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Abstract

Plants synthesize a huge variety of terpenoid natural products, including photosynthetic pigments, 

signaling molecules and defensive substances. These are often produced as complex mixtures, 

presumably shaped by selective pressure over evolutionary timescales, some of which have been 

found to have pharmaceutical and other industrial uses. Elucidation of the relevant biosynthetic 

pathways can provide increased access (e.g., via molecular breeding or metabolic engineering), 

and enable reverse genetic approaches towards understanding the physiological role of these 

natural products in plants as well. While such information can be obtained via a variety of 

approaches, this review describes the emerging use of synthetic biology to recombinantly 

reconstitute plant terpenoid biosynthetic pathways in heterologous host organisms as a functional 

discovery tool, with a particular focus on incorporation of the historically problematic cytochrome 

P450 mono-oxygenases. Also falling under the synthetic biology rubric and discussed here is the 

nascent application of genome-editing tools to probe physiological function.
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Introduction

Plants are a prolific source of natural products, with their complex chemical mixtures 

reflecting adaptation to previous and current selective pressures over evolutionary 

timescales. From origins in central metabolism, often via initial derivation from hormone 

biosynthetic pathways, natural products have diversified into the astounding array of extant 

compounds, only a fraction of which are currently known. The exact physiological roles 

played by these small molecules are then presumably similarly diverse. However, our 
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understanding of physiological function lags well behind even our efforts to catalog 

chemical diversity, almost invariably relying on the biological activity exhibited in 

laboratory tests by isolated compounds. Nevertheless, plant natural products have been 

utilized for millennia as pharmaceuticals, flavors and fragrances, along with other industrial 

uses.

Not surprisingly, investigation of plant natural products biosynthesis is largely focused on 

those compounds with economic significance (i.e., industrial use) or of obvious 

physiological importance (e.g., hormones). These studies have progressed from biochemical 

assays with cell-free extracts and isolation of the relevant enzymes to molecular biology 

based recombinant expression and analysis of plants genetically modified to over or under 

express the encoding genes. However, outside of hormones, the biosynthesis of very few 

plant natural products has been fully elucidated.

Identification of the relevant biosynthetic pathway enables access to the resulting natural 

product, via metabolic engineering in the native plant or in microbial hosts. The use of 

microbes as production platforms provided one the early examples of the use of the term 

synthetic biology due in large part to the substantial efforts required to optimize production 

levels. Such application of synthetic biology has been extensively reviewed elsewhere 

(Keasling, 2012; Keasling et al., 2012). Here is reviewed the use of this synthetic biology 

approach to investigate plant metabolism (i.e., pathways/ networks), as well as the use of 

synthetic biology-enabled genome-editing tools to investigate physiological function.

Terpenoid metabolism

More specifically, this review focuses on terpenoid metabolism, which has been extensively 

diversified in plants, to the point that these represent the largest class of natural products 

with over 45,000 known examples (Renault et al., 2014). Terpenoids are derived from 5-

carbon building blocks, namely isopentenyl diphosphate (IPP) and dimethyl allyl 

diphosphate (DMAPP). These building blocks are produced by two distinct pathways, the 

mevalonate (MVA) dependent pathway that operates in the cytosol of plants, and the 2-C-

methyl-D-erythritol-4-phosphate (MEP) dependent pathway found in the plastids (Vranova 

et al., 2013).

DMAPP and IPP are coupled together in a head-to-tail fashion to form the precursor to the 

10-carbon monoterpenoids, in turn this is coupled to another molecule of IPP to form the 

precursor to the 15-carbon sesquiterpenoids, with coupling of yet another molecule of IPP 

yielding the precursor to the 20-carbon diterpenoids. These precursors take the form of 

allylic diphosphate containing acyclic chains, generally with internal double bonds of trans 
configuration, although the use of analogous cisoid precursors also has been reported 

(Bohlmann and Gershenzon, 2009). Formation of these elongated precursors is catalyzed by 

isoprenyl diphosphate synthases. Two of the transoid C15 farnesyl diphosphate can be 

condensed together in a head-to-head manner to form the squalene precursor to the 

triterpenoids, and two of the C20 geranylgeranyl diphosphate (GGPP) similarly condensed to 

form the phytoene precursor to the tetraterpenoids, although neither of these types of 
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terpenoids will be further discussed here as at least the triterpenoids have been recently 

reviewed (Moses et al., 2013).

