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ABSTRACT

In this article we propose a method of mesh compression and streaming, that can be used for real-time rendering
applications. While most of other existing compression methods require decompression on CPU before rendering
and streaming methods use only non-compressed models, our approach allows to reduce memory consumption
by applying decompression on GPU during rendering and streaming of only needed geometry data at the same
time. Proposed approach requires pre-processing step, on which coarse 3D model with quad faces is build and
resampling is done. Afterwards, each face of model is compressed and can be later rendered with tessellation
shaders (decompression is done during rasterization). Also, we propose a way of adding streaming support to
our compression method to further reduce memory consumption. Finally, we made a comparison with state of
the art approach levels of detail (LODs) approach and found that proposed approach has much lower memory

consumption without negative effects to rasterization performance and quality.
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1 INTRODUCTION

3D model compression is often necessary. With growth
of mesh quality the amount of memory required to store
these meshes increases too. Also, a GPU with better
computation performance can be required to support
real time rendering when using higher quality meshes.
For now several solutions of this problem exist.

2 EXISTING SOLUTIONS

The first solution of the described problem is mesh
compression. Almost all compression approaches use
vertex data quantization (lossy compression technique,
which compresses a range of values to a single quan-
tum value) [Cho02] and try to reduce as much as pos-
sible the size of connectivity data or don’t store it at
all. First steps in this direction were done by applying

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

https://www.doi.org/10.24132/CSRN.3201.26

triangle strips and triangle fans approaches, which al-
low storing only one index of new vertex per triangle
instead of storing all three indices. Also some gener-
alizations can be used [Dee95]. Triangle traversal ap-
proaches make another large group of mesh compres-
sion methods. Such approaches allow replacing in-
dices with traversal history data. Several symbol codes
can be used, specifying placement of new triangle ver-
tices on the border of the compressed area [Gum99]
[Ros99]. Sometimes additional data is also required
to be stored with the history. Several such approaches
also allow combining both quad and triangle faces in
the same mesh [Lee02]. Another group of mesh com-
pression techniques is formed by valence-driven meth-
ods. Vertex valences are written during traversal instead
of traversal history, but sometimes additional data is
also needed [AllO1]. Progressive compression is also
possible and it is based on applying of some simpli-
fication operation (vertex or edge removal, etc) to the
source mesh until the coarse mesh will be generated.
During decompression, opposite operations are applied
in the reversed order to the coarse mesh to restore the
original one [Hop96] [Coh99]. However, all described
approaches share one common problem. Parallel de-
compression on GPU is impossible due to data depen-
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dency between iterations of the decompression process.
So the decompressed model would be stored in VRAM
and GPU memory usage won’t change. Mesh compres-
sion method, allowing random access to mesh parts was
also proposed [ChoOS8]. It is achieved by splitting a
source mesh into parts (meshlets). By decreasing mesh-
let size parallel decompression can be applied [Zhal2].
The authors used mesh segmentation and afterwards
each part was compressed independently from all oth-
ers. Decompression was done once on GPU with Cuda.
Methods with parallel GPU decompression were also
proposed [Jak17] [Mah21], however they use Cuda or
compute shaders to decompress the mesh once before
usage. It increases decompression speed comparing
to CPU implementation, however GPU memory usage
is still the same. Several compression methods were
proposed for GPU decoding during rendering. How-
ever, they mostly apply only quantization for vertex at-
tributes and possibly do some initial mesh simplifica-
tion [Cho97] [Cal02] [HaoO1]. Finally, there exist com-
pression method suitable for multi-resolution meshes
that uses hierarchy data to improve compression rate,
but parallel decompression on GPU also is not sup-
ported [Kal09].

Levels of detail can reduce memory consumption al-
lowing only the needed part of the model to be loaded
into GPU memory [Lue03]. For complex scenes in-
cluding a huge number of separate objects the HLODs
approach [EriO1] also exist. It proposes to build LOD
not only for separate objects, but also for groups allow-
ing to increase LOD quality without negative memory
usage impact. LODs generation in run-time was also
proposed to be used for dynamic scenes.

Mesh streaming (loading of only necessary mesh data
instead of loading the whole mesh) can also be used, but
most existing solutions propose only mesh transfer over
the network [KimO4]. Partial load of mesh data from
external storage to RAM for more effective processing
(including compression) is also described [Ise05], but
in all cases only the decompressed mesh is used during
rendering [Doul9].

