
Auto-weighted Robust Federated Learning with Corrupted Data

Sources

SHENGHUI LI, Uppsala University, Sweden
EDITH NGAI∗, The University of Hong Kong, China

FANGHUA YE, University College London, UK

THIEMO VOIGT, Uppsala University, Sweden and Research Institutes of Sweden (RISE), Sweden

Federated learning provides a communication-eicient and privacy-preserving training process by enabling learning statistical
models with massive participants without accessing their local data. Standard federated learning techniques that naively
minimize an average loss function are vulnerable to data corruptions from outliers, systematic mislabeling, or even adversaries.
In this paper, we address this challenge by proposing Auto-weighted Robust Federated Learning (ARFL), a novel approach
that jointly learns the global model and the weights of local updates to provide robustness against corrupted data sources.
We prove a learning bound on the expected loss with respect to the predictor and the weights of clients, which guides the
deinition of the objective for robust federated learning. We present an objective that minimizes the weighted sum of empirical
risk of clients with a regularization term, where the weights can be allocated by comparing the empirical risk of each client
with the average empirical risk of the best p clients. This method can downweight the clients with signiicantly higher
losses, thereby lowering their contributions to the global model. We show that this approach achieves robustness when the
data of corrupted clients is distributed diferently from the benign ones. To optimize the objective function, we propose a
communication-eicient algorithm based on the blockwise minimization paradigm. We conduct extensive experiments on
multiple benchmark datasets, including CIFAR-10, FEMNIST, and Shakespeare, considering diferent neural network models.
The results show that our solution is robust against diferent scenarios including label shuling, label lipping, and noisy
features, and outperforms the state-of-the-art methods in most scenarios.

CCS Concepts: · Computing methodologies→ Artiicial intelligence;Machine learning; · Security and privacy;

Additional Key Words and Phrases: Federated learning, robustness, auto-weighted, distributed learning, neural networks

1 INTRODUCTION

Federated learning [19, 23, 33] has recently attracted more and more attention due to the increasing concern of
user data privacy. In federated learning, the server trains a shared model based on data originating from remote
clients such as smartphones and IoT devices, without the need to store and process the data in a centralized
server. In this way, federated learning enables joint model training over privacy-sensitive data in a wide range of
applications [49, 50], including natural language processing [8], computer vision [30], and speech recognition [14].

However, standard federated learning strategies fail in the presence of data corruption [32, 37]. Data collected
from diferent clients, or data sources (in this article we use the two terms interchangeably), may vary greatly in

∗Corresponding author.

Authors’ addresses: Shenghui Li, shenghui.li@it.uu.se, Uppsala University, Uppsala, Sweden; Edith Ngai, chngai@eee.hku.hk, The University
of Hong Kong, Hong Kong, China; Fanghua Ye, University College London, London, UK, fanghua.ye.19@ucl.ac.uk; Thiemo Voigt, Uppsala
University, Uppsala, Sweden and Research Institutes of Sweden (RISE), stockholm, Sweden, thiemo.voigt@it.uu.se.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst
page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior speciic permission and/or a fee. Request permissions from
permissions@acm.org.

© 2022 Association for Computing Machinery.
2157-6904/2022/1-ART1 $15.00
https://doi.org/10.1145/3517821

ACM Trans. Intell. Syst. Technol.

HTTPS://ORCID.ORG/1234-5678-9012
https://orcid.org/1234-5678-9012
https://doi.org/10.1145/3517821

1:2 • Shenghui Li, Edith Ngai, Fanghua Ye, and Thiemo Voigt

data quality and thus reduce the reliability of the learning task. Some of the clients may be unreliable or even
malicious. For instance, distributed sensor networks are vulnerable to cybersecurity attacks, such as false data
injection attacks [29]. In crowdsourcing scenarios, the problem of noisy data is unignorable due to biased or
erroneous workers [45]. As a consequence, the clients can update their local models using corrupted data and
send the parameters to the server. After averaging these harmful updates, the accuracy and the convergence of the
shared global model can be compromised. To mitigate this limitation, diferent robust learning approaches have
been proposed in the literature. Some of these techniques rely on robust statistical estimations (e.g. geometric
median estimators) to update the aggregated model [3, 36, 51]. Although these techniques are widely used in
traditional distributed learning scenarios with i.i.d. datasets, it is not straightforward to generalize them for
non-i.i.d. data settings, i.e., some of the clients have signiicantly diferent data distribution than the others. Other
approaches require some trusted clients or samples to guide the learning [27, 35, 43] or detect the updates from
corrupted clients [16, 21]. Unfortunately, the credibility of these trusted clients and samples are usually not
guaranteed. Since the data is stored locally in the clients, the server is insensible to the corruption behaviors and
unable to measure the quality of data sources due to privacy constraints.

In this article, we aim to improve the robustness of federated learning when some of the clients are malicious,
i.e., they actively corrupt the local training set by changing the features or the labels. We propose a novel solution,
named Auto-weighted Robust Federated Learning (ARFL), to jointly learn the global model and the weights of
local updates. More speciically, we irst prove a learning bound on the expected risk with respect to the predictor
and the weights of clients. Based on this theoretical insight, we present our objective that minimizes a weighted
sum of the empirical risk of clients with a regularization term. We then theoretically show that the weights in
the objective can be allocated by comparing the empirical risk of each client with the best p clients. When the
corrupted clients have signiicantly higher losses comparing with the benign ones, their contributions to the
global model will be downweighted or even zero-weighted, so as to play less important roles in the global model.
Therefore, by using ARFL, we can exclude potentially corrupted clients and keep optimizing the global model
with the benign clients. To solve the problem in federated learning settings, we further propose a communication-
eicient optimization method based on the blockwise updating paradigm [54]. Through extensive experiments on
multiple benchmark datasets (i.e., CIFAR-10, FEMNIST and Shakespeare) with diferent neural network models,
we demonstrate the robustness of our approach compared with the state-of-the-art approaches [3, 33, 36, 38],
showing up to 30% improvement in model accuracy.

2 RELATED WORK

The concept of federated learning has been proposed for collaboratively learning a model without collecting
users’ data [19, 20, 23, 33]. The research work on federated learning can be divided into three categories, i.e.,
horizontal federated learning, vertical federated learning, and federated transfer learning, based on the distribution
characteristics of the data. Due to space limits, we refer to Yang et al. [48] for detailed explanations. In this paper
we focus on horizontal federated learning where datasets in all clients share the same feature space but diferent
samples. In 2017, one of the most famous horizontal federated learning framework, Federated Averaging (FedAvg)
has been proposed to update global parameters with a weighted average of the model parameters sent by a subset
of clients after several local iterations [33].

Due to the nature of data decentralization and the requirement of collaborative training from multiple clients,
federated learning is vulnerable to malicious corruption of training data from remote clients [31]. Notably,
it has been shown that traditional federated learning approaches (e.g., FedAvg) are fragile in the presence of
malicious or corrupted clients [11, 41]. To mitigate the impact of malicious clients and improve the robustness of
federated training, several solutions have been proposed in the literature [18, 25, 36, 41]. Among these robust
approaches, robust statistical estimations have received much attention in particular. Typical estimation rules

ACM Trans. Intell. Syst. Technol.

Auto-weighted Robust Federated Learning with Corrupted Data Sources • 1:3

include Geometric Median (GM) [9, 36], trimmed mean [51], and Krum [3]. For instance, in 2017, Chen et al. [9]
proposed to apply GM as a gradient aggregation protocol in robust distributed learning and showed that it can
tolerate up to half malicious clients while estimating the underlying true gradients. In 2019, Pillutla et al. [36]
used GM to aggregate parameters in a robust FL solution. However, the robustness of the traditional estimators
are limited as they rely on the assumption that data are i.i.d. and balanced among the clients, i,e, they distribute
identically and have the same (or a similar) number of training data points. Hence, those approaches can be
ineicient when some of the clients have signiicantly more data than others. In addition, Li et al. [25] proposed a
multi-task learning objective called Ditto, for federated learning that provides robustness via personalization in
2021. The optimization of Ditto, however, requires extra training overhead for personalized models.

