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Mechanism-based chemical kinetic models are increasingly being used to describe biological signaling. Such models
serve to encapsulate current understanding of pathways and to enable insight into complex biological processes. One
challenge in model development is that, with limited experimental data, multiple models can be consistent with known
mechanisms and existing data. Here, we address the problem of model ambiguity by providing a method for designing
dynamic stimuli that, in stimulus-response experiments, distinguish among parameterized models with different
topologies, i.e., reaction mechanisms, in which only some of the species can be measured. We develop the approach by
presenting two formulations of a model-based controller that is used to design the dynamic stimulus. In both
formulations, an input signal is designed for each candidate model and parameterization so as to drive the model
outputs through a target trajectory. The quality of a model is then assessed by the ability of the corresponding
controller, informed by that model, to drive the experimental system. We evaluated our method on models of
antibody-ligand binding, mitogen-activated protein kinase (MAPK) phosphorylation and de-phosphorylation, and
larger models of the epidermal growth factor receptor (EGFR) pathway. For each of these systems, the controller
informed by the correct model is the most successful at designing a stimulus to produce the desired behavior. Using
these stimuli we were able to distinguish between models with subtle mechanistic differences or where input and
outputs were multiple reactions removed from the model differences. An advantage of this method of model
discrimination is that it does not require novel reagents, or altered measurement techniques; the only change to the
experiment is the time course of stimulation. Taken together, these results provide a strong basis for using designed
input stimuli as a tool for the development of cell signaling models.
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Introduction may be preferable to collect “all” models consistent with
known mechanisms and data, and to design follow-on
One goal of systems biology is to develop detailed models experiments capable of distinguishing among the model
of complex biological systems that quantitatively capture
known mechanisms and behaviors, and also make useful
predictions. Such models serve as a basis for understanding,
for the design of experiments, and for the development of
clinical intervention. In support of this goal, there has been a

strong push to build mechanistically correct kinetic models,

candidates. In support of this less-biased approach, here we
develop an approach for designing these follow-on experi-
ments using dynamic stimuli.

While the step-response experiment is attractive for its
ease of implementation, dynamic stimuli have the potential

often based on systems of ordinary differential equations to uncover more subtle system dynamics and to improve

(ODEs), that are capable of recapitulating the dynamic
behavior of a signaling network. These models hold the
promise of connecting biological and medical research to a
class of computational analysis and design tools that could

model selection in the cases where step-response experiments
are not sufficiently discriminating. One example that
illustrates the use of a dynamic stimulus to distinguish

revolutionize how we understand biological processes and
g p Editor: Adam P. Arkin, Lawrence Berkeley National Laboratory, United States of

develop clinical therapies [1,2].

One type of experiment for model validation involves
stimulating a system with a step change in the input (typically
by adding a high concentration of ligand) and then measuring
the change of network readouts (the concentrations or
activities of various downstream species) as a function of
time. Candidate models are fit to the data and the best model
is selected based on criteria such as the quality of the fit, the
simplicity of the model, and other factors. While it is
tempting to select a simple model consistent with the known
biochemical mechanisms that fits all available data, future
experimentation may prove this choice incorrect. Rather, it
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between two models is the work by Smith-Gill and co-workers
on the detailed mechanism of antibody-antigen binding [3].

Initial step-response experiments were compatible with
either a one-step or two-step binding mechanism, in which
the ligand and antibody first come together in a loose
encounter complex before forming a fully bound complex.
To resolve this ambiguity, the authors applied a series of
rectangular pulses of ligand concentration to their system.
The resulting binding curves produced by this dynamic
stimulus were inconsistent with the one-step model but were
consistent with a two-step model and suggested the existence
of an encounter complex, even though such a complex could
not be measured directly by the assay.

These results show that time varying inputs have the
potential to distinguish closely related models of biochemical
systems. For the relatively simple antibody-antigen system, an
appropriate dynamic input was deduced intuitively. However
this sort of intuitive design is difficult, especially in the case of
more complex cell signaling pathway models, which may be
described by hundreds or thousands of differential equations.
An automated approach that could design experiments to
test these complex systems has the potential to expand the
scope of model selection experiments.

Previous work in designing dynamic stimuli for the
purpose of model discrimination in systems biology has
focused on choosing input trajectories that maximize the
expected difference in the output trajectories of competing
models [4-10]. In addition to model discrimination, a rich
literature exists on experimental design in systems biology for
the purpose of estimating model parameters [2,11-13]. These
optimization approaches for model discrimination have been
applied to small biological systems, but the nonlinearity of
the models combined with the presence of many local
minima has thus far limited their application [8].

