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Abstract:
The problem of estimating unknown input effects in con-
trol systems based on the methods of the theory of opti-
mal dynamic filtering and the principle of expansion of 
mathematical models is considered. Equations of dynam-
ics and observations of an extended dynamical system 
are obtained. Algorithms for estimating input signals 
based on regularization and singular expansion meth-
ods are given. The above estimation algorithms provide 
a  certain roughness of the filter parameters to various 
violations of the conditions of model problems, i.e. are 
not very sensitive to changes in the a priori data. 
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1.	 Introduction
When constructing and implementing automatic 

control systems, the problem of statistical signal re-
construction is extremely important, since at these 
stages of system development reliable statistical 
characteristics of disturbances are usually absent. 
The main requirement for signal restoration is the 
requirement to obtain qualitative estimates of uncon-
trolled signals in accordance with the chosen optimal-
ity criterion. The processing of measurement results 
of experimental data under real operating conditions 
of automatic systems can be performed on the basis 
of statistical signal reconstruction, and signal recov-
ery algorithms can conveniently be synthesized on 
the basis of optimal filtering methods [1–7].

In the theory of optimal Kalman filtration, a Gauss-
ian Markov random process is generated, as is well 
known, at the output of a dynamical system whose 
input receives an independent Gaussian random pro-
cess of white noise type. In this case, the measure-
ment interference is also a Gaussian random process 
of white noise type, the influence of which is taken 
into account in the mathematical model of the meas-
uring system [1, 2]. 

Descriptions of object noise and interference meas-
urements by time-correlated random Gaussian Markov 
processes violate the conditions for the general formu-
lation of the classical optimal Kalman filtering problem. 
However, in these cases, the Kalman filtration method 
can also be used, since there are methods for general-
izing the filtration method to the cases under consider-

ation [1–3]. This is achieved by using the principle of 
expanding the mathematical models of the original dy-
namical system [3]. In [7], a general formalized scheme 
for constructing regularized algorithms for restoring 
input effects in control systems based on the principle 
of model expansion is presented.

2.	 Formulation of the Problem
Consider a linear dynamical system

	 xi+1 = Axi + fi, =
0 0ix x , i = 0, 1, ...,	 (1)

the input effect fi of which is the output of the shaping 
filter, the input of which receives white noise wi

	 ξ= 1 ,i if D  	 (2)

	
ξ ξ ξ ξ+ = + =

01 2 3 0, ,i i i iD D w
	

(3)

where the xi – n1-dimensional state vector of the initial 
system, the fi – q-dimensional vector of statistical input 
actions, A – the matrix of the corresponding dimen-
sion, the ξi  – n2-dimensional state vector of the ad-
ditional linear dynamical system; wi – µ-dimensional 
noise vector of a white noise type with characteristics 
[ ] = 0iE w ,   i k i ikE w w Q ; 1 2 3, ,D D D  – matrices of 

corresponding dimensions.
We assume that observations of the state of sys-

tem (1) are carried out in accordance with equations

	 = +1, 1 1,i i iz H x v ,	 (4)

	 ξ ξ ξ ξ+ = + =
01 2 3 0, ,i i i iD D w 	

where z1,i and z2,i – are respectively m1- and m2-di-
mensional observation vectors characterizing the 
behavior of the initial dynamical system, v1,i and 
v2,i – are the m1- and m2-dimensional noise interfer-
ence vectors of Gaussian white noise type with the 
characteristics E[v1,i] = 0, δ=1, 1, 1,[ ]T

i k i ikE v v R , E[v1,i] = 0, 
δ=2, 2, 2,[ ] ,T

i k i ikE v v R  k = 0, 1, ..., δ ik – symbol of Kronecker, 
H1 and H2 – matrix of measurements corresponding to 
dimensions.

We assume that the covariance matrices Qi, R1,i, R2,i 
are unknown, but they are functions of time. In the 
conditions formulated above, the equations of dy-
namics and observation of the extended dynamical 
system can be written in the following form:

	
ξ ξ

+

+

       
= +       

              

1 1

1 2 3

0
0

i i
i

i i

x A D x
wD D ,
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Such an approach allows the use of real meas-
urement information, which is of significant impor-
tance when a priori information is given inaccurate-
ly. In other words, the above algorithm is robust to 
changing a priori data.

The system of equations (14) for determining the 
matrix L can be poorly conditioned, which contrib-
utes to a decrease in the accuracy of the calculation of 
the sought solution. This circumstance in the solution 
of this equation leads to the necessity of applying reg-
ularization methods. Among them we should mention 
a group of methods based on the general regulariza-
tion principle of A.N. Tikhonov [8–13], and methods 
of effective pseudoinversion, based on the singular 
matrix decomposition [14–17].