The allylic diphosphate ester bond of the acyclic prenyl diphosphate precursors for mono-, 

sesqui- and di-terpenoids is lysed, with the resulting carbocation used to drive cyclization 

and/or rearrangement of the hydrocarbon chain in reactions catalyzed by (class I) terpene 

synthases (TPSs). In the case of diterpenoids, this can be preceded by an initial 

(bi)cyclization of the general precursor GGPP, typically forming copalyl diphosphate (CPP), 

in reactions catalyzed by CPP synthases (CPSs). In the course of the catalyzed reaction TPSs 

and CPSs can add water to produce oxygenated terpenes. However, the resulting compounds 

are most often olefins (Gao et al., 2012).

Given the hydrophobic nature of the hydrocarbon terpene products of TPSs, the addition of 

oxygen is almost invariably catalyzed by endoplasmic reticulum membrane-associated 

(microsomal) cytochromes P450 (CYPs). These heme-thiolate mono-oxygenases often 

catalyze the insertion of oxygen into carbon-hydrogen bonds to produce hydroxyl groups, 

although they can mediate more complex reactions as well (Guengerich and Munro, 2013). 

In any case, the addition of oxygen both increases polarity/solubility and imparts hydrogen-

bonding capacity, enabling specific binding interactions, as well as providing functional 

groups for further modification.

The extent of terpenoid natural product diversity in plants perhaps can be best appreciated 

by noting the number of TPSs found in the known genomes, with all spermatophytes 

containing at least 40 such genes, with over 100 observed in some species (Chen et al., 

2011). Although all of genes these may not encode functional TPSs, and there is some 

overlap in catalyzed product outcome (and/or outright genetic redundancy), this is balanced 

by the propensity for these enzymes to yield a range of products. In addition, it has been 

noted that the CYPs form the largest family of plant metabolic enzymes, with over 200 

found in all spermatophytes (Nelson and Werck-Reichhart, 2011), and many of these CYPs 

participate in terpenoid metabolism (Hamberger and Bak, 2013). Thus, even without 

consideration of the other classes of enzymes that participate in terpenoid biosynthesis, it 

can be appreciated that terpenoid metabolism forms a complex network in any given plant! 

However, very few pathways are known, and there is no example of a completely elucidated 

network, even at just the level of the TPSs – e.g., not even for the model plant Arabidopsis 
thaliana. Accordingly, it also has not been possible to fully determine the full range of 

physiological roles played by the various terpenoid natural products made by any one 

species.

Our understanding of plant terpenoid metabolism has been limited by a number of factors. 

These include the perceived recalcitrance of eukaryotic enzymes to functional recombinant 

expression in the usual hosts – particularly for membrane-associated CYPs – as well as the 

difficulty of identifying and obtaining the correct intermediate/substrate for the enzyme in 

question. In addition, the typical lack of functional gene clustering in plants dictates a 

general need to laboriously individually identify each enzyme, unlike the situation in 

microbes where such clustering often translates to identification of any relevant enzyme 

leading to the complete biosynthetic pathway, which is mediated by the enzymes encoded by 
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the neighboring genes. The difficulty in identification of plant biosynthetic enzymes is 

increased by the relative lack of plant sequence information – e.g., high-quality genomes 

and/or transcriptomes – although the amount of such information is currently rapidly 

increasing.

Elucidation of menthol biosynthesis: A monoterpenoid case study

With regards to pathway elucidation it is perhaps most instructive to examine the case of the 

monoterpene menthol, whose biosynthesis was worked out over the course of the stellar 

career of Prof. Rodney Croteau at Washington State University (Figure 1). Enabled by the 

localization of methol production to protruding glandular trichomes that could be physically 

isolated (Gershenzon et al., 1992), this work began with enzymatic assays with plant cell-

free extracts, progressed to molecular genetic identification of the relevant biosynthetic 

enzymes (for both on- and off-pathway reactions), leading to genetic/metabolic engineering 

in peppermint (Mentha x piperita) plants (Croteau et al., 2005). The full elucidation of the 

relevant pathway and (relatively few) branch points enabled a systems biology approach to 

understanding of biochemical regulation (Rios-Estepa et al., 2008), and comprehensive 

mathematical modeling guided evaluation of the pathway (Rios-Estepa et al., 2010). 