There is a need to extend these methods to design
experiments that may not be optimal but are capable of
discriminating between large pathway models. Instead of
trying to design an input signal that maximizes the predicted
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difference between two model readouts, we recast the
problem as a control problem (Figure 1). We choose a target
trajectory, and then challenge a model-based controller to
drive the system to follow the target trajectory. The extent to
which the controller based upon a given model is able to
drive the physical system is a measure of the fitness of that
model.

We demonstrate our methodology by applying it to the
epidermal growth factor receptor (EGFR) pathway. This
pathway has been extensively studied and modeled [14-18].
EGFR and its family members (Erb2, Erb3, and Erb4) are
known to mediate cell-cell interactions in organogenesis and
adult tissues [19]. Overexpression of EGFR family members is
a marker of certain types of cancer, including head, neck,
breast, bladder, and kidney [20]. Because of their clinical
importance, the EGFRs themselves, as well as various down-
stream proteins, are targets of therapeutic intervention
[21,22]. Despite clinical interest in the EGFR pathway and
over 40 y of intense study, there is still much about the
pathway that is not known. For example, in three recent
studies [23-25], a number of proteins that changed phos-
phorylation state in response to EGF stimulation were found
that were not previously known to be part of the pathway; in
addition, many of the known pathway proteins are not part of
any computational model [26].

The ordinary differential equation model of Hornberg et
al. is a widely used mechanistic model of EGFR signaling [16].
This model is a refinement of earlier models of the pathway
[17,18,27]. It describes signal transduction initiated at the cell
surface by EGF binding to EGFR, leading eventually to the
dual phosphorylation of ERK as the most downstream
outcome, which then participates in a negative feedback to
the top of the pathway. The elementary molecular processes
modeled include bimolecular association and dissociation,
phosphorylation and de-phosphorylation, synthesis and
degradation, as well as endocytosis and trafficking all
described with mass-action kinetics. The model contains
103 chemical species, 148 reactions, 97 independent reaction
rates, and 103 initial conditions.

We applied our computational methods initially to a small
portion of the EGFR model for development and demon-
stration purposes, and then to the full model. In both cases,
we formulated a set of closely related models that exhibit
similar step-response behavior. We built a controller capable
of controlling each candidate model and asked the controller
to drive the system output (doubly phosphorylated ERK) to a
predetermined value. Finally, by applying these designed
inputs based on the reference and perturbed models, we
showed that it is possible to discriminate between the various
model alternatives.

Methods

Model Formulation

In this work, we consider mass-action kinetic models
consisting of zeroth-, first-, and second-order reactions
described by ordinary differential equations. In the equations
below, k signifies a rate constant; A, B, and C represent species
or concentrations of species, depending on the context; and
O is the empty set or nothing.

Zeroth-order reaction:
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Figure 1. Schematic of Experimental Design
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(A) A feedback controller is used to solve for the stimulus u(t) that will drive the model system outputs Ysimulation(t) to follow the design trajectory
Ydesign(t)- The inputs to the feedback controller are the deviation from the desired trajectory egesign(t) as well as the model state x(t).

(B) The designed stimulus can be applied to an unknown experimental system to assess the quality of the model. A stimulus based on a good model
should be able to drive the experimental system output y(t) through the design trajectory.

doi:10.1371/journal.pcbi.0040030.g001
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First-order reaction:
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Second-order reaction:
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Large systems of reactions of this form can be represented
compactly using Equation 4.
dx
= =Aix+As(x®x) + Biu+ Bo(x @ u) + k

y=Cx

(4)

The state vector x describes the chemical species concentra-
tions that are free to evolve in time according to the kinetics
of the system. The input vector u represents the chemical
species concentrations controlled by the experimenter.
Matrices A; and B; represent first-order reactions, matrices
Ay and Bs represent second-order reactions, and k represents
constitutive (zeroth-order) reactions. The symbol ® denotes
the Kronecker product (also known as the matrix direct
product) [28]. For vectors, this operator generates a vector of
all quadratic products.

X1U1

X1 Uy
X® U= : ® . — 1%Um (5)
’ ’ XU1
Xn U
_xﬂuﬂl a

The output of the model y is a linear combination of the
state variables represented by the matrix C.

Control Formulation

A controller was developed to solve for the input signal u(?)
that best achieves a particular objective in the output. We
formulate this objective as a cost function G(u) that measures
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the distance between the model output and the desired
output.