3.	 Solution of the Task
In the real situation, the initial data of system (14) 

are known only approximately. Almost in place of sys-
tem (14) another system is used

	 δ=hS L M ,	 (16)

such that δ δ− ≤ − ≤,hS S h M M . Thus, approxi-
mate data are characterized by a  set of δ η, ,hS M , 
where η δ= { , }h  – is the error vector.

We write down the expression for the smoothing 
functional of A.N. Tikhonov

	
α α α δ α

η η ηα= − +[ ] ,hG L S L M L
	

where a > 0 – regularization parameter.
We introduce the following functions [10,11]:

	
α

η ηγ α =( ) ,L
	

	
α

η η δβ α = −( ) ,hS L M
	

	 ( )η η η ηρ α β α δ γ α µ= − + −
2

2( ) ( ) ( ) .h
	

where: α
ηL  – is the extremal of the functional A.N. Tik-

honov α [ ]G L  for fixed a > 0, the functions gη(a), bη(a), 
rη(a) are monotonic and continuous as functions of a 
in the domain a > 0, η δµ

∈
= −inf hL D

S L M  – a  measure 

of incompatibility of equation (16) with approximate 
data on the set ∈Θ.D

The solution of equation (16) on the basis of the 
regularization method of A.N. Tikhonov is given by 
the formula [9, 10]

	 α δ α δα −= + =1( ) ( ) ,T T T T
h h h h h hL I S S S M g S S S M 	

where: ga(l) = (a + l)–1, a > 0, 0 ≤ l > ∞ – generating 
system of functions for the method of A.N. Tikhonov.

We assume that the natural condition

	 δ ηδ µ> +
2 2 2 .M 	 (17)

The function of the generalized residual rη(a) has 
the following limit values at the ends of the segment 
[11]

	 η δ ηα
ρ α δ µ

→+∞
= − −2 2lim ( ) ,M

 ηα
ρ α δ

→ +
= − 2

0 0
lim ( ) .

	
Thus, if condition (17) is satisfied, equation 

rη(a) = 0 has in root a > 0 a root a′(η), and element 
α η
η
′( )L  is uniquely defined.

	
ξ

       
= +       

              

1, 1 1,

2, 2 2,

0
0

i i i

i i i

z H x v
z H v ,

	
or in a more compact form:

	 + = +* * * * *
1i i ix A x D w ,	 (5)

	 = +* * * *
i i iz H x v ,	 (6)

where: 

	      
= = =     
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To estimate the extended state vector on the basis 

of equations (5), (6), one can use the traditional Kal-
man filter [1,4]:

	 + =* * *
1| | ,i i i ix A x 	 (7)

	 + = +* * * * * *
1| |

ˆ ,T T
i i i i iP A P A D Q D 	 (8)

	 + + + + += +* * * *
1| 1 1| 1 1 ,i i i i i ix x K y 	 (9)

	 + + += −* * * *
1| 1 1| ,i i i i iy z H x 	 (10)

	
−

+ + +=* * * * 1
1 1| 1[ ] ,T

i i i iK P H C 	 (11)

	 + + += +* * * *
1 1| 1 ,T

i i i iC H P H R 	 (12)

	 + + + += −* * * *
1| 1 1 1|( ) .i i i i iP I K H P 	 (13)

On the basis of the values of ξ +1i  computed at each 
step, expression (2) gives the value of the unknown in-
put action fi. Based on the Kalman filter form (7)–(13), 
it is easy to see that the amplification factor of the Kal-
man filter algorithm +

*
1iK  depends on the matrices Qi 

and Ri+1. Thus, in the case where the noise covariance 
matrices Qi and Ri+1 are unknown, the coefficient +

*
1iK

, which must be found to determine the state vector 
estimate, is also unknown.

Analyzing the expressions (7)–(13), we can con-
clude that the relations (8), (11)–(13) should be 
excluded from the extrapolation and filtering algo-
rithms, because the estimates Qi and Ri+1 are used in 
their calculation. In [1, 2] we show that in this case the 
gain +

*
1iK  can be calculated from a sample of measure-

ments +
+1

i l
iZ  based on the following two-stage compu-

tational procedure:

	 SL = M,	 (14)
and

	 Φ+ =* *
1 ,iK L 	 (15)

where:

	

−
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If, however, the numbers h and d are unknown or 
their computation is associated with considerable dif-
ficulties, then the regularization parameter a is expe-
dient to be determined on the basis of the quasiopti-
mality or relations [13]

	
α α α ζα+

+− = =1
1min, ,i i

i iL L
	

	 ζ= < <0,1,2,... , 0 ,i  	

	 α α α=rel 1( ) ( ) ( )r r r ,	
where:

	 ( )α α δα γ= − −1( ) ,h hr S S L M
 ( )α αγ α α= .dL d

	
When solving the system of equations (16), it is ex-

pedient to use regularization on the basis of extended 
systems [15, 17, 18]. It is known [17] that the normal 
pseudosolution δ

+=* hL S M  is a normal solution of the 
normal system of equations

	 δ=T T
h h hS S L S M 	 (18)

or ς = 0T
hS , where δς = − hM S L.