Others [7, 16, 22, 38], couple the process of teaching and learning based on a few trusted instances to produce
a robust prediction model. For example, in 2020, Sattler et al. [38] proposed to separate the client population
into diferent groups (e.g., benign and corrupted groups) based on the pairwise cosine similarities between their
parameter updates. Also in 2020, Li et al. [22] suggested allowing the server to learn to detect and remove the
malicious model updates using an encoder-decoder based detection model. These approaches require some
trusted clients or samples to guide the learning or detect the updates from corrupted clients. In 2021, Cao et
al. [7] presented a Byzantine-robust method that allows the service provider itself collect a clean small training
datase for the learning task and maintain a model based on it to bootstrap trust. Unfortunately, the credibility of
these trusted clients and samples are usually not guaranteed since the data is isolated and stored locally. Thus,
the server is not aware of these corruption behaviors and does not have the ability to measure the quality of
data at the sources due to privacy and communication constraints. Diferent from previous studies, we propose
a robust approach that can learn both the global model and the weights of clients automatically from a mix of
reliable and unreliable clients, without the need of any pre-veriied trusted instances.

3 PRELIMINARIES AND MOTIVATION

3.1 Federated Learning

In federated learning tasks, a general assumption is that the target distribution for which the centralized model is
learned is a weighted mixture of distributions associated with all clients (or data sources), that is, if we denote
by Di the distribution associated with the i-th client, the centralized model is trained to minimize the risk
with respect to Dα =

∑N
i=1 αiDi , where N is the total number of clients, α = (α1, ...,αN)

⊤ is the vector of
source-speciic weights. We also have α ∈ Rn

+
and 1

⊤α = 1 [15, 23, 34].
Let ℓh (z) be the loss function that captures the error of a predictor h ∈ H (whereH is the hypothesis class)

on the training data z = (x ,y) (where (x ,y) is the input and output pair), and LDα
(h) be the risk of a predictor

h on the mixture data distribution Dα , we have:

LDα
(h) =

N
∑

i=1

αiLi (h) =

N
∑

i=1

αiEz∼Di
(ℓh (z)), (1)

where Li (h) = Ez∼Di
(ℓh (z)) is the expected loss of a predictor h on the data distribution Di of the i-th client.

Most prior work in federated learning has assumed that all samples are uniformly weighted, where the
underlying assumption is that the target distribution is U =

∑N
i=1

mi

M
Di , wheremi is the number of samples

from client i andM =
∑N

i=1mi . Thus the risk becomes:

L
U
(h) =

N
∑

i=1

mi

M
Ez∼Di

(ℓh (z)). (2)

ACM Trans. Intell. Syst. Technol.

1:4 • Shenghui Li, Edith Ngai, Fanghua Ye, and Thiemo Voigt

In practice, the goal is to minimize a traditional empirical risk L̂
U
(h) as follows:

L̂
U
(h) =

N
∑

i=1

mi

M

1

mi

mi
∑

j=1

ℓh (zi, j), (3)

which can be minimized by sampling a subset of clients randomly at each round, then running an optimizer
such as stochastic gradient descent (SGD) for a variable number of iterations locally on each client. These local
updating methods enable lexible and eicient communication compared to traditional mini-batch methods,
which would simply calculate a subset of the gradients [42, 47, 53]. One of the most well-known methods to
minimize Eq. (3) in non-convex settings is FedAvg [33], which runs simply by letting each selected client apply a
ixed number of epochs of SGD locally and then averaging the resulted local models.

3.2 Threat Model: Data Corruption

Guerraoui et al. has shown that a few clients with corrupted data can lead to inaccurate models [13]. The problem
stems from a mismatch between the target distribution and U . That is, in corruption scenarios, the target
distribution may in general be quite diferent fromU , sinceU includes some corrupted components. We expect
that the data distributions are more similar among benign clients compared with the corrupted ones even when
the data is non-i.i.d. More speciically, we model the target distribution with corrupted clients as,

Dα =

N
∑

i=1

αiDi =

N
∑

i=1

αi (ηiDi,b + (1 − ηi)Di,c), (4)

where ηi ∈ {0, 1} denotes whether the local data distribution Di is a benign distribution Di,b (when ηi = 1) or
a corrupted distribution Di,c (when ηi = 0). Ideally, the corruption can be usually measured by the diference
between Di,b and Di,c using statistical distance (e.g., the Kullback-Leibler divergence), if both distributions are
known [21]. In practice, data corruption can be achieved by modifying features or labels of the local training
dataset.
When

∑N
i=1 ηi = N , all components of the mixture distribution are benign (i.e. Di = Di,b). Assuming that

the target distribution is uniformU , minimizing Eq. (3) can lead to an accurate global model. However, when
there are corrupted data sources (i.e.

∑N
i=1 ηi < N), the mixture of the distributions will include some corrupted

components Di,c . In this case, optimizing the empirical risk with respect toU will not lead to an accurate global
model. We make the following assumptions regarding the adversaries:
(1) Each adversary controls exactly one non-colluding and corrupted client. The data distributions of any

corrupted clients are independent of each other. Since all clients do not collude, the efect of malicious
updates from each adversary to the global model is limited [2].

(2) A corrupted client has a higher loss with respect to the best predictor under the uniformly weighted
assumption in Eq. (2), i.e., we have

L̂Di,c
(h∗) > L̂Di,b

(h∗), (5)

where h∗ is the optimal global predictor that minimizes the empirical risk. Base on this, we will identify the
corrupted clients according to their empirical losses as discussed in the next section.

3.3 Introductory Example

As an example, we train a binary classiication model from three clients, where the data is originally generated
from three distributions with linearly separable classes. A Logistic Regression (LR) model is learned using the
standard FedAvg approach. As shown in Fig. 1(a), the learned separating plane is close to the true plane when the

ACM Trans. Intell. Syst. Technol.

Auto-weighted Robust Federated Learning with Corrupted Data Sources • 1:5

2 1 0 1 2
x1

(a) Clean

1

0

1

2

x 2

2 1 0 1 2
x1

(b) Feature Corruption

1

0

1

2

2 1 0 1 2
x1

(c) Label Corruption

1

0

1

2 True plane
FedAvg
Client 1
Client 2
Client 3

Fig. 1. Illustration of federated learning using the standard FedAvg with potential corruptions in local datasets, where red
circles represent data of class 0 and blue crosses represent class 1. (a) All samples are clean. (b) The features in Client 1 are
shited by random noise. (c) The labels in Client 1 are forced to class 1.

all datasets are clean. When Client 1 is corrupted on either feature x (Fig. 1(b)) or label y (Fig. 1(c)), the learned
plane is driven away from the true one.
One possible solution is to exclude all the corrupted components of the mixture distribution and seek for a

new target distribution considering only benign clients, i.e.Ub =
∑

i ∈B
mi

MB
Di , where B is the set of all benign

clients and MB =
∑

i ∈Bmi . The challenge with this approach is that the centralized server is agnostic to the
corruptions on the local clients and hence it is impossible to measure the data quality directly.

4 ROBUST FEDERATED LEARNING

In this section, we describe our Auto-weighted Robust Federated Learning (ARFL) in detail. Speciically, we present
a novel objective according to a learning bound with respect to both the predictor h and the weights α . We
analyze the robustness of the proposed objective against corruptions and optimize it with a federated learning
based algorithm.

4.1 Learning Bound

In the following theorem, we present a learning bound on the risk on the weighted mixture distribution with
respect to the predictor h and the weights α . A proof is provided in Appendix A.
theoremmainthm We denote L̂i (h) as the corresponding empirical counterparts of LDi

(h). Assume that the
loss function ℓh (z) is bounded by a constantM > 0. Then, for any δ ∈ (0, 1], with probability at least 1 − δ over
the data, the following inequality holds:

LDα
(h) ≤

N
∑

i=1

αi L̂i (h) + 2
N
∑

i=1

αiRi (H) + 3

√

log
(

4
δ

)

M2

2

√
√

n
∑

i=1

α2
i

mi
,

where, for each client i = 1, . . . ,N ,

Ri (H) = Eσ
*.
,
sup
f ∈H

*.
,
1

mi

mi
∑

j=1

σi, jℓf (zi, j)
+/
-
+/
-

ACM Trans. Intell. Syst. Technol.