Glu) = / (s 2) — yaeign(£)]2dt (6)

Here, G(u) is the sum of squares error between y(u,t), the
model output for a given input u(f), and ygesign(f), the target
output the controller is trying to match. T is the length of
time of the experiment. The control problem is then to find
an input function u(¢) that minimizes G(u).

Equation 6 depends on models of the form of Equation 4,
which are nonlinear and potentially high order. This prevents
us from solving the minimization problem directly. To
address this issue, we implement two different approxima-
tions. The first is based on controlling a model formed from
successive linearizations of Equation 4 (henceforth referred
to as the tangent linear controller), and the second is based
on a local search of the input space (henceforth referred to as
the dynamic optimization controller) [29].

Tangent Linear Controller
A first-order approximation to Equation 4 at time ¢ was
computed by taking the Taylor series expansion about the

current value of the state and input vectors (x, and u,).
d
EAQW[AI +As(I®@x; + 2, 1) + Bo(I @ w;)|Ax + Bo(x, @ I)Au

y=~ C(x, + Ax)
(7)

Equation 7 is a linear differential equation with state
variable Ax and time varying forcing term Awu, which has both
numerical and analytical solutions. However, this approx-
imation would tend to diverge from the solution to Equation
4 with increasing At, the time beyond the linearization point
t, and (Ax, Au), the distance from the linearization point (x,u).
To mitigate this problem the true system (Equation 4) was
propagated, and successive linearizations were applied to
improve the controller performance. Effectively, the lineari-
zation point is allowed to slide along with the exact
simulation.

Operationally, each time step was solved in three stages.
First, the current state of the nonlinear simulation was used
to derive a linear approximation about the current time
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point. Second, the linear system was solved to get the best
input Au. The linear system was solved numerically by
discretizing the input as a series of scaled and shifted boxcar
functions [30] of width t. Numerical integration with the
MATLAB routine odelbs [31] was used to compute the system
response to a unit boxcar input. The output of a linear time
invariant system can be expressed as a linear combination of
scaled and shifted impulse response functions. Thus, solving
for the input was achieved by computing the weights to apply
to the input pulses that gave the optimal output. This was
solved as a linear system of equations with box constraints on
the input to limit the maximum and minimum concentration
using the MATLAB routine Isqlin. Third, the computed input
signal was applied to the full nonlinear system for a short
time step T. The process was then repeated for the next time
interval. Effectively, each step the algorithm solves for an
input signal Au that is piecewise constant. The width of the
intervals T as well as the number of intervals is a parameter of
the optimization and should be chosen based on the accuracy
of the linear system.

Dynamic Optimization Controller
In this controller formulation, rather than exactly solving
the tangent linear system, we solved the full nonlinear
problem iteratively using a gradient optimization method.
Application of this method requires computation of the
sensitivities of the least squares objective function (Equation
6) with respect to the input parameterization p. An efficient
way to compute this quantity is to first solve for the adjoint
sensitivities A [29]. For the dynamical system (Equation 4) and
the objective function (Equation 6), the adjoint equations are
given by Equation 8.
ar” .
T —VMA AT ®@x+xQT) + Bo(I ® u)]
—2(CX — Yaesign)' C
T

V,G(p) = /7»* [B1 + Bo(x @ I)|Vpu(t, p)di

0

Here, A* indicates the conjugate transpose. We use piece-
wise linear input functions described by parameters p;, which
are the input function value at 7; w(T}); u(t) is then linearly
interpolated between the control points at 7. For these

-th

piecewise linear input signals the i component of the

gradient j—;f is given by:

0 t S Tl'—l ort Z TH—]
t—T;

du(t) —=L T <t<T;

b, =4 T:—Ti (9)

T —t
- T, <t<Ti
Tim—T;

The adjoint equations were solved in MATLAB using
odelbs [31] and the optimization was implemented using
fmincon configured to use Quasi-Newton [32] with BFGS
[33,34] in the MATLAB Optimization Toolbox Version 3.1.1.

Constraining Input Signals

Thus far the input signals have been unconstrained, except
by the choice of the discretization. However, in practice it
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may be desirable to restrict the space of input signals to those
that could be feasibly achieved by a given experimental setup.
For example, in many experimental setups it is easy to add
material but difficult to take material away. Likewise, there
may be a maximum and minimum concentration for the
input signals, or a maximum rate of change for the input
signal. We implemented these experimental constraints as
linear inequality constraints of the form of Equation 10.

