
Hindawi Publishing Corporation
Journal of Computer Systems, Networks, and Communications
Volume 2010, Article ID 793807, 16 pages
doi:10.1155/2010/793807

Research Article

Multimode Flex-Interleaver Core for Baseband
Processor Platform

Rizwan Asghar and Dake Liu

Department of Electrical Engineering, Linköping University, 581 83 Linköping, Sweden

Correspondence should be addressed to Rizwan Asghar, rizwan@isy.liu.se

Received 25 August 2009; Accepted 12 October 2009

Academic Editor: Rashid Saeed

Copyright © 2010 R. Asghar and D. Liu. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

This paper presents a flexible interleaver architecture supporting multiple standards like WLAN, WiMAX, HSPA+, 3GPP-LTE, and
DVB. Algorithmic level optimizations like 2D transformation and realization of recursive computation are applied, which appear
to be the key to reach to an efficient hardware multiplexing among different interleaver implementations. The presented hardware
enables the mapping of vital types of interleavers including multiple block interleavers and convolutional interleaver onto a single
architecture. By exploiting the hardware reuse methodology the silicon cost is reduced, and it consumes 0.126 mm2 area in total
in 65 nm CMOS process for a fully reconfigurable architecture. It can operate at a frequency of 166 MHz, providing a maximum
throughput up to 664 Mbps for a multistream system and 166 Mbps for single stream communication systems, respectively. One
of the vital requirements for multimode operation is the fast switching between different standards, which is supported by this
hardware with minimal cycle cost overheads. Maximum flexibility and fast switchability among multiple standards during run
time makes the proposed architecture a right choice for the radio baseband processing platform.

1. Introduction

Growth of high-performance wireless communication sys-
tems has been drastically increased over the last few years.
Due to rapid advancements and changes in radio communi-
cation systems, there is always a need of flexible and general
purpose solutions for processing the data. The solution not
only requires adopting the variances within a particular
standard but also needs to cover a range of standards to
enable a true multimode environment. The symbol process-
ing is usually done in baseband processors. A fully flexible
and programmable baseband processor [1–3] provides a
platform for true multimode communication. To handle
the fast transition between different standards, such type of
platform is needed in both mobile devices and especially
in base stations. Other than symbol processing, one of the
challenging area is the provision of flexible subsystems for
forward error correction (FEC). FEC subsystems can further
be divided in two categories, channel coding/decoding
and interleaving/deinterleaving. Among these categories,
interleavers and deinterleavers appeared to be more silicon
consuming due to the silicon cost of the permutation

tables used in conventional approaches. For multistandard
support devices the silicon cost of the permutation tables
can grow much higher, resulting in an unefficient solution.
Therefore, the hardware reuse among different interleaver
modules to support multimode processing platform is of
significance. This paper presents a flexible and low-cost
hardware interleaver architecture which covers a range of
interleavers adopted in different communication standards
like HSPA Evolution (HSPA+) [4], 3GPP-LTE [5], WiMAX;
IEEE 802.16e [6], WLAN; IEEE 802.11a/b/g [7], IEEE
802.11n [8], and DVB-T/H [9].

Interleaving plays a vital role in improving the perfor-
mance of FEC in terms of bit error rate. The primary func-
tion of the interleaver is to improve the distance properties
of the coding schemes and to disperse the sequence of bits
in a bit stream so as to minimize the effect of burst errors
introduced in transmission [10, 11]. The main categories
of interleavers are block interleavers and convolutional
interleavers. In block interleavers the data are written row
wise in a memory configured as a row-column matrix and
then read column-wise after applying certain intra-row and
inter-row permutations. They are usually specified in the

2 Journal of Computer Systems, Networks, and Communications

form of a row-column matrix with row and/or column
permutations given in tabular form, however; they can also
be specified by a modulo function having more complex
functions involved to define the permutation patterns. On
the other hand, convolutional interleavers use multiple first-
in-first-out (FIFO) cells with different width and depth. They
are defined mainly by two parameters, the depth of memory
cells and number of branches.

Looking at the range of interleavers used in different
standards (Table 1) it seems difficult to converge to a single
architecture; however, the fact that multimode coverage does
not require multiple interleavers to work at the same time
provides opportunities to use hardware multiplexing. The
multimode functionality is then achieved by fast switching
between standards. This research is to merge the functional-
ity of different types of interleavers into a single architecture
to demonstrate a way to reuse the hardware for a variety
of interleavers having different structural properties. The
method in general is the so-called hardware multiplexing
technique well presented in [12]. It starts at analyzing
and profiling multiple implementation flows, identifying
opportunities of hardware multiplexing, and eventually fine
tuning the microarchitecture, using minimal hardware, and
maximal reuse of multifunctions.

This paper is organized as follows. Section 2 presents
the previous work done for the interleaver algorithm imple-
mentations. The challenges involved to cover the wide range
of standards are mentioned in Section 3. It also presents a
shared data flow and hardware cost associated with different
implementations. Section 4 provides the detailed explana-
tion of the unified interleaver architecture and its subblocks.
A brief explanation of the algorithmic transformations
and optimizations used for efficient mapping onto single
architecture is given in Section 5 with selected example cases.
The usage of the proposed architecture while integrating
into baseband system is explained in Section 6. Section 7
provided the VLSI implementation results and comparison
to others followed by a conclusion in Section 8.

2. Previous Work

A variety of interleaver implementations having different
structural properties have been addressed in literature. The
main area of focus has been low cost and throughput.
Most of the work covers a single or a couple of interleaver
implementations which is not sufficient for a true multimode
operation. The design of interleaver architecture for turbo
code internal interleaver has been addressed in [13–17].
Some of these designs targeted very low-cost solutions. A
recent work in [18] provides a good unified design for differ-
ent standards; however, it covers only the turbo code inter-
leavers and does not meet the complete baseband processing
requirements demanding an all-in-one solution. The work in
[19–22] covers the DVB-related interleaver implementations.
Literature [23–27] focuses on more than one interleaver
implementations with reconfigurability for multiple variants
of wireless LAN and DVB. High-throughput interleaver
architectures for emerging wireless communications based
on MIMO-OFDM techniques have been addressed in [25,

Write permutationsData

AGU

Stream-1
Stream-2

Stream-3
Stream-4

Figure 1: 3D view of interleaver configuration for a multistream
communication system.

27]. These techniques require multiple-stream processing
in parallel, thus requiring parallel addresses generation and
memory architecture as shown in Figure 1.

Some commercial solutions [28–30] from major FPGA
vendors are also available for general purpose use. The
available literature reveals that they do not compute the
row or column permutations on the fly; instead they
take row or column permutation tables in the form of a
configuration file as input and use them to generate the
final interleaved address. In this way, the complexity for
on-the-fly computation of permutation patterns is avoided.
This approach needs extra memory to store the permutation
patterns. As these implementations are targeted for FPGA use
only, they also enjoy the availability of dual port block RAM,
which is not a good choice for chip implementations.

3. Shared Data Flow and Algorithm Analysis

The motivation of the research is to explore an all-in-one
reconfigurable architecture which can help to meet fast time-
to-market requirements from industry and customers. A
summary of targeted interleaver implementations which are
being widely used is provided in Table 1. The broadness
of the interleaving algorithms gives rise to many challenges
when considering a true multimode interleaver implementa-
tion. The main challenges are as follows:

(i) on the fly computation of permutation patterns,

(ii) wide range of interleaving block sizes,

(iii) wide range of algorithms,

(iv) fast switching between different standards,

(v) sufficient throughput for high-speed communica-
tions,

(vi) maximum standard coverage,

(vii) acceptable silicon cost and power consumption.

Exploring the similarities between different interleaving
algorithms a shared data flow in general is shown in
Figure 2. This data flow is shared by different interleaver
types summarized in Table 1. Many of the interleaver
algorithms, for example, [4, 6–9] need some preprocessing
before starting actual interleaving process. Therefore the
whole data flow has been divided into two phases named
as precomputation phase as shown in Figure 2(a) and the
execution phase as shown in Figure 2(b). There are many

Journal of Computer Systems, Networks, and Communications 3

Table 1: List of algorithms and permutations in different interleaver implementations and the cost comparison.

Standard Interleaver type Algorithm/permutation methodology

HW cost

Addr. Gen. Data memory

@65 nm @6 soft bits

(μm2) (kbits)

HSPA+

BTC

Multistep computation including intra-row permutation
computation

12816 59.92

S(j) = (v × S(j − 1))%p; r(i) = T(q(i));

U(i, j) = S((j × r(i))%(p − 1)); qmod(i) = r(i)%(p − 1);

RA(i, j) = {RA(i, j−1) +qmod(i)}%(p−1); Ii, j = {C× r(i)}+U(i, j)

1st, 2nd, and
HS-DSCH int.