1:6 • Shenghui Li, Edith Ngai, Fanghua Ye, and Thiemo Voigt

and σi, js are independent uniform random variables taking values in {−1,+1}. These variables are called
Rademacher random variables [52].
Although the Rademacher complexities in the bound are functions of both the underlying distribution and

the hypothesis class [52], in practice one usually works with a computable upper bound of Ri (H) that is
distribution-independent (e.g. using VC dimension) [4, 21, 40]. In our setting the hypothesis spaceH is ixed and
hence these bounds would be identical for all i . Therefore, we expect the Ri (H) to be of similar order for all
clients and the impact of α in the second term to be negligible. We refer to Konstantinov et al. [21, Appendix B.1]
for detailed explanations and some examples on this point. In general, we can ignore this term and concentrate
on optimizing the remaining terms.
The rest of the terms for the learning bound in Theorem 4.1 thus suggest a trade-of between reducing the

weighted sum of the empirical losses and minimizing a weighted norm of the weights
√

∑n
i=1

α 2
i

mi
. Note that

reducing the weighted sum of the empirical losses will encourage trusting the clients who provide data with
the smallest loss but it may lead to large and sparse weights, which will make the model it only very few
local datasets. On the contrary, minimizing the norm will increase the smoothness of the weight distribution,
but it may also increase the weighted sum of empirical losses. To control this trade-of, we introduce a tuning
hyperparameter λ to the weighted norm. For the convenience of derivation, the square root on the sum of weights
can be removed by tuning λ.

4.2 Problem Formulation

We present our problem formulation in the following. The learning bound derived above suggests minimizing
the following objective with respect to the model parametersw together with the weights α :

min
w ,α

N
∑

i=1

αi L̂i (w) +
λ

2

N
∑

i=1

α2
i

mi
, (6)

s .t . α ∈ Rn
+
, 1⊤α = 1,

wherew is a vector of parameters deining a predictor h. Here and after we use notation L̂i (w) to replace L̂i (h),
representing the empirical risk of hypothesis h (corresponding to w) on client i . Note that removing the square

root of the last term does not afect the optimal solution, since the total sum
∑N

i=1
α 2
i

mi
is the same in both forms,

and the square root is simply a scaling for importance of the total sum. In practice, we can achieve the equivalent
purpose by adjusting λ.

The second term of the objective is small whenever the weights are distributed proportionally to the number
of samples of the client. As λ → ∞, we have αi (w) =

mi

M
, which means that all clients are assigned with weights

proportional to their number of training samples and the model minimizes the empirical risk over all the data,
regardless of the losses of the clients. Thus, the objective becomes the same as the standard FedAvg in Eq. (3). In
contrast, as λ → 0, the regularization term in Eq. (6) vanishes, so that the client with the lowest empirical risk
will dominate the objective by setting its weight to 1. λ thus acts as a form of regularization by encouraging the
usage of information from more clients.

4.3 Robustness of the Objective

We now study the optimal weights α of the problem in Eq. (6) to understand how the objective yields robustness
against corrupted data sources. We notice that the objective is a convex quadratic program problem over α .
Given that α = N −11 is a strictly feasible point, the problem satisies Slater’s condition, which indicates the
strong duality of the problem. Thus, the optimal weights α can be obtained using the Karush-Kuhn-Tucker

ACM Trans. Intell. Syst. Technol.

Auto-weighted Robust Federated Learning with Corrupted Data Sources • 1:7

(KKT) conditions [5]. Here we give the closed-form solution in Theorem 4.3. The detailed proof is provided in
Appendix B.

theoremalphathm For anyw , when λ > 0 and {L̂i (w)}Ni=1 are sorted in increasing order: L̂1 (w) ≤ L̂2 (w) ≤

... ≤ L̂N (w), by setting:

p = argmax
k

{1 +
Mk (Lk (w) − L̂k (w))

λ
> 0}, (7)

whereMk =
∑k

i=1mi ,

Lk (h) =

∑k
i=1mi L̂i (w)

Mk
(8)

is the average loss over the irst k clients that have the smallest empirical risks. Then the optimalα to the problem
(6) is given by:

αi (w) =
mi

Mp
[1 +

Mp (Lp (w) − L̂i (w))

λ
]+, (9)

where [·]+ =max (0, ·).
When λ ∈ (0,∞), plugging αi (w) back into Eq. (6) yields the equivalent concentrated objective

N
∑

i=1

[
mi

Mp
+

mi (Lp (w) − L̂i (w)

λ
]+ (L̂i (w) +

1

2
[
λ

Mp
+ Lp (w) − L̂i (w)]

+
), (10)

which consists of N components and each is related to the empirical risk of the corresponding client and the
average loss over the irst p clients with the smallest losses, which is called the p-average loss. An intuitive
interpretation is that the p clients act as a consensus group to reallocate the weights and encourage trusting
clients that provide empirical losses that are smaller than the average while downweighting the clients with
higher losses. Given a suitable λ, more benign clients will be in the consensus group to dominate the model and
exclude the outliers.
In a situation where the majority of clients are benign, Lp (w) becomes relatively low as the benign clients

achieve the minimum empirical risk. The components with corrupted datasets will be downweighted as they
have higher losses. Especially, the i-th component becomes zero when L̂i (w) ≥ λ

Mp
+ Lp (w), which means that

a client is considered to be corrupted and does not contribute to the objective if its empirical risk is signiicantly
larger than the p-average loss, where the threshold λ

Mp
+ Lp (w) is controlled by λ. From Eq. (7) we can also

conclude that the optimal solution has only p non-zero components and the remaining components will be
exactly zero.
On the other hand, if the corrupted clients try to bias the model to it their corrupted datasets, the p-average

loss Lp (w) becomes higher because the model does not it the samples from the majority. The threshold
λ
Mp
+Lp (w) will also be enlarged, which makes αi (w) fail to downweight the component with high losses. Thus,

the optimization problem in Eq. (6) will exceed the minimum.

4.4 Blockwise Minimization Algorithm

To solve the robust learning problem in federated learning settings, we propose an optimization method based on
the blockwise updating paradigm, which is guaranteed to converge to a critical point when the parameter set is
closed and convex [12]. The key idea is to divide the problem into two parts. One sub-problem for estimating the
model parameters and the other sub-problem for automatically weighting the importance of client updates. Then
we minimize the objective iteratively w.r.t. one variable each time while ixing the other one.

ACM Trans. Intell. Syst. Technol.

1:8 • Shenghui Li, Edith Ngai, Fanghua Ye, and Thiemo Voigt

The pseudocode of the optimization procedure is given in Algorithm 1. At the beginning of the algorithm, we
initialize L̂ = [L̂1, L̂2, ..., L̂N]⊤ by broadcasting the initial global modelw0 to each client to measure its training
loss and return it to the server.

Algorithm 1 Optimization of ARFL

Server executes:

1: Initializew0, L̂, α
2: for each round t = 1, 2, . . . do
3: Select a subset St from N clients at random
4: Broadcast the global modelwt to selected clients St
5: for each client i ∈ St in parallel do

6: w i
t+1, L̂i ← ClientUpdate(i,wt)

7: end for

8: Updatewt+1 according to Eq. (11)
9: Update α according to Theorem 4.3
10: end for

11:

ClientUpdate(i,w): // Run on client i

12: Li ← (evaluate training loss using training set)
13: B ← (split local training set into batches of size B)
14: for each local epoch i from 1 to E do

15: for batch b ∈ B do

16: w ← w − η▽ℓ(w ;b)
17: end for

18: end for

19: returnw and L̂i

Updatingw . When α is ixed, similar to the standard FedAvg approach, at round t , the server selects a subset
St of clients at random (Line 3) and broadcasts the global modelwt to the selected clients (Line 4). For each client
i , it irstly evaluates its training loss Li using its local dataset. Then, the model parameters can be updated by
local computation with a few steps of SGD (Line 14-18), after which the client uploads the new model parameters
w along with Li to the server (Line 6). While at the aggregation step, the server assembles the global model as:

wt+1 ←
∑

i ∈St

αi
∑

i ∈St αi
w i
t+1. (11)

Updating α .Whenw is ixed, we update α using Eq. (9) in Theorem 4.3. Intuitively, in order to update α , the
server should broadcast the updated model parameters to all clients to obtain their training loss before updating
α . Unfortunately, such behavior might signiicantly increase the burden of the communication network. To
improve communication eiciency, we only update the losses from those selected clients while keeping the others
unchanged. In other words, the weights of clients are reallocated according to their latest empirical losses. If a
client is not selected in the current round, the last updated loss is used instead.

ACM Trans. Intell. Syst. Technol.

