
Computing Population Variance and Entropy under Interval

Uncertainty: Linear-Time Algorithms

Gang Xiang, Martine Ceberio, and Vladik Kreinovich
Department of Computer Science

University of Texas at El Paso, El Paso, TX 79968, USA,
gxiang@utep.edu, mceberio@cs.utep.edu, vladik@utep.edu

Abstract

In statistical analysis of measurement results it is often necessary to compute the range [V , V] of the

population variance V =
1

n
·

n∑
i=1

(xi − E)2

(
where E =

1

n
·

n∑
i=1

xi

)
when we only know the intervals

[x̃i − ∆i, x̃i + ∆i] of possible values of the xi. While V can be computed efficiently, the problem of
computing V is, in general, NP-hard. In our previous paper “Population Variance under Interval Uncer-
tainty: A New Algorithm” (Reliable Computing, 2006, Vol. 12, No. 4, pp. 273–280) we showed that in
a practically important case we can use constraints techniques to compute V in time O(n · log(n)). In
this paper we provide new algorithms that compute V (in all cases) and V (for the above case) in linear
time O(n).

Similar linear-time algorithms are described for computing the range of the entropy

S = −
n∑

i=1

pi · log(pi) when we only know the intervals pi = [p
i
, pi] of possible values of probabilities pi.

In general, a statistical characteristic f can be more complex so that even computing f can take much
longer than linear time. For such f , the question is how to compute the range [y, y] in as few calls to f
as possible. We show that for convex symmetric functions f , we can compute y in n calls to f .

1 Computing Population Variance under Interval Uncertainty:
Formulation of the Problem

Statistical analysis is important. Once we have n measurement results x1, . . . , xn, the traditional

statistical analysis starts with computing the standard statistics such as population mean E =
1
n
·

n∑

i=1

xi and

population variance V = M − E2, where M
def=

1
n
·

n∑

i=1

x2
i ; see, e.g., [17].

These values are useful, e.g. in detecting outliers: once we know the mean E and the standard deviation
σ

def=
√

V of the normal values, we can determine outliers as values xi for which |xi−E| À σ, i.e., |xi−E| ≥
k0 · σ for some k0 (usually, k0 = 2, 3, or 6).

Outliers are important in many application areas: in non-destructive testing, outliers indicate possible
faults; in geophysics, outliers should be identified as possible locations of minerals; in medicine, outliers
indicate possible illnesses, etc.

The more data points we take, the more accurate the resulting estimates for E and V . Thus, in many
practical applications we process large amount of data. For instance, in geophysics, we process thousands
and millions data points and in processing census data, we process data about millions of people.

Interval uncertainty. In many real-life situations, due to measurement uncertainty, instead of the actual
values xi of the measured quantity, we only have intervals xi = [xi, xi] of possible values of xi [10, 17].

1

Usually, the interval xi has the form [x̃i − ∆i, x̃i + ∆i], where x̃i is the measurement result, and ∆i is
the known upper bound on the absolute value |∆xi| of the (unknown) measurement error ∆xi

def= x̃i − xi:
|∆xi| ≤ ∆i.

Another source of interval uncertainty is the existence of detection limits for different sensors: if a sensor
did not detect any ozone, this means that the ozone concentration is below its detection limit DL, i.e., in
the interval [0, DL].

One more source of interval uncertainty is discretization: to study the effect of a pollutant on the fish,
we check on the fish daily; if a fish was alive on Day 5 but dead on Day 6, then the only information about
the lifetime of this fish is that it is somewhere within the interval [5, 6]; we have no information about the
distribution of different values in this interval.

Yet another source of interval uncertainty is privacy. In biomedical systems, statistical analysis of the
data often leads to improvements in medical recommendations. However, to maintain privacy, we do not
want to use the exact values of the patient’s parameters. Instead, for each parameter we select fixed values
(thresholds). For each patient we only keep the corresponding range. For example, instead of keeping the
exact age, we only record whether the age is between 0 and 10, 10 and 20, 20 and 30, etc.

Finally, intervals occur if instead of measurements, we use expert estimates for difficult-to-measure quan-
tities. This is due to the fact that experts can rarely describe exact values of the physical quantities. At
best, they can provide the bounds on the possible values, i.e., intervals which contain the (unknown) actual
value of the quantity of interest.

In statistical analysis it is necessary to take into account interval uncertainty. As we have
mentioned, in many practical situations it is desirable to know the mean E and the variance V . In case of
interval uncertainty, different values xi ∈ xi generally lead to different values of E and V . It is therefore
desirable to compute the ranges E = [E, E] and V = [V , V] of possible values of E and V when xi ∈ xi.

Example of practical applications: in brief. Interval ranges for statistical characteristics have been
successfully used in geophysics [15, 16], in environmental science, and in many other application areas; see
[13, 14] and references therein.

Computing the range of variance under interval uncertainty: what is known. Since the pop-
ulation mean E is a monotonic function of its n variables x1, . . . , xn, its range can be easily computed as

E =

[
1
n
·

n∑

i=1

xi,
1
n
·

n∑

i=1

xi

]
.

The population variance V (x1, . . . , xn) is, in general, not a monotonic function of its variables xi. As
a result, we cannot easily indicate the values at which this function attains its minimum and maximum.
It can be easily checked that population variance is a convex function, which allows us to use known effi-
cient (polynomial time) algorithms of convex optimization to find the minimum V of this convex function
V (x1, . . . , xn) on the convex box x1× . . .×xn. For this particular convex function, it is possible to describe
algorithms which are faster than in the general convex case. Namely, we can compute the lower bound V in
time O(n · log(n)); see, e.g., [14].

For the upper bound V the situation is more complicated. Specifically, it is known that the maximum of
a convex function on a convex set is attained at one of its extreme points. Thus, the maximum V is attained
at one of the extreme points of the convex box x1× . . .×xn, i.e., when for every i, the variable xi is equal to
one of the endpoints: xi = xi or xi = xi. There are 2n combinations of n such endpoints. Therefore, we can
compute V by finding the maximum of 2n corresponding values. The computation time for this computation
grows exponentially with the size n of the problem.

It is known that in general, computing V is an NP-hard problem [7, 14]. This NP-hardness result means
that (unless P=NP) no general algorithm is possible that would always compute V in feasible (polynomial)
time. Crudely speaking, in the worst case, the exponential computation time is inevitable.

