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An apatite-mullite glass ceramics composition derived from clam shell (CS) and soda lime silicate (SLS) glass has been 
fabricated from a heat treatment process of composition, [xCaF2·(45−x)SLS·15CS·20Al2O3·20P2O5], where x is 5, 10, 15 and 
20 (wt. %). The result concluded that the Ca and Si elements were found in the CS and SLS glass respectively as a major 
weight composition, thereby promoting the use of waste materials in the manufacture of glass ceramic samples. Besides, the 
CaF2 addition lowers the glass transition temperature (Tg) and crystallisation temperature (Tc) of the glass composition. The 
density and percentage of the linear shrinkage of the samples differs with the addition of CaF2 and various heat treatment 
temperatures. For the structural properties’ analysis, the formation of fluorapatite with a needle-like microstructure and 
mullite phase was enhanced with a higher CaF2 content, while the growth of the anorthite phase was observed to occur at a 
higher heat treatment temperature. Generally, the addition of ahigh CaF2 content with the help of heat treatment in apatite-
mullite glass ceramics composition greatly promotes the crystallisation of the fluorapatite phase, which is crucial for denture 
glass ceramics.

INTRODUCTION

	 Dental glass ceramics are a type of biomaterial that 
are mainly focused in the restoration and reconstruction 
of teeth. The use of denture glass ceramics in the dental 
materials market, especially as implants, dental cements, 
restorative materials and others [1-3], has become a main 
concern since glass ceramic materials have superior 
properties, such as being easy to process, have good 
chemical durability, excellent aesthetics, translucency, 
low thermal conductivity, high strength and hardness, 
biocompatibility and also wear resistance, same to that 
of the original teeth [4, 5]. Designing glass ceramic ma-
terials by controlling the heat treatment process and glass 
composition itself may alter the properties which are 
very important to produce the desired dental materials.
	 A type of glass ceramics system known as apatite-
mullite glass ceramics has attracted great attention 
for researchers since it reassuring good use in a glass 
ionomer cement or being well known as a glass polyal-
kenoate cement as a base powder. Aluminosilicate glass 
composition which usually consists of CaO–SiO2–P2O5– 
–Al2O3–CaF2 was found to produce an apatite-mullite 
crystal phase [6-13]. The formation of the apatite-mul-

lite crystal phase is important since it exhibits good 
mechanical properties especially in terms of strength and 
fracture toughness resulting from the bulk nucleation and 
crystallisation process of the glass composition, which is 
suitable for dental applications [3, 14].
	 In a glass system, the role of a network former, 
network modifiers and intermediate oxides are crucial 
for designing the glass composition which suits the de-
sired applications [2]. Network forming oxides such as 
SiO2 and P2O5, responsible in increasing the network 
connectivity which cause two neighbouring polyhedrals 
to join together, thus increasing the surface reactivity of 
the glass composition [15]. CaO acts as modifying oxide 
which depolymerises the glass network to nucleate the 
apatite layer formation and enhance the crystallisation, 
meanwhile Al2O3 is an intermediate oxide which can 
inhibit the bonding in the glass network [2].
	 CaF2, as a nucleating agent, plays an important role in 
the aluminosilicate glass composition where it promotes 
the growth of the fluorapatite and mullite crystal phase, 
therefore, increasing the strength of the material [8, 16]. 
In addition, CaF2 is also responsible for enhancing the 
crystallisation kinetics, which allow particle movement 
and the reordering of the glass network, thus causing the 
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phase separation to occur [6, 17]. Besides, the fluoride 
ion contained in the structure of CaF2 is responsible for 
encouraging the remineralisation, which is important in 
preventing tooth decay. In the remineralisation process, 
the OH– ion is replaced by the F– ion in order to form 
apatite, thus creating an improved tooth mineral quality 
[18, 19]. 
	 Limited studies in the fabrication of glass ceramics 
from waste materials such as clam shell (CS), fly ashes, 
rice husks, soda lime silicate (SLS) glass and others have 
encouraged researchers to investigate the properties of 
the glass ceramics fabricated from these industrial waste 
materials [20-24]. Such raw materials provide chemical 
substances for the glass composition. For example, 
silicate and calcite can be derived from SLS glass and 
CS, respectively. Thus, the utilisation of waste materials 
in the production of glass ceramics is not only effective 
in saving the production costs, but can reduce the envi-
ronmental issues regarding the disposal problems.
	 The overall goal for this study is to fabricate an 
apatite-mullite glass ceramics composition from waste 
materials. Besides, the influence of the CaF2 content and 
the different heat treatment temperatures on the thermal, 
physical and structural properties of the apatite-mullite 
glass ceramics derived from the CS and SLS glass has 
also become a main aim for this investigation.