Auto-weighted Robust Federated Learning with Corrupted Data Sources • 1:9

Table 1. Dataset description and parameters

Dataset #Classes #Clients #Samples i.i.d. Model used lr E Batch size |St | #Rounds

CIFAR-10 10 100 60,000 Yes CNN 0.01 5 64 20 2000
FEMNIST 62 1039 236,500 No CNN 0.01 20 64 32 2000
Shakespeare 80 71 417,469 No LSTM 0.6 1 10 16 100

5 EXPERIMENTAL RESULTS

5.1 Experimental Setup

We implement ARFL and the considered baseline methods in TensorFlow [1] Version 2.31, simulating a federated
learning system with one server and N clients. We perform our experimental evaluation on three datasets that are
commonly used in previous work [26, 33, 46], namely CIFAR-10 [44], FEMNIST [6, 10], and Shakespeare [6, 33].
Their basic information is listed in Table 1. For the CIFAR-10 dataset, we consider an i.i.d. partition where each
local client has approximately the same amount of samples and in proportion to each of the classes. We use
the original test set in CIFAR-10 as our global test set for comparing the performance of all methods. For the
Shakespeare and FEMNIST datasets, we treat each speaking role or writer as a client and randomly sample subsets
of all clients. We assume that data distributions vary among clients in the raw data, and hence we regard this
sampling process as non-i.i.d.. The raw data in FEMNIST and Shakespeare is preprocessed using the popular
benchmark LEAF [6], where the data on each local client is partitioned into an 80% training set and a 20% testing
set. The details of the network models we use in the experiments are as follows:

• The model for CIFAR-10 is a Convolutional Neural Network (CNN) chosen from Tensorlow’s website2,
which consists of three 3x3 convolution layers (the irst with 32 channels, the second and third with 64, the
irst two followed by 2x2 max pooling), a fully connected layer with 64 units and ReLu activation, and a
inal softmax output layer. To improve the performance, data augmentation (random shift and lips) is used
in this dataset [46].
• For the FEMNIST dataset, we train a CNN with two 5x5 convolution layers (the irst with 32 channels,
the second with 64, each followed by 2x2 max pooling), a fully connected layer with 126 units and ReLu
activation, and a inal softmax output layer.
• For the Shakespeare dataset, we learn a character-level language model to predict the next character over
the Complete Works of Shakespeare [39]. The model takes a series of characters as input and embeds each
of these into an 8-dimensional space. The embedded features are then processed through two stacked Long
Short-Term Memory (LSTM) layers, each with 256 nodes and a dropout value of 0.2. Finally, the output of
the second LSTM layer is sent to a softmax output layer with one node per character.

For each dataset we consider four diferent scenarios: 1)Normal operation (clean): we use the original datasets
without any corruption. 2) Label shufling (shuling): the labels of all samples are shuled randomly in each
corrupted client. 3) Label lipping (lipping): the labels of all samples are switched to a random one in each
corrupted client, which means that all labels of training samples are lipped as the same one for each corrupted
client. 4) Noisy clients (noisy): for CIFAR-10 and FEMNIST datasets, we normalize the inputs to the interval [0,
1]. In this scenario, for the selected noisy clients we add Gaussian noise to all the pixels, so that x ← x + ϵ , with
ϵ ∼ N (0, 0.7). Then we normalize the resulting values again to the interval [0, 1]. For the Shakespeare dataset,

1Code is available at https://github.com/lishenghui/arl
2https://www.tensorlow.org/tutorials/images/cnn

ACM Trans. Intell. Syst. Technol.

https://github.com/lishenghui/arfl
https://www.tensorflow.org/tutorials/images/cnn

1:10 • Shenghui Li, Edith Ngai, Fanghua Ye, and Thiemo Voigt

Table 2. Averaged test accuracy over five random seeds for FedAvg, RFA, MKRUM, CFL and ARFL in four diferent scenarios. In
the shufling and flipping scenarios, ARFL significantly outperforms the others. In the clean and noisy scenario, FedAvg, RFA,
MKRUM and ARFL achieve similar accuracy.

CIFAR-10 Clean Shufling Flipping Noisy

Corr. Per. - 30% 50% 30% 50% 30% 50%

FedAvg [33] 73.59 ± 0.44 61.17 ± 1.81 47.00 ± 7.51 65.01 ± 2.38 51.75 ± 7.75 73.75 ± 0.49 73.61 ± 0.53

RFA [36] 71.36 ± 0.47 57.86 ± 3.22 40.26 ± 9.14 55.47 ± 5.17 40.91 ± 11.06 73.74 ± 0.52 73.69 ± 0.63

MKRUM [3] 67.03 ± 0.93 59.27 ± 9.34 52.32 ± 14.90 60.21 ± 5.73 47.96 ± 10.25 73.41 ± 0.69 73.49 ± 0.49

CFL [38] 71.68 ± 0.36 52.54 ± 1.71 50.29 ± 1.95 52.87 ± 1.07 51.67 ± 0.92 54.97 ± 1.14 55.26 ± 1.96

ARFL (ours) 73.42 ± 0.40 71.68 ± 1.01 69.66 ± 0.73 71.78 ± 0.53 70.25 ± 0.56 73.48 ± 0.56 73.29 ± 0.79

FEMNIST Clean Shufling Flipping Noisy

Corr. Per. - 30% 50% 30% 50% 30% 50%

FedAvg [33] 82.12 ± 0.20 61.91 ± 21.33 39.69 ± 20.80 70.19 ± 10.17 48.53 ± 23.49 79.94 ± 0.36 78.27 ± 0.47

RFA [36] 82.11 ± 0.32 74.36 ± 7.52 52.02 ± 22.51 73.80 ± 7.49 50.75 ± 19.91 80.45 ± 0.30 79.21 ± 0.41

MKRUM [3] 79.38 ± 0.41 57.51 ± 21.17 42.40 ± 24.84 78.57 ± 4.83 67.10 ± 7.35 81.52 ± 0.53 79.80 ± 0.22

CFL [38] 82.18 ± 0.30 81.24 ± 0.47 36.03 ± 36.38 81.22 ± 0.36 65.54 ± 26.94 80.13 ± 0.70 79.21 ± 0.64

ARFL (ours) 82.32 ± 0.19 81.60 ± 0.31 81.35 ± 0.43 81.87 ± 0.22 81.30 ± 0.24 80.71 ± 0.28 79.40 ± 0.45

Shakespeare Clean Shufling Flipping Noisy

Corr. Per. - 30% 50% 30% 50% 30% 50%

FedAvg [33] 53.80 ± 0.33 51.98 ± 0.48 47.70 ± 4.96 52.08 ± 0.39 41.85 ± 16.18 51.85 ± 0.56 50.43 ± 1.19

RFA [36] 54.27 ± 0.41 50.16 ± 1.28 32.49 ± 13.81 50.50 ± 1.02 23.84 ± 21.78 52.17 ± 0.50 50.69 ± 1.04

MKRUM [3] 50.81 ± 0.85 40.38 ± 7.44 24.46 ± 6.88 44.95 ± 2.43 16.11 ± 15.46 48.19 ± 0.40 45.67 ± 0.46

CFL [38] 54.01 ± 0.34 49.76 ± 4.47 43.68 ± 12.68 51.09 ± 1.36 37.30 ± 19.76 51.98 ± 1.03 50.38 ± 1.39

ARFL (ours) 53.52 ± 0.32 52.85 ± 0.49 51.61 ± 0.68 52.82 ± 0.48 51.74 ± 0.69 52.09 ± 1.27 50.98 ± 0.75

we randomly select half of the characters and shule them so that the input sentence might be disordered. For
each corruption scenario, we set 30% and 50% of the clients to be corrupted clients (i.e. providing corrupted data).

We empirically tune the hyper-parameters on ARFL and use the same values in all experiments of each dataset.
We use the parameter setups in Table 1, unless speciied otherwise. Following the standard setup, we use SGD
and train for E local epochs with local learning rate lr . A shared global model is trained by all participants, a
subset St is randomly selected in each round of local training, and |St | is the size of St . By default, we use a
large λ (λ = 10000 ×M) for clean data, and use a relatively small λ (λ = M) for all corruptions, whereM is the
total amount of training samples. We repeat every experiment ive times with diferent random seeds for data
corruption and client selection, and evaluate the accuracy of the learned model with the clean test set.