However, it is possible to compute V in polynomial time in some practically reasonable cases.
In general, we can have both high-accuracy data points (e.g., points with narrow uncertainty intervals)

and low-accuracy fata points (e.g., points with much wider uncertainty intervals). For example, in addition

2

to accurate measurements that provide narrow intervals for the values of the desired quantity, we may have
expert estimates that come from experts. It is well known that in statistics, if we have a large number of high-
accuracy data points, then the additional information provided by low-accuracy data points is negligible.
As a result, in statistical analysis only high-accuracy data points are usually taken into account. With this
practice in mind, it is reasonable to restrict ourselves to the case when all the intervals are approximately
of the same width. This happens when all measurements have been done by a single measuring instrument
(or by several measuring instruments of the same type).

How can we describe this mathematically? A clear indication that we have two measuring instruments
(MI) of different quality is that one interval is a proper subset of the other one: [xi, xi] ⊆ (xj , xj). Thus,
the condition that all data points are of the same accuracy means can be formalized as a requirement that
no interval is a proper subinterval of another one.

This property holds for other sources of interval uncertainty: e.g., for detection limits, we have intervals
of the type [0, DLi] for which [0, DLi] 6⊆ (0, DLj), and in the privacy case, when we have intervals [bk, bk+1]
between two consecutive thresholds, none of which is a proper subset of the other.

In this practically useful case when no interval is a proper subset of another one, there exists an algorithm
for computing V in time O(n · log(n)) [5]. This algorithm can be extended to a more general case when
the above “no-subset” property holds only for the “narrowed” intervals. Specifically, an O(n · log(n)) time
algorithm exists for the case when no “narrowed interval” [x−i , x+

i] is a proper subinterval of the interior

of another narrowed interval, where x− def= x̃i − ∆i

n
and x+

i
def= x̃i +

∆i

n
. This condition is equivalent to

requiring that |x̃i − x̃j | ≥ |∆i −∆j |
n

for all i 6= j.
In this paper we describe two new linear-time algorithms:

• a linear-time algorithm that computes V for all possible intervals, and

• a linear-time algorithm that computes V for intervals that satisfy the above no-subset property.

Comment. Some preliminary results have previously appeared in a Sandia technical report [8].

2 Linear-Time Algorithm for Computing V for the Case when
Narrowed Intervals Satisfy the No-Subset Property

Our new algorithm is based on the known fact that we can compute the median of a set of n elements in
linear time (see, e.g., [4]); our use of median is similar to the one from [3, 9]. Let us first describe the
algorithm itself. In the Appendix, we provide a justification for this algorithm.

For simplicity, let us first consider the case when all the intervals are non-degenerate, i.e., when ∆i > 0
for all i.

The proposed algorithm is iterative. At each iteration of this algorithm we have three sets:

• the set I− of all the indices i from 1 to n for which we already know that for the optimal vector x, we
have xi = xi;

• the set I+ of all the indices j for which we already know that for the optimal vector x, we have xj = xj ;

• the set I = {1, . . . , n} \ (I− ∪ I+) of the indices i for which we are still undecided.

In the beginning, I− = I+ = ∅ and I = {1, . . . , n}. At each iteration we also update the values of two
auxiliary quantities E− def=

∑
i∈I−

xi and E+ def=
∑

j∈I+
xj . In principle, we could compute these values by

computing these sums. However, to speed up computations on each iteration, we update these two auxiliary
values in a way that is faster than re-computing the corresponding two sums. Initially, since I− = I+ = ∅,
we take E− = E+ = 0.

At each iteration we do the following:

• first, we compute the median m of the set I (median in terms of sorting by x̃i);

3

• then, by analyzing the elements of the undecided set I one by one, we divide them into two subsets
P− = {i : x̃i ≤ x̃m} and P+ = {j : x̃j > x̃m};

• we compute e− = E− +
∑

i∈P−
xi and e+ = E+ +

∑
j∈P+

xj ;

• if n · x−m < e− + e+, then we replace I− with I− ∪ P−, E− with e−, and I with P+;

• if n · x−m > e− + e+, then we replace I+ with I+ ∪ P+, E+ with e+, and I with P−;

• if n · x−m = e− + e+, then we replace I− with I− ∪ P−, I+ with I+ ∪ P+, and I with ∅.
At each iteration the set of undecided indices is divided in half. Iterations continue until all indices are
decided. After this we return, as V , the value of the population variance for the vector x for which xi = xi

for i ∈ I− and xj = xj for j ∈ I+.

Comments.

• This same algorithm can be easily applied if one of the intervals consists of a single point only. This
value is plugged in and the variable is eliminated.

• For readers’ convenience, all the proofs – that the algorithms are correct and that they require linear
time – are placed in a special Appendix.

• As with all asymptotic results, two natural questions arise: 1) How practical is the new linear time
O(n) algorithm? 2) For which n is it better than the known O(n · log(n)) algorithm for computing V ?
In general, the answer to these questions depends on the constants in the corresponding asymptotics.
The constant for the known O(n · log(n)) algorithm is ≈ 1. As one can see from the proof, for our
new algorithm, the constant is the same as for known linear time algorithm for computing the median,
i.e., it is ≈ 20 [4]; thus, the new algorithm is better when log2(n) > 20, i.e., when n > 106. We have
mentioned that in many practical applications we do need to process millions of data points; in such
applications, the new algorithm for computing V is indeed faster.

3 Linear-Time Algorithm for Computing V

The proposed algorithm is iterative. At each iteration of this algorithm we have three sets:

• the set J− of all the endpoints xi and xj for which we already know that for the optimal vector x we
have, correspondingly, xi 6= xi (for xi) or xj = xj (for xj);

• the set J+ of all the endpoints xi and xj for which we already know that for the optimal vector x we
have, correspondingly, xi = xi (for xi) or xj 6= xj (for xj);

• the set J of the endpoints xi and xj for which we have not yet decided whether these endpoints appear
in the optimal vector x.

In the beginning, J− = J+ = ∅ and J is the set of all 2n endpoints. At each iteration we also update the values
N− = #(J−), N+ = #(J+), E− =

∑
xj∈J−

xj , and E+ =
∑

xi∈J+
xi. Initially, N− = N+ = E− = E+ = 0.

At each iteration we do the following.

• First we compute the median m of the set J .

• Then, by analyzing the elements of the undecided set J one by one, we divide them into two subsets

Q− = {x ∈ J : x ≤ m}, Q+ = {x ∈ J : x > m}.

We also compute m+ = min{x : x ∈ Q+}.

4

• We compute e− = E− +
∑

xj∈Q−
xj , e+ = E+ +

∑
x

i
∈Q+

xi,

n− = N− + #{xj ∈ Q−}, n+ = N+ + #{xi ∈ Q+},

and r =
e− + e+

n− + n+
.

• If r < m, then we replace J− with J− ∪Q−, E− with e−, J with Q+, and N− with n−.

• If r > m+, then we replace J+ with J+ ∪Q+, E+ with e+, J with P−, and N+ with n+.