EXPERIMENTAL

Sample preparation

	 The ‘Anadara Granosa’ species CS and commercial 
SLS glass bottles, which are the waste materials used, 
were collected and cleaned before the CS was calcined 
at 900  °C for 2  hours in an electrical furnace. On the 
other hand, the SLS glass was crushed using a hammer 
to produce glass pieces before being milled in milling 
jar. The milling jar was filled with 20 milling balls which 
help in the production of SLS glass powders. After that, 
both the CS and SLS glass powder were sieved using 
a 45 μm sized sieve and ground using a mortar and pestle 
until a fine powder was formed. The chemical powders, 
which are P2O5 (99.99  %, Alfa Aesar), Al2O3 (99.5  %, 
Alfa Aesar) and CaF2 (99.95 %, R&M Chemicals) were 
used in the glass powder formulation. The formulation 
of the aluminosilicate glass composition has the formula, 
[xCaF2·(45−x)SLS·15CS·20Al2O3·20P2O5], where x = 5, 
10, 15 and 20 (wt. %) and the batch formulation of the 
glass samples by weight percentage (wt. %) is listed in 
Table 1. Next, each glass composition was mixed homo-
genously for 15 minutes before it went through 1500 °C 
melting in an electrical furnace for 4 hours. The molten 
glass went through a thermal shock process from a water 
quenching technique during the temperature of 1500 °C 
to produce glass frits. Then, the dried frits were crushed 
and then sieved, forming a fine glass powder. For the 
pelleting process, 1 gram of glass powder with a drop of 

polyvinyl alcohol (PVA) were blended together before 
being pressed using a 50  kPa hydraulic pressure and 
pressed to form a pellet. Lastly, the pellets were heat 
treated at 600, 800, 1000 and 1200 °C for 3 hours.

Raw materials characterisation

	 An X-ray Fluorescence (XRF) was operated to iden-
tify the chemical analysis material and the composition 
of the CS and SLS glass. For this aim, raw CS, calcined 
CS and also SLS glass were crushed into a powder before 
being characterised by a Shimadzu Energy Dispersive 
X-ray Fluorescence (EDX-720) Spectrometer.

Thermal properties characterisation
	 The thermal parameter was analysed from a Diffe-
rential Scanning Calorimetry (DSC) test where the 
glass samples were sent for characterisation in powder 
form. A TGA/DSC 1 HT machine from Mettler Toledo 
was operated in a temperature interval of 25  °C until 
1600 °C and a heating rate of 10 °C∙min-1. Based on the 
DSC result, the glass transition temperature (Tg) and 
crystallisation temperature (Tc) were determined. 

Physical properties characterisation
	 The density was evaluated based on Archimedes’ 
principle at room temperature. The samples in a pellet 
form were weighed before being immersed into distilled 
water with a density of 1.0 g∙cm-3. After that, the weights 
of each pellet were taken and the resulting density with 
unit grams per cubic centimetre (g∙cm-3) were calculated 
based on the formula:

(1)

where Wa is weight in the air, Wb is weight in the distilled 
water and ρb is density of the distilled water = 1.0 g∙cm-3. 
	 The shrinkage percentage was evaluated by taking 
the diameter of the samples before and after the heat 
treatment process. Then, the linear shrinkage percentage 
for every sample was calculated based on the formula:

(2)

where Di is the diameter of the pellet before the heat 
treatment and Df is the diameter of the pellet after the 
heat treatment.

Table 1.  The batch formulation of the glass samples by weight 
percentage (wt. %).