In conclusion, the problem of mesh compression
method not requiring decompression before rendering
is still open. The aim of our work was to develop such
method. In addition we decided to use some version
of streaming or LODs with our proposed compression
algorithm to further decrease memory consumption.

3 PROPOSED APPROACH

The proposed approach is based on generating a coarse
mesh with quad faces (later named patches). After-
wards, the resampling (generation of an almost regular
mesh using the original one and the coarse one) is done
to achieve the required quality (chosen by the user). Fi-
nally compression is applied to the obtained data. With
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certain limitations on the resampling process the re-
sulting data can be rendered with tessellation shaders,
which are available and hardware accelerated on most
of modern GPUs.

Coarse model generation and resampling

Coarse meshes are generated using the open-source tool
Instant Meshes [Jak15]. This step requires certain user
involvement to control several parameters, which can-
not be computed automatically.

Afterwards the source mesh is resampled using GPU
accelerated ray-tracing.  For this process we use
rayQuery from tessellation shaders. The acceleration
structure is built from the source model. For each point
in a uniformly tessellated patch a ray is traced along
the interpolated normal to find the intersection point on
the source mesh. The position of intersection becomes
the position of this point. Finally this result is saved to
buffer and moved to the GPU when all user-controlled
setup is finished.

Such an approach achieves performance acceptable for
interactive parameter tuning during the resampling pro-
cess. The user can control mesh quality (controlled by
the tessellation factor) and the maximum distance be-
tween source point and ray intersection point and see
the resulting mesh in real-time with the ability to move
the camera. Actually this resampling method can be
replaced by some more complex approach. The only
requirement is the same vertex and polygon placement
pattern, that is used by the tessellation. Vertex positions
can vary and are not required to be uniformly placed
over the patch.

Compression

To compress all vertex data quantization is used. Bit
count is selected separately for patch corners, inner ver-
tices and patch borders depending on required precision
(also specified by the user). For border vertices and in-
ner vertices not absolute values but deltas (differences
of values from some predicted ones) were quantized.
Also, it should be noted, that quantization bit counts
are selected for the whole mesh, not per patch or per
border.

Deltas for borders are computed from points, appearing
during subdivision of edges into equal parts (number
of parts depends on number of border vertices). Trans-
formation to new coordinate system, made by edge di-
rection and two orthogonal axis, is also done for edge
deltas. For inner vertices deltas are computed from po-
sitions appearing in the tessellation with uniform ver-
tex placement. Coordinate system transformation is ap-
plied to inner vertex deltas too and uses interpolated
normal and patch edge direction to form orthonormal
basis. (See fig. 1)



ISSN 2464-4617 (print)

ISSN 2464-4625 (DVD) CSRN 3201

-

/\

Figure 1: Visualization of saved data on one patch (pro-
jected along normal for simplicity). Corner vertices are
shown yellow color, resampled grid is shown with blue
lines and points. Deltas for border vertices are shown
by green lines, inner vertex deltas are shown by orange
lines. Grey grid shows a uniform subdivision of the
patch. Axes for one border vertex and one inner vertex
are shown with red arrows.
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Figure 2: Visualization of proposed coding scheme.

For many patches inner vertex deltas are small espe-
cially along axes close to patch edges. To save some
memory amount on heading zeroes appearing during
small deltas quantization with constant bit count we
propose a coding scheme with less number of bits for
such cases. Supposing that m bits will be used for quan-
tization following data representation is used. (m+ 1)
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Figure 3: Memory saved by proposed coding scheme.
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bits are stored for each inner vertex. One leading bit
specifies value format. The following m bits contain ei-
ther quantized delta with low bit count (if source delta
value was small enough) or index of additional data
and part of quantized value (if all indices in all patches
fit less than m bits). For each patch additional data is
placed after the main data. It allows saving some mem-
ory on heading zeroes for small deltas and still supports
random access to data of each coordinate, so no decod-
ing of previous vertices is required. Bit counts for both
quantization formats are common for all patches of the
mesh. The proposed coding scheme is shown on fig.
2. To obtain the final value one memory read from the
precomputed address and possibly one more read oper-
ation from the address computed using the previously
read value (required only for vertices quantized with
full bit count) are required. The number of bits for short
deltas is computed by iterating through all possible val-
ues (the optimal range is also found for each case) to
use as small amount of memory as it is possible. As in-
dices of additional data don’t use much memory, while
a lot of quantized deltas have heading zeroes, the pro-
posed approach allows to save more than 10% of mem-
ory used by inner vertices data (see fig. 3).