Standard block interleaving with given column permutations. 2288 29.96

π(k) =
(
P
⌊
k

R

⌋
+ C × (k%R)

)
%Kπ

LTE
QPP for BTC I(x) = (f1 . x + f2 . x2)%N 3744 72.0

Sub-Blk. int. Standard block interleaving with given column permutations. 2080 36.0

WiMAX

Channel
interleaver

Two step permutation 8944 9.0

Mk =
(
N

d

)
× (k%d) +

⌊
k

d

⌋
;

Jk = s×
⌊
Mk

s

⌋
+
((
Mk +N −

⌊
d × Mk

N

⌋)
%s
)

Blk. int. b/w
RS & CC

Standard block interleaver without any permutations 2080 19.92

CTC interleaver I(x%4=0) = (P0 · x + 1)%N ; I(x%4=1) =
(
P0 · x + 1 +

N

2
+ P1

)
%N ; 7280 56.25

I(x%4=2) = (P0 · x + 1 + P1)%N ; I(x%4=3) =
(
P0 · x + 1 +

N

2
+ P3

)
%N

WLAN
Channel
interleaver

Two step permutation 8944 1.68

Mk =
(
N

d

)
× (k%d) +

⌊
k

d

⌋
;

Jk = s×
⌊
Mk

s

⌋
+
((
Mk +N −

⌊
d × Mk

N

⌋)
%s
)

802.11n
Ch. Interleaver
with frequency
rotation

Two step permutation as above, with extra frequency interleaving,
that is,

11563 24.54

Rk =
[
Jk −

{(
((iss − 1)× 2)%3 + 3

⌊
iss − 1

3

⌋)
×NROT ×NBPSC

}]
%N

DVB-H

Outer conv.
interleaver

Permutation defined by depth of first FIFO branch (M) and number
of total braches.

12272 8.76

Inner bit
interleaver

Six parallel interleavers with different cyclic shift 3120 0.738

He(w) = (w + Δ)%126; where Δ = 0, 63, 105, 42, 21 and 84

Inner symbol
interleaver

yH(q) = xq for even symbols; yq = xH(q) for odd symbols; 3536 35.4

where H(q) = (i%2)× 2Nr−1 +
∑Nr−2

j=0 Ri(j)× 2 j ;

General
purpose use

Row or/and Col.
Perm. Given

Standard block interleaver with or without row or/and column
permutation.

3952 24.0

Total cost
∑

(all) Independent implementations ∼ 82619 ∼ 378.0

This work
Reconfigurable
Solution

HW Multiplexed Design 27757 72.0

minor differences in both the phases when we consider
different types of interleavers; however, one of the main
differences might be due to the type of interleaver, that is,
block interleaver or convolutional interleaver. Other than

the differences in address calculation for the two categories,
a major difference is the memory access mechanism. In
case of block interleaver the memory read and write is
explicit but a convolutional interleaver needs to write and

4 Journal of Computer Systems, Networks, and Communications

Table 2: Architecture exploration for different standards.

Standard Interleaver type Block size Adders/
comparator

Multiplier HW LUT Configurable
LUT/registers

Memory size
(SB: soft bits)

HSPA+

Prime interleaver for BTC 5114 7 1

20× 5b 20× 8b 2× 5114× SB

440× 7b 256× 8b

52× 14b

1st, 2nd, and HS-DSCH
interleaving

5114 2 1
15× 3b — 5114× SB

32× 5b

3GPP-LTE
QPP interleaver for BTC 6144 5 — 188× 19b 2× 13b 2× 6144× SB

Sub-Block interleaver 6144 2 1 32× 5b — 6144× SB

WiMAX (802.16e)

Channel interleaver 1536 5 1 15× 4b 2× 2b
1536× SB

1× 11b

Block interleaver b/w
RS and CC

2550 2 1 — — 2550× 8b

CTC interleaver 2400 4 — 32× 27b 1× 12b 4× 2400× SB

WLAN (802.11
a/b/g)

Channel interleaver 288 5 1 15× 4b 2× 2b
288× SB

1× 9b

802.11n
Enhanced WLAN

Channel interleaver with
frequency rotation

2592 9 1
30× 4b 2× 2b

4× 648× SB
24× 9b 2× 10b

DVB
ETSI EN 300-744

Outer convolutional
interleaver

1122 4 1 — 11× 11b
357× 8b

765× 8b

Inner bit interleaver 126 8 — — 21× 1b 2× 126× 1b

126× 1b 2× 126× 2b

Inner symbol interleaver 6048 1 — 30× 1b — 6048× 6b

General purpose
use

Row or/and Column
permutation given as a table

4096 2 1 — 256× 8b
4096× SB

64× 6b

read at the same time. This demands a dual port memory;
however, it has been dealt by dividing the memories and
introducing a delay in the read path. To get the general idea
of cost saving by using hardware multiplexed architecture
with shared data flow, each of the algorithms is imple-
mented separately after applying appropriate algorithmic
transformations. Comparing the hardware cost for different
implementations as given in Table 1, the proposed hardware
multiplexed architecture based on shared data flow provides
3 times lower silicon cost for address generation and about 5
times lower silicon cost for data memory in shared mode.
Going through all the interleaver implementations given
in Table 1, different hardware requirements for computing
elements and memory are summarized in Table 2. Looking
at the modulo computation requirements, the use of adder
appears to be the common computing element for all kinds
of implementations. Further observation reveals that adder
is mostly followed by a selection logic. Therefore, a common
computing cell named acc sel as shown in Figure 3 is used
to cover all the cases. Table 2 shows that the computational
part of the reconfigurable implementation can be restricted
to have 8 additions, 1 multiplication, and a comparator.

The memory requirements for different implementations
are also very wide, due to different sizes, width, memory

banks and ports. The memory organization and address
computation is explained in detail in the next section.

4. Multimode Interleaver Architecture

The study from algorithm analysis provides the basis to
multiplex the hardware intensive components and combine
the functionality of multiple types of interleavers. The archi-
tecture for the multimode interleaver is given in Figure 4. The
hardware partitioning is done in such a way that all com-
putation intensive components are included in the address
generation block. The other partitioned blocks are register
file, control-FSM, and memory organization block. These
blocks are briefly described in the following subsections.

4.1. Address Generation (ADG) Block. Address generation
is the main concern for any kind of interleaving. Unified
address generation is achieved by multiplexing the compu-
tation intensive blocks mentioned in Table 2. The address
generation hardware is shown in detail in Figure 4. It is
surrounded by other blocks like control FSM, register file,
and some lookup tables. It utilizes 8 acc sel units with
a multiplier and a comparator. The reconfigurability is
mainly achieved through changing the behavior of acc sel

Journal of Computer Systems, Networks, and Communications 5

Configuration
data input

Compute special
parameters, for

example, prime no.

Condition
check

Find no. of
rows or cols

Int. type

Ready

perm. table
Init branch
boundaries

No special
parameter

needed

Satisfied

Block type 1Conv. type

B
lo

ck
ty

p
e

2

Compute or load

N
ot

 s
at

is
fi

ed

(a)

Pre-computation done

Wait for start
pulse

Int. type
Check for
sync data

BlockConv.

Int.
type

Int.
type

Conv.

Block

Block Block

Int

Resolve
branch no.

Produce interleaved
address

Int.
mode

Produce linear
address

Write dataRead data

De-int

Int. type
Inc. address
to get read

address

Delay
6 cycles

Conv. Conv.End
frame

End
frame

Conv.

NoNo

Yes

Yes

(b)

Figure 2: Data flow graph for (a) precomputation phase (b) execution phase.

0 1

Out

Add_Sub

0
1 Sel_Ctrl

Ext_Ctrl_E

Sel_Ctrl

Out

OP-A OP-B

Ext_Ctrl_En
Add_Sub

acc_sel

OP-A OP-B

n

+/−

Figure 3: An accumulation and selection cell (acc sel).

and appropriate multiplexer selection. The control signals
Add Sub, Ext Ctrl En and, Sel Ctrl are used to define
the behavior of acc sel block. Using these signals in an
appropriate way this block can be configured as an adder, a
subtractor, a modulo operation with MSB of output as select
line, or just a bypass. All the combinations are fully utilized
and make it a very useful common computing element. The
address generation block takes the configuration vector and
configures itself with the help of a decoder block and part
of the LUT. The configuration vector is 32 bit wide, which
defines block size, interleaver depth, interleaving modes, and
modulation schemes.