Ap<b (10)

The matrix A and the vector b are passed as arguments to
Isqlin in the case of the tangent linear controller, or to
fmincon in the case of the dynamic optimization controller.
An example of a linear constraint that might be applied is
that the input increase monotonically. In this case, A and b
are given by Equation 11.

1 -1 0 0
A= and b= | (1)

EGFR Signaling Model

We based our model of EGFR signaling on that of
Hornberg et al. [16], which itself is a refinement of earlier
work [17,18,27]. The model contains 103 chemical species,
and 148 elementary reactions; these reactions are of the type
given by Equations 1, 2, and 3 and may be reversible. The
model is parameterized by 97 distinct reaction rate values
and 103 initial conditions. The details of this model are given
in Dataset S3.

Here we also introduced a modified model of EGFR
signaling, which contained six additional production/degra-
dation reactions of the form of Equation 12, where X is one of
{GAP, GRB2, SOS, RAS-GDP, SHC, or GRB2-SOS}.

Rsynth
=X (12)
Rdeg

The degradation rate kqeg Was set such that the steady-state
value of the species was the same as the steady-state value in
the unmodified model computed using Equation 13.

kdeg - ksynt/XSS (13)

In addition to the protein synthesis and degradation
reactions, a GAP-catalyzed turnover of RAS-GTP was
implemented.

kon
RAS—GTP 4+ GAP =RAS—-GTP:GAP

k““.
“RAS-GDP + GAP+P;  (14)
The rate constants (R, korp and ke,) are b X 1077 cell
molecules™ s, 0.4 s7!, and 0.028 s, respectively. The rate
constants K, and k.¢ are taken from the analogous reaction
where GAP is part of the receptor complex and the k., was fit
so that the half-life of RAS-GTP in the absence of EGF
matched literature values [35]. Finally, a first-order turnover
of internalized SOS was implemented with a rate constant of
10”7 s based on the turnover rate of EGFR.

S0S; % S0S (15)

This augmented model has the additional property that if
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the input is removed (set to zero) it will return to its initial
condition.

MAPK Signaling Model

The mitogen activated protein kinase cascade is a signaling
motif found repeated throughout biology [27]. In each step of
the cascade a substrate is multiply phosphorylated by a
kinase, which in turn is the input to the next layer in the
cascade. The off signal, present in each layer, is a phosphatase
that removes the phosphate groups. Despite knowing all of
the species involved, the detailed mechanism of the enzymatic
steps had been difficult to determine [27]. In particular, it was
unclear if the kinase acted in two distinct enzymatic steps,
whereby it released the substrate between phosphorylation
steps (distributive mechanism) or if it performed both
phosphorylation steps before releasing the substrate (proc-
essive mechanism).

A MAP kinase cascade consisting or RAF, MEK, and ERK is
contained in the Hornberg EGFR pathway model. We
extracted a tier of this cascade consisting of a single kinase,
phosphatase, and substrate. The four reversible bimolecular
reactions representing the phosphorylation of ERK by doubly
phosphorylated MEK (MEKpp) and the de-phosphorylation
by a phosphatase were used as the basis of a new model. The
model contains a distributive dual phosphorylation step
catalyzed by MEKpp and a distributive dual de-phosphor-
ylation step catalyzed by a phosphatase. MEKpp is the system
input; doubly phosphorylated ERK (ERKpp) is the output.

In addition to this basic model, three alternative models
were constructed that differed in their mechanism of
phosphorylation and de-phosphorylation (processive or dis-
tributive). The set of four models (distributive-kinase/distrib-
utive-phosphatase, processive-kinase/distributive-phospha-
tase, distributive-kinase/processive-phosphatase, processive-
kinase/processive-phosphatase) represents all possible combi-
nations of processive and distributive phosphorylation and
de-phosphorylation mechanisms. The alternative models,
which contain some rate parameters not included in the
distributive-kinase/distributive-phosphatase base model, were
parameterized by fitting the parameters to the step response
of the double distributive model, which included both a step-
up and a step-down experiment. The details of these four
models are given in Dataset S2.

Results

We have developed a method for designing an input signal
capable of controlling the output of a candidate model. In
practice, these input signals are useful for distinguishing
among sets of candidate models.