Per patch data is also needed and it stores corner ver-
tex and border indices (because this data is shared be-
tween several patches) and offset of inner data in buffer,
containing inner data (this value can’t be simply com-
puted during decompression, because each patch can
have own inner data size).

Decompression

Decompression is done on the GPU during rasteriza-
tion and uses tessellation shaders. Data is passed in 4
storage buffers (corner vertex data, border data, inner
data and patch descriptions), each of them is presented
as unsigned 32-bit integer array. The tessellation con-
trol shader decodes some common per patch data like
corner vertex indices and positions and sets the tessel-
lation factor. The tessellation evaluation shader restores
either one inner vertex position or border vertex posi-
tion. The total cost of one vertex decode includes a
read of per-patch parameters. Each packed value with
not-power-of-two bit count requires one or two mem-
ory reads (each value can either fully be placed in a
32-bit unsigned integer or be split between two subse-
quent integers and require two reads). So decoding cost
also includes 1-2 memory reads for border vertex or 1-
4 reads for inner vertex (one or two packed values) per
each of 3 position components. Finally several MAD
and bit-wise operations are required per component.

Streaming

As stated before, we store only the compressed model
in GPU memory, but with streaming memory con-
sumption can be improved even more, by storing only
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needed parts of mesh. However, due to the specifics of
the proposed compression approach (inner and border
data is stored separately, quantized inner vertex deltas
have their own packed format) streaming required
some changes.

Each patch can use its own level of detail independent
from other patches. We just introduce a limitation for
total amount of memory used by all mesh data. Actu-
ally it is a configurable parameter and can be set de-
pending on the application. The only data that should
always be placed into GPU memory is patch descrip-
tions, including border addresses, level of inner tessel-
lation, and indices of corner vertices. Also corner ver-
tices should always be placed in GPU memory. Actu-
ally part of this data is used to support streaming, while
other part can be thought about as a minimal presented
LOD of the mesh. During rendering the tessellation
control shader can write requests for inner vertex data
load into a request buffer if edge size gets greater than
a defined value (it is also application controlled). In the
next frame the CPU reads back these values and pro-
duces a buffer of processing requests for the compute
shader. Also border tessellation factors are computed
during this process. The compute shader decompresses
inner vertex data and border data, does the interpolation
of positions depending on the required tessellation fac-
tors and packs all this data with the described compres-
sion algorithm. However, due to data packing the in-
ner data size can’t be predicted before interpolation. So
we use additional temporary buffer for processed data,
where each patch has enough space to be placed not de-
pending on interpolation results. Sizes of obtained data
are also written to this buffer. Later we read this data
on the CPU side and select where to copy these results.
Such an approach doesn’t noticeably increase memory
usage as the size of all these buffers is constant not de-
pending on mesh size and is also configurable. During
streaming patch description data is also updated. Ad-
dresses of borders are selected on the CPU before com-
pute shader dispatch and are written by this shader. For
the inner data addresses are generated based on sizes
from temporary buffer and written to patch descriptions
during copying. Tessellation factors in patch descrip-
tions (for inner factor) and in border data are also up-
dated.

Memory management and defragmenta-
tion

The main problem of the proposed approach comes
from data fragmentation. During camera movement
some patches of the mesh can require better quality, so
their tessellation factors should be increased and new
data should be loaded. In most of cases new inner or
border data can’t be loaded in place of previous data,
as its size increases, so a new place for it is found in
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buffer. And even after space used by previous patch
data is marked as free it still can’t be fully utilised, be-
cause with the proposed coding scheme its hardly pos-
sible to find several blocks with exactly matching size.
So after several such iterations more and more memory
is wasted, until there will be no space for required data
in the buffer.