We compare the performance of ARFL with the following state-of-the-art solutions:

• FedAvg [33]. The standard Federated Averaging aggregation approach that just calculates the weighted
average of the parameters from local clients.
• RFA [36]. A robust aggregation approach that minimizes the weighted Geometric Median (GM) of the
parameters from local clients. A smoothed WeiszfeldâĂŹs algorithm is used to compute the approximate
GM.
• MKrum (Multi-Krum) [3]. A Byzantine tolerant aggregation rule. Note that this approach tolerates some
Byzantine failures such as completely arbitrary behaviors from local updates.
• CFL [38]. A Clustered Federated Learning (CFL) approach that separates the client population into diferent
groups based on the pairwise cosine similarities between their parameter updates, where the clients are
partitioned into two groups, i.e., benign clients and corrupted clients.

ACM Trans. Intell. Syst. Technol.

Auto-weighted Robust Federated Learning with Corrupted Data Sources • 1:11

(a) Clean (b) Shufling

(c) Flipping (d) Noisy

Fig. 2. Test loss and accuracy vs. round number for FedAvg, RFA, MKRUM and ARFL on the FEMNIST dataset with 50% clients
with diferent corruption scenarios. In the shufling and flipping corruption scenarios, ARFL converges to the highest accuracy
among the four approaches.

5.2 Robustness and Convergence

Firstly, we show that ARFL is a more robust solution by comparing the average test accuracy in Table 2. The
results show that ARFL is robust in all data corruption scenarios and corruption levels. It achieves the highest test
accuracy in most scenarios compared with the other approaches. ARFL achieves signiicantly higher test accuracy
in the shuling and lipping corruption scenarios compared with all the existing methods, which is especially
noticeable in the case of lipping corruption with the level of 50%, where the test accuracy for the CIFAR-10,
FEMNIST and Shakespeare datasets are 70.25%, 81.30% and 51.74%, which are 18.5%, 14.2%, and 9.89% higher
than that of the best of existing methods, respectively. In the clean and noisy scenarios, ARFL’s test accuracy is
very close to the best method in the comparison.

As expected, FedAvg’s performance is signiicantly afected by the presence of corrupted clients, especially
in shuling and lipping scenarios. Furthermore, MKRUM also shows poor performance in shuling and lipping

scenarios of all datasets. RFA works well for the FEMNIST dataset, but worse than FedAvg in the shuling and
lipping scenarios for the CIFAR-10 and Shakespere datasets. It is also interesting to observe that CFL works well
for the FEMNIST and Shakespeare datasets under 30% corruption level, but the accuracy decreases signiicantly
when the corruption level is 50%. The reason is that when half of the clients are corrupted, CFL fails to identify
which group of clients are corrupted. These results demonstrate that ARFL ofers better performance than the
existing approaches across the corruption scenarios we consider. Note that our approach can handle even higher
corruption rates in those scenarios. For example, using the FEMNIST data set with 70% corrupted clients we still

ACM Trans. Intell. Syst. Technol.

1:12 • Shenghui Li, Edith Ngai, Fanghua Ye, and Thiemo Voigt

Fig. 3. Impact of fraction of corrupted clients on test accu-
racy of ARFL using CIFAR-10. The accuracy decreases as the
fraction of corrupted clients increases, especially when 60%
clients are corrupted.

Fig. 4. Learning curves of ARFL on CIFAR-10 with diferent
non-i.i.d setings, where smaller α indicates stronger non-
i.i.d. data distribution. The curves fluctuates as we increase
the degree of non-i.i.d.

achieve an accuracy above 79%. However, it is also noticeable that if multiple clients try to bias their data to the
same distribution (i.e., colluding corruption), our approach is unable to handle such a high corruption rate.

Next, we study the convergence of the approaches by comparing the test loss and accuracy of the global model
versus the number of training rounds in Figure 2, where 50% of the clients are corrupted. As discussed before,
CFL is unable to handle such a high corruption level. Therefore we only compare the remaining four approaches.
The shaded areas denote the minimum and maximum values over ive repeated runs. The igure shows that all
approaches converge to a good solution in the clean and noisy scenarios. However, in the clean scenario, the test
loss of ARFL is slightly higher than the others. The reason is that the global model could bias towards some of the
local updates, which can be avoided by increasing λ. Furthermore, all the RFA, FedAvg and MKRUM approaches
diverge in the shuling and lipping corruption scenarios, which indicates that the local data corruption harms
the global model during their training process. On the contrary, our ARFL method is able to converge with high
accuracy, since it is able to lower the contribution of the corrupted clients. In the clean and noisy scenarios, we
observe that MKRUM converges slower, as it only uses a subset of selected updates to aggregate the global model.

5.3 Impact of the Fraction of Corrupted Clients

To demonstrate the efect of the fraction of corrupted clients to the robustness of ARFL, we run an experiment
on CIFAR-10 with diferent number of corrupted clients and apply shuling to corrupt the clients. As shown
in Fig. 3, the performance decreases with the fraction of corrupted clients. Noticeably, the accuracy does not
signiicantly change until more than 60% clients are corrupted. Similar phenomenon has been shown by Li et al.
in a previous work [25], which achieves robustness by personalized federated training. However, diferent from
the solution in [25], our ARFL only learns a single global model, without the need of extra training overhead for
personalized models.

ACM Trans. Intell. Syst. Technol.

Auto-weighted Robust Federated Learning with Corrupted Data Sources • 1:13

(a) Weights v.s. λ (b) Accuracy v.s. λ

Fig. 5. Efects of λ on weights and model accuracy on the CIFAR-10 dataset. The corrupted clients (dashed lines) are
zero-weighted when λ ≤ 2.5 ×M , and the accuracy reaches its peak when λ = 1 ×M .

5.4 Impact of Data Heterogeneity

In order to study the impact of non-i.i.d. data, i.e., the extent of data heterogeneity among clients, we simulate a
non-i.i.d. partition of CIFAR-10, for which the number of data points and class proportions are unbalanced, and
30% of the clients are corrupted with shuling. Following prior arts [17, 28], we model non-i.i.d. data distributions
by using a Dirichlet distribution Pk ∼ Dir

N
(α) and by allocating a Pk,i proportion of the training instances of

class k to local client i , in which a smaller α indicates stronger non-i.i.d. data distributions. As shown in Fig. 4,
when the data is less heterogeneous (e.g., α = 10.0), the learning curve increases more steadily, and therefore
results in higher accuracy at the end of the training. On the contrary, the learning curve luctuates over the
training rounds when α is small. One explanation for this is that it becomes hard to induce a consensus model for
the benign clients if their data distributions are signiicantly diferent, thus the corrupted clients can damage the
global model more easily as they are not down-weighted properly.

5.5 Tuning λ

As mentioned before, λ in the objective should be tuned in order to provide a trade-of between robustness and
average accuracy. Here we conduct further experiments on the CIFAR-10 dataset to study the efects of λ. The
dataset is partitioned into N = 10 clients by sampling Pk ∼ Dir

N
(0.5) and allocating a Pk,i proportion of the

training instances of class k to local client i , where three clients are corrupted by shuling their labels randomly
(Client 8-10). We use the original test set in CIFAR-10 as the global test set. We train the model for 1000 rounds
where each client runs one epoch of SGD on their training set before each aggregation, where λ is set in the
range of [10−1 ×M, 102 ×M]. All the other settings are the same as in Sec. 5.1.
Fig. 5(a) shows the optimized weights as a function of λ on the CIFAR-10 dataset. It is readily apparent that

α has only one non-zero element (Client 7) for small λ and all elements of α come to certain non-zero values
for large λ. In between these two extremes, we obtain sparse solutions of α in which only a part of elements
have non-zero values. It is also noticeable that all the corrupted clients (dashed lines) are zero-weighted when
λ ≤ 2.5 ×M , which means that they make no contribution when the server aggregates the updated local models.

ACM Trans. Intell. Syst. Technol.

1:14 • Shenghui Li, Edith Ngai, Fanghua Ye, and Thiemo Voigt

Fig. 6. Visualization of the weights v.s. round number of
ARFL. All corrupted clients (dashed lines) are zero-weighted
ater 350 rounds of training.