Simple Antibody-Binding Models

The dynamic optimization controller was applied to design
input stimuli for each of the two alternative antibody binding
reactions studied by Smith-Gill and co-workers [3]. For both
the one-step and the two-step model (Dataset S1), the
objective applied was to produce a constant output of
antibody-ligand complex from time zero onwards. In the
experiment performed by Smith-Gill and co-workers the
measurement was a change in mass due to ligand binding as
measured by surface plasmon resonance. While the fully
bound complex is more stable than the postulated encounter
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complex, both have the same mass and would produce the
same output signal. Therefore, in the case of the two-step
model, the output is the sum of the encounter and fully
bound complexes, whereas in the one-step model it is simply
the fully bound complex. The basis set for the input was a 50-
point piecewise-linear function with linear spacing. In the
two-step model points were distributed evenly over the entire
interval. In the one-step model points were placed evenly
from 500 s to 600 s to accommodate the sharp transition.

The results are shown in Figure 2. Both controllers
designed an input signal that starts at high concentration to
form complex quickly and then drops to a lower concen-
tration to keep the complex from overshooting the desired
value. However, the controller for the one-step model drops
abruptly while the controller for the two-step model drops
more gradually. The desired outputs were not recovered
when the stimuli from the wrong models were applied. When
the one-step input was applied to the two-step system, the
output produced an undershoot followed by an overshoot.
When the input designed for the two-step model was applied
to the one-step system, the complex concentration also
produced an overshoot, but one that persisted. In both cases,
accounting for the presence or absence of the encounter
complex was critical for controlling the output correctly.

It is interesting to note that this method allows for the
selection of both the more complex model (if it is correct) as
well as the simpler model. This is not possible using standard
a posteriori metrics, such as least squares, which will always
favor the more complex model. While there are methods that
try to correct for this bias [36], properly accounting for model
complexity in large nonlinear systems remains an open
problem [37]. Comparing our results to the Smith-Gill pulse
method (Figure 2B), it is clear that both computational
experiments permit the two models to be distinguished in
favor of the two-step method. However, for larger and more
complex cases, it is unclear whether intuitive approaches or
square pulse inputs will be sufficient to design distinguishing
experiments. Another feature of the simulations is that the
designed pulse produces a level output that does not require
fine time resolution to accurately measure. This can be a
significant advantage for more complex experimental sys-
tems, such as cell signaling measurements, where limitations
on experimental observations are even more severe, whether
in terms of numbers of species, time points or other factors.

MAPK Signaling

Mitogen-activated protein kinase cascades have been
extensively studied experimentally and modeled computa-
tionally. While many variants exist, the canonical pathway
consists of three layers of kinases and phosphatases. For each
layer, the kinase activates the downstream kinase by dual-
phosphorylation and the phosphatase deactivates the down-
stream kinase by removing the phosphate groups. Knowing
the general structure of this pathway, it was still difficult to
determine the details of the enzymatic steps. In particular, it
was unknown if the kinase acted in a processive mechanism
(adding both phosphate groups in a single step), or if it acted
in a distributive mechanism (adding the phosphates in two
distinct enzymatic steps). The difficulty arose from the fact
that, without measuring all of the phosphorylation forms,
both mechanisms could fit the step response data. The issue
was eventually resolved by devising an experiment that could
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Figure 2. Analysis of Monovalent Antibody Binding

(A) Two models of monovalent antibody binding, a one-step version with no intermediate, and a two-step version with an association intermediate c.
(B) The results of six simulated experiments are shown as designed in [3]. Each trace is the response of the system to a square pulse of ligand
concentration. The width of the pulse varies from 400 s to 6,000 s. The pronounced elbow in the middle curves is indicative of the two-state model. The

one-step model cannot have compound off kinetics.

(C) The set of experiments designed by this algorithm as well as simulated results are shown. Each pulse was designed to produce a level output when
applied to the correct model (yellow boxes), which was observed, and produced a distinctly different result when applied to the other model (blue
boxes). The red lines are the inputs (unbound L) the blue lines are the output (C or C+ C'). The smaller the gap between the blue and the black dashed
line the better the model fits the real system. Looking across one row shows a pair of experiments that would be run together.

doi:10.1371/journal.pcbi.0040030.g002

separate all of the phosphorylation forms [27]. Here we show
that, in principle, the mechanisms could have been distin-
guished using our method, without adding additional
measurements.

To address this problem we generated four candidate
models of a MAPK dual phosphorylation reaction. All four
models contained forward phosphorylation and reverse de-
phosphorylation steps, but differed in the detailed mecha-
nisms. For both the forward and the reverse reactions we
considered a processive (one-step) and a distributive (two-
step) mechanism (Figure 3A). Taking all combinations of
distributive and processive reactions produced four models.
For each model the free kinase concentration was the input
variable and the concentration of doubly phosphorylated
substrate was the output.