The ADG block generates the interleaved address based
on all the permutations involved for implementing a block
interleaver, whereas it generates memory read and write
addresses concurrently while implementing a convolutional
interleaver. The role of ADG block to be used as an interleaver
or deinterleaver is mainly controlled by the controller
after employing an addressing combination (permuted or
sequential addressing) for writes and reads from the memory.

4.2. Control FSM. Two modes of operation for the hardware
are defined as precomputation mode and execution mode. In

order to handle the sequence of operations in the two modes
a multistate control-FSM is used. The flow graph of the
control-FSM is shown in Figure 5. During precomputation
phase, the FSM may perform two main functions: (1)
computation of necessary parameters required for interleaver
address computation and (2) initialization of registers to
become ready for execution phase. Other than IDLE state,
5 states (S1∼S4, S8) are assigned for precomputation. The
common parameter to be computed in the precomputation
phase is number of rows or columns; however, some specific
parameters like prime number p; and intra-row permutation
sequence S(j) in WCDMA turbo code interleaver are also
computed during this phase. For the interleaver functions
which do not require precomputation, the initialization steps
for precomputation are bypassed, and the control FSM
directly jumps to the execution phase. The extra cycle cost
associated with the precomputation has been investigated for
the current implementation and the results are presented in
a later section. In the execution phase, the control-FSM helps
in sequencing the loading of data frames into memory or
reading data frames from memory. In total 4 states (S5∼
S7, S9) are assigned for execution phase. S9 is used for
convolutional interleaver case only, whereas states S5∼S7 are
reused for all types of interleavers. During the execution
phase the control-FSM keeps track of block size also by
employing row and column counter, thus providing the
block synchronization required for each type of interleaver
implementation.

4.3. Register File. The requirement of temporary storage of
parameters arises with many types of interleaver implemen-
tations. Register requirements from different implementa-
tions are listed in Table 2. Some special usage configuration is
also required for different cases; for example, WCDMA turbo

6 Journal of Computer Systems, Networks, and Communications

Control
FSM

LUT
Register

file
Decode

logic
Mux-add
Ctrl logic

Data_in
Interleaved/

de-interleaved
Data_out

Compare

M1

M10 M11 M12 M13

M3 M4 M5 M6 M7 M8 M9M2

0 0

D
V

B
_RM18

M19a1
c1

s1

a2
c2

s2

a3
c3

s3

a4
c4

s4

a5
c5

s5

a6
c6

s6

a7
c7

s7

a8
c8

s8

M14 M15 M16 M17 M18

Mux and Adders

C
on

fi
gu

ra
ti

on

acc_sel

acc_selacc_selacc_selacc_sel

acc_sel acc_sel acc_sel

A1 A2 A3 A4

A5 A6 A7 A8

Address/data selection and multiplexing

C N CN d

C N N N

A× B

M0
(2 K× 6 b)

M1
(2 K× 6 b)

M2
(1 K× 6 b)

M3
(1 K× 6 b)

Figure 4: Address generation schematic in detail.

code interleaver needs 20 registers to form a circular buffer,
convolutional interleaver in DVB requires 11 registers to be
used as a general purpose register file, and the bit interleaver
in DVB requires a long chain of single bit registers. Due
to small size and special configuration requirements, a
general purpose register file is not feasible here, and a
fully customized register file is used. The width of registers
is not the same and it is optimized as per requirement
from different implementations. The registers can also be
connected to form a chain, thus the single bit buffer for a
bit interleaver is managed by circulating the shifted output
inside register file. The two data input ports of the register
file are fed through multiplexers M18 and M19 as shown in
Figure 4.

4.4. Memory Organization. Memory requirements for dif-
ferent types of interleaver implementations are very much
different as listed in Table 2. Also, soft bit processing in the
decoder implies different requirements of bit width for dif-
ferent conditions and decoding architectures. The maximum
width requirement is 6 bits for symbol interleaving and 8 bits
for part of the memory in WCDMA. Multistream transmis-
sion requires multiple banks of memories in parallel. The size
of the memory is taken as 2×6144×SB, which is due to large
block size requirements for 3GPP-LTE, 3GPP-WCDMA, and
DVB.

Memory partitioning is mainly motivated by the high-
throughput requirements from the multistream system,
for example, 802.11n. It requires four memory banks in
parallel which appears to be a good choice to meet other
requirements as well. Parallel memory banks can also be used
in series to form a big memory. Partial parallelism can also be
used where larger memory width is needed. Another worth
full benefit of using multiple memory banks is avoiding the
use of dual port RAM, which is not silicon efficient. Thus
all the memories in the design are single port memories.
The interleaved addresses for block and convolution inter-
leavers computed by address generation block are combined
according to the configuration requirement to make the final
memory address. Figure 6 shows the memory organization
with address selection logic. Particularly for convolutional
interleaving, a small delay line with depth of 6 in the path
of read addresses and control signals is used to avoid the
data write and read for the same memory in a single clock
cycle.

5. Algorithm Transformation for
Efficient Mapping

The main objective is to use single architecture for interleaver
implementation with maximum hardware sharing among

Journal of Computer Systems, Networks, and Communications 7

S2

S5S9

S7 S6

S0

S1

S3 S4S8

Reset

Compute
perm. Table

Perm. Table
init. complete

No perm.
table needed

Conv.
interleaver

Init branch
boundaries

No sync
Wait
start
pulse

Int

In
t

Int

De-in
t

D
e-

in
t

Load new
configuration

St
ar

t
P

re
-c

om
pu

ta
ti

on
 p

h
as

e
E

xe
cu

ti
on

 p
h

as
e

B
ra

n
ch

bo
u

n
da

ri
es

in
it

 c
om

pl
et

e

Sy
n

c
pr

es
en

t

O
n

ly
W

C
D

M
A

De-int

C
he

ck
 s

yn
c

If R or C to be
computed

If
(P
×
R
<
P
−

1)

Find P

Find
R or C

If R or C not
needed

i < N

i < N

Figure 5: FSM state graph.

different algorithms. The versatility of interleaving algo-
rithms makes it an in-efficient implementation when original
algorithms are directly mapped to same architecture. On the
other hand some transformations based on modular algebra
can be applied on the original algorithms to make them
hardware efficient. Same algorithmic transformations can be
used to reach to an efficient hardware multiplexing among
different standards. The following subsections present some
transformation examples for selected algorithms which are
very much versatile in the implementation point of view.
These subsections cover channel interleaving for WiMAX
and WLAN including 802.11n with frequency rotation,
turbo code block interleaving for LTE, WiMAX, and HSPA
Evolution, and convolutional interleaving used in DVB.

5.1. Channel Interleaving in WiMAX and WLAN. The chan-
nel interleaving in 802.11a/b/g (WLAN) and 802.16e
(WiMAX) is of the same type. The interleaver function
defined by a set of two equations for two steps of
permutations, provides spatial interleaving, whereas the
newly evolved standard 802.11n [8] based on MIMO-
OFDM employs frequency interleaving in addition to spatial
interleaving. Most of literature available [31–36] covers the
performance and evaluation of WLAN interleaver design for
a high-speed communication system; however, some recent
work [23–27] focuses on interleaver architecture design

including some complexity reduction techniques along with
feasibility to gain higher throughput. The 2D realization of
interleaver functions is exploited to enable efficient hardware
implementation. The two steps of permutations for index k
for interleaver data are expressed by the following equations:

Mk =
(
N

d

)
× (k%d) +

⌊
k

d

⌋
, (1)

Jk = s×
⌊
Mk

s

⌋
+
((
Mk +N −

⌊
d × Mk

N

⌋)
%s
)
. (2)

Here N is the block size corresponding to number of
coded bits per allocated subchannels and the parameter s is
defined as s = max{1,NBPSC/2} where NBPSC is the number
of coded bits per subcarrier, (i.e., 1, 2, 4 or 6 for BPSK,
QPSK, 16-QAM, or 64-QAM, resp.). The operator % is the
modulo function computing the remainder and the operator
�x� is the floor function, that is, rounding x towards zero.
The range of n and k is defined as 0, 1, 2, . . . (N − 1). The
direct implementation of the above mentioned equations is
very much hardware in-efficient and also the mapping onto
the proposed unified interleaver architecture is not possible.
Therefore, realization of two 1D equations into 2D space
and computation of interleaved address in recursive way is
adopted to reduce the hardware complexity as explained in
the following subsections.