Notably, in part based on these advances, mint plants have been engineered for higher and 

more reliable yield of menthol, as demonstrated in multi-year field trials (Lange et al., 

2011).

As part of this work, the Croteau group was able to easily recombinantly express the relevant 

mint TPS, 4S-limonene synthase, in Escherichia coli (Colby et al., 1993), with particularly 

strong activity observed upon truncation of the N-terminal plastid targeting sequence 

(Williams et al., 1998). However, functional recombinant expression for identification of the 

initial acting peppermint CYP, limonene-3-hydroxylase (CYP71D13), was carried out using 

a cumbersome insect cell culture system (Lupien et al., 1999), in large part due to the 

presumed similarity in membrane composition and presence of the requisite CYP reductase 

(CPR), which is not present in bacteria. Later work then demonstrated that it was possible to 

also functionally express N-terminally modified versions of CYP71D13 in Saccharomyces 
cerevisiae (yeast) or E. coli, with activity observed upon reconstitution with a plant CPR 

(Haudenschild et al., 2000). Identification of these enzymes offered the possibility for 

pathway reconstitution in a heterologous host (micro)organism. Such metabolic engineering 

was attempted in E. coli, with some production of limonene observed, but flux through even 

the first CYP step was not observed (Carter et al., 2003). Notably, feeding studies indicated 

that this lack of flux was due to insufficient production of the upstream terpenoids (and 

possibly also the volatile nature of limonene), rather than lack of CYP activity per se. 

Nevertheless, functional expression of eukaryotic microsomal CYPs in E. coli is 

traditionally considered problematic, and most studies use yeast if not insect cells or, in the 

case of plant CYPs, plant expression systems.

Increasing flux: Production of artemisinic acid

Even as this work was taking place, the issue of flux towards terpenoid metabolism was 

being addressed by the group of Prof. Jay Keasling at the Univ. of California at Berkeley. 
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Although the complete biosynthetic process underlying production of the important 

antimalarial sesquiterpene artemisinin was and still remains to this day unknown (Brown, 

2010), the Keasling group had received substantial funding to metabolically engineer 

microbial production of the intermediate artemisinic acid, from which artemisinin can be 

efficiently made (Paddon and Keasling, 2014). Focusing on production of the olefin 

intermediate, amorphadiene, for which the relevant TPS had already been identified, the 

Keasling group imported the entire MEV pathway from S. cerevisiae into E. coli (Figure 2), 

dramatically improving terpenoid production levels (Martin et al., 2003). Notably, this work 

also featured one of the first examples of the use of a synthetic gene, recoded to optimize 

codon usage for expression in E. coli. Later reported work led to even more dramatic 

increases in yield, with production levels reported to be over 27 g/L of amorphadiene, and 

application of the term synthetic biology to this work (Keasling, 2012). The development of 

such highly engineered microbial production systems obviously provides sufficient substrate 

for subsequently acting enzymes, either via isolation and re-feeding or additional 

incorporation of the enzyme into the metabolically engineered microorganism.

Of particular interest here, the latter approach – extended metabolic engineering, albeit 

carried out in yeast rather than E. coli – was used for functional identification of the 

CYP71AV1 relevant to artemisinin biosynthesis, which is capable of catalyzing the multiple 

reactions necessary to convert amorphadiene to artemisinic acid (Ro et al., 2006). Indeed, 

yeast was chosen as the microbial host platform for further development by Amyris, the 

company founded by Keasling and co-workers to commercialize such engineering of high-

level terpene production. In addition to extensive modifications of the endogenous metabolic 

network of yeast, it is of interest here to note that commercial production of artemisinic acid 

(reported to be 25 g/L) also was dependent on incorporation of the additional alcohol and 

aldehyde dehydrogenases involved in the plant biosynthetic pathway (Paddon et al., 2013), 

which were identified from work carried out in the group of Dr. Pat Covello at the National 

Research Council of Canada, Saskatoon (Teoh et al., 2009; Teoh et al., 2006).