For each of the four models, a stimulus was developed using
the tangent linear controller. The objective was to drive the
output to a fixed value that remained constant with time.
Each of the four designed signals was used to stimulate each
of the four models, and the resulting 16 experiments are
shown in Figure 3C. Along the diagonal, one can see that the
input signal derived from the correct model was able to
effectively control the system. However, looking at each off-
diagonal entry shows that inputs from each wrong model did
a poor job controlling each system. In any real experiment,
there is only one true system, which corresponds to perform-
ing the experiments from a single row of the figure.

As with the antibody models, the algorithm was able to find
a set of signals that distinguished amongst multiple models. It
is worth noting that these solutions were generated automati-
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cally from the candidate models and did not require explicit
user supervision.

EGFR Pathway

A popular ordinary differential equation model of the
EGFR pathway is that of Hornberg and co-workers [16]. This
model consists of 103 differential equations and includes
ligand binding, receptor dimerization and activation, adaptor
protein binding, trafficking of the receptor complex, and
activation of the MAPK cascade terminating with ERK dual
phosphorylation (Figure 4). This model was built as a set of
successive refinements of earlier models [17,18,27], with each
refinement adding a new level of detail to the model. In its
most recent formulation an additional negative feedback
loop was added whereby activated ERK phosphorylates SOS
and deactivates it. This model has been shown to agree with
time course data collected in cell based assays as well as
literature values for parameters measured in vitro [18]. We
compare the original Hornberg model to a version with
additional changes. We continue this model evolution by
modifying the Hornberg model so that, when the input (EGF)
is removed, the model returns to its initial conditions. This
reset behavior is observed experimentally. Cells cultured in
media containing EGF but switched to serum and EGF free
media 12 h before stimulation, are able to respond to a dose
of EGF added to the media [23]. This indicates that after EGF
has been removed, the pathway returns to an EGF responsive
state.

In the Hornberg model, the dominant mechanism for
desensitization and adaptation of the pathway to EGF is
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Figure 3. Analysis of MAPK Mechanisms
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(A) Four alternative MAPK reaction schemes are shown. These correspond to all combinations of processive and distributive kinase and phosphatase
mechanisms. Model | is the canonical all-distributive mechanism. For each model the input is the concentration of activated kinase (K) and the output is

the doubly phosphorylated substrate (5**¥).

(B) All four MAPK models respond in very similar fashion to a step increase in kinase input (u=1).

(C) A set of 16 model-selection experiments. Each row is a different experimental system and each column is a different candidate model. Red lines are
inputs (activated K), blue lines are outputs (S**), and the black dashed line is the design output trajectory. The experiments on the diagonal show that
the correct model can control the system. The off-diagonal experiments show that the wrong model does a worse job. This difference can be used to

select the correct model.
doi:10.1371/journal.pcbi.0040030.g003

endocytosis and degradation of the receptor complex.
Opposing this process are constitutive production and
degradation reactions for the receptor, which allow the
receptor level to return back to steady state after stimulation.
This same process degrades other proteins in the receptor
complex GAP, GRB2, SOS, and RAS, but the current model
does not contain synthesis terms for these proteins. As a
result, prolonged stimulation depletes these proteins and
prevents the activation of RAF, MEK, and ERK. We added
production and degradation reactions analogous to the
reactions for the receptor for all of the proteins in the
receptor complex. Rate constants were chosen such that the
steady-state levels in the absence of stimulation were the same
as the initial conditions for the model and the exponential
time constant for the approach to steady state was the same as
for EGFR.

The second modification to the model was in the RAS-GDP/
RAS-GTP cycle. In the Hornberg model, activated receptor is
needed to catalyze the recycling of RAS-GTP* (a molecule of
RAS-GTP that has already activated a molecule of RAF) that is
waiting to be recycled to RAS-GDP. If EGF is removed, RAS
can be trapped in the RAS-GTP* form, preventing the system
from returning to steady state. We addressed this by adding
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an additional enzymatic step to recycle RAS-GTP* back to
RAS-GDP catalyzed by GAP and parameterized using
literature rate constants [35].