5.1.1. BPSK-QPSK. As NBPSC is 1 and 2 for BPSK and QPSK,
respectively; thus s = 1 for both cases and (2) simplifies to
the following form:

Jk =
(
N

d

)
× (k%d) +

⌊
k

d

⌋
. (3)

Considering the interleaver as a block interleaver, the
parameter d is usually considered as total number of columns
NCOL, and parameter N/d is taken as total number of rows
NROW, but the column and row definition are swapped
hereafter. The parameter d is taken as total number of rows
and parameter N/d is taken as total number of columns. The
functionality still remains the same, with the benefit that it
ends up with the recursive expression for all the modulation
schemes. According to new definitions, the term (k%d)
provides the behavior of row counter and the term �k/d�
provides the behavior of column counter. Thus introducing
two new variables i and j as two dimensions, such that
j increments when i expires, the ranges for i and j are
mentioned as follows:

i = 0, 1, . . . (d − 1), j = 0, 1, . . .
(
N

d
− 1

)
, (4)

which satisfies against k when i = (k%d) and j = �k/d�.
Defining total number of columns as C = N/d, (3) can be
written as

Ji, j = C × i + j. (5)

The recursive form after handling the exception against
i = 0 can be written as

Ji, j =
⎧⎨
⎩
j, if (i = 0),

J(i−1), j + C, otherwise.
(6)

8 Journal of Computer Systems, Networks, and Communications

1

0

0

1

1

0

Delay buf

Mode

Mode

1

0

De-int

De-int

Mode

Data_in

R/W ctrl [11:6]

[1
1:

6]

[23:18]
[5:0]

[17:12]

[1
7:

12
]

[5:0]

[5:0]

[5:0]Conv-int

Rd_addr

Conv-int

Wr_addr

[5:0]

[23:18]

24

[11:0]

[23:12]

[5:0]
[11:6]
[17:12]
[23:18]

A

D

W/R

A

D

W/R

A

D

W/R

8

6

A

D

W/R

[23:0] 24

24 Conv. interleaver 1st branch data

Data
out

So
ft

 b
it

Lo
gi

c

Index count (i)

i addr/i ss 0

i ss 1 ∼ i ss 3

i ss 1

i ss 2

i ss 3

M0
(2 K× 6)

M1
(2 K× 6)

M2
(1 K× 6)

M3
(1 K× 6)

Figure 6: Memory address selection and data handle.

Defining row counter i as i = Rc and column counter
j as j = Cc, the hardware for (6) is shown in Figure 7(a).
The case of BPSK and QPSK do not carry any specific inter-
row or inter-column permutation pattern; thus it ends up
with relatively simple hardware, but it provides the basis for
analysis for 16-QAM and 64-QAM cases, which are more
complicated.

5.1.2. 16-QAM. 16-QAM scheme has 4 code bits per subcar-
rier; thus parameter s is 2 and (2) becomes

Jk = 2×
⌊
Mk

2

⌋
+
((
Mk +N +

⌊
d ×Mk

N

⌋)
%2

)
. (7)

Like BPSK/QPSK case, algebraic only steps cannot be
used here to proceed due to the presence of floor and modulo
functions. Instead, all the possible block sizes for 16-QAM
are analyzed to restructure the above equation. The following
structure appears to be equivalent to (7) and at the same time
resembles the structure of (3); thus it suits well for hardware
multiplexing:

Jk =
(
N

d

)
× (k%d) +

⌊
k

d

⌋
+ r2

k . (8)

The extra term r2
k is defined by the following expression:

r2
k = [(1− (k%2))− (k%2)]

{
1−

(⌊
k

d

⌋
%2

)}

+ [((k%2)− 1) + (k%2)]
{⌊

k

d

⌋
%2

}
.

(9)

This term appears due to the reason that the inter-
leaver for 16-QAM carries specific permutation patterns,
making the structure more complicated. Considering the
2-dimensions i and j having range as mentioned in (4),
the behavior of the term k%2 is the same as that of i%2,
when i is the row counter. Thus (8) can be written in 2D
representation as follows:

Ji, j =
⎧⎨
⎩
j, if (i = 0),

J(i−1), j + C + r2
i, j , otherwise,

(10)

where

r2
i, j = [(1− (i%2))− (i%2)]

{
1− (j%2

)}

+ [(i%2) + (1− (i%2))]
{
j%2

}
.

(11)

The term can further be simplified to a smaller expression
but it is easy to realize the hardware from its current form.
The modulo terms can be implemented by using the LSB
of row counter Rc and column counter Cc, and the required
sequence can be generated with the help of an XOR gate and
an adder as shown in Figure 7(b).

5.1.3. 64-QAM. The parameter s is 3 for 64-QAM; thus (2)
becomes

Jk = 3×
⌊
Mk

3

⌋
+
((
Mk +N +

⌊
d ×Mk

N

⌋)
%3

)
. (12)

The presence of modulo function x%3 makes it much
harder to reach some valid mathematical expression alge-
braically. Different structures for all possible block sizes for

Journal of Computer Systems, Networks, and Communications 9

0
1

C

R
Cc

Ji, j
+

(Rc = 0)

(a)

0
1

‘1’

C

Rc[0]

Cc[0] R
Cc

Ji, j

+/−
+

(Rc = 0)

(b)

start_fr

Mod_scheme

0
1

Logic

Lo
gi

c C

R

R

(Cc%3)

(Rc%3) Rc
Cc

+/−
+

ri, j

Cc

(Rc = 0)

Ii, j

R

(c)

Figure 7: Interleaver address generation for (a) BPSK-QPSK, (b)
16-QAM, and (c) combined for all modulation schemes.

64-QAM are analyzed and the structure similar to (6) and
(10) and equivalent to (12) is given as follows:

Ji, j =
⎧⎨
⎩
j, if (i = 0),

J(i−1), j + C + r3
i, j , otherwise,

(13)

where i and j represent two dimensions and their range is
given by (4). Defining i′ = (i%3) and j′ = (j%3), r3

i, j is given
as

r3
i, j =

((
1− j′

)
+
j′
(
j′ − 1

)
2

){
2
(

(1− i′) +
i′(i′ − 1)

2

)

−
(
i′ − i′(i′ − 1)

2

)}

+
(
j′ − j′

(
j′ − 1

)){
2(i′ − i′(i′ − 1))

−((1− i′) + i′(i′ − 1))
}

+

(
j′
(
j′ − 1

)
2

){
2
(
i′(i′ − 1)

2

)
−
(

1− i′(i′ − 1)
2

)}
.

(14)

The term r3
i, j provides the inter-row and inter-column

permutation for s = 3 against row counter i and column
counter j. The expression for r3

i, j looks very long and
complicated, but eventually, it gives a hardware efficient
solution as the terms inside braces are easier to generate
through a very small lookup table. The generic form for (6),
(10), and (13) to compute the interleaved address Ii, j can be
written as

Ii, j =
⎧⎨
⎩
j, if (i = 0),

I(i−1), j + C + rsi, j , otherwise.
(15)

Here parameter s distinguishes different modulation
schemes. For BPSK/QPSK r1

i, j = 0, and for 16-QAM and

64-QAM, r2
i, j and r3

i, j are given by (9) and (14), respectively.
The hardware realization supporting all modulation schemes

FEC
encoder

Interleaver RF

RF

RF

RF

Mapper

Mapper

Mapper

Mapper

1

2

3

4

Interleaver

Interleaver

Interleaver

Stream parser

· · ·

· · ·

· · ·

· · ·

Figure 8: Use of interleaver in multiple spatial streams (802.11n).

is shown in Figure 7(c). It appears to be a much optimized
implementation as it involves only two additions, some
registers, and a very small lookup table.

5.2. Frequency Interleaving in 802.11n. The transmission
in 802.11n can be distributed among four spatial streams
as shown in Figure 8. The interleaving requires frequency
rotation in case more than one spatial streams are being
transmitted. The frequency rotation is applied to the output
of the second permutation Jk. The expression for frequency
rotation for spatial stream iss is given as follows:

Rk =
[
Jk −

{(
((iss − 1)× 2)%3 + 3

⌊
iss − 1

3

⌋)

×NROT ×NBPSC

}]
%N.