Engineering yeast to elucidate CYP roles in terpenoid metabolism

The use of metabolic engineering of yeast for functional characterization of CYPs involved 

in plant terpenoid biosynthesis was pioneered by Dr. Dae-Kyun Ro. First, working with 

Prof. Joerg Bohlmann at the Univ. of British Columbia, where this approach was used to at 

least confirm the functional identification of CYP724B1 as a promiscuous diterpene oxidase 

involved in diterpene resin acid biosynthesis in loblolly pine, which is capable of catalyzing 

the multiple reactions necessary to convert a methyl to carboxylic acid (Ro et al., 2005). He 

then went on to the Keasling group, and was a key player in their identification of 

amorphadiene oxidase (Ro et al., 2006). Now a professor at the Univ. of Calgary, his group 

has used this approach to functionally identify the CYPs involved in sesquiterpene lactone 

biosynthesis from plant species in the Asteraceae family, again multiply-reactive, methyl to 

carboxylic acid converting oxidases that also are members of the CYP71AV sub-family 

(Nguyen et al., 2010), and subsequently acting hydroxylases from the CYP71BL sub-family, 

with presumably spontaneous formation of the lactone ring occurring upon hydroxylation at 

appropriately spaced locations (Ikezawa et al., 2011). Prof. Bohlmann’s group also has 

applied this approach to functional identification of the spruce CYP720B4 involved in 
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diterpene resin acid biosynthesis (Hamberger et al., 2011), and the sandalwood CYP71F 

sub-family members involved in production of the essential oil sesquiterpene components 

santalols and bergamotol (Diaz-Chavez et al., 2013).

Emerging alternative expression systems

Part of the rationale for the use of yeast in such work is the ability to functionally express 

unmodified plant microsomal CYPs. Another system attracting use for this reason is 

transient transformation in tobacco, Nicotiana benthamiana (Bach et al., 2014a). In addition, 

a particularly promising system for investigation of terpenoid biosynthesis is the moss 

Physcomitrella patens (Bach et al., 2014b). However, there do not appear to be any CYPs 

from terpenoid biosynthesis identified using these systems as of yet. Moreover, at least with 

the tobacco system production of terpenoids can be plagued by interference from 

endogenous metabolism – e.g., the introduction of artemisinic acid biosynthesis led to 

glycosylated compound (van Herpen et al., 2010) – which presumably would complicate 

analysis of novel enzymatic activity.

Data deluge: Increasing availability of plant sequence information

The use of metabolic engineering to investigate biosynthetic pathways is of particular 

interest when genes encoding enzymes of potential relevance are readily available. Such 

information is being provided by next-generation sequencing based approaches, such as the 

RNA-Seq methodology that has been applied over the last few years by several consortia to 

medicinal plants (Giddings et al., 2011; Gongora-Castillo et al., 2012; Marques et al., 2013; 

Xiao et al., 2013; Zerbe et al., 2013), with explicit incorporation of the use of metabolic 

engineering to at least functionally characterize the encoded enzymes by the PhytoMedSyn 

group in Canada (Facchini et al., 2012).

Even beyond these medicinal plant transcriptomic sequence based investigations, which 

were largely targeted at natural products of pharmaceutical interest, with the availability of 

plant genome sequences we now have essentially complete gene inventories that can be used 

to probe the encoded natural product metabolic networks. Of particular interest here, rice 

(Oryza sativa) provides a long-standing example that couples a high-quality genome with 

extensive cDNA sequence information (International Rice Genome Sequencing, 2005; 

Kikuchi et al., 2003).

Rice as a model system for investigating diterpenoid metabolism

Intrigued by the presence of several families of diterpene phytoalexins in rice, we have 

undertaken a functional genomics approach towards investigating the relevant biosynthetic 

network. Although a diterpene phytoalexin derived from casbene, which is formed by direct 

TPS catalyzed cyclization of GGPP, has been recently reported (Inoue et al., 2013), the 

remainder require initial cyclization by a CPS, with subsequent cyclization and/or 

rearrangement catalyzed by TPSs. These fall into the TPS-e sub-family related to the ent-
kaurene synthase (KS) required for gibberellin hormone biosynthesis (Chen et al., 2011), 
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which we refer to as KS-like (KSLs). The resulting phytoalexins then fall into the labdane-

related diterpenoid (LRD) super-family (Peters, 2010).