	Samples	 CS	 SLS	 P2O5	 Al2O3	 CaF2

	 GC1	 15	 40	 20	 20	 5
	 GC2	 15	 35	 20	 20	 10
	 GC3	 15	 30	 20	 20	 15
	 GC4	 15	 25	 20	 20	 20

ρ =                ρb
Wa

Wa – Wb

Linear shrinkage percentage =               × 100 %

Df – Di
Di
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Structural properties characterisation

	 The structural properties of the samples were de-
termined by analysing the phase formed after the heat 
treatment for the different temperatures. The samples in 
a form of powder were sent for X-ray diffraction (XRD) 
by using Philips PW 3040/60 X-ray Diffraction XRD 
Analyser with Cu Kα radiation equipped with a 40 kV 
accelerating voltage and a 30 mA input current. The ran-
ge of the 2θ value is between 20° to 80° and the outcome 
was then extracted by using the X’Pert Highscore 
software. 
	 Next, the chemical bonding of the samples after 
the heat treatment were tested by using Fourier Trans-
form Infrared Spectroscopy (FTIR) from Perkin Elmer 
(Model: Spectrum100 series) with a wavenumber in 
a range of 280 cm-1 to 1800 cm-1. The resolution used in 
obtaining the spectra was 4 cm-1. 
	 The Field Emission Scanning Electron Microscopy 
(FESEM) characterisation was performed to observe 
the samples morphology by using machine from NOVA 
(Model: NANOSEM 230) FEI. In this characterisa-tion, 
the samples were sputter-coated with gold coating before 
being tested by using magnification of 20 000×, 40 000× 
and 80 000×.

RESULTS AND DISCUSSION

Raw materials characterisation

	 Table 2 depicts the chemical composition of the 
raw materials used to fabricate the glass composition. 
Based on the table, Ca was the main element that con-
sisted in the CS powder with 97.70 wt. % before the cal-
cination (attributed from CaCO3) and 99.51 wt. % after 
the calcination (attributed from CaO). Sc2O3, SO3, K2O, 
Sr2O3, ZnO and CuO were detected in small amounts 
before the CS was calcined. However, Sc2O3, SO3, K2O, 
Sr2O3 and ZnO disappeared after the calcination process 
while CuO still existed in the CS powder. 
	 On the other hand, elements such as SiO2, CaO 
and others contributed to the commercial SLS glass 
used in this study. SiO2 was the main compound with 
56.36  wt.  % followed by CaO with 37.85  wt.  %. The 
existence of small amounts of Sc2O3, SO3, Fe2O3, K2O, 
ZrO2, Sr2O3, ZnO and CuO were also detected as trace 
elements in the commercial SLS glass. Based on the 
results obtained, there was a slight difference in the 
weight composition of the elements in the CS powder 
before and after the calcination. Galvan-Ruiz et al. (2009) 
stated that calcination process caused around 44 % loss 
of CaCO3 from its original weight [24, 25]. The release 
of CO2 gas from the CS powder after being calcined 
at 900  °C can be explained through the conversion of 
CaCO3 to CaO by the thermal decomposition process. 
According to previous research, the calcination process 

required a high temperature condition at about 700  °C 
to 900 °C in order to cause the complete transformation 
from CaCO3 to CaO [26-28]. The decomposition of 
calcite is represented by Equation 3:

CaCO3 (s) → CaO (s) + CO2 (g)             (3)

	 From the table, Ca was the main element composed 
in the CS powder, before and after the calcination. In 
pioneering the glass ceramic materials for a dental 
application, Ca and P are significant components, since 
both of the elements are part of the natural composition 
of a tooth’s structure. CaO, which was detected in the CS 
and also SLS glass, is believed to enhance the strength 
of the composition apart from being a component of 
bones and teeth. On the other hand, SiO2, which was the 
major element contained in SLS glass, is responsible for 
the formation of the glass since it enhanced the network 
connectivity in an oxide form [29, 30]. Besides, the 
least amount of trace elements in the raw materials also 
contributes to the composition. 