With the addition of these new reactions, the modified
model returns to its initial conditions after stimulation. For
the remaining model parameters (the parameters shared with
the original model) we fit the modified model to the original
using data from a simulated step-response experiment
(Figure 5A) constraining them to be within 10% of their
original value. Despite the introduction of these new
mechanisms and the tight constraints on the parameters,
the step responses of the six molecular species modeling
those presented in the original paper [18] (Figure 5B) are very
similar in the original model (blue curves) and the modified
model (red curves). The largest difference is in the SHC* time
course, which has a very similar shape and varies by at most
11%. While significant, this difference would be very difficult
to detect in a standard biological experiment. As such, the
modified model is a reasonable alternative to the original
model, and it would be hard to reject either mechanism using
the step-response data alone.

From this starting point we used our methodology to
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Figure 4. Schematic of EGF-Induced Signaling

This schematic shows the major steps in EGFR signaling. At the top of the pathway ligand binds to the receptor and induces receptor dimerization and
activation. The signal is then transduced through a series of adaptor proteins SHC, GRB2, and SOS, which in turn activates the MAPK cascade RAF, MEK
and ERK. There are two negative feedback loops: internalization and degradation of the receptor complex, and ERK deactivation of SOS.
doi:10.1371/journal.pcbi.0040030.g004

design an experiment that could distinguish between the negative feedback loops, both models required a steadily
current model and the modified model of the EGFR pathway. increasing concentration of EGF to maintain a constant level
For each model we tasked the dynamic optimization of ERKpp. However, the original model was much more
controller with driving the concentration of doubly phos- difficult to control; as time progressed increasingly high doses
phorylated ERK to a constant level of 10* molecules per cell. of EGFR were required to maintain a constant output. The
The input basis set was 25 points linearly spaced over the modified model required a much gentler increase in EGF
interval. To model the experimental condition where it is concentration to maintain its level and was able to keep the
easy to add EGF to the dish of cells but difficult to remove, we concentration of ERKpp high to the end of the time period.
implemented a monotonicity constraint. Figure 5B shows the Trial calculations showed that this result was robust to order
inputs designed for each of the two models applied to each of magnitude changes in the new rate parameters introduced

system with the resulting ERKpp time courses. Due to the in the modified model. Applying these two signals in an
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Figure 5. Comparison of Step Experiment to Designed Experiment for EGFR Pathway with Original and Modified Models

(A) Both models respond similarly but not identically to a step input in EGF over a range of concentrations. The red lines are the outputs of the modified
model and the blue lines are the outputs of the standard model. Often the blue lines are not visible because they are under the red lines.

(B) Two designed dynamic stimuli were applied to two models of the EGFR pathway. The red lines show the input (EGF) concentration as a function of
time. The blue lines show the output concentrations (ERKpp). The dashed black line shows the target ERKpp concentration. The controller for the
standard model is unable to keep the output level high and saturates. In contrast, the modified model requires a more gradual increase in the input and
can control the experiment over the entire time course. In both cases the controller based on the wrong model performs worse that the controller
based on the correct model.

doi:10.1371/journal.pcbi.0040030.g005
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experiment could be used to distinguish between these two
models, as demonstrated by the simulations.

Discussion

The most common stimulus-response protocol involves
applying a step change in one or more input concentrations
and following the evolution of one or more downstream
molecules. For a linear system, this type of experiment can
provide enough information to fully identify the system [38].
However, even simple biochemical systems are nonlinear, and
as such there is no a priori reason to believe that a step-
response experiment will be sufficient to uncover the relevant
dynamics of the system and allow for the selection of a unique
model. As a result, it is often possible, if not probable, that
multiple mechanisms fit the same set of step-response data.
We have shown here that using dynamic stimulation can
improve stimulus-response experiments. Even in the context
of complex pathways with limited numbers of inputs and
outputs, experiments can be designed that are capable of
distinguishing amongst alternative mechanisms. Moreover,
for the EGFR pathway studied, the differences detected were
in the middle of the pathway, far from the location of the
stimulus or the readouts.

One possible explanation for the results presented here is
that we have stimulated the systems with high-frequency
signals, and it is this fact that allows for model discrimination.
While the high-frequency content almost certainly plays a
part, the fact that differences between models are observed at
low frequency distinguishes our results from other standard
test signals. For example, in linear systems it is common to
use random or pseudorandom signals to discriminate among
models. Figure S1 shows such an experiment. While the signal
is discriminating, the observed differences are high frequency
and would be difficult to distinguish in a standard biological
assay, which is usually sampled sparsely in time.

