovich, On integrability of a (2+1)-dimensional perturbed KdV equation,
J. Nonlinear Math. Phys. 5 (1998) 230–233; arXiv:solv-int/9805012.

[40] A. Karasu-Kalkanlı, S.Yu. Sakovich, Bäcklund transformation and special solu-
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