Thermal properties characterisation

	 The DSC results for the GC1, GC2, GC3 and GC4 
samples are shown in Table 3. The table reveal the Tg 
and Tc of the samples, which were between 520 - 580 °C 
and 850 - 950  °C, respectively. It was observed that 
sample with lowest CaF2 content resulted in the highest 
Tg and Tc values compared to the sample with the highest 
CaF2 content. Both the Tg and Tc decreased as the CaF2 
content increased and this result is supported by previous 
research studies [6, 14, 31-33]. CaF2 works as a network 
disrupter by means of the CaF2 addition into the glass 
composition reduced the Coulomb interaction between 
the non-bridging oxygen in order to form the non-
bridging fluorine. In this case, the substitution of CaF+ 
to the silicate ions consequently lowered the Tg [34, 35]. 
At the same moment, the density of glass chains was 
lessened by the presence of CaF2, thus it advanced the 

Table 2.  The chemical composition for the raw CS, calcined 
CS and SLS glass.

Compound
		  Weight composition (wt. %)

	 Raw CS	 Calcined CS	 SLS glass
SiO2	 ‒	 ‒	 56.36
CaCO3	 97.70	 ‒	 ‒
CaO	 ‒	 99.51	 37.85
Sc2O3	   0.35	 ‒	   2.84
SO3	   0.31	 ‒	   1.11
Fe2O3	 ‒	   0.04	   0.87
K2O	   0.47	 ‒	   0.62
ZrO2	 ‒	 ‒	   0.11
Sr2O3	   0.27	 ‒	   0.09
ZnO	   0.66	 ‒	   0.07
SrO	 ‒	   0.35	   0.04
CuO	   0.24	   0.03	   0.04
Ho2O3	 ‒	   0.07	 ‒
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particle movement and also the rearrangement of the 
amorphous state to the crystalline state [36, 37]. As a con- 
sequence, the crystallisation of the samples occurred. 
Therefore, the Tc values decrease as the amount of CaF2 
added into the glass composition increases.

Physical properties characterisation

	 Figure 1 shows the density of the glass and glass 
ceramic samples with the different heat treatment 
temperatures. The density results of the glass samples 
were recorded at 27 °C (without the heat treatment) and 
the results showed an increment in the density as the 
amount of CaF2 increased except for the GC2 sample. 
When compared to the samples which went through the 
heat treatment, the density values were higher for the 
treated samples. This is due to the crystal formation in 
the samples. By referring to the figure, all the samples 
showed an increase in density within the heat treatment 
temperature, and the highest density for the different 
CaF2 content glass ceramic samples was observed at 
1000 °C. At 1000 °C, the highest density was recorded 
in the GC4 sample which contained a high amount of 
CaF2 with a density of 2.787  g∙cm-3. For comparison, 
the GC1 sample with a low amount of CaF2 had a den- 
sity of 2.623 g∙cm-3, which was the lowest density ob-
tained among the four glass ceramic samples at the 
same heat treatment temperatures. However, the density 
trend showed a decrease when the samples were treated 
at 1200  °C. Among all the glass ceramic samples, the 
GC3 and GC4 samples showed a higher density when 