Formulating experimental design as a control problem
yielded a relatively straightforward numerical solution, which
allowed us to apply our method to large pathway models. While
the method does not yield optimal experiments, in the sense
of maximizing the least squares error between model ouputs,
the results are still of practical benefit and appear sufficient to
distinguish amongst model candidates. In the systems studied
here, the designed inputs were able to substantially increase
the differences observed between competing models when
compared to the corresponding step-response experiment.
By prescribing the target output trajectory, it should be
possible to tailor the experiments to the available measure-
ment methods, thereby achieving the most benefit from
existing assays. It is worth noting that in all of the examples
presented here, the target function was a constant output
concentration. This was chosen for simplicity rather than for
any special property of these targets. The problem of the best
target function is an interesting one but is beyond the scope
of this work. However, in Figure S2 we show calculations for
the antibody-ligand system using other simple target func-
tions, lines of constant slope, and find that designed inputs
based on these signals have similar discriminating power.

In each of the cases presented here, the dynamic stimuli
allowed us to select the correct mechanism from a set of
plausible candidates. However, it is possible that for a
particular system and set of constraints, the algorithms
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presented here may fail to find a signal that is sufficiently
discriminating. In this case a different choice of target
function or a more sophisticated optimization approach may
yield better results. However, it is worth noting that in the
systems studied here both methods were able to find very
good solutions in all cases. In general, the tangent linear
controller was more computationally efficient and yielded
smoother signals, whereas the dynamic optimization con-
troller was slower but did not require tuning of parameters
such as 7.

One potential limitation of our method comes from our
reliance on parameterized models. The accuracy of the
parameterizations will affect the quality of the predictions
made by the controllers and thus the ability to distinguish
between models. To demonstrate this, we generated 100
different parameterizations of the one-step and two-step
antibody models and then applied the control signals
designed using the nominal parameter set (Figure S3). The
parameter variation resulted in output trajectories that were
quantitatively different from the predicted output trajecto-
ries. However, the overall shape of the output trajectories was
preserved.

All of the results presented here were in simulation. In
practice, experimental error and measurement noise will
make it more difficult to distinguish between models. As a
result, one may only be able to effectively discard some
candidate models, and reduce the pool of hypotheses.
However, these experimental challenges also motivate our
method, as it has the potential to increase the experimental
observability of model differences when compared to a more
traditional experiment, such as a step response. Moreover,
the fact that potential mechanisms can be evaluated without
having to resort to additional inputs or outputs is especially
valuable in laboratory experiments, where adding additional
inputs or outputs may require significant effort, such as
developing new experimental reagents.

Supporting Information

Dataset S1. Models of the One-Step and Two-Step Antibody-Ligand
Binding Reaction

Found at doi:10.1371/journal.pcbi.0040030.sd001 (10 KB TAR).
Dataset S2. Models of the MAPK Phosphorylation and De-
Phosphorylation

Found at doi:10.1371/journal.pcbi.0040030.sd002 (10 KB TAR).
Dataset S3.
Pathway
Found at doi:10.1371/journal.pcbi.0040030.sd003 (50 KB TAR).

Models of the Epidermal Growth Factor Signaling

Figure S1. Random-Pulse Experiment

This figure shows a series of pulses as input to the one-step and two-
step antibody-ligand models for two different distributions of
switching time. In the slower switching time (A) the input signal
changes at random with a mean of 900 s, and in the faster switching
time (C) the input switches at random with a mean of 90 s.

(B) The response of the two models to the slower input shows that the
one-step model looks like a smoothed out version of the two-step
model.

(D) The trend is similar with the faster varying signal.

Found at doi:10.1371/journal.pcbi.0040030.sg001 (883 KB EPS).

Figure S2. Matching Different Target Functions

The dynamic optimization controller was used to design input signals
to drive the one-step and two-step antibody-ligand models. The
target functions (black dashes) are a set of lines of increasing slope.
The input is the concentration of free ligand (red) and the output is
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the amount of complex formed (blue). The figures on the diagonal
show that the controller based on the correct model is able to
accurately drive the systems to follow the target functions very
closely. Whereas, the figures on the off diagonal show that the inputs
based on the wrong models cause either large over- or undershoots of
the target function.

Found at doi:10.1371/journal.pcbi.0040030.sg002 (1.2 MB EPS).

Figure S3. The Effect of Parameterization Errors

A dynamic optimization controller was constructed based on a
nominal parameterization of the one-step and two-step antibody
models. The resulting input signal is shown in red and the output is
shown in dark blue. These input stimuli were then applied to a set of
100 different parameterizations of these two models (cyan lines). The
parameters were chosen from a log normal distribution with a mean
centered on the nominal value and a variance of 10%.

Found at doi:10.1371/journal.pcbi.0040030.sg003 (10.8 MB EPS).
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