(16)

Here NROT is the parameter which defines different
frequency rotations for 20 MHz and 40 MHz case in 802.11n.
The frequency rotation also depends on the index of the
spatial stream iss, thus each spatial stream faces different
frequency rotations. Defining the rotation term as JROT, that
is,

JROT =
{(

((iss − 1)× 2)%3 + 3
⌊
iss − 1

3

⌋)

×NROT ×NBPSC

}
,

(17)

we have

Rk = (Jk − JROT)%N. (18)

The range for the term (Jk − JROT) is not bounded and it
can have value greater than 2N ; thus direct implementation
cannot be low cost. Analyzing the two terms [Jk%N] and
(−JROT)%N separately, it is observed that the second term
provides the starting point for computing the rotation Rk.
As the rotation is fixed for a specific spatial stream, thus the
starting value rks = (−JROT)%N also holds for all run time
computations. Equation (18) in combination with (10) can
be written as

J iss
i, j ≡ Rk =

(
Ji, j + rks

)
%N. (19)

Here J iss
i, j is the joint address after applying both, spatial

interleaving and frequency interleaving against row index i,
column index j and spatial stream index iss. A lookup can
be used for the starting values for rks against different spatial

10 Journal of Computer Systems, Networks, and Communications

1
0

NJi, j

LUT(rks)
+

−

msb

Spatial
stream
addr

Figure 9: HW for frequency rotation in 802.11n.

BB2

0
1

0
1C2

AB1

0
1

BB1
C1

AB2

0
1

LUT M1

M2
M3

M4

Basic block Auxiliary block
i ss 1

i ss 2

i ss 3

i ss 4

0/1/2

0/1/2

rks 2

rks 3

rks 1

Figure 10: HW for quad stream interleaver.

H = 2×H H = 0; i = k − 1 Start

H ≥ P H = H − PYes

No

No

Yes

Yes No

H = H + S(j − 1)

v(i) = 1

H ≥ P H = H − P

No

Yes

i = i− 1

i < 0 Finish

Figure 11: Flow graph for interleaved modulo multiplication
algorithm.

streams. The rks values for all the cases follow the condition,
that is, (rks < N) which depicts that the term (Jk + rks) cannot
be larger than 2N . Therefore, the frequency rotation can be
computed with a very small hardware as shown in Figure 9.

5.3. Multistream Interleaver Support in 802.11n. The spatial
interleaver address generation block shown in Figure 7(c) is
denoted as Basic Block (BB) and the frequency rotation block
as shown in Figure 9 is denoted as Auxiliary Block (AB). Both
these blocks combine to form a complete address generation
circuit for one spatial stream. In order to provide support for
four streams in parallel, one may consider replicating the two
blocks four times. However, an optimized solution would be
to use 2 basic blocks and 2 auxiliary blocks, still providing
support for 4 spatial streams. The hardware block diagram

to generate the interleaver addresses for multiple streams
in parallel is shown in Figure 10. This hardware supports
quick configuration changes thus providing full support to
any multitasking environment. If some new combination of
modulation schemes is needed to be implemented, which is
not supported already, the interfacing processor can do task
scheduling for different types of modulation schemes.

5.4. Turbo Code Interleaver for HSPA+. The channel coding
block in HAPA+ including WCDMA uses turbo coding [37]
for forward error correction. 3GPP standard [4] proposes the
algorithm for block interleaving in turbo encoding/decoding
as mentioned below. Here N is the block size, R is the row
size, and C is the column size in bits.

(i) Find appropriate number of rows “R”, prime number
“p”, and primitive root “v” for particular block size as
given in the standard.

(ii) Col Size:

C = p − 1, if
(
N ≤ R× (p − 1

))
,

C = p, if
(
R× (p − 1

)
< N ≤ (R× p

))
,

C = p + 1, if
(
R× p < N

)
.

(20)

(iii) Construct intra-row permutation sequence S(j) by

S
(
j
) = [v × S(j − 1

)]
%p; j = 1, 2, . . . p − 2. (21)

(iv) Determine the least prime integer sequence q(i) for
i = 1, 2, . . . R − 1, by taking q(0) = 1, such that
g.c.d(q(i), p − 1) = 1, q(i) > 6 and q(i) > q(i− 1).

(v) Apply inter-row permutations to q(i) to find r(i) :

r(i) = T
(
q(i)

)
. (22)

(vi) Perform the intra-row permutations Ui, j, for i =
0, 1, . . . R− 1 and j = 0, 1, . . . p − 2.

If (C = p): Ui, j = S[(j × r(i)) mod (p − 1)] and
Ui, (p − 1) = 0.

If (C = p + 1): Ui, j = S[(j × r(i)) mod (p − 1)],
and Ui, (p − 1) = 0, Ui, p = p, and if (N = R × C)
then exchange U(R− 1, 0) with U(R− 1, p).

If (C = p−1): Ui, j = S[(j× r(i)) mod (p−1)]−1.

(vii) Perform the inter-row permutations.

(viii) Read the address columns wise.

The presence of complex functions like modulo com-
putation, intra-row and inter-row permutations, multiplica-
tions, finding least prime integers, and computing greatest
common divisor makes it in-efficient while implementing
it in its original form. Further, to get one interleaving
address in each cycle, some preprocessing is also required
where parameters like total number of rows or columns,
least prime number sequence q(i), inter-row permutation
patterns T(i), intra-row permutations S(j), prime number

Journal of Computer Systems, Networks, and Communications 11

0123

01

1

0

1

0

0

1

0 1

0

1

1

0

01

01

0 1

0

1

0

1

10

1

M
od

u
lo

m
u

lt
ip

lic
at

io
n

E
xc

ep
ti

on
h

an
dl

in
g

Valid

PP

H S(j)

− + −

<< 1

q(i)

msb msb

v(i) bit

256× 8 RAM

Circular buffer 0

−

+

P

R

Rp

P

C
U(i, j)

R
I(i, j)

NN

Compare

Flag

Figure 12: WCDMA turbo code interleaver hardware.

1

0

1

01

0

0
1
2
3Q3

Q2

Q1

‘1’

For CTC

i%4

+
−

+
−

msb

msb
N

N
f2 >> 1 or P0

Set

‘0’

I(x)R

R

Figure 13: Simplified HW for 3GPP-LTE and CTC interleaver.

p, and associated integer v are computed. Some of these
parameters can be computed using lookup tables while the
others need some close loop or recursive computations.
The simplifications considered in the implementation are
discussed in the following paragraphs.

One of the main hurdles to generate on-the-fly inter-
leaved address is the computation of intra-row permutation
sequence S(j). Before applying the intra-row permutations,
the term (j × r(i)%(p − 1)) is computed which produces
random values due to r(i) and modulo function. These ran-
dom values appear as index to compute S(j), due to which it
may require many clock cycles to be computed on-the-fly.
To resolve it, some precomputations are made and results
are stored in a memory. These precomputations involve
the computation of a modulo function which requires a
divider for direct implementation. To avoid the use of
divider, indirect computation of modulo function is done by
using Interleaved Modulo Multiplication Algorithm [38]. It
computes the modulo function in an iterative way requiring
more than one clock cycles. Looking at maximum value of
v, which is 5 bits, a maximum of 5 iterations are needed

to compute one modulo multiplication. The algorithm to
compute the Interleaved Modulo Multiplications is shown in
Figure 11 and the hardware required is shown in Figure 12.
This hardware produces the data for memory while in
precomputation phase; however, same hardware is utilized
to generate the address for the memory, while in execution
phase. The usage of memory depends on the parameter p
and it will be filled upto (p − 2) locations.

Finding qmod(i) = q(i)%(p − 1) instead of direct
computation of least prime number sequence q(i) gives
the benefit of computing the RAM address recursively and
avoiding computation of the modulo function. This idea
was introduced in [13] and later on it has been used in [14,
16, 17]. The computation of q(i)%(p − 1) can be managed
by a subtractor and a look up table, provided that all the
values of q(i) placed in the look up table satisfy the condition
q(i) < 2(p − 1). The similarities between different sequences
for q(i)%(p − 1) for all possible p values are very helpful to
improve the efficiency of the lookup table. The parameters
p and v are stored in combined fashion in a lookup table of
size 52 × 14b. The lookup table is addressed via a counter.
Against each value of p, the condition (p × R ≥ N − R) is
checked using a comparator to find the appropriate value for
p and v. Once p is found, the total number of columns C can
have only three values, that is, p − 1, p, or p + 1. Hence C is
found in at most three clock cycles by checking the condition
(R × C ≥ N). The recursive function used to compute the
RAM address with the help of parameter qmod(i) is given by

RA
(
i, j
) = {RA(i, j − 1

)
+ qmod(i)

}
%
(
p − 1

)
. (23)

The data from RAM are denoted as U(i, j) after passing
through some exception handling logic. Parameter U(i, j)
provides the intra-row permutation pattern for a partic-
ular row. The final interleaved address Ii, j can be found

12 Journal of Computer Systems, Networks, and Communications

by combining the inter-row permutation with intra-row
permutation as follows:

Ii, j = {C × r(i)} +U
(
i, j
)
. (24)

The complete hardware for interleaver address genera-
tion for Turbo Code interleaver is shown in Figure 12. It can
be mapped to the proposed unified interleaver architecture
quite efficiently.