Fig. 7. Weights comparison between ARFL and FedAvg.
ARFLâĂŹs weights distributed similar to those of FedAvg
with only benign clients

In Fig. 5(b), we plot the model accuracy as a function of λ, showing that the model achieves relatively low
accuracy for small λ, which demonstrates that extremely sparse weights are not favorable under this non-i.i.d.
data setting. The reason behind this is that the model inally its only one local dataset without considering data
from other clients. The accuracy increases as more benign clients are upweighted and contribute their local
updates to the global model. The optimal value for λ is 1.0 ×M in this experiment, where all the benign clients
have non-zero weights, while all the corrupted clients have zero weights. However, as λ further increases, the
global model is harmed by the corrupted clients as they gain adequate weights, which leads to lower accuracy.

5.6 Auto-weighting Analysis

In this part, we investigate the auto-weighting process during training in ARFL when λ = 1.0 ×M , where we
keep the setup the same as the previous above. As shown in Fig. 6, our approach successfully downweights all
the three corrupted clients, for which the weights become zero after 350 rounds of training.
We next compare the reallocated weights with the standard FedAvg, where the weights are ixed as αi =

mi

M
,

and FedAvgwith only benign clients (Benign FedAvg), where αi =
mi

MB
for benign clients, and αi = 0 for corrupted

clients. Fig. 7 shows that the learned weight distribution (in red) of ARFL is approximated to the distribution
considering only benign clients (in blue). We conclude that our approach can automatically reweight the clients
and approximate the mixture distribution to the benign uniform distribution during the model training process,
even when the centralized server is agnostic to the local corruptions.

6 LIMITATIONS

The irst limitation is the fairness. When a small λ is chosen, the clients are treated unfairly, e.g., a client with
data that is diicult to learn (but not due to corruption) would carry less weight. This happens in some strongly
non-i.i.d cases where the distributions among sources are inherently diferent. However, we argue that robustness
and fairness are two competing targets [24], it is technically diicult to distinguish between łcorrupted" and łjust
diferent" (but not corrupted) data sources if the data is strongly non-i.i.d., which we leave it for future work.

ACM Trans. Intell. Syst. Technol.

Auto-weighted Robust Federated Learning with Corrupted Data Sources • 1:15

Nevertheless, we show in our experiments (Sec. 5) that our approach performs well in some general non-i.i.d.
settings.
Another limitation is on the assumption of corruption strategies. Colluding corruptions among clients, e.g.,

multiple clients are trying to bias their data distribution to the same target, may bring risk to the robustness of the
objective. In addition, our approach is not designed to handle malicious attacks on the model parameters, i.e., only
data corruption scenarios are considered. Our work is based on the assumption that all clients are honest during
local training and communication steps, which means that the training loss should relect the real empirical loss
of the global model on the local data. If some corrupted clients cheat the server by giving extremely small fake
losses, then they will be allocated with high weights and dominate the training accordingly.

7 CONCLUSIONS AND FUTURE WORK

In this article, we proposed Auto-weighted Robust Federated Learning (ARFL), a novel approach that automatically
re-weights the local updates to lower the contribution of corrupted clients who provide low-quality updates to
the global model. Experimental results on benchmark datasets corroborate the competitive performance of ARFL
compared to the state-of-the-art methods under diferent data corruption scenarios. Our future work will focus
on robust aggregation without the losses provided by clients since evaluating training loss from local clients
could also be a potential overhead. Also, we will explore the possibility of further improving the robustness of
federated learning and coping with higher fraction of corrupted clients. Furthermore, we plan to extend ARFL to a
more general federated learning approach and make it robust against both model poisoning and data corruption.

ACKNOWLEDGMENTS

This research was supported by the RGC Grant Research Fund No. 17203320 from Hong Kong, the Swedish
Research Council project grant No. 2017-04543, HKU-TCL joint research centre for artiicial intelligence seed
funding, and the European UnionâĂŹs Horizon 2020 research and innovation programme under grant agreement
No. 101015922.

REFERENCES
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S Corrado, Andy Davis, Jefrey

Dean, Matthieu Devin, et al. 2016. Tensorlow: Large-scale machine learning on heterogeneous distributed systems. arXiv preprint
arXiv:1603.04467 (2016).

[2] Arjun Nitin Bhagoji, Supriyo Chakraborty, Prateek Mittal, and Seraphin Calo. 2019. Analyzing federated learning through an adversarial
lens. In International Conference on Machine Learning. PMLR, 634ś643.

[3] Peva Blanchard, Rachid Guerraoui, Julien Stainer, et al. 2017. Machine learning with adversaries: Byzantine tolerant gradient descent. In
Advances in Neural Information Processing Systems. 119ś129.

[4] Olivier Bousquet, Stéphane Boucheron, and Gábor Lugosi. 2003. Introduction to statistical learning theory. In Summer School on Machine

Learning. Springer, 169ś207.
[5] Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. 2004. Convex optimization. Cambridge university press.
[6] Sebastian Caldas, Peter Wu, Tian Li, Jakub Konečnỳ, H Brendan McMahan, Virginia Smith, and Ameet Talwalkar. 2018. Leaf: A

benchmark for federated settings. arXiv preprint arXiv:1812.01097 (2018).
[7] Xiaoyu Cao, Minghong Fang, Jia Liu, and Neil Zhenqiang Gong. 2021. FLTrust: Byzantine-robust Federated Learning via Trust

Bootstrapping. In ISOC Network and Distributed System Security Symposium (NDSS).
[8] Mingqing Chen, Ananda Theertha Suresh, Rajiv Mathews, Adeline Wong, Cyril Allauzen, Françoise Beaufays, and Michael Riley. 2019.

Federated Learning of N-Gram Language Models. In Proceedings of the 23rd Conference on Computational Natural Language Learning

(CoNLL). 121ś130.
[9] Yudong Chen, Lili Su, and Jiaming Xu. 2017. Distributed statistical machine learning in adversarial settings: Byzantine gradient descent.

Proceedings of the ACM on Measurement and Analysis of Computing Systems 1, 2 (2017), 1ś25.
[10] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre Van Schaik. 2017. EMNIST: Extending MNIST to handwritten letters. In

2017 International Joint Conference on Neural Networks (IJCNN). IEEE, 2921ś2926.

ACM Trans. Intell. Syst. Technol.

1:16 • Shenghui Li, Edith Ngai, Fanghua Ye, and Thiemo Voigt

[11] Minghong Fang, Xiaoyu Cao, Jinyuan Jia, and Neil Gong. 2020. Local model poisoning attacks to byzantine-robust federated learning. In
29th {USENIX} Security Symposium ({USENIX} Security 20). 1605ś1622.

[12] Luigi Grippo and Marco Sciandrone. 2000. On the convergence of the block nonlinear GaussśSeidel method under convex constraints.
Operations research letters 26, 3 (2000), 127ś136.

[13] Rachid Guerraoui, Sébastien Rouault, et al. 2018. The Hidden Vulnerability of Distributed Learning in Byzantium. In International

Conference on Machine Learning. 3521ś3530.
[14] Dhruv Guliani, Francoise Beaufays, and Giovanni Motta. 2020. Training Speech Recognition Models with Federated Learning: A

Quality/Cost Framework. arXiv preprint arXiv:2010.15965 (2020).
[15] Jenny Hamer, Mehryar Mohri, and Ananda Theertha Suresh. 2020. FedBoost: A Communication-Eicient Algorithm for Federated

Learning. In International Conference on Machine Learning. PMLR, 3973ś3983.
[16] Yufei Han and Xiangliang Zhang. 2020. Robust Federated Learning via Collaborative Machine Teaching.. In AAAI. 4075ś4082.
[17] Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. 2019. Measuring the efects of non-identical data distribution for federated visual

classiication. arXiv preprint arXiv:1909.06335 (2019).
[18] Peter Kairouz, Ziyu Liu, and Thomas Steinke. 2021. The Distributed Discrete Gaussian Mechanism for Federated Learning with Secure

Aggregation. In Proceedings of the 38th International Conference on Machine Learning (Proceedings of Machine Learning Research, Vol. 139),
Marina Meila and Tong Zhang (Eds.). 5201ś5212.

[19] Jakub Konečnỳ, H Brendan McMahan, Daniel Ramage, and Peter Richtárik. 2016. Federated optimization: Distributed machine learning
for on-device intelligence. arXiv preprint arXiv:1610.02527 (2016).

[20] Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha Suresh, and Dave Bacon. 2016. Federated learning:
Strategies for improving communication eiciency. arXiv preprint arXiv:1610.05492 (2016).