• If m ≤ r ≤ m+, then we replace J− with J− ∪Q−, J+ with J+ ∪Q+, J with ∅, E− with e−, E+ with
e+, N− with n−, and N+ with n+.

At each iteration the set of undecided indices is divided in half. Iterations continue until all indices are
decided. After this we return, as V , the value of the population variance for the vector x for which:

• xj = xj for indices j for which xj ∈ J−,

• xi = xi for indices i for which xi ∈ J+, and

• xi = r for all other indices i.

4 Computing Entropy under Interval Uncertainty

4.1 Formulation of the Problem

For a probability distribution with probabilities p1, . . . , pn (
∑

pi = 1) the amount of uncertainty can be

described by Shannon’s entropy S = −
n∑

i=1

pi · log(pi). In practice we sometimes only know the intervals

pi = [p
i
, pi] of possible values of pi. Different values pi ∈ pi lead to different S. It is therefore desirable to

find the range [S, S] of the entropy S [11].
Since the function S is concave, computation of S is feasible [12, 19]. However, computing S is NP-hard

[21]. For the case when no interval [p
i
, pi] is a proper subset of the interior of another interval pj we have

proposed an O(n · log(n)) algorithm for computing S [21].
In this paper we describe two new linear-time algorithms:

• a linear-time algorithm that computes S for all possible intervals, and

• a linear-time algorithm that computes S for intervals that satisfy the above no-subset property.

Comment. The new algorithms are similar to the above algorithms for computing V and V . The main
difference between the algorithms for variance and the algorithms for entropy is as follows. The variance
V (x1, . . . , xn) is defined for all possible combinations xi ∈ [xi, xi]. However, the entropy is only defined for

values pi ∈ [p
i
, pi] that satisfy the additional constraint

n∑
i=1

pi = 1. As a result, while the maximum V of the

variance V is attained when each value xi attains one of its endpoints, the minimum S of the entropy S is

generally attained when all but one values are endpoints. Indeed, it may not be possible to have
n∑

i=1

pi = 1

if we only use endpoints.

5

4.2 Linear-Time Algorithm for Computing S for Intervals that Satisfy the No-
Subset Property

The proposed algorithm for computing S is similar to the algorithm for computing V . The only difference
is in the replacement part. Namely, once we computed m, P−, P+, e−, and e+, we do the following.

• If e− + e+ > 1, then we replace I− with I− ∪ P−, E− with e−, and I with P+.

• If e− + e+ + 2∆m < 1, then we replace I+ with I+ ∪ P+, E+ with e+, and I with P−.

• Finally, if e−+ e+ ≤ 1 ≤ e−+ e+ +2∆m, then we replace I− with I− ∪ (P−−{m}), I+ with I+ ∪P+,
I with {m}, E− with e− − p

m
, and E+ with e+.

When computing V , iterations continued until I = ∅. For S iterations continue until we have only one
undecided index I = {k}. After this we return, as S, the value of the entropy for the vector p for which
pi = p

i
for i ∈ I−, xj = pj for j ∈ I+, and pk = 1− e− − e+ for the remaining value k.

Comment: a similar linear-time algorithm can be used to compute the expected value under interval uncer-
tainty. In addition to computing the range for entropy, it is often useful to compute the range [a, a] of the

expected value a =
∑

ai ·pi of a known variable (a1, . . . , an) under the constraints pi ∈ [p
i
, pi] and

n∑
i=1

pi = 1.

For this problem, linear-time algorithms are known; see, e.g., [3, 9]. Let us show that this problem can be
also solved by a simple modification of the above algorithm.

It is known that the smallest possible value a of the linear form
n∑

i=1

ai ·pi under given constraints is equal

to −b, where b is the largest possible value of the form
n∑

i=1

bi · pi, with bi = −ai. Thus it is sufficient to

describe how to compute a.
To compute a we follow the above iterative algorithm while it computes I− and I+. We continue iterations

until we have only one undecided index I = {k}. After this we return, as a, the value of the linear function
n∑

i=1

ai · pi for the vector p for which pi = p
i

for i ∈ I−, xj = pj for j ∈ I+, and pk = 1 − e− − e+ for the

remaining value k.

4.3 Linear-Time Algorithm for Computing S

The proposed algorithm is similar to the algorithm for computing V ; the only difference is that for computing

S, at each iteration, instead of computing r =
e− + e+

n− + n+
, we compute r =

1− e− − e+

1− n− − n+
.

5 Towards Fast Computation of the Range of Convex Symmetric
Functions Under Interval Uncertainty

Computing the range of convex symmetric functions under interval uncertainty: formulation
of the problem. In general, a statistical characteristic f can be more complex so that even computing f
can take much longer than linear time. For such f , the question is how to compute the range [y, y] in as few
calls to f as possible. In this context, we can classify range-computing algorithms by this number of calls: it
is reasonable to call an algorithm quadratic-time if it uses O(n2) calls, linear time if it uses O(n) calls, etc.

In this section, we show that for a practically useful class of convex symmetric functions f , we can
compute y in n calls to f – i.e., in the context of number of calls, in linear time.

Specifically, we consider continuous convex symmetric functions on convex symmetric sets S ⊆ Rn

containing a non-degenerate box [x1, x1]× . . .× [xn, xn], with xi < xi for all i.
A set S ∈ Rn is called symmetric if with every point

x = (x1, . . . , xi−1, xi, xi+1, . . . , xj−1, xj , xj+1, . . . , xn) ∈ S

6

it also contain its arbitrary permutation; it is sufficient to require that for every i and j, the set S contain the
corresponding transposition πi,j(x) def= (x1, . . . , xi−1, xj , xi+1, . . . , xj−1, xi, xj+1, . . . , xn). A set S is called
convex if for two points x, x′ ∈ S and for every real number α ∈ (0, 1), the set S also contains the convex
combination α · x + (1− α) · x′.

A function f : S → R is called symmetric if f(x) = f(πi,j(x)) for every transposition πi,j , and convex if
f(α · x + (a− α) · x′) ≤ α · f(x) + (1− α) · f(x′) for all x, x′ ∈ S and for all α ∈ (0, 1).

Comment. It is known that each convex function defined on an open convex set is continuous; see, e.g., [2].
So, if, e.g., the set S coincides with entire space Rn, then we do not need to require continuity: any convex
function f : Rn → R is automatically continuous.

Examples. Variance
n∑

i=1

(xi−E)2 and entropy
n∑

i=1

−pi · log(pi) are examples of convex symmetric statistical

characteristics. More general examples are higher-order even central moments
n∑

i=1

(xi − E)2d (d = 1, 2, . . .)

and generalized entropy functions, i.e., functions
n∑

i=1

g(pi) with convex g(p).