compared to the GC1 and GC2 samples. Thus, the higher 
the amount of CaF2 in the sample, the higher the density 
obtained from the sample.
	 A sudden decrease in density occurred in the glass 
sample as well as the lower heat treatment temperature of 
the GC2 sample, this might be due to the agglomeration of 
the powder that occurred during the sample preparation. 
A study from Ciftcioglu (1987) reported that the adsorbed 
moisture and the type of binders used in the preparation 
of the samples resulted in a weak agglomeration which 
might disturb the nature of the bonds and, thus, affect the 
physical properties of the samples such as the density, 
strength, particle size as well as the packing density of 
the resulting samples [38]. However, the density of the 
GC2 sample increased dramatically when the sample 
went through the heat treatment at 800  °C and above. 
The higher temperature of the heat treatment caused 
the elimination of the moisture in the samples which 
then affected the particle kinetics, thus contributing to 
a sudden increase in the density [39]. 
	 As shown in Figure 1, the sample density decrea-
sed as the temperature of the heat treatment rose until 
the maximum temperature of 1000 °C was achieved. The 
same outcome was revealed by previous studies which 
explained that the decrease in the density measurement of 
the samples after they reached their optimal temperatu- 
re was due to the increasing of the lattice parameter 
and the volume of the samples [40]. The heat treatment 
process supplied energy to the particles in the sample, 
which caused the atom to vibrate and rearrange from 
a random ordered, amorphous phase of the glass to a pro-
perly ordered, crystalline phase of glass ceramics. The 
density increased as the atoms packed together [20] until 
they achieved an optimum heat treatment temperature. 
However, after the sample passed its optimal temperature, 
the density started to decrease since there is porosity 
produced in the sample because of the CO2 gas being 
eliminated during the calcite decomposition especially 
when subjected to a higher heat treatment temperature 
[21, 41]. Besides, the density of the samples is also 
affected by the different amounts of CaF2 added into 
the ASF composition. Figure 1 revealed that a higher 
amount of CaF2 added to the composition produced a 
greater density of the glass ceramic samples. In this case, 
CaF2 behaves as a facilitator in the crystallisation process 
where the viscosity [42] is being lowered by reducing 
the resistance of the flow due to the broken electrostatic 
bindings in the glass composition.
	 The results of the linear shrinkage percentage for 
all the glass ceramic samples are presented in Figure 2. 
As observed in Figure 2, the highest linear shrinkage was 
observed in the GC2 sample during the heat treatment 
temperature of 1000 °C with 13.804 %. The same results 
were also obtained by other glass ceramic samples, where 
they showed the highest linear shrinkage percentage 
during the 1000 °C heat treatment process, except for the 
GC3 sample, which showed the highest linear shrinkage 

Table 3.  The thermal parameter of the glass ceramic samples.

	Samples	 Tg (°C)	 Tc (°C)

	 GC1	 580	 950
	 GC2	 550	 900
	 GC3	 540	 880
	 GC4	 520	 850
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Figure 1.  The density of the glass and glass ceramic samples 
with the different heat treatment temperatures.
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percentage during the 1200  °C heat treatment process. 
Next, during the 1200 °C heat treatment process, the 
GC1, GC2 and GC4 samples had a little decrease in the 
linear shrinkage percentage which was almost similar to 
the density trend. The different CaF2 content produced 
a different linear shrinkage, where it was observed that 
the GC1 and GC2 samples produced a greater linear 
shrinkage when compared to the GC3 and GC4 samples.
	 The linear shrinkage percentage increased as the 
temperature for the heat treatment increased. With the aid 
of the heat treatment method, the realignment of the 
particles in the arranged shape resulted in a decrease in 
the percentage shrinkage of the glass ceramic sample. 
However, the linear shrinkage percentage of the GC1, 
GC2 and GC4 samples decreased when subjected to 
the 1200  °C heat treatment process. This corresponds 
to the density analysis at 1200  °C, which revealed the 
decomposition of a large amount of calcite, thus CO2 gas 
trapped in the sample was released. Besides, the linear 
shrinkage percentage also showed a decrease due to the 
high amount of CaF2. CaF2 acts as a nucleation agent 
where it improves the crystallisation formation, thus in-
creasing the crystallite size. When the crystallite size 
of the sample increased, its volume also increased and, 
as a consequence, the linear shrinkage of the sample 
decreased. Wilson et al., (1980) noticed that the CaF2 

content increased the nucleation and glass ceramic’s 
growth [43] while Riaz et al., (2017) also agreed that 
the CaF2 addition improved the crystallite size [44], thus 
resulting in a larger size of the sample, hence reducing 
the linear shrinkage.

Structural properties characterisation

	 Figure 3 shows the XRD graphs of the glass ceramic 
samples with the different heat treatment temperatures 
while Table 4 depicts the summary of the phases present 
in the glass ceramic samples. The crystalline phase of 