Since only the LRD phytoalexins were originally known, we focused on biochemical 

characterization of the corresponding rice diterpene synthases – i.e., the OsCPSs and 

OsKSLs. Our work was carried out at the same time as similar studies by groups led by 

Profs. Hisakazu Yamane at the Univ. of Tokyo and Tomonobu Toyomasu at Yamagata Univ., 

all of which relied on biochemical in vitro assays and the use of authentic standards for the 

expected diterpene olefin intermediates, almost all of which were provided by Prof. Robert 

M. Coates from the Univ. of Illinois. The results of these studies have been extensively 

reviewed elsewhere (Peters, 2006; Schmelz et al., 2014; Toyomasu, 2008; Yamane, 2013), 

and here we simply note that all the functional OsCPSs and OsKSLs have been 

characterized, with rice found to encode a diterpene metabolic network even more complex 

than originally expected (Figure 3).

The complex nature of rice diterpene metabolism was evident to some degree simply from 

the number of OsKLS, which exceeded that required for the known families of phytoalexins 

– each of which is defined on the basis of their derivation from a common hydrocarbon 

backbone formed by the combined activity of a CPS and KSL. Specifically, seven functional 

OsKS(L) are found in the rice genome, although only five were expected (this includes the 

OsKS required for gibberellin biosynthesis; see Figure 3). In our own work, we found an 

OsKSL whose product did not match any of the olefin intermediates for the known LRDs, 

forcing an almost year-long search for corresponding authentic standard to verify its 

production of syn-stemodene (Morrone et al., 2006).

Development of a modular metabolic engineering system in E. coli

Both daunted by this experience and inspired by the complexity of rice diterpene 

biosynthesis, we developed a modular metabolic engineering system to co-express any 

pairing of a CPS and KS(L), along with the necessary upstream GGPP synthase in E. coli 
(Cyr et al., 2007). In order to produce enough of the resulting diterpene(s) for de novo 

structural analysis (e.g., by NMR) we further extended this system with either increased flux 

to terpenoids via either overexpression of key enzymes from the endogenous MEP pathway, 

or importation of the yeast MEV pathway using vectors kindly shared with us by Prof. 

Keasling (Morrone et al., 2010b). This system has proven utility for functional 

characterization of novel diterpene synthases from various plants (Gao et al., 2009; Jackson 

et al., 2014; Wu et al., 2012; Zhou et al., 2012), as well as microbes (Hershey et al., 2014; 

Lu et al., submitted; Morrone et al., 2009; Xu et al., submitted), along with mutational 

analysis (Criswell et al., 2012; Morrone et al., 2008; Potter et al., 2014).

Even beyond such de novo characterization of functionally novel diterpene synthases, this 

plug-and-play approach enables examination of enzymatic substrate specificity, which 

revealed further complexity/range for rice diterpene metabolism. One of the OsKSLs 

uniquely reacts with both stereoisomers of CPP (ent and syn) produced by rice, with both 

resulting products found in planta. Moreover, two other OsKSLs that act on syn-CPP in rice 

also will react with CPP of normal stereochemistry (Morrone et al., 2011). This promiscuity 
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may be related to the evolution of alternative stereoisomers of CPP (i.e., other than the ent-
CPP required for gibberellin biosynthesis) in the cereals, as the wheat ortholog of the rice 

syn-CPP producing CPS produces normal CPP instead (Wu et al., 2012), and several wheat 

KSLs similarly react with both the endogenous (normal) CPP as well as syn-CPP, which 

does not seem to be produced by wheat (Zhou et al., 2012). Accordingly, the ability to easily 

interrogate diterpene synthase activity via this modular metabolic engineering system offers 

insights not only into existing metabolism, but also (through examination of related plants) 

the evolution of diterpene biosynthesis as well.