[21] Nikola Konstantinov and Christoph Lampert. 2019. Robust learning from untrusted sources. In International Conference on Machine

Learning. PMLR, 3488ś3498.
[22] Suyi Li, Yong Cheng, Wei Wang, Yang Liu, and Tianjian Chen. 2020. Learning to Detect Malicious Clients for Robust Federated Learning.

arXiv preprint arXiv:2002.00211 (2020).
[23] Tian Li, Shengyuan Hu, Ahmad Beirami, and Virginia Smith. 2020. Federated Multi-Task Learning for Competing Constraints. arXiv

preprint arXiv:2012.04221 (2020).
[24] Tian Li, Shengyuan Hu, Ahmad Beirami, and Virginia Smith. 2020. Federated Multi-Task Learning for Competing Constraints. arXiv

preprint arXiv:2012.04221 (2020).
[25] Tian Li, Shengyuan Hu, Ahmad Beirami, and Virginia Smith. 2021. Ditto: Fair and robust federated learning through personalization. In

International Conference on Machine Learning.
[26] Tian Li, Maziar Sanjabi, Ahmad Beirami, and Virginia Smith. 2019. Fair Resource Allocation in Federated Learning. In International

Conference on Learning Representations.
[27] Xiaoli Li, Nan Liu, Chuan Chen, Zibin Zheng, Huizhong Li, and Qiang Yan. 2020. Communication-Eicient Collaborative Learning of

Geo-Distributed JointCloud from Heterogeneous Datasets. In 2020 IEEE International Conference on Joint Cloud Computing. IEEE, 22ś29.
[28] Tao Lin, Lingjing Kong, Sebastian U Stich, and Martin Jaggi. 2020. Ensemble Distillation for Robust Model Fusion in Federated Learning.

In NeurIPS.
[29] Xiuming Liu and Edith Ngai. 2019. Gaussian Process Learning for Distributed Sensor Networks under False Data Injection Attacks. In

2019 IEEE Conference on Dependable and Secure Computing (DSC). IEEE, 1ś6.
[30] Jiahuan Luo, Xueyang Wu, Yun Luo, Anbu Huang, Yunfeng Huang, Yang Liu, and Qiang Yang. 2019. Real-world image datasets for

federated learning. arXiv preprint arXiv:1910.11089 (2019).
[31] Lingjuan Lyu, Han Yu, and Qiang Yang. 2020. Threats to federated learning: A survey. arXiv preprint arXiv:2003.02133 (2020).
[32] Saeed Mahloujifar, Mohammad Mahmoody, and Ameer Mohammed. 2019. Data Poisoning Attacks in Multi-Party Learning. In

International Conference on Machine Learning. 4274ś4283.
[33] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas. 2017. Communication-eicient learning of

deep networks from decentralized data. In Artiicial Intelligence and Statistics. 1273ś1282.
[34] Mehryar Mohri, Gary Sivek, and Ananda Theertha Suresh. 2019. Agnostic Federated Learning. In International Conference on Machine

Learning. 4615ś4625.
[35] Xingchao Peng, Zijun Huang, Yizhe Zhu, and Kate Saenko. 2019. Federated Adversarial Domain Adaptation. In International Conference

on Learning Representations.
[36] Krishna Pillutla, Sham M Kakade, and Zaid Harchaoui. 2019. Robust aggregation for federated learning. arXiv preprint arXiv:1912.13445

(2019).
[37] Nuria Rodríguez-Barroso, Eugenio Martínez-Cámara, M Luzón, Gerardo González Seco, Miguel Ángel Veganzones, and Francisco

Herrera. 2020. Dynamic Federated Learning Model for Identifying Adversarial Clients. arXiv preprint arXiv:2007.15030 (2020).
[38] Felix Sattler, Klaus-Robert Müller, Thomas Wiegand, and Wojciech Samek. 2020. On the Byzantine Robustness of Clustered Federated

Learning. In ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 8861ś8865.

ACM Trans. Intell. Syst. Technol.

Auto-weighted Robust Federated Learning with Corrupted Data Sources • 1:17

[39] William Shakespeare. [n.d.]. The complete works of William Shakespeare. Publicly available at http://www.gutenberg.org/ebooks/100/.
[40] Shai Shalev-Shwartz and Shai Ben-David. 2014. Understanding Machine Learning: From Theory to Algorithms.
[41] Jinhyun So, Başak Güler, and A Salman Avestimehr. 2020. Byzantine-resilient secure federated learning. IEEE Journal on Selected Areas

in Communications (2020).
[42] Sebastian U Stich. 2018. Local SGD Converges Fast and Communicates Little. In International Conference on Learning Representations.
[43] Dianbo Sui, Yubo Chen, Jun Zhao, Yantao Jia, Yuantao Xie, and Weijian Sun. 2020. FedED: Federated Learning via Ensemble Distillation

for Medical Relation Extraction. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP).
2118ś2128.

[44] David A van Dyk and Xiao-Li Meng. 2001. The Art of Data Augmentation. Journal of Computational and Graphical Statistics (2001),
1ś50.

[45] Paul Wais, Shivaram Lingamneni, Duncan Cook, Jason Fennell, Benjamin Goldenberg, Daniel Lubarov, David Marin, and Hari Simons.
2010. Towards Building a High-Quality Workforce with Mechanical Turk. In In Proc. NIPS Workshop on Computational Social Science and

the Wisdom of Crowds. Citeseer.
[46] Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dimitris Papailiopoulos, and Yasaman Khazaeni. 2019. Federated Learning with Matched

Averaging. In International Conference on Learning Representations.
[47] Jianyu Wang and Gauri Joshi. 2019. Cooperative SGD: A Uniied Framework for the Design and Analysis of Communication-Eicient

SGD Algorithms. In ICML Workshop on Coding Theory for Machine Learning.
[48] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. 2019. Federated machine learning: Concept and applications. ACM Transactions

on Intelligent Systems and Technology (TIST) 10, 2 (2019), 1ś19.
[49] Qiang Yang, Yang Liu, Yong Cheng, Yan Kang, Tianjian Chen, and Han Yu. 2019. Federated learning. Synthesis Lectures on Artiicial

Intelligence and Machine Learning 13, 3 (2019), 1ś207.
[50] Timothy Yang, Galen Andrew, Hubert Eichner, Haicheng Sun, Wei Li, Nicholas Kong, Daniel Ramage, and Françoise Beaufays. 2018.

Applied federated learning: Improving google keyboard query suggestions. arXiv preprint arXiv:1812.02903 (2018).
[51] Dong Yin, Yudong Chen, Ramchandran Kannan, and Peter Bartlett. 2018. Byzantine-Robust Distributed Learning: Towards Optimal

Statistical Rates. In International Conference on Machine Learning. 5650ś5659.
[52] Dong Yin, Ramchandran Kannan, and Peter Bartlett. 2019. Rademacher complexity for adversarially robust generalization. In International

Conference on Machine Learning. PMLR, 7085ś7094.
[53] Hao Yu, Sen Yang, and Shenghuo Zhu. 2019. Parallel restarted SGD with faster convergence and less communication: Demystifying why

model averaging works for deep learning. In Proceedings of the AAAI Conference on Artiicial Intelligence, Vol. 33. 5693ś5700.
[54] Shuai Zheng, Ziyue Huang, and James Kwok. 2019. Communication-eicient distributed blockwise momentum SGD with error-feedback.

In Advances in Neural Information Processing Systems. 11450ś11460.

A PROOF OF THEOREM 4.1

*

Proof. Write:

LDα
(h) ≤ L̂Dα

(h) + sup
f ∈H

(

LDα
(f) − L̂Dα

(f)
)

(12)

To link the second term to its expectation, we prove the following:

Lemma 1. Deine the function ϕ : (X ×Y)m → R by:

ϕ
(

{x1,1,y1,1}, . . . , {xN ,mN
,yN ,mN

}
)

= sup
f ∈H

(

LDα
(f) − L̂Dα

(f)
)

.