Use of standard solutions such as paging is hardly pos-
sible. Inner vertex position data (and border data that
takes even less size) take too small an amount of mem-
ory to use this value as page size: such a choice will
require a lot of additional memory to support a page ta-
ble with huge number of pages. At the same time, large
pages will introduce internal fragmentation. So we de-
veloped own method of memory management and de-
fragmentation. It is supported on the CPU side and tries
to fit as much data as possible into fixed size buffers. If
there is not enough space to load required data the de-
fragmentation process happens.

For defragmentation a temporary fixed-size buffer is
used. The sequence of free and used blocks starting
and ending with used blocks is searched with the re-
quirement to maximize the size of free blocks inside.
Another restriction is total size of used blocks in se-
quence, as all these blocks should fit the temporary
buffer. When the sequence is found, all used blocks
are shifted to the end of last used block placed before
the sequence, producing one free block made from sev-
eral ones met in sequence. If such sequence can’t be
found, the maximum sequence of used blocks placed
between two free blocks and fitting into the fixed-size
buffer is searched for and merged with another used se-
quence. Both operations are done by first copying all
used blocks into the temporary buffer with the compute
shader to avoid numerous buffer copy operations. Af-
terwards the filled contents of the temporary buffer are
copied back by one operation. Only one such operation
is applied each frame to reduce the performance impact.
Such an approach has a fixed memory (and actually can
have even zero memory cost as some currently unused
buffer can be used as temporary too) and performance
cost, but also controls the maximum amount of memory
wasted due to fragmentation. It can be seen that this al-
gorithm can’t do anything only in one case: when we
have a sequence of free and used blocks, where none of
the free blocks is suitable for new data allocation, while
each sequence of used blocks is larger than temporary
buffer. The worst case appears when the buffer is filled
by sequences of used blocks with a bit greater size than
temporary buffer has, while free blocks between them
have size a bit less than required for per patch inner ver-
tex data. So even having temporary buffer with size of
tens of patches would result in several percent of mem-
ory wasted due to fragmentation in worst case (at the
same time full a mesh can include hundreds or thou-
sands of patches, so size of temporary buffer is quite
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small). Finally, the worst case wouldn’t generally be
present for a long time since on camera movement some
patches can request lower tessellation factor and will be
replaced, leaving some free space.

If defragmentation fails, the memory management sys-
tem tries to downgrade some blocks, that are not visible
or don’t require high tessellation factor any more. Af-
terwards defragmentation is applied again, if the block
for new data still cannot be allocated.

Limitations

In its current version the proposed approach applies
only to vertex positions. In general, it can be extended
to compress also normals and texture coordinates. The
only problem is the resampling process on texture co-
ordinate seams.

Also, the described approach will show low compres-
sion efficiency on meshes containing a lot of separate
parts each with a few triangles. This problem comes
from the generation of the coarse model. Each such
part will generate a patch, that will require to store a
patch description for each such part.

Finally some compression steps involve user interac-
tion, as we can’t choose some parameters automatically.
During coarse model generation we need to get as low
patch count as possible, but still save certain mesh prop-
erties (new gaps shouldn’t appear, patches should be
placed to allow resampling of any visually important
part of the source mesh, etc). A minimal amount of
patches is desirable, because each patch always stores
its description and corner vertices in GPU memory and
this size is not dependant on the required tessellation
factors of patches. Also, triangle and pentagon patch
faces produced by instant meshes should be removed if
possible. Each triangle face is presented as a quad with
one fictive vertex. Pentagon faces are converted into
5 triangles and same procedure is applied afterwards.
An alternative solution is to split such faces into 3 or 5
quads, but it produces T-junctions. And subdivision of
all faces to remove these T-junctions is not acceptable,
as it increases number of patches in the coarse model
by 4 times, that will be even more inefficient.