Many important physical quantities outside statistics are also convex (or concave); see, e.g., [1, 2, 18, 20].
Some of these convex or concave characteristics are also symmetric.

Computational complexity: what is known. It is known that for convex functions, there exists a
feasible (polynomial-time) algorithm for computing its minimum y (see, e.g., [2, 19]), but computing its
maximum y is, in general, NP-hard [19]; as we have mentioned, it is even NP-hard for population variance. It
is therefore desirable to find feasible algorithms that solve the maximum in practically reasonable situations.
For variance and entropy, such algorithms are known for the case when the inputs satisfy the following
no-subset property: [xi, xi] 6⊂ (xj , xj) for all i 6= j.

Algorithm for computing y in linear number of calls to f . The following algorithm computes the
maximum y of a given continuous symmetric convex function f(x1, . . . , xn) over a given box x1 × . . . × xn

for all the cases in which the intervals xi satisfy the no-subset property:

• First, we sort n intervals xi in lexicographic order x1 ≤lex x2 ≤lex . . . ≤lex xn.

• Second, for each k from 0 to n, we compute f(s(k)), where s(k) def= (x1, . . . , xk, xk+1, . . . , xn).

• Finally, we return the largest of n + 1 values f(s(k)) as y.

This algorithm takes O(n · log(n)) steps for sorting (see, e.g., [4]), n + 1 calls to f (to compute n + 1 values
f(s(k))), and O(n) steps to find the largest of these n + 1 values. Thus, in addition to n + 1 calls to f , this
algorithm takes O(n · log(n)) + O(n) = O(n · log(n)) computational steps.

Comment. If the algorithm for computing the function f is feasible, i.e., takes a polynomial time t ≤ P (n)
for some polynomial P (n), then computing y can be done in time ≤ P (n) · (n + 1) + O(n · log(n)) – i.e., also
in polynomial time.

Comment. A function f is convex if and only if −f is concave. The minimum of −f is equal to minus the
maximum of f . Thus, the above algorithm can also be used to compute the minima of continuous symmetric
concave functions over a box [x1, x1]× . . .× [xn, xn] whose intervals satisfy the no-subset property.

Possibility of a faster algorithm. The above algorithm for computing y is not always optimal. For
example, computing the variance V takes time O(n), so n+1 computations of variance means (n+1)·O(n) =
O(n2) time – while the linear-time algorithm for computing V (presented in Section 2) is much faster.

It turns out that a speed-up is possible not only for the variance V , but also for several other symmetric
convex functions f .

7

Main idea behind the speed-up: some functions f are easy to revise. One of the reasons why we
can speed up the computation of V is that this function is easy to revise in the following sense.

When we go from s(k) to s(k+1), we only change a single component of the point s. Thus, if we keep the

values M
def=

1
n
·

n∑

i=1

x2
i and E =

1
n
·

n∑

i=1

xi, then updating each of these two values requires a constant number

O(1) of arithmetic operations (independent on n), and then computing V = M −E2 also requires a constant
number of operations. Thus, overall, we need O(n) time to compute V (s(0)) and time n · O(1) = O(n) to
compute n values V (s(1)), . . . , V (s(n)). So, overall, we need time O(n)+O(n)+O(n · log(n)) = O(n · log(n))
which is smaller than O(n2).

This idea can be applied to any situation in which the symmetric convex function f(x1, . . . , xn) is easy-
to-revise in the following precise sense.

Easy-to-revise functions: a precise definition. We say that a function f(x1, . . . , xn) is easy-to-revise
if there exist auxiliary functions f1, . . . , fm and the following two algorithms:

• an algorithm for computing f that first computes the values of the auxiliary functions f1, . . . , fm and
then uses these values to compute the value of f , and

• an algorithm ∆f that revises the values of each auxiliary function fj when only one of the components
xi changes, and then computes the new value of f based on the updated values of f1, . . . , fm.

Comment. Of course, this definition makes practical sense only when a revision algorithm ∆f is faster than
the algorithm for computing f . For example, for the variance, computing requires time O(n), but an update
requires a much smaller time O(1).

The auxiliary functions do not have to be different from f : e.g., the mean E is also easy-to-revise, with
f1 = f .

Examples. Variance, higher central even moments, entropy, generalized entropy are all examples of easy-
to-revise symmetric convex functions. For example, the 4-th central moment is a linear combination of the

moments Mk
def=

n∑
i=1

xk
i of orders k = 1, 2, 3, 4, and each of these four functions mk is easy to revise.

Algorithm for computing y for easy-to-revise symmetric convex functions f . For easy-to-revise
functions, we can compute y as follows:

• first, we compute the values of f and of the auxiliary functions fj and of f at s(0);

• then, for each k from 1 to n, we apply the algorithm ∆f to revise the values of fj from x = s(k−1) to
x = s(k), and to compute f(s(k));

• finally, we compute y as the largest of n + 1 values f(s(k)).

This algorithm calls the function f once (to compute f(s(0)), calls the revision algorithm ∆f n times, and
uses O(n · log(n)) computational steps in addition to these calls.

Comment. This new algorithm is still not always optimal: e.g., for the variance, this algorithm takes time
O(n · log(n)) + O(n) = O(n · log(n)), but we know that we can compute V even faster: in linear time.

Computing y and y under the constraint
n∑

i=1

xi = c: a problem. As we have mentioned earlier, for

entropy, we have an additional constraint
n∑

i=1

pi = 1 on the possible values of the probabilities pi. The same

constraint holds for computing other characteristics of probabilities such as a generalized entropy.
So, we arrive at the following problem: we know a continuous symmetric convex function f(x1, . . . , xn)

(given as an algorithm or, equivalently, as a computer program), we know the intervals xi = [xi, xi] that

8

satisfy the above no-subset property, and we know the number c for which we should have
n∑

i=1

xi = c. Our

objective is to compute the range

[y, y] =

{
f(x1, . . . , xn) : x1 ∈ x1, . . . , xn ∈ xn,

n∑

i=1

xi = c

}
.

Computing y under the constraint
n∑

i=1

xi = c. The constraints xi ∈ xi and
n∑

i=1

xi = c describe a convex

set, so we can compute the minimum y of a convex function f over this set in polynomial time.

Algorithm for computing y under the constraint
n∑

i=1

xi = c when the intervals satisfy the no-

subset property. Under the above no-subset property, the following algorithm computes y by calling f
once and by using O(n) computational steps in addition to this call.

This algorithm is iterative. At each iteration of this algorithm, we have three sets:

• the set I− of all the indices i from 1 to n for we already know that for the optimal vector x, we have
xi = xi;

• the set I+ of all the indices j for which we already know that for the optimal vector x, we have xj = xj ;

• the set I = {1, . . . , n} − I− − I+ of the indices i for which we are still undecided.