5.5. Turbo Code Interleaving in 3GPP-LTE and WiMAX. The
newly evolved standard, 3GPP LTE [5], involves interleaving
in the channel coding and rate matching section. The
interleaving in rate matching is called subblock interleaving
and is based on simple block interleaving scheme. The
channel coding in LTE involves Turbo Code with an internal
interleaver. The type of interleaver here is different and it is
based on quadratic permutation polynomial (QPP), which
provides very compact representation. The turbo interleaver
in LTE is specified by the following quadratic permutation
polynomial:

I(x) =
(
f1 · x + f2 · x2)%N. (25)

Here x = 0, 1, 2, . . . (N − 1), with N as block size.
This polynomial provides deterministic interleaver behavior
for different block sizes and appropriate values of f1 and
f2. Direct implementation of the permutation polynomial
given in (25) is hardware in-efficient due to multiplications,
modulo function, and bit growth problem. To simplify the
hardware, (25) can be rewritten for recursive computation as

I(x+1) =
(
I(x) + g(x)

)
%N , (26)

where g(x) = (f1+ f2+2· f2·x)%N . This can also be computed
recursively as

g(x+1) =
(
g(x) + 2 · f2

)
%N. (27)

The two recursive terms mentioned in (26) and (27) are
easy to implement in hardware (Figure 13) with the help of a
LUT to provide the starting values for g(x) and f2.

WiMAX standard [6] uses convolutional turbo coding
(CTC) also termed duo-binary turbo coding. They can offer
many advantages like performance, over classical single-
binary turbo codes [39]. Parameters to define the interleaver
function as described in [6] are designated as P0,P1,P2, and
P3. Two steps of interleaving are described as follows.

Step 1. Let the incoming sequence be

u0 = [(A0,B0), (A1,B1), (A2,B2), . . . (AN−1,BN−1)]; (28)

for x = 0 · · ·N − 1, if (i%2) = 1, then (Ai,Bi) = (Bi,Ai).
The new sequence is

u1 = [(A0,B0), (B1,A1), (A3,B3), . . . (BN−1,AN−1)]. (29)

Step 2. The function I(x) provides the address of the couple
from the sequence u1 that will be mapped onto address x

0
1
2
3

10
11

0
1
2
3

10
11

0
1
2
3

10
11

0
1
2
3

10
11

Interleaver De-interleaver

Data_in

Data_out

Channel

M = 17
M × 2
M × 3

M = 17
M × 2
M × 3

· · · · · ·

Figure 14: Convolutional interleaver and deinterleaver in DVB.

0
1

1
0

0
1

1
0

Branch
count

Read
address

Write
address

De-int
De-int

De-int

De-int

Data to
reg file

Reg file

C
om

pa
re

C
FG

m
od

e

A
dd

re
ss

−
+/−

+

R

M = 17
for DVB

Max. br.
‘11’ for DVB

‘1’

Figure 15: HW for RAM read/write address generation for
convolutional interleaver.

of the interleaved sequence. I(x) is defined by the set of four
expressions with a switch selection as follows:

for x = 0 · · ·N − 1
switch (x%4).
case 0: I(x%4=0) = (P0 · x + 1)%N .
case 1: I(x%4=1) = (P0 · x + 1 +N/2 + P1)%N .
case 2: I(x%4=2) = (P0 · x + 1 + P2)%N .
case 3: I(x%4=3) = (P0 · x + 1 +N/2 + P3)%N .

Combining the four equations provided in step-2, the
interleaver function I(x) becomes

I(x) =
(
βx +Qx

)
%N , (30)

where βx can be computed using recursion, that is, β(x+1) =
(βx + P0)%N by taking β0 = 0 ·Qx is given by

Qx =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if
(
j%4 = 0

)
,

1 +
N

2
+ P1, if

(
j%4 = 1

)
,

1 + P2, if
(
j%4 = 2

)
,

1 +
N

2
+ P3, if

(
j%4 = 3

)
.

(31)

As range of βx and Qx is less than N , thus Ix can be
computed by using addition and subtraction with compare
and select logic as shown in Figure 13.

5.6. Convolutional Interleaving in DVB. The convolutional
interleaver used in DVB is based on the Forney [40] and
Ramsey type III approach [41]. The convolutional interleaver
being part of outer coding resides in between RS encoding
and convolutional encoding. The convolutional interleaver
for DVB consists of 12 branches as shown in Figure 14.
Each branch j is composed of first-in-first-out (FIFO) shift
registers with depth j × M, where M = 17 for DVB. The

Journal of Computer Systems, Networks, and Communications 13

Table 3: Precomputation cycle cost for different standards.

Standard
Worst case precomputation
cycle cost

802.11 a/b/g—WLAN Channel
interleaver

20

802.16e—WiMAX Channel
interleaver

98

3GPP—WCDMA Block turbo
code (Depends on Block size
“N”)

15 for (N = 40)

23 for (N = 41)

802 for (N = 5040)

563 for (N = 5114)

ETSI EN 300-744—DVB Inner
symbol interleaver

15

802.11n—Extended WLAN 38

General purpose use
Depends on external HW, that
is, loading the permutations

All others Less than 3

packet of 204 bytes consisting of one sync byte (0×47 or 0×
B8) is entered into the interleaver in a periodic way. For
synchronization purpose the sync bytes are always routed to
branch-0 of interleaver.

Convolutional interleaving is best suited for real time
applications with some added benefits of half the latency and
less memory utilization as compared to block interleaving.
Recently, convolutional interleavers have been analyzed to
work with Turbo codes [42–44], with improved perfor-
mance, which make them more versatile; thus general
and reconfigurable convolutional interleaver architecture
integrated with block interleaver functionality can be of
significance.

Implementation of convolutional interleavers using first-
in-first-out (FIFO) register cells is silicon inefficient. To
achieve a silicon efficient solution, RAM-based implemen-
tation is adopted. The memory partitioning is made in such
a way that by applying appropriate read/write addresses in
a cyclic way, it exhibits the branch behavior as required by
a convolutional interleaver. RAM write and read addresses
are generated by the hardware shown in Figure 15. The
hardware components used here are almost the same as
used by interleaver implementation for other standards, thus
providing the basis for multiplexing the hardware blocks for
reuse. To keep track of next write address for each branch, 11
registers are needed, which provides the idea of using cyclic
pointers instead of using FIFO shift registers. For each branch
the corresponding write address is provided by the concerned
pointer register and next write address (which is also called
current read address) is computed by using an addition and
a comparison with the branch boundaries. Other reference
implementations have used branch boundary tables directly,
but to keep the design general, the branch boundaries are
computed on-the-fly using an adder and a multiplier in
connection with a branch counter.

For implementing a convolutional deinterleaver, the
same hardware is used by implementing the branch counter
in reverse order (decrementing by 1). In this way, same
branch boundaries are used, and the only difference is that

Table 4: Summary of implementation results.

Parameter Value

Target technology 65 nm

Memory configuration 2048× 6b× 4; 1024× 6b× 4

Total memory 72 Kbit

Memory area 97972 μm2

Memory power consumption 10.5 mW

Logic area 28436 μm2

Total area 0.126 mm2

Clock rate 166 MHz

Throughput (Max) 664 Mbps

Total power consumption 11.7 mW

the sync byte in the data is now synchronized with the largest
branch size as shown in Figure 14. Keeping the same branch
boundaries for the deinterleaver, the width of the pointer
register becomes fixed. This gives an additional benefit that
the width of pointer register may be optimized efficiently.

6. Integration into Baseband System

The multimode interleaver architecture can perform inter-
leaving or deinterleaving for various communication sys-
tems. It is targeted to be used as an accelerator core
with a programmable baseband processor. The usage of
the multimode interleaver core completely depends on the
capability of the baseband processor. For lower throughput
requirements only a single core can be utilized with baseband
processor and the operations are performed sequentially.
However, as a matter of fact, usual system level implemen-
tations require interleaver at multiple stages. Number of
stages can be up to three, for example, WCDMA (turbo
code interleaving, 1st interleaving, and 2nd interleaving).
A fully parallel implementation can be realized by using
three instances of the proposed multimode interleaver core,
but in order to optimize the hardware cost a wise usage
would be to use two instances hooked up with the main
bus of the processor as shown in Figure 16. In this way the
interleaving stages can be categorized as channel interleaving
and coding/decoding interleaving. Further optimizations
can be made in the two cores to fit in the particular
requirements, for example, one interleaver core dedicated for
coding/decoding and the second core dedicated for channel
interleaving. By doing so the reduction of silicon cost asso-
ciated with address generation is not significant, however,
memory sizes can be optimized as per the targeted imple-
mentations, which can reduce the silicon cost significantly.
For current implementation of multimode interleaver, the
input memory used for any kind of decoding is considered
to be the part of baseband processor data memory. In this
way the extra memory inside interleaver core can be avoided
which might be redundant in many cases. However, the
integration of input memory in the main decoding operation
is facilitated by the interleaver core by providing the address
for input memory. In this way the interleaved/deinterleaved
data can be fed to the decoder block in synchronized manner.