Thus, the normal system of equations (18) is 
equivalent to an extended system of equations

	 Rhq = bd,	 (19)
where:

	

δ
δ

ς−     
= = =     
          

( 1) ; ;0 0
l m h

Th
h

I S M
R z bS L

,	
and ( )ς − += ∈

( 1),
TT T l m nq L R .

Since the normal system of equations (18) is 
always consistent [15, 17], it follows immediate-
ly from this that the extended system (19) for any 
initial data δ= { , }hd S M  is also consistent, and the 
normal solution of the extended system is de-
fined as ( )δ ς+= = 

 * * *, TT T
hq R b L , where δ

+=* hL S M  and 
δς = − 

* *hM S L .
Using the regularization method of A.N. Tikhonov, 

regularized solution αq  of the system (19) is defined 
as the unique solution of the Euler equation

	 δα − ++ =2
( 1)( ) .h l m n hR I q R b 	 (20)

where: =2 T
h h hR R R  =( ),T

h hR R  − = − ≤h hR R S S h , 
δ δ δ− = − ≤b b M M .

It was shown in [18] that if we put a = h in equa-
tion (20), then the deviation error has the form

	 α δ− = + * ( ),q q O h 	
where αq  – decision (20), +

− 
= =  

  
*

M SL
q R b L , L = S+M.

The last estimate shows that in the case under con-
sideration it is sufficient to match the regularization 
parameter a only with the value h, i.e. with a measure 
of the error of the matrix S, in other words, in essence, 
the problem of choosing the regularization parameter 
is removed.

The method of effective pseudoinversion, as is 
known [14, 16], is based on the singular expansion of 
the matrix Sh, i.e. on its presentation in the form

	 = T
hS UTV ,	

where U – orthogonal ((l – 1)m × 2p)–matrix; V – or-
thogonal (2p × n)–matrix; T – diagonal (2p × 2p)–ma-
trix.

The columns ui and vi of the matrices U and V are 
the eigenvectors of the matrices T

h hS S  and T
h hS S , and 

the diagonal elements µi  of the matrix T – are the 
positive roots of the eigenvalues λi  of the matrix 

T
h hS S  (or T

h hS S ).
The pseudoinverse Moore-Penrose matrix +

hS  
makes it possible to obtain the estimate [14, 16]

	
δ µ

+

=

= =∑*

1

1r
T T

i i
i i

L VT U M v u ,	 (21)

where + + += 1( ,..., )iT diag t t  – pseudo-inverse matrix for 
the matrix T; n – rank of the matrix Sh, i.e. the number 
of non-zero singular numbers µ =( 1,..., )i i p ; µ+ =1 /i it , 
if µ ≠ 0i , and + = 0it , if µ = 0i .

In the case where the rank of the matrix Sh n = p, 
the pseudoinverse estimate (21) coincides with the 
estimate (16) for the least squares and, correspond-
ingly, is characterized by low accuracy. In connection 
with this, the so-called effective pseudoinverse matri-
ces and the estimates

	
τ τ δ= = ⋅∑T T

i iL VT U M v u ,
	

where τ
+T  – effective pseudo-matrix τ τ

+ += 1( ,..., )nT diag t t ; 
<'n n, τ µ+ =1 /i it , if µ τ>i , and τ

+ = 0it , if µ = 0i .
Taking into account the symmetry and the positive 

definiteness of the matrix *Ô  in (15) for the stable 
calculation of the matrix gain factor +

*
1iK , it is expedi-

ent to use the M.M. Lavrentev computational scheme

	 Φ α −
+ = +* * * 1

1 ( ) ,iK L I 	
where the regularization parameter a  is expedient 
to be determined on the basis of the quasioptimality 
method.

4.	 Conclusion
The above algorithms of stable recovery of un-

known input signals in control systems allow to raise 
the level of a priori information about the control ob-
ject, the reliability of statistical characteristics of ex-
ternal influences, and thus the quality of control pro-
cesses in statistically indeterminate situations.
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