fluorapatite (Ca5(PO4)3F, NO JPDS: 98-001-7206) was 
the main phase that existed at the 600 °C heat treatment 
temperature and becomes optimum with the increasing 
amount of CaF2. Next, the growth of mullite (Al5SiO9.5, 
NO JPDS: 98-002-3557) happens in all the samples when 
they went through the heat treatment process at 1000 °C 
while anorthite, (Ca(Al2Si2O8), NO JPDS: 98-000-6200) 
grew when heat treatment started at 1000 °C in the GC1 
and GC3 samples. At the 1200 °C heat treatment process, 
all the crystalline phases existed in all the samples except 
for the GC4 sample.
	 Based on Figure 3, the higher heat treatment tem- 
perature promoted the optimum growth of the crystalli-
ne phases and the higher diffraction peaks intensity 
of fluorapatite also. This is due to the role of the heat 
treatment in fastening the atomic mobility, thus leading 
to grain growth and resulting in the better crystallinity 
of the glass ceramic sample [45]. In addition, the invol-
vement of CaF2 in the apatite-mullite glass ceramics 
system as a nucleating agent and also as a facilitator 
in the crystallisation process encouraged the growth 
of crystal phases in the samples [8]. Besides, the crys- 
tallisation of fluorapatite and mullite from the 600  °C 
until 1000  °C heat treatment process showed that the 
high CaF2 content caused the formation of the fluorapa-
tite and mullite phases while the anorthite phase crys-
tallised at higher temperatures. However, the crystal 
phase formation relied on the composition stoichiometry 
and heat treatment behaviour [46, 47]. Some researchers 
had found that the Ca/P ratio and fluorine addition in the 
glass composition determines the crystallisation of the 
glass system [10, 46].
	 As observed from the XRD pattern, the apatite phase 
was formed during the early stage of the heat treatment 
due to composition of the calcium phosphate-rich drop-
let phase subsequent to the amorphous phase separation 
[9]. According to Bogdanov et al. (2008), fluorapatite 
is a type of calcium phosphate group where the OH– are 
substituted by F– ions [48]. Fluorapatite is much more 
stable than hydroxyapatite in an acidic environment 
and very beneficial in dentistry. Besides, it served as 
the nuclei for the crystal growth [3] with the help of 
the heat treatment process. The formation of the mullite 
phase was attributed from the removal of the calcium 
and phosphate ion from the network of the fluorapatite 
phase, which increased the aluminium to silicon, plus the 
phosphate ratio above one, thus resulting in insufficient 
Ca2+ and P5+ ions being available to balance the charge 
deficient Al3+ ion in a four coordinate system [10]. 
This situation forced the aluminium into a higher five 
and six coordination environment, thus favouring the 
formation of mullite where aluminium was within the 
mixture of the four- and six-coordinate states [49]. In 
other words, the evacuation of the glass network when 
the crystallisation of fluorapatite started in F, Ca, and P 
that caused a homogenous reaction to occur which then 
formed the mullite phase [9].
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	 Based on the XRD graph, the productive growth of 
the anorthite phase was observed in the GC3 and GC4 
samples which were produced from high heat treat-
ment temperature and higher CaF2 content. The growth 
of anorthite, when the samples were heat treated at 

higher temperature, was supported by the results from 
Samuneva et al. (1998) as they found that anorthite 
and gehlenite phase grew at higher temperatures while 
fluorapatite and mullite formed at lower heat treatment 
temperatures [7]. However, the dominant growth of 
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the anorthite phase in the samples with the higher CaF2 
content was detected and this result was opposite with 
studies from Samuneva et al. (1998) and also Stanton and 
Hill (2005), where they found that the anorthite phase 
became dominant in a low fluorine content composition 
[7, 9]. When the amount of fluorine added was reduced, 
the crosslink density increased, thus inhibiting the 
glass phase separation which then formed the energy 
barrier for the bulk nucleation of fluorapatite to occur. 
Therefore, anorthite was formed in the glass composition 
with a residual glass phase rich with calcium in order to 
maintain the four coordinate state of aluminium [10].