14 Journal of Computer Systems, Networks, and Communications

Cross bar switch

Front
end

CMAC Controller

Mem.
bank 1

Mem.
bank 2

Acc 4Acc 3Bridge

Cross bar switch

Mem.
bank 11

Mem.
bank 12

Complex memory

Interleaver

Acc 1 Acc 2

Core 1 Core 2

Integer memory

F
R

Mem.
bank N

· · · · · ·

Figure 16: Integration of interleaver core with baseband processor.

Table 5: HW comparison with other implementations.

Implementation Standard coverage Technology
Operating
frequency

Power Memory size Total core size

Xilinx [28]
Virtex-5

General purpose
(commercial use)

FPGA
262/360 MHz
Speed Grade -1/-3

— 18 Kbits 210 LUTs +
Memory

Altera [29]
FLEX-10KE

General purpose
(commercial use)

FPGA 120 MHz — 16 Kbits 392 LEs +
Memory

Lattice [30]
ispXPGA

General purpose
(commercial use)

FPGA 132 MHz — 36 Kbits 284 LUTs +
Memory

Shin and Park [13]
WCDMA turbo code;
cdma2000

0.25 μm — — 35 Kbits 2.678 mm2

Asghar et al. [18]
WCDMA, LTE, WiMAX
and DVB-SH Turbo Code
Interleaver Only

65 nm 200 MHz 10.04 mW 30 Kbits 0.084 mm2

Chang and Ding
[23]

WiMAX, WLAN, DVB 0.18 μm 100 MHz — 12 Kbits 0.60 mm2

Chang [24] WiMAX, WLAN, DVB 0.18 μm 150 MHz — 12 Kbits 0.484 mm2

Wu et al. [25] WiMAX, WLAN, 802.11n 0.18 μm 200 MHz — 32 Kbits 0.72 mm2

Asghar and Liu
[26]

WiMAX, WLAN, DVB 0.12 μm 140 MHz 3.5 mW 12 Kbits 0.18 mm2

Asghar and Liu
[27]

WiMAX, WLAN, 802.11n 65 nm 225 MHz 4 mW 15.6 Kbits 0.035 mm2

Horvath et al.
[20]

DVB bit and symbol
interleaver

0.6 μm 36.57 MHz 300 mW 48 Kbits 69 mm2

Chang [21]
DVB bit and symbol
interleaver

0.35 μm — — 52.2 Kbits 2.9 mm2

This work

All range including WLAN,
WiMAX, DVB, HSPA+,
LTE, 802.11n and General
purpose implementation

65 nm 166 MHz 11.7 mW 72 Kbits 0.126 mm2

Although the main focus is to support the targeted stan-
dards, however, programmability of the processor may target
some different types of interleaver implementation which is
not directly supported by this core. To make it still usable,
support for some indirect implementation of any block inter-
leaver with or without having row or column permutations
is also provided. In this case the interleaver core is configured
to implement a general interleaver with external permutation
patterns. The permutation patterns are computed inside
baseband processor using its programmability feature and

loaded in a couple of the interleaver memories during pre-
computation phase. Excluding these memories, a restriction
on maximum block size (i.e., 4096) will be imposed in this
case. This type of approach is adopted by all commercially
available interleaver implementations like Xilinx [28], Altera
[29], and Lattice Semiconductor [30]. The computation
of interleaver permutations on processor side and loading
them into memory can impose more computation and time
overheads on the processor side. Another drawback is that it
does not support fast switching between different interleaver

Journal of Computer Systems, Networks, and Communications 15

M00 M02

M03 M01

LUT

M11M13M12M10

Control RF

ADG core

Figure 17: Layout of proposed multimode interleaver.

implementations. A real multimode processor may require
fast transition from one standard to another; therefore, it is
not a perfect choice for a real multimode environment. How-
ever, it is supported by the proposed multimode interleaver
core for the completeness of the design.

7. Implementation Results

The reconfigurable hardware interleaver design shown in
Figure 4 provides the complete solution for multimode radio
baseband processing. The wide range of standard support
is the key benefit associated with it. The RTL code for the
reconfigurable interleaver design was written in Verilog HDL
and the correctness of the design was verified by testing for
maximum possible cases. Targeting the use of interleaver core
with a multimode baseband processor, one of the important
parameters to be investigated is precomputation cycle cost.
A lower precomputation cycle cost is beneficial for fast
switching between different standards. Table 3 shows the
worst case cycle cost during precomputation for different
interleavers. It is observed that the cycle cost in WCDMA
is higher for some block sizes, but still it works fine, as
it is less than the frame size and it can be easily hidden
behind the first SISO decoding by the turbo decoder. The
worst case precomputation cycle cost for other interleaver
implementations is not very high. Therefore, the design
supports fast switching among different standards and hence
it is very much suitable for a multimode environment.

The multimode interleaver design was implemented
in 65 nm standard CMOS technology and it consumes
0.126 mm2 area. The chip layout is shown in Figure 17 and
the summary of the implementation results is provided in
Table 4. The design can run at a frequency of 166 MHz and
consumes 11.7 mW power in total. Therefore, having 4-bit
parallel processing for four spatial streams (e.g., 802.11n)
maximum throughput can reach up to 664 Mbps. However,
this throughput is limited to 166 Mbps for single stream
communication systems. Table 5 provides the comparison of
the proposed design to others in terms of standard coverage,
silicon cost, and power consumption. The reference imple-
mentations have lower standard coverage as compared to the
proposed design. Though more silicon is needed for more

standard coverage, our solution still provides a good trade-
off with an acceptable silicon cost and power consumption.

8. Conclusion

This paper presents a flexible and reconfigurable interleaver
architecture for multimode communication environment.
The presented architecture supports a number of standards
including WLAN, WiMAX, HSPA+, 3GPP-LTE, and DVB,
thus providing coverage for maximum range. To meet the
design challenges, the algorithmic level simplifications like
2D transformation of interleaver functions and recursive
computation for different implementations are used. The
major focus has been to compute the permutation patterns
on-the-fly with flexibility. Architecture level results have
shown that the design provides a good tradeoff in term of
silicon cost and reconfigurability when comparing with other
reference designs with less standard coverage. As compared
to individual implementations for different standards, the
proposed unified address generation offers a reduction of
silicon by a factor of three. Finally, the basic requirement
of a multimode processor platform, that is, fast switching
between different standards has been met with minimal
precomputation cycle cost. It enables the processor to use the
interleaver core for one standard at some time and use it for
another standard in the next time slot by just changing the
configuration vector and small preprocessing overheads.

References

[1] A. Nilsson, E. Tell, and D. Liu, “An 11mm2, 70 mW fully-
programmable baseband processor for mobile WiMAX and
DVB-T/H in 0.12 μm CMOS,” IEEE Journal of Solid State
Circuits, vol. 44, pp. 90–97, 2009.

[2] E. Tell, A. Nilsson, and D. Liu, “A low area and low
power programmable baseband processor architecture,” in
Proceedings of the 5th International Workshop on System-On-
Chip for Real-Time Applications (IWSOC ’05), pp. 347–351,
Banff, Canada, July 2005.

[3] J. Glossner, D. Iancu, J. Lu, E. Hokenek, and M. Moudgill,
“A software-defined communications baseband design,” IEEE
Communications Magazine, vol. 41, no. 1, pp. 120–128, 2003.

[4] 3GPP, “Technical specification group radio access network;
multiplexing and channel coding (FDD),” Technical Specifi-
cation 25.212 V8.4.0, December 2008.

[5] 3GPP-LTE, “Technical specification group radio access net-
work; E-UTRA; multiplexing and channel coding, release 8,”
Technical Specification 3GPP TS 36.212 v8.0.0, 2007–2009.

[6] IEEE 802.16e-2005, “IEEE standard for local and metropolitan
area networks—part 16: air interface for fixed broadband
wireless access systems—amendment 2,” 2005.

[7] IEEE 802.11-2007, “Standard for local and metropolitan area
networks—part 11: WLAN medium access control (MAC)
and physical layer (PHY) specs,” rev. of IEEE Std. 802.11-1999.