Investigation of rice CYPs in E. coli: Enabled by gene synthesis

Fortuitously, in the course of characterizing the rice CPSs and KSLs, we noted that some of 

the genes encoding sequentially acting CPS and KSL were close together in the rice 

genome, one pair on chromosome 4 and others grouped together on chromosome 2, which 

seemed to define diterpenoid biosynthesis gene clusters (Prisic et al., 2004; Wilderman et al., 

2004). Indeed, in a report on rice gibberellin metabolism, these regions had been previously 

noted to also contain genes encoding a number of CYPs, as well as short-chain alcohol 

dehydrogenases (Sakamoto et al., 2004). Many of these genes were found to be co-

regulated, specifically inducible by the fungal cell wall component chitin, as well (Okada et 

al., 2007). Subsequently, genetic (RNAi) evidence was reported indicating a role for the 

CYPs from the chromosome 4 cluster in momilactone diterpenoid metabolism (Shimura et 

al., 2007), consistent with the role of the co-clustered OsCPS4 and OsKSL4 [Figure 3 

(Wilderman et al., 2004)]. This information was particularly useful in enabling focused 

investigation of CYPs – i.e., rather than investigating all >350 CYP found in the rice 

genome, we then simply targeted those from the diterpenoid biosynthesis clusters, along 

with the few others that exhibited inducible transcription (15 total).

Based on our ability to functionally express the CYP kaurene oxidase required for 

gibberellin biosynthesis from A. thaliana (CYP701A3) in E. coli (Morrone et al., 2010a), we 

attempted to incorporate rice CYPs into our metabolic engineering system. In an initial 

study, we were able to do so using an N-terminally modified version of the native gene for 

one of these, CYP76M7, which acts on the ent-cassadiene product of the co-clustered 

OsCPS2 and OsKSL7, carrying out C11α-hydroxylation that is consistent with a role in 

phytocassane biosynthesis (Swaminathan et al., 2009). However, no activity was observed 

for the other CYPs with this approach. Knowing that at least one of the two closely related 

CYPs found in the cluster on chromosome 4 (i.e., CYP99A2 and 3) played a role in 

momilactone biosynthesis (Shimura et al., 2007), we turned to use of synthetic genes 

optimized for expression in E. coli, along with N-terminal modification. This led to 

functional expression and successful incorporation into our metabolic engineering system of 

at least one of these, CYP99A3, which acts on the syn-pimaradiene product of the co-

clustered OsCPS4 and OsKSL4, carrying out conversion of C19 from a methyl to carboxylic 

acid (Wang et al., 2011). Such use of synthetic gene constructs has since led to functional 

characterization of the ability of a number of rice CYPS to act on the diterpene olefin 

products of the OsCPSs and OsKSLs (Wang et al., 2012a; Wang et al., 2012b; Wu et al., 

2011), with the further optimization of this synthetic biology approach reported in the 
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accompanying paper enabling functional expression of even previously recalcitrant CYPs 

(Kitaoka et al., submitted).

Based on the observed activity with olefins, it is clear that several CYPs will react with the 

same diterpene olefin intermediate (Figure 4). Thus, it is clear that some CYPs will act 

downstream (i.e., sequentially). This can be verified in part by incorporation of multiple 

CYPs into the metabolic engineering system, which we have demonstrated for at least two 

consecutively acting CYPs from rice oryzalexin metabolism (Figure 4C). However, such 

analysis leaves the order of reaction undefined. Defining pathway then requires isolation and 

refeeding experiments, which we have used not only in rice (Wu et al., 2013), but also in our 

studies of diterpenoid metabolism from other plants as well (Zi and Peters, 2013). Notably, 

use of this synthetic biology approach also enables facile access to such putative 

biosynthetic intermediates as well as functional recombinant expression of multiple plant 

CYPs.

Other groups have independently demonstrated the ability to functionally incorporate plant 

microsomal CYPs for the purpose of reconstituting terpenoid biosynthetic pathways in E. 
coli, most notably for the production of early intermediates from the biosynthetic pathway 

leading to the anti-cancer drug taxol (Ajikumar et al., 2010). Although this study was not 

directed at identification of novel CYPs, instead building on previous work from the Croteau 

group (Jennewein et al., 2004), it emphasizes the continuing exploration of synthetic biology 

approaches in E. coli for production of high-value terpenoid natural products.

Investigation of physiological function via synthetic biology

Given the paucity of information, investigation of the physiological role played by most 

natural products seems well worth pursuit. With molecular identification of biosynthetic 

pathways one approach might involve transplantation into heterologous host plants, with 

subsequent investigation of physiological effect (i.e., phenotype). Such an approach might 

be useful for investigation of evolution as well. For example, the change in CPP 

stereochemistry (and that of the derived diterpenoid natural products) between rice and 

wheat might be probed by expression of the CPS producing the alternative stereoisomer and 

subsequent analysis of the array of resulting diterpenoids (to probe metabolic promiscuity) 

as well as physiological effect.