Denote for brevity zi, j = {xi, j ,yi, j }. Then, for any i ∈ {1, 2, . . . ,N }, j ∈ {1, 2, . . . ,mi }:

sup
z1,1, ...,zN ,mN

,z
′

i, j

|ϕ
(

z1,1, . . . , zi, j , . . . , zN ,mN

)

− ϕ
(

z1,1, . . . , z
′

i, j , . . . , zN ,mN

)

| ≤
αi

mi
M (13)

ACM Trans. Intell. Syst. Technol.

http://www.gutenberg.org/ebooks/100/

1:18 • Shenghui Li, Edith Ngai, Fanghua Ye, and Thiemo Voigt

Proof. Fix any i, j and any z1,1, . . . , zN ,mN
, z
′

i, j . Denote the α-weighted empirical average of the loss with

respect to the sample z1,1, . . . , z
′

i, j , . . . , zN ,mN
by L

′

Dα
. Then we have that:

|ϕ
(

. . . , zi, j , . . .
)

− ϕ (. . . , z
′

i, j , . . .) | = | sup
f ∈H

(

LDα
(f) − L̂Dα

(f)
)

− sup
f ∈H

(LDα
(f) − L̂

′

Dα
(f)) |

≤ | sup
f ∈H

(L̂
′

Dα
(f) − L̂Dα

(f)) |

=

αi

mi
| sup
f ∈H

(

ℓf (z
′
i, j) − ℓf (zi, j)

)

|

≤
αi

mi
M

Note: the inequality we used above holds for bounded functions inside the supremum. □

Let S denote a random sample of sizem drawn from a distribution as the one generating out data (i.e.mi samples
from Di for each i). Now, using Lemma 1, McDiarmid’s inequality gives:

P (ϕ (S) − E(ϕ (S)) ≥ t) ≤ exp
*..
,
−

2t2

∑N
i=1
∑mi

j=1
α 2
i

m2
i

M2

+//
-

= exp *.
,
−

2t2

M2
∑N

i=1
α 2
i

mi

+/
-

For any δ > 0, setting the right-hand side above to be δ/4 and using (12), we obtain that with probability at least
1 − δ/4:

LDα
(h) ≤ L̂Dα

(h) + ES *
,
sup
f ∈H

(

LDα
(f) − L̂Dα

(f)
)+
-
+

√

log
(

4
δ

)

M2

2

√
√

√

N
∑

i=1

α2
i

mi

(14)

To deal with the expected loss inside the second term, introduce a ghost sample (denoted by S ′), drawn from the
same distributions as our original sample (denoted by S). Denoting the weighted empirical loss with respect to
the ghost sample by L

′

Dα
, βi =mi/m for all i , and using the convexity of the supremum, we obtain:

ES
*
,
sup
f ∈H

(

LDα
(f) − L̂Dα

(f)
)+
-
= ES

*
,
sup
f ∈H

(

ES ′

(

L̂
′

Dα
(f)
)

− L̂Dα
(f)
)+
-

≤ ES,S ′ *
,
sup
f ∈H

(

L̂
′

Dα
(f) − L̂Dα

(f)
)+
-

= ES,S ′
*.
,
sup
f ∈H

*.
,
1

m

N
∑

i=1

mi
∑

j=1

αi

βi

(

ℓf (z
′
i, j) −ℓf (zi, j)

) +
-
+
-

ACM Trans. Intell. Syst. Technol.

Auto-weighted Robust Federated Learning with Corrupted Data Sources • 1:19

Introducingm independent Rademacher randomvariables and noting that
(

ℓf (z
′) − ℓf (z)

)

andσ
(

ℓf (z
′) − ℓf (z)

)

have the same distribution, as long as z and z ′ have the same distribution:

ES
*
,
sup
f ∈H

(

LDα
(f) − L̂Dα

(f)
)+
-
≤ ES,S ′,σ

*.
,
sup
f ∈H

*.
,
1

m

N
∑

i=1

mi
∑

j=1

αi

βi
σi, j
(

ℓf (zi, j)
′

) −ℓf (zi, j)
) +
-
+
-

≤ ES ′,σ
*.
,
sup
f ∈H

*.
,
1

m

N
∑

i=1

mi
∑

j=1

αi

βi
σi, jℓf (zi, j)

+/
-
+/
-

+ ES,σ
*.
,
sup
f ∈H

*.
,
1

m

N
∑

i=1

mi
∑

j=1

αi

βi

(

−σi, j
)

ℓf (zi, j)
+/
-
+/
-

= 2ES,σ
*.
,
sup
f ∈H

*.
,
1

m

N
∑

i=1

mi
∑

j=1

αi

βi
σi, jℓf (zi, j)

+/
-
+/
-
.

We can now link the last term to the empirical analog of the Rademacher complexity, by using the McDiarmid
Inequality (with an observation similar to Lemma 1). Putting this together, we obtain that for any δ > 0 with
probability at least 1 − δ/2:

LDα
(h) ≤ L̂Dα

(h) + 2Eσ
*.
,
sup
f ∈H

*.
,
1

m

N
∑

i=1

mi
∑

j=1

αi

βi
σi, jℓf (zi, j)

+/
-
+/
-
+ 3

√

log
(

4
δ

)

M2

2

√
√

√

N
∑

i=1

α2
i

mi

(15)

Finally, note that:

Eσ
*.
,
sup
f ∈H

*.
,
1

m

N
∑

i=1

mi
∑

j=1

αi

βi
σi, jℓf (zi, j)

+/
-
+/
-
≤ Eσ

*.
,

N
∑

i=1

αi sup
f ∈H

*.
,
1

mi

mi
∑

j=1

σi, jℓf (zi, j)
+/
-
+/
-

=

N
∑

i=1

αiEσ
*.
,
sup
f ∈H

*.
,
1

mi

mi
∑

j=1

σi, jℓf (zi, j)
+/
-
+/
-

=

N
∑

i=1

αiRi (H)

Bounding L̂Dα
(h) − LDα

(h) with the same quantity and with probability at least 1 − δ/2 follows by a similar
argument. The result then follows by applying the union bound. □

B PROOF OF THEOREM 4.3

*

Proof. The Lagrangian function of Eq. (6) is

L = α⊤L̂ (w) +
λ

2
| |α⊤m◦−

1
2 | |22 − α

⊤β − η(α⊤1 − 1), (16)

ACM Trans. Intell. Syst. Technol.

1:20 • Shenghui Li, Edith Ngai, Fanghua Ye, and Thiemo Voigt

where L̂ (w) = [L̂1 (w), L̂2 (w), ..., L̂N (w)]⊺ , ◦ is the Hadamard root operation, β and η are the Lagrangian
multipliers. Then the following Karush-Kuhn-Tucker (KKT) conditions hold:

∂αL(α , β,η) = 0, (17)

α ⊺1 − 1 = 0, (18)

α ≥ 0, (19)

β ≥ 0, (20)

αiβi = 0,∀i = 1, 2, ...N . (21)

According to Eq. (17), we have:

αi =
mi (βi + η − L̂i (w))

λ
. (22)

Since βi ≥ 0, we discuss the following cases:

(1) When βi = 0, we have αi =
mi (η−L̂i (w))

λ
≥ 0. Note that we further have η − L̂i (w) ≥ 0.

(2) When βi > 0, from the condition αiβi = 0, we have αi = 0.

Therefore, the optimal solution to Eq. (6) is given by:

αi (w) = [
mi (η − L̂i (w))

λ
]+, (23)

where [·]+ =max (0, ·).
We notice that

∑p
i=1 αi = 1, thus we can get:

η =

∑p
i=1mi L̂i (w) + λ
∑p

i=1mi

. (24)

According to η−L̂i (w) ≥ 0, we have Eq. (7) and Eq. (8). Finally, plugging Eq. (24) into Eq. (23) yields Eq. (9). □

ACM Trans. Intell. Syst. Technol.

	Abstract
	1 Introduction
	2 Related work
	3 Preliminaries and Motivation
	3.1 Federated Learning
	3.2 Threat Model: Data Corruption
	3.3 Introductory Example

	4 Robust Federated Learning
	4.1 Learning Bound
	4.2 Problem Formulation
	4.3 Robustness of the Objective
	4.4 Blockwise Minimization Algorithm

	5 Experimental Results
	5.1 Experimental Setup
	5.2 Robustness and Convergence
	5.3 Impact of the Fraction of Corrupted Clients
	5.4 Impact of Data Heterogeneity
	5.5 Tuning
	5.6 Auto-weighting Analysis

	6 Limitations
	7 Conclusions and Future work
	Acknowledgments
	References
	A Proof of Theorem 4.1
	B Proof of Theorem 4.3