[8] IEEE P802.11n/D2.0, “Draft standard for enhanced WLAN for
higher throughput,” February 2007.

[9] ETSI EN 300-744 V1.5.1, “Digital video broadcasting (DVB);
framing structure, channel coding and modulation for digital
terrestrial television,” November 2004.

[10] S. Lin and D. J. Costello Jr., Error Control Coding: Funda-
mentals and Applications, Prentice-Hall, Englewood Cliffs, NJ,
USA, 1983.

16 Journal of Computer Systems, Networks, and Communications

[11] B. Sklar, Digital Communications: Fundamentals and Applica-
tions, Prentice-Hall, Englewood Cliffs, NJ, USA, 2nd edition,
2001.

[12] D. Liu, Embedded DSP Processor Design, Application Specific
Instruction Set Processors, Morgan Kaufmann, San Mateo,
Calif, USA, 2008.

[13] M.-C. Shin and I.-C. Park, “Processor-based turbo interleaver
for multiple third-generation wireless standards,” IEEE Com-
munications Letters, vol. 7, no. 5, pp. 210–212, 2003.

[14] R. Asghar and D. Liu, “Very low cost configurable hardware
interleaver for 3G turbo decoding,” in Proceedings of the 3rd
International Conference on Information and Communication
Technologies: From Theory to Applications (ICTTA ’08), pp. 1–
5, Damascus, Syria, April 2008.

[15] P. Ampadu and K. Kornegay, “An efficient hardware interleaver
for 3G turbo decoding,” in Proceedings of IEEE Radio and
Wireless Conference (RAWCON ’03), pp. 199–120, August
2003.

[16] Z. Wang and Q. Li, “Very low-complexity hardware interleaver
for turbo decoding,” IEEE Transactions on Circuits and Systems
II, vol. 54, no. 7, pp. 636–640, 2007.

[17] R. Asghar and D. Liu, “Dual standard re-configurable hard-
ware interleaver for turbo decoding,” in Proceedings of the
3rd International Symposium on Wireless Pervasive Computing
(ISWPC ’08), pp. 768–772, Santorini, Greece, May 2008.

[18] R. Asghar, D. Wu, J. Eilert, and D. Liu, “Memory conflict
analysis and implementation of a re-configurable interleaver
architecture supporting unified parallel turbo decoding,”
Journal of Signal Processing Systems. In press.

[19] J. B. Kim, Y. J. Lim, and M. H. Lee, “A low complexity
FEC design for DAB,” in Proceedings of IEEE International
Symposium on Circuits and Systems (ISCAS ’01), vol. 4, pp.
522–525, Sydney, Australia, May 2001.

[20] L. Horvath, I. B. Dhaou, H. Tenhunen, and J. Isoaho, “A novel,
high-speed, reconfigurable demapper-symbol deinterleaver
architecture for DVB-T,” in Proceedings of IEEE International
Symposium on Circuits and Systems (ISCAS ’99), vol. 4, pp.
382–385, Orlando, Fla, USA, May-June 1999.

[21] Y. -N. Chang, “Design of an efficient memory-based DVB-
T channel decoder,” in Proceedings of the IEEE International
Symposium on Circuits and Systems (ISCAS ’05), vol. 5, pp.
5019–5022, Kaohsiung, Taiwan, May 2005.

[22] H. Afshari and M. Kamarei, “A novel symbol interleaver
address generation architecture for DVB-T modulator,” in
Proceedings of the International Symposium on Communica-
tions and Information Technologies (ISCIT ’06), pp. 989–993,
Bangkok, Thailand, October 2006.

[23] Y.-N. Chang and Y.-C. Ding, “A low-cost dual-mode deinter-
leaver design,” in Proceedings of IEEE International Conference
on Consumer Electronics (ICCE ’07), pp. 1–2, Las Vegas, Nev,
USA, January 2007.

[24] Y. N. Chang, “A low-cost dual mode de-interleaver design,”
IEEE Transaction on Consumer Electronics, vol. 54, no. 2, pp.
326–332, 2008.

[25] Y.-W. Wu, P. Ting, and H.-P. Ma, “A high speed interleaver
for emerging wireless communications,” in Proceedings of the
International Conference on Wireless Networks, Communica-
tions and Mobile Computing, vol. 2, pp. 1192–1197, Maui,
Hawaii, USA, June 2005.

[26] R. Asghar and D. Liu, “Low complexity multi mode interleaver
core for WiMAX with support for convolutional interleaving,”
International Journal of Electronics, Communications and Com-
puter Engineering, vol. 1, no. 1, pp. 20–29, 2009.

[27] R. Asghar and D. Liu, “Low complexity hardware interleaver
for MIMO-OFDM based wireless LAN,” in Proceedings of IEEE
International Symposium on Circuits and Systems (ISCAS ’09),
pp. 1747–1750, Taipei, Taiwan, May 2009.

[28] Xilinx Inc., “Interleaver/De-Interleaver,” Product Specifica-
tion, v5.1, DS250, March 2008.

[29] Altera Inc., “Symbol Interleaver/De-Interleaver Core,” Mega
Core Function User’s Guide, ver. 1.3.0, June 2002.

[30] Lattice Semiconductor Inc., “Interleaver/De-Interleaver IP
Core,” ispLever Core User’s Guide, ipug 61 02.5, August 2008.

[31] X.-F. Wang, Y. R. Shayan, and M. Zeng, “On the code
and interleaver design of broadband OFDM Systems,” IEEE
Communications Letters, vol. 8, no. 11, pp. 653–655, 2004.

[32] R. Van Nee, V. K. Jones, G. Awater, A. Van Zelst, J. Gardner,
and G. Steele, “The 802.11n MIMO-OFDM standard for
wireless LAN and beyond,” Wireless Personal Communications,
vol. 37, no. 3-4, pp. 445–453, 2006.

[33] H. Niu, X. Ouyang, and C. Ngo, “Interleaver design for
MIMO-OFDM based wireless LAN,” in Proceedings of IEEE
Wireless Communications and Networking Conference (WCNC
’06), vol. 4, pp. 1825–1829, Las Vegas, Nev, USA, 2006.

[34] J. Baltersee, G. Fock, and H. Meyr, “Achievable rate of MIMO
channels with data-aided channel estimation and perfect
interleaving,” IEEE Journal on Selected Areas in Communica-
tions, vol. 19, no. 12, pp. 2358–2368, 2001.

[35] S. Ramseier, “Shuffling bits in time and frequency—an
optimum interleaver for OFDM,” in Proceedings of the IEEE
International Conference on Communications (ICC ’03), vol. 5,
pp. 3418–3422, May 2003.

[36] V. D. Nguyen and H.-P. Kuchenbecker, “Block interleaving
for soft decision viterbi decoding in OFDM systems,” in
Proceedings of the 54th IEEE Vehicular Technology Conference
(VTC ’01), vol. 1, pp. 470–474, 2001.

[37] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon
limit error-correcting coding and encoding: turbo-codes,” in
Proceedings of IEEE International Conference on Communica-
tions (ICC ’93), vol. 2, pp. 1064–1070, Geneva, Switzerland,
May 1993.

[38] G. R. Blakley, “A computer algorithm for calculating the
product A∗B mod M,” IEEE Transactions on Computers, vol.
32, no. 5, pp. 497–500, 1983.

[39] J.-H. Kim and I.-C. Park, “Duo-binary circular turbo decoder
based on border metric encoding for WiMAX,” in Proceedings
of the Asia and South Pacific Design Automation Conference
(ASP-DAC ’08), pp. 109–110, Seoul, Korea, March 2008.

[40] G. D. Forney, “Burst- correcting codes for the classic bursty
channel,” IEEE Transactions on Communications, vol. 19, no.
5, part 2, pp. 772–781, 1971.

[41] J. L. Ramsey, “Realization of optimum interleavers,” IEEE
Transactions on Information Theory, vol. 16, no. 3, pp. 338–
345, 1970.

[42] S. Vafi and T. Wysocki, “Weight distribution of turbo codes
with convolutional interleavers,” IET Communications, vol. 1,
no. 1, pp. 71–78, 2007.

[43] E. K. Hall and S. G. Wilson, “Stream-oriented turbo codes,”
IEEE Transactions on Information Theory, vol. 47, no. 5, pp.
1813–1831, 2001.

[44] S. Vafi and T. Wysocki, “On the performance of turbo codes
with convolutional interleavers,” in Proceedings of Asia-Pacific
Conference on Communications, pp. 222–226, Perth, Wash,
USA, October 2005.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2010

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