In the beginning, I− = I+ = ∅ and I = {1, . . . , n}. At each iteration, we also update the values of two
auxiliary quantities E− def=

∑
i∈I−

xi and E+ def=
∑

j∈I+
xj . In principle, we could compute these values by

computing these sums, but to speed up computations, on each iteration, we update these two auxiliary
values in a way that is faster than re-computing the corresponding two sums. Initially, since I− = I+ = ∅,
we take E− = E+ = 0.

At each iteration, we do the following:

• first, we compute the median m of the set I (median in terms of sorting by x̃i =
xi + xi

2
);

• then, by analyzing the elements of the undecided set I one by one, we divide them into two subsets
X− = {i : x̃i ≤ x̃m} and X+ = {j : x̃j > x̃m};

• we compute e− = E− +
∑

i∈X−
xi and e+ = E+ +

∑
i∈X+

xi;

• if e− + e+ > c, then we replace I− with I− ∪X−, E− with e−, and I with X+;

• if e− + e+ + 2∆m < c, then we replace I+ with I+ ∪X+, E+ with e+, and I with X−;

• finally, if e−+ e+ ≤ c ≤ e−+ e+ + 2∆m, then we replace I− with I− ∪ (X−−{m}), I+ with I+ ∪X+,
I with {m}, E− with e− − p

m
, and E+ with e+.

At each iteration, the set of undecided indices is divided in half. Iterations continue until we have only one
undecided index I = {k}, after which we return, as y, the value of the function f(x1, . . . , xn) for the vector
x for which xi = xi for i ∈ I−, xj = xj for j ∈ I+, and xk = c− E− − E+ for the remaining value k.

6 Open Questions

In the paper, we describe a linear-time algorithm for computing the range of the variance V . Can similar
linear-time algorithms be proposed for computing the endpoints of the intervals for the quantities
E−α ·√V and E+α ·√V – which are important in detecting outliers [6, 13]? for computing other statistical
characteristics – like moments or covariance?

9

Acknowledgments

This work was supported in part by NASA under cooperative agreement NCC5-209, NSF grants EAR-
0225670, DMS-0532645, and HRD-0734825, Star Award from the University of Texas System, and Texas
Department of Transportation grant No. 0-5453.

The authors are greatly thankful to Pim van den Broek for important discussions and references, to Scott
Ferson for valuable discussions, to the anonymous referees for important suggestions, and to David Novick
and Matthew G. Averill for their encouragement and invaluable editorial help.

References

[1] S. Berberian, Lectures in functional analysis and operator theory, Springer, New York-Heidelberg-Berlin,
1974.

[2] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004.

[3] P. van der Broek and J. Noppen, “Fuzzy weighted average: alternative approach”, Proceedings of the 25th
International Conference of the North American Fuzzy Information Processing Society NAFIPS’2006,
Montreal, Quebec, Canada, June 3–6, 2006.

[4] Th. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, MIT Press,
Cambridge, MA, 2001.

[5] E. Dantsin, V. Kreinovich, A. Wolpert, and G. Xiang, “Population Variance under Interval Uncertainty:
A New Algorithm”, Reliable Computing, 2006, Vol. 12, No. 4, pp. 273–280.

[6] E. Dantsin, A. Wolpert, M. Ceberio, G. Xiang, and V. Kreinovich, “Detecting Outliers under Interval
Uncertainty: A New Algorithm Based on Constraint Satisfaction”, Proceedings of the International
Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems
IPMU’06, Paris, France, July 2–7, 2006, pp. 802–809.

[7] S. Ferson, L. Ginzburg, V. Kreinovich, L. Longpré, and M. Aviles, Exact Bounds on Finite Populations
of Interval Data, Reliable Computing, 2005, Vol. 11, No. 3, pp. 207–233.

[8] S. Ferson, V. Kreinovich, J. Hajagos, W. Oberkampf, and L. Ginzburg, Experimental Uncertainty
Estimation and Statistics for Data Having Interval Uncertainty, Sandia National Laboratories, Report
SAND2007-0939, May 2007.

[9] P. Hansen, M. V. P. de Aragao, and C. C. Ribeiro, “Hyperbolic 0-1 programming and optimization in
information retrieval”, Math. Programming, 1991, Vol. 52, pp. 255–263.

[10] L. Jaulin, M. Kieffer, O. Didrit, and E. Walter, Applied interval analysis: with examples in parameter
and state estimation, robust control and robotics, Springer Verlag, London, 2001.

[11] G. J. Klir, Uncertainty and Information: Foundations of Generalized Information Theory, J. Wiley,
Hoboken, New Jersey, 2005.

[12] V. Kreinovich, “Maximum entropy and interval computations”, Reliable Computing, 1996, Vol. 2, No. 1,
pp. 63–79.

[13] V. Kreinovich, L. Longpré, P. Patangay, S. Ferson, and L. Ginzburg, “Outlier Detection Under Inter-
val Uncertainty: Algorithmic Solvability and Computational Complexity”, Reliable Computing, 2005,
Vol. 11, No. 1, pp. 59–76.

[14] V. Kreinovich, G. Xiang, S. A. Starks, L. Longpré, M. Ceberio, R. Araiza, J. Beck, R. Kandathi,
A. Nayak, R. Torres, and J. Hajagos, “Towards combining probabilistic and interval uncertainty in
engineering calculations: algorithms for computing statistics under interval uncertainty, and their com-
putational complexity”, Reliable Computing, 2006, Vol. 12, No. 6, pp. 471–501.

10

[15] P. Nivlet, F. Fournier, and J. Royer, A new methodology to account for uncertainties in 4-D seismic in-
terpretation, Proc. 71st Annual Int’l Meeting of Soc. of Exploratory Geophysics SEG’2001, San Antonio,
TX, September 9–14, 2001, 1644–1647.

[16] P. Nivlet, F. Fournier, and J. Royer, Propagating interval uncertainties in supervised pattern recognition
for reservoir characterization, Proc. 2001 Society of Petroleum Engineers Annual Conf. SPE’2001, New
Orleans, LA, September 30–October 3, 2001, paper SPE-71327.

[17] S. Rabinovich, Measurement Errors: Theory and Practice, American Institute of Physics, New York,
1993.

[18] A. W. Roberts and D. E. Varberg, Convex functions, Academic Press, New York and London, 1973.

[19] S. A. Vavasis, Nonlinear Optimization: Complexity Issues, Oxford Science, New York, 1991.

[20] R. Webster, Convexity, Oxford University Press, Oxford, New York, Tokyo, 1994.