4 EXPERIMENTAL RESULTS AND
COMPARISON

To compare memory usage of proposed approach with
LODs we used different tessellation factors the same
across all model (actually its worst case for stream-
ing) and compared memory consumption with an LOD,
having same number of faces as the tessellated surface.
From fig. 4 and fig. 5 it can be seen that with minimal
level of detail our method uses a bit more memory com-
paring to an LOD, as it uses more memory for patch de-
scriptions (4 indices, inner vertex data and border data
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addresses, tessellation factor) than LOD per face (just
4 indices). However, when the quality increases, our
method shows much better memory usage, as we use
delta coding with quantization, packing for internal data
and don’t need to store indices for border and inner ver-
tices of each patch.
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Figure 4: Comparison between the proposed compres-
sion method and an LOD with same number of poly-
gons as the tessellated surface has (Stanford Bunny
model).
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Figure 5: Comparison between the proposed compres-
sion method and an LOD with same number of poly-
gons as the tessellated surface has (Armadillo model).
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Figure 6: Comparison of rendering time with LODs and
proposed approach.

Also, performance of rendering with both LODs and
proposed approach was measured. We found that pro-
posed approach can be used for real-time applications.
Figure 6 shows that our method can work even faster
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Edge
length | Distance | LODs (kb) Streaming (kb)
0.605 | 2.891 19.230469 18.90625
0.075 | 2.401 37.828125 18.90625
0.401 | 0.736 19.230469 19.105469
0.054 | 2.891 74.941406 19.929688
0.048 | 2.401 74.941406 20.839844
0.177 | 0.736 148.359375 | 21.539062
0.041 | 2.891 148.359375 | 23.367188
0.136 | 0.736 293.789062 | 24.050781
0.034 | 2.401 148.359375 | 27.671875
0.095 | 0.736 583.6875 29.210938
0.082 | 0.736 583.6875 32.234375
0.027 | 2.891 293.789062 | 35.550781
0.027 | 2.401 293.789062 | 35.5625
0.02 2.891 583.6875 52.527344
0.027 | 0.736 1154.882812 | 61.8125
0.0 0.736 1154.882812 | 70.742188
0.014 | 2.401 583.6875 81.511719
0.014 | 2.891 1154.882812 | 83.984375
0.0 2.401 1154.882812 | 120.609375
Table 1: Memory usage comparison with streaming

and LODs depending on distance to mesh and required
maximum edge length (in screen space coordinates).
Zero edge length means to load all patches and LOD
in maximum quality.

than LODs. In both cases the performance was actually
limited by the primitive clipping and culling stage, not
by memory access or SM (Streaming Multiprocessor)
usage, showing that proposed approach has low com-
putation cost and acceptable number of memory reads.
Finally, some other work can be done on the GPU at the
same time (for example pixel shaders or async compute
queue tasks), as SM units are loaded by less than 33%
according to Nvidia NSight.

Also, we compared our proposed approach with LODs
on different camera positions with the Stanford Bunny
model. For LODs we were supporting median will edge
size not greater than a specified value. The same value
was used as maximum edge length in each patch for
streaming with compression. Results are shown in ta-
ble 1. It can be seen that LODs use same amount of
memory only when the minimal tessellation factor on
all patches and minimal LOD are selected (lines 1 and
3 in table). In other cases LODs use much more mem-
ory.

Figures 7, 8, 9, 10 and 11 show visual comparison of
LODs and the proposed approach with different cam-
era positions and desired edge sizes. For all pictures in
this section LODs are shown with a white mesh, while
the proposed approach shows colored mesh (patches
with different tessellation factors with different colors).
Also, all comparisons are done with wireframe render-
ing mode to show polygon sizes. Regions of interest are
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Figure 7: Visual comparison of rendering with LODs
and the proposed approach.

shown with red rectangles. It can be seen that for pro-
posed approach mesh is built in a more optimal man-
ner. For mesh parts close to camera faces have similar
size for both methods, while far parts require less poly-
gons with the proposed approach, as they don’t require
such quality. Finally, fig. 12 shows sample render of
Armadillo 3D model by proposed streaming and com-
pression method.

S CONCLUSION

In this paper we proposed a novel approach, that com-
presses models up to three times according to experi-
mental results. Also, we describe a streaming and mem-
ory management systems, which can be used to further
improve the memory usage. Finally, we made some
comparisons, showing that our approach is fast enough
and has effective VRAM usage at the same time and can
be used in real-time applications. However, several lim-
itations still exist, mostly caused by coarse mesh gen-
eration process difficulties. Also, some improvements
can be done to extend the method for more general us-
age scenarios with compression of not only vertex po-
sitions, but also texture coordinates and normals.
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Figure 8: Visual comparison of rendering with LODs
and the proposed approach.
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