Particularly given that the biosynthesis of natural products is often embedded in more 

complex metabolic networks, definitive investigations rely on reverse genetic analysis. For 

example, this can be used to verify enzymatic roles in biosynthetic pathways assigned on the 

basis of biochemical activity observed with recombinantly expressed genes. Arguably more 

importantly, this further enables investigation of the physiological function of the resulting 

natural products, which is particularly critical given the complex mixtures of compounds 

generally produced by plants that confound functions ascribed solely on the basis of in vitro 

analyses of natural product biological activity. For example, despite being the first rice 

diterpenoids suggested to act as phytoalexins against the devastating fungal blast pathogen 

Magneportha oryzae (Cartwright et al., 1977), the momilactones seem to be more important 

as allelochemicals that are constitutively secreted from the roots and suppress the growth of 
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other plant species (Xu et al., 2012). This is consistent with the original isolation of the 

momilactones as plant growth inhibitors (Kato et al., 1973), and more recent work on rice 

allelopathy (Kato-Noguchi and Peters, 2013), although it should be noted that some 

evidence has been presented indicating a role for the momilactones (or related OsCPS4-

dependent diterpenoids) as phytoalexins (Toyomasu et al., 2013).

Although RNAi can be used to knock-down expression of the relevant genes, this approach 

often leads to incomplete suppression of natural product biosynthesis and can be somewhat 

non-selective (i.e., affecting more than the targeted gene), confounding interpretation of 

studies with the resulting plants. However, identification of gene knockout mutants has 

relied on laborious screening of large-scale mutagenesis projects (generally insertional), and 

only for Arabidopsis have such efforts led to a (almost) complete set of mutants. Even in rice 

there are many genes for which no mutant is yet available, and those that are available are 

found in a variety of different genetic backgrounds, complicating comparative analysis. 

Accordingly, the recent development of targetable genome-editing tools, particularly the 

modular nature of the recently developed transcription activator-like nucleases (TALENs) 

and clustered regularly-interspaced short palindromic repeats (CRISPR)/Cas9 based 

technologies (Christian et al., 2010; Jinek et al., 2012; Li et al., 2011), enables interrogation 

of physiological functional in native biological context. Notably, judicious construction of a 

construct targeting any given gene (or multiple genes or even gene cluster) allows both 

construction of all related mutants in same genetic background (e.g., cultivar), and identical 

mutants in different backgrounds (depending on conservation of the targeted sequence, 

perhaps even in closely related species), enabling relatively sophisticated analyses. Such 

genome editing has been successfully carried out with regeneration of whole plants that 

stably carry the modified genes over multiple generations (Feng et al., 2013; Miao et al., 

2013; Zhang et al., 2014; Zhou et al., 2014), and we anticipate that such an approach will be 

applied to investigation of the physiological roles of plant natural products in the near future.

CONCLUSIONS

Traditional approaches to plant natural products generally involved isolation on the basis of 

targeted biological activity with subsequent investigation of the underlying biosynthetic 

pathway via purification of the relevant enzymes from the native producing plant. With the 

rapidly increasing availability of plant sequence information, both genomic and 

transcriptomic, it is possible to more systematically study both biosynthesis and 

physiological function. Here we have reviewed the application of synthetic biology 

approaches to such investigation of plant terpenoid natural products. Key developments for 

study of plant terpenoid biosynthesis are derived from the work of Prof. Keasling on 

production of artemisinin via semi-synthesis from artemisinic acid, demonstrating the use of 

synthetic biology for commercial purposes. As reviewed here, this has further led to the use 

of synthetic biology as a functional discovery tool for elucidation of plant terpenoid 

metabolism more generally, including investigation of biosynthetic networks and their 

evolution. In addition, we suggest the potential for application of synthetic biology-enabled 

genome-editing tools to systematic reverse genetic studies of physiological function.
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Summary