	 The FTIR results of the glass ceramic samples are 
shown in Figure 4 and the spectral band assigned to the 
vibrational modes is revealed in Table 5. Based on Figure 4, 
the Si‒O‒Si tetrahedral in the range of ~ 800 - 1250 cm-1 
and the C‒O stretching in the range of ~1400 - 1500 cm-1 
existed in all the glass ceramic samples. The Si‒O‒Si 
bending mode was observed in certain samples, especially 
when treated for 600  °C and 800  °C at wavenumber 
~ 415 - 540 cm-1. Besides, the existence of the phosphate 
group represented by the P‒O‒P symmetric and P‒O 
bending modes were detected to occur during the 600 °C 
heat treatment process at wavenumber ~ 720 - 760 cm-1 
and ~ 550 - 560 cm-1 respectively. Nevertheless, the P‒O‒P 
symmetric mode vanished in the GC4 sample while it can 
be clearly seen in the sample with the low CaF2 content. 
In addition, the O‒H stretching mode was discovered in 
the GC4 sample at wavenumber 1646  cm-1 during the 
heat treatment temperature of 1000 °C.
	 Based on the FTIR results, both the bending and 
tetrahedral modes of Si‒O‒Si at wavenumber ~ 415- 540 
and ~ 800 - 1250 cm-1 respectively that emerged in the 
samples proved existence of the Si element incorporated 
in the SLS glass powder [23, 50]. The wavenumber of 
930  cm-1, which was observed in all the glass ceramic 
samples, belonged to the Si‒O‒ stretching vibration 
with a non-bridging oxygen [3]. A very weak peak at 
wavenumber ~ 1600 - 1650 cm-1 observed in GC4, espe-
cially when heat treated at 1000 and 1200 °C, was due 
to the O‒H stretching mode of H2O that was absorbed 
by the glass ceramic sample. Besides, the presence of 

the P‒O bending mode at wavenumber ~ 550 - 560 cm-1 
and the P‒O‒P symmetric bond at ~ 720 - 760  cm-1 
proved the apatite phase development in the samples 
when the heat treatment started from 600  °C [2, 51-
53]. In addition, an unsteady C−O stretching mode was 
detected at wavenumber ~ 1393  cm-1, which revealed 
the existence of the carbonate group present in the CaO 
composition [25, 54, 55]. 
	 From Figure 4, the CaF2 content may change the 
line width of the peak without changing the peak. In 
this case, the CaF2 through the glass structure acts as 
a network modifier that interrupted the network which 
belongs to the Si‒O‒Si mode. Other than that, the radius 
of the fluoride ion was close to the oxygen ion, hence 
it forced the bond of Si‒O‒Si to be replaced by two 
Si‒F bonds [56]. The fluorine from CaF2 was a network 
disrupter which acts to lessen the silica network and also 
increase the ion migration which then causes the glass 
phase separation [43]. However, based on the figure, 
there was an absence of the CaF2 bond in the sample 
which was supported by Kim et al., (1989), where the 
existence of fluorite was to remain undiscovered if the 
samples were treated by FTIR only [57].

Table 4.  The phases present in the samples for the different 
CaF2 compositions and heat treatment temperatures.

Samples	 GC1	 GC2	 GC3	 GC4

600 °C	 Fluorapatite	 Fluorapatite	 Fluorapatite	 Fluorapatite
800 °C	 Fluorapatite	 Fluorapatite	 Fluorapatite	 Fluorapatite
	 Fluorapatite	 Fluorapatite	 Fluorapatite	 Fluorapatite
1000 °C	 Mullite	 Mullite	 Mullite	 Mullite
	 Anorthite	 ‒	 Anorthite	 ‒
	 Fluorapatite	 Fluorapatite	 Fluorapatite	 Fluorapatite
1200 °C	 Mullite	 Mullite	 Mullite	 Anorthite
	 Anorthite	 Anorthite	 Anorthite
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Figure 4.  The FTIR results for the glass ceramic samples with 
the different heat treatment temperatures.

Table 5.  The assignment of the vibrational mode based on the 
wavenumbers.