[21] G. Xiang, O. Kosheleva, and G. J. Klir, “Estimating information amount under interval uncertainty:
algorithmic solvability and computational complexity”, Proceedings of the International Conference on
Information Processing and Management of Uncertainty in Knowledge-Based Systems IPMU’06, Paris,
France, July 2–7, 2006, pp. 840–847.

Appendix: Proofs

Proof that the new algorithm for computing V requires linear time. At each iteration, computing
median requires linear time, and all other operations with I require time t linear in the number of elements
|I| of I: t ≤ C · |I| for some C. We start with the set I of size n. On the next iteration, we have a set of size
n/2, then n/4, etc. Thus, the overall computation time is ≤ C · (n + n/2 + n/4 + . . .) ≤ C · 2n, i.e. linear in
n.

Proof that under the no-subset property for narrowed intervals, the new algorithm always
computes V . Similarly to [14], one can easily show that since no two narrowed intervals are proper subsets
of one another, they can be linearly ordered in lexicographic order. In this order we have x−1 ≤ x−2 ≤ . . . ≤ x−n ,
x+

1 ≤ x+
2 ≤ . . . ≤ x+

n . Thus the averages x̃i = (x−i + x+
i)/2 are also sorted: x̃1 ≤ x̃2 ≤ . . . ≤ x̃n.

In [5] we have shown that in this sorting the value V is attained at one of the vectors x(k) =
(x1, . . . , xk, xk+1, . . . , xn), i.e. that V = V (x(k)) for some k.

In [5] we also analyzed the change in V (x(k)) when we replace x(k) with x(k−1), i.e. when we replace xk

with xk = xk + 2∆k. We have shown that Vk−1 − Vk =
4∆k

n
· (x−k − Ek), where Ek

def= E(x(k)).

Hence Vk−1 < Vk if and only if x−k < Ek. Multiplying both sides of this inequality by n we get an

equivalent inequality x−k < n · Ek, where n · Ek =
k∑

i=1

xi +
n∑

j=k+1

xj . Similarly Vk−1 > Vk if and only if

x−k > Ek, and Vk−1 = Vk if and only if x−k = Ek.
When we go from k to k + 1, we replace the larger value xk+1 in the sum n · Ek by a smaller value xk.

Thus, the sequence n · Ek is strictly decreasing with k, while x−k is (maybe non-strictly) increasing with
k. Therefore, once we have n · x−k < Ek, i.e., Vk−1 < Vk, these inequalities will hold for smaller k as well.
Similarly, once we have n · x−k > Ek, i.e., Vk−1 > Vk, these inequalities will hold for larger k as well.

Once we have n·x−k = Ek, i.e., Vk−1 = Vk, then we will have Vk > Vk+1 > . . . and Vk = Vk−1 > Vk−2 > . . .,
i.e. Vk = Vk−1 will be the largest value of V .

In other words, the sequence Vk first increases (Vk > Vk−1 for k = 1, 2, . . .) and then starts decreasing
(Vk < Vk−1 for larger k), with one or two top values.

For each m, if Vm−1 < Vm (i.e. if n · x−m < Em) this means that the value kmax corresponding to the
maximum of V is ≤ m. Hence for all the indices i ≤ m we already know that in the optimal vector x we
have xi = xi. Thus these indices can be added to the set I−.

11

If Vm > Vm−1 (i.e. if n · x−m > Em) this means that the value kmax corresponding to the maximum of V
is > m. Hence for all the indices i > m we already know that in the optimal vector x we have xi = xi. Thus
these indices can be added to the set I+.

Finally, if Vm = Vm−1 (i.e. if n · x−m = Em) then this m is where the maximum is attained.
The algorithm has been justified.

Proof that the new algorithm for computing V requires linear time. At each iteration, computing
median requires linear time. All other operations with J require time t linear in the number of elements |J |
of J . We start with the set J of size n. On the next iteration, we have a set of size n/2, then n/4, etc. Thus,
the overall computation time is ≤ C · (n + n/2 + n/4 + . . .) ≤ C · 2n, i.e. linear in n.

Proof that the new algorithm always computes V . In [7] we proved that if we sort all 2n endpoints
into a sequence x(1) ≤ x(2) ≤ . . . ≤ x(2n), then for some k = kmin the minimum V is attained for the vector
x for which the following holds:

• For all indices j for which xj ≤ x(k) we have xj = xj .

• For all indices i for which xi ≥ x(k+1) we have xi = xi.

• For all other indices i we have xi = rk
def=

Ek

Nk
, where

Ek =
∑

j:xj≤x(k)

xj +
∑

i:xi≥x(k+1)

xi; Nk = #{j : xj ≤ x(k)}+ #{i : xi ≥ x(k+1)}.

It has also been proven that for the optimal k we have rk ∈ [x(k), x(k+1)].

In general, the condition x(k) ≤ rk =
Ek

Nk
is equivalent to

Nk · x(k) ≤ Ek =
∑

j:xj≤x(k)

xj +
∑

i:xi≥x(k+1)

xi.

Subtracting x(k) from each of Nk terms in the right-hand side (RHS) and moving the sum of the resulting
non-positive differences into the left-hand side (LHS), we conclude that

∑

j:xj≤x(k)

(x(k) − xj) ≤
∑

i:xi≥x(k+1)

(xi − x(k)). (1)

When we increase k, we get (in general) more terms in the LHS and fewer in the RHS. Hence LHS (non-
strictly) increases while the RHS non-strictly decreases. So if the inequality (1) holds for some k, it holds
for all smaller values of k as well. Thus this inequality holds for all k until a certain value k0.

Similarly, the condition x(k+1) ≥ rk =
Ek

Nk
is equivalent to

Nk · rk+1 ≥
∑

j:xj≤x(k)

xj +
∑

i:xi≥x(k+1)

xi.

Subtracting x(k+1) from each of Nk terms in RHS and moving the sum of the resulting non-positive differences
into LHS, we conclude that

∑

j:xj≤x(k)

(x(k+1) − xj) ≥
∑

i:xi≥x(k+1)

(xi − x(k+1)). (2)

When we increase k, the LHS (non-strictly) increases, while the RHS non-strictly decreases. So if the
inequality (2) holds for some k, it holds for all larger values of k as well. Thus this inequality holds for all k
after a certain value l0.

12

So both conditions (1) and (2) are satisfied (which is equivalent to the condition rk ∈ [x(k), x(k+1)]) either
for a single value kmin or for several sequential values l0, l0 + 1, . . . , k0. Let us show that if this condition is
satisfied for several sequential values, this simply means that the same minimum V is attained for all these
values. For that it is sufficient to show that if both conditions (1) and (2) holds for k and for k + 1 then the
variance V has the same value for both k and k + 1. Indeed, since (1) is true for k + 1, we have

∑

j:xj≤x(k+1)

(x(k+1) − xj) ≤
∑

i:xi≥x(k+2)

(xi − x(k+1)).