Synthetic biology offers a means to explore plant metabolism, such as the smaller 

terpenoid natural products reviewed here. This includes both investigation of biosynthetic 

pathways via reconstruction in heterologous host (micro)organisms and the nascent 

application of genome-editing tools to enable reverse genetic studies of physiological 

function.
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Figure 1. Menthol biosynthetic pathway from glandular trichomes of peppermint
The inset depicts a glandular trichome on the leaf surface, and schematic of the secretory 

cell isolation process. The isoprenyl diphosphate precursors IPP and DMAPP are produced 

via the plastidial MEP pathway, with subsequent more specific enzymatic steps individually 

shown. DMAPP is condensed with IPP to form geranyl diphosphate (GPP) by a GPP 

synthase (GPS), which is then cyclized by a TPS, limonene synthase (LS). The resulting (−)-

limonene is transformed to (−)-t rans-isopiperitenol by limonene-3-hydroxylase (L3OH), 

with the 3α-hydroxyl group oxidized to the ketone of (−)-isopiperitenone by isopiperitenol 

dehydrogenase (iPD). The endo-cyclic double bond is stereospecifically reduced to (+)-cis-

isopulegone by isopiperitenone reductase (iPR), with subsequent isomerization of the exo-

cyclic double-bond to (+)-pulegone by isopulegone isomerase (iPI). Pulegone is a 

branchpoint metabolite, which can either be transformed to the undesirable by-product (+)-

menthofuran by menthofuran synthase (MFS) or reduced to the intermediate (+)-menthone 

by pulegone reductase (PR), which is then reduced to the desired (+)-menthol end-product 

by menthone reductase (MR).
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Figure 2. Schematic for production of artemisinic acid by E. coli
Genes for the MVA pathway, to produce IPP from acetyl-CoA via mevalonate, were 

imported from S. cerevisiae, along with those encoding an isopentenyl diphosphate 

isomerase and farnesyl diphosphate synthase. The resulting farnesy diphosphate (FPP) is 

then converted to artemisinic acid using enzymatic genes from the native producing plant 

Artemisia annua. First FPP is cyclized by a TPS, amorphadiene synthase (AS), and then 

amorphadiene is hydroxylated by CYP71AV1 (in conjunction with a CPR), which can 

further oxidize the resulting artemisinol to arteminsinal and then artemisinic acid, although 

this is much more efficiently catalyzed by artemisinol and artemisinal dehydrogenases 

(ADH and ALDH, respectively). Isolation of the artemisinic acid “end” product is followed 

by chemical conversion to the anti-malarial drug artemisinin.
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Figure 3. Metabolic map of the rice diterpene synthases
Shown are the functional diterpene synthases, both CPSs and KS(L)s, from rice (Oryza 
sativa), alongside the reaction catalyzed by each of these OsCPS and OsKS(L) (thicker 

arrows indicate the reactions/enzymes involved in gibberellin (GA) phytohormone 

biosynthesis rather than more specialized secondary metabolism). Also shown are the 

derived natural products, where known. Notably, the metabolic fate of several of the 

resulting diterpene olefins, which can be found in planta, is not yet known (as indicated by 

“???”).
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Figure 4. Characterized CYPs from rice diterpenoid biosynthesis
Depicted are reactions catalyzed by the noted rice CYPs with endogenous diterpene olefins. 

A) CYP71Z6 catalyzes C2α- and then C3α-hydroxylation of ent-isokaurene. These 

reactions may be relevant to the production of oryzadione and related diterpenoids (Kitaoka 

et al., submitted). B) With ent-cassadiene alternative reactions are catalyzed by CYP701A8 

[C3α-hydroxylation (Wang et al., 2012b)], CYP76M7 & 8 [both catalyze C11α-

hydroxylation (Wang et al., 2012a)], or CYP71Z7 [C2α-hydroxylation followed by further 

oxidation to a C2-keto and additional C3α-hydroxylation (Kitaoka et al., submitted)]. The 

C11α-hydroxylation reaction catalyzed by CYP76M7 & 8 is relevant to phytocassane 

biosynthesis (Wang et al., 2012a), while those catalyzed by CYP71Z7 and (potentially) 

CYP701A8 may be relevant as well. C) While CYP76M5, 6 & 8 all catalyze C7β-

hydroxylation of ent-sandaracopimaradiene, it seems likely that this olefin first undergoes 

C3α-hydroxylation catalyzed by CYP701A8, with subsequent hydroxylation at C7β 
catalyzed by CYP76M8 forming oryzalexin D and