	Wavenumbers	 Assignment of	 References
	 (cm-1)	 vibrational mode

	 ~ 415 ‒ 540	 Si‒O‒Si bending mode	 [56, 58]
	 ~ 550 ‒ 560	 P‒O bending mode	 [51, 59]
	 ~ 720 ‒ 760	 P‒O‒P symmetric mode	 [53]
	~ 800 ‒ 1250	 Si‒O‒Si tetrahedral mode	 [60, 61]
	~ 1400 ‒ 1500	 C‒O stretching mode	 [25]
	~ 1600 ‒ 1650	 O‒H stretching mode	 [25]
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	 The FESEM images in Figure 5 show the morphol-
ogy of the glass ceramic samples with the different heat 
treatment temperatures while Figure 6 confirmed the 
needle-like microstructure of apatite crystal arising from 
the glass ceramic composition when subjected to higher 
magnification. Based on Figure 5, it was observed that 
at the early stage of heat treatment, the particles in the 
FESEM morphology have no regular size and shape in 
all the samples. The low heat treatment temperature was 
observed to contribute no significant particles diffusing 
on the glass ceramic samples. However, as the heat treat-
ment temperature increased, the grain size of the samples 
increased [14, 23]. 
	 The influence of the heat treatment temperature on 
the glass ceramic samples was observed from the micro-
structure of the samples when heat treated at 800  °C 
and above. From the observation, the aggregation of the 

particles was seen in the GC1, GC3 and GC4 samples 
heat treated at 800 °C. However, the GC2 sample showed 
a different microstructure due to the agglomeration of 
the powder sample. Based on previous literature, the 
powder agglomeration affected the microstructure, 
strength, size and size distribution of the resulting samples 
[62, 63]. When all of the glass ceramic samples went 
through 1000  °C and 1200  °C of heat treatment, the 
microstructure of the samples was seen to become gra-
nular and homogenously distributed at the surface of the 
samples. Therefore, the higher heat treatment temperature 
increased the crystal grains of the glass ceramic samples.
	 The appearance of the needle-like crystal struc-
ture in the glass ceramic samples at the lower heat treat- 
ment temperatures as well as higher heat treatment tem-
peratures proved the existence of the apatite phase in 
the samples as explained in the XRD analysis. Besides, 

Figure 5.  The FESEM images for the glass ceramic samples with the different heat treatment temperature. (Continue on next page)
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Figure 5.  The FESEM images for the glass ceramic samples with the different heat treatment temperature. (Continue on next page)
c) GC3
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c) GC3
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Figure 5.  The FESEM images for the glass ceramic samples with the different heat treatment temperature.
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the geometrical grains formed when the samples went 
through the higher heat treatment temperature might be 
constructed by the orthorhombic and triclinic owned by 
the mullite and anorthite phase, respectively. According 
to Hill and Wood (1995), the heat treatment of fluoride 
containing glasses result in the formation of long needle-
like crystals known as fluorapatite with a hexagonal 
structure while increasing the heat treatment temperature 
causes the crystallisation of mullite along with the apatite 
structure [33]. Increasing the heat treatment temperature 
causes the formation of the mullite and anorthite phase 
as a result of the breaking and rearrangement of the glass 
network, especially the Si‒O and Al‒O bonds [33].
	 The FESEM images from Figures 5 and 6 proved 
the crucial role of CaF2 in the crystallisation of the glass 
ceramic samples. A high CaF2 content in the composition 
resulted in the improved crystal growth [6, 14] and this 
phenomenon was observed in the GC3 and GC4 samples. 

CaF2 as a nucleating agent is responsible for encouraging 
the nucleation of the crystals, thus leading to the crystal 
growth. Hence, the involvement of the high CaF2 addition 
in the glass network improved the crystallisation of the 
needle-like structure of the fluorapatite phase. 

CONCLUSIONS

	 The apatite-mullite glass ceramic composition was 
fabricated from waste materials and the effect of the 
different CaF2 contents and heat treatment temperatures 
on the thermal, physical and structural properties of 
the apatite-mullite was studied. From this study, a high 
amount of CaF2 lowered both the Tg and Tc. Besides, 
the best result is owned by the GC3 sample which con-
tained 15 wt. % of CaF2 heat treated at 1000  °C since 
it produced a high density and an optimum percentage 
of linear shrinkage of the glass ceramic. In addition, the 
formation of fluorapatite and mullite phase, which is 
important for denture glass ceramics, was also optimum 
in the GC3 sample. The apatite phase formation in the 
glass ceramic samples was supported by the FTIR and 
FESEM analyses. Overall, the apatite-mullite glass cera-
mic composition fabricated from these waste materials is 
favourable for dental applications due to the involvement 
of the fluoride content which enhances the physical and 
structural properties of the resulting materials.
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