The LHS of this new inequality is smaller than or equal to the LHS of the inequality (2), and its RHS is
larger than or equal to the RHS of the inequality (2). Thus the only way for both inequalities to hold is
when both sides are equal, i.e. when replacing x(k) with x(k+1) and replacing x(k+1) with x(k+2) does not
change which endpoints are in I− and which are in I+ – and thus, does not change the corresponding value
of the variance.

So:

• for k < kmin, we have rk > x(k+1),

• for k > kmin, we have rk < x(k), and

• for k = kmin (or, to be more precise, for l0 ≤ k ≤ k0), we have x(k) ≤ rk ≤ x(k+1).

Hence:

• if rk < x(k), then we cannot have k < kmin and k = kmin, hence k > kmin;

• if rk > x(k+1), then we cannot have k > kmin and k = kmin, hence k < kmin;

• if x(k) ≤ rk ≤ x(k+1), then we cannot have k < kmin and k > kmin, hence k = kmin.

Thus the above algorithm finds the correct value of kmin and thence, the correct value of V .

Proof that the new algorithm for computing S requires linear time is similar to the previous
proofs.

Proof that under the no-subset property, the new algorithm always computes S. Due to the
no-subset property, we can sort the intervals in lexicographic order. In this case their lower endpoints p

i
,

their upper endpoints pi, and their midpoints p̃i are also sorted: p
i
≤ p

i+1
, pi ≤ pi+1, and p̃i ≤ p̃i+1. Let us

thus assume that the intervals are thus sorted.
Let us now show that it is sufficient to consider monotonic optimal tuples p1, . . . , pn, for which pi ≤ pi+1

for all i. Indeed, if pi > pi+1 then, since pi ≤ pi ≤ pi+1 and pi > pi+1 ≥ p
i+1

, we have pi ∈ [p
i+1

, pi+1] and
similarly pi+1 ∈ [p

i
, pi]. Thus we can swap the values pi and pi+1 without changing the value of S. We can

repeat this swap as many times as necessary until we get a monotonic tuple that has the exact same value
S = S.

Let us now show that in the optimal tuple, at most one pi can be inside the corresponding interval. Indeed,
if we have two values pj and pk strictly inside their intervals, then for an arbitrary small ∆, replacing pj

with pj − ∆ and pk with pk + ∆ = p + ∆ should not increase the resulting entropy. This is only possible
when the derivative of the resulting expression w.r.t. ∆ is 0, i.e. when pj = pk.

For pj − ∆ = p − ∆ and pk + ∆ = p + ∆ the function S should have a minimum at ∆ = 0. Thus its
second derivative relative to ∆ should be non-negative. However, an explicit computation shows that this
derivative is negative. Thus our assumption is false, and at most one pj can be inside the corresponding
interval.

Since the values p
i
are sorted by i and the values pj are sorted by j, we can now conclude that:

• if pj = p
j

and pm > p
m

, then pj ≤ pm; and

• if pm = pm and pj < pj , then pm ≥ pj .

13

Thus each value pj = p
j

precedes all the values pm = pm, and the only value pi which is strictly inside the
corresponding interval lies in between these values. Hence in a monotonic optimal tuple p1, . . . , pn the first
elements are equal to p

j
, then we may have one element which is strictly inside its interval, and then we

have values pm = pm.

For the resulting vector p = (p
1
, . . . , p

k−1
, pk, pk+1, . . . , pn), with p

k
≤ pk ≤ pk, the condition

n∑
i=1

pi = 1

implies that Σk ≤ 1 ≤ Σk−1, where Σk
def=

k∑
i=1

p
i
+

n∑
j=k+1

pj . When we go from Σk to Σk+1, we replace a

larger value pk+1 with a smaller value p
k+1

. Hence Σk > Σk+1. Thus there has to be exactly one kmax for
which Σk ≤ 1 ≤ Σk−1.

So if we have Σm > 1, this means that the value kmax corresponding to the minimum of S is > m. Hence
for all the indices i ≤ m we already know that in the optimal vector p we have pi = p

i
. Thus these indices

can be added to the set I−.
If Σm−1 (= Σm + 2∆m) < 1, this means that the value kmin corresponding to the minimum of S is < m.

Hence for all the indices j ≥ m we already know that in the optimal vector p we have pj = pj . Thus these
indices can be added to the set I+.

Finally, if Σm ≤ 1 ≤ Σm−1 then this m is where the minimum of S is attained.
The algorithm has been justified.

Proof that the new algorithm for computing S requires linear time is similar to the previous
proofs.

Proof that the new algorithm always computes S. It is known [11, 12, 21] that if we sort all 2n
endpoints into a sequence p(1) ≤ p(2) ≤ . . . ≤ p(2n), then for some k = kmax the maximum S is attained for
the vector p for which the following holds:

• For all indices j for which pj ≤ p(k), we have pj = pj .

• For all indices i for which p
i
≥ x(k+1), we have pi = p

i
.

• For all other indices, we have pi = const. Since
n∑

i=1

pi = 1, we conclude that this constant is equal to

rk
def=

1− Ek

n−Nk
, where

Ek =
∑

j:pj≤p(k)

pj +
∑

i:p
i
≥p(k+1)

p
i
;

Nk = #{j : pj ≤ p(k)}+ #{i : p
i
≥ p(k+1)}.

It can also be proven that for the optimal k we have rk ∈ [p(k), p(k+1)]. These facts can proven by the same
analysis (adding ∆p to one value pj and subtracting ∆p from another value pk) as in our above analysis of
S.

Let us first prove that if rk =
1− Ek

n−Nk
≤ p(k+1) then the similar inequality rk+1 =

1− Ek+1

n−Nk+1
≤ p(k+2)

holds for the next value k. Indeed, the given inequality
1− Ek

n−Nk
≤ p(k+1) is equivalent to 1−Ek ≤ (n−Nk) ·

p(k+1).
The only difference between the sums Ek =

∑
j:pj≤p(k)

pj +
∑

i:p
i
≥p(k+1)

p
i

and Ek+1 =
∑

j:pj≤p(k+1)

pj +
∑

i:p
i
≥p(k+2)

p
i

is that:

• some terms equal to p(k+1) may be added (if there are j for which pj = p(k+1)), and

• some other terms equal to to p(k+1) may be subtracted (if there are i for which p
i
= p(k+1)).

14

In general, Ek+1 = Ek + ck · p(k+1) for some integer ck (positive, negative, or zero), and Nk+1 = Nk + ck.
Subtracting ck · p(k+1) from both sides of the given inequality 1− Ek ≤ (n−Nk) · p(k+1), we conclude that

1 − Ek+1 ≤ (n −Nk+1) · p(k+1), i.e. that rk+1 =
1− Ek+1

n−Nk+1
≤ p(k+1). Since the sequence p(k) is sorted, we

thus conclude that p(k+1) ≤ p(k+2) and hence rk+1 ≤ p(k+2).
So if the inequality rk ≤ p(k+1) holds for some k, it holds for all larger values of k as well. Thus this

inequality holds for all k after a certain value l0.
Similarly, we can prove that if the inequality rk ≥ p(k) holds for some k, then it holds for k − 1 as well

– since the only difference between Ek and Ek−1 consists of adding and/or subtracting some values p(k). So
if the inequality rk ≥ p(k) holds for some k, it holds for all smaller values of k as well. Thus, this inequality
holds for all k until a certain value k0.

Similarly to the proof about V , we can prove that if there are several values k = l0, l0 + 1, . . . , k0 for
which both inequalities hold p(k) ≤ rk ≤ p(k+1), then for these k, the entropy has exactly the same value.

So:

• for k < kmax, we have rk > p(k+1),

• for k > kmax, we have rk < p(k), and

• for k = kmax (or, to be more precise, for l0 ≤ k ≤ k0), we have p(k) ≤ rk ≤ p(k+1).

Hence:

• if rk < p(k), then we cannot have k < kmax and k = kmax, hence k > kmax;

• if rk > p(k+1), then we cannot have k > kmax and k = kmax, hence k < kmax;

• if p(k) ≤ rk ≤ p(k+1), then we cannot have k < kmin and k > kmin, hence k = kmax.

Thus, the above algorithm finds the correct value of kmax and thence, the correct value of S.

Proof that the new algorithm for computing the maximum y of a symmetric convex function
is correct. To prove that the algorithm is correct we must show that the maximum y of the function f is
attained at one of the points s(k).

One can easily check that since the intervals xi are already sorted in lexicographic order and satisfy
the no-subset property, the lower endpoints and the upper endpoints are also sorted, i.e., xi ≤ xi+1 and
xi ≤ xi+1 for all i.

The maximum of a continuous function on a bounded closed polyhedron x1× . . .×xn is always attained
at some point, and since the function f is convex, it is attained at one of the vertices of this set [2, 18, 20],
i.e., when for each i, we have si = xi or si = xi.

There may be several vertices at which the maximum is attained. Out of all maximizing vertices, we
choose a one s with the largest length of the starting sequence of lower bounds. We will denote this length
by k; this means that s has the form s = (x1, . . . , xk, xk+1, . . .), i.e., it starts with k lower bounds and then
has an upper bound at the (k + 1)-st place. We will prove that for this point s, all the components sl for
l > k + 1 are upper bounds, i.e., that s = s(k).

Indeed, let us assume that for some l > k + 1, the component sl of the chosen point is a lower bound:
sl = xl. We will then construct another point s′ at which f also attains its maximum and which has a longer
starting sequence of lower bounds – which contradicts to our choice of s.

In this construction, we will only change the (k + 1)-st and l-th coordinates, so this construction can be
naturally illustrated on the corresponding plane. First, we consider the bisecting line xk+1 = xl of the first
and third quadrant and find an orthogonal line to it (xk+1 + xl = const) which passes through s. The line
has to intersect the interior of the rectangle and to leave it again at some point s′′ – which is either the left
or the upper face; see the following pictures, in which s′′l

def= xl +(xk+1−xk+1) and s′′k+1
def= xk+1− (xl−xl).

Let z′′ be a point which is symmetric relative to s′′. Since the endpoints are sorted, one can prove that s is
in between s′′ and z′′, i.e., that s is a convex combination of s′′ and z′′.

15

-

6

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡¡
s′s

xk+1

xk+1xk+1

xl

xl

s′′l

xl

s

s

s

s

s′′

z′′

@
@

@
@

@

@
@

@

-

6

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡¡
s′s

xk+1

xk+1xk+1

xl

xl

s′′l

xl

s

s

s

s

s′′

z′′

@
@

@

@
@

@
@@

-

6

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡¡s′s

xk+1

xk+1xk+1

xl

xl

s′′k+1

xl

s

s
s

s′′

s

z′′
@

@
@

@
@

@@

-

6

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡¡
s′s

xk+1

xk+1xk+1 s′′k+1

xl

xl

xl

s

s

s

s

s′′

z′′

@
@

@

@
@

@
@@

The point s at which the maximum is attained is a convex combination of the points s′′ and z′′, i.e.,
s = α · s′′ + (1 − α) · z′′. Since f is a convex function, we have f(s) ≤ α · f(s′′) + (a − α) · f(z′′). Due to
symmetry, we have f(s′′) = f(z′′) hence f(s) ≤ f(s′′). Since the function f attains its maximum at the
point s, it thus attains the maximum at the point s′′ as well.

This point s′′ is on a straight line segment – namely, on one of the faces of the rectangle. Since the
function f is convex, the only way for it to attain the maximum inside the straight line segment is to attain
the same maximum on both endpoints of this face, in particular, at a points s′ at which s′k+1 = xk+1. For
this new point, we have s′1 = x1, . . . , s

′
k = xk, and s′k+1 = xk+1 – which contradicts to our assumption that

k is the largest length of the starting lower-endpoint sequence in a maximizing point. Correctness is proven.

Proof that the new algorithm for computing y under the constraint
n∑

i=1

xi = c is correct. Simi-

larly to the previous proof, we can conclude that the maximum y is always attained at one of the vertices of

the convex polyhedron (x1 × . . .× xn)∩
{

x :
n∑

i=1

xi = c

}
, i.e., at a point s at which for at least n− 1 values

si, we have si = xi or si = xi.
Similarly to the previous proof, we can also conclude that the maximum is attained at one of the points

s(k) = (x1, . . . , xk−1, sk, xk+1, . . . , xn). The value sk can determined by the condition
n∑

i=1

si = c. For this

16

value sk to be between xk and xk, we must make sure that Σk ≤ 1 ≤ Σk−1, where Σk
def=

k∑
i=1

xi +
n∑

j=k+1

xj .

Similar to the case of entropy, we can conclude that since the sums Σk decrease with k, there is only one
value k for which the above inequality holds, so we can use the linear-time algorithm from the entropy case
to find this value k. Once this value is found, we have thus found the maximizing point s(k) and thus, a
single call to f finds the desired maximum f(s(k)).

Correctness is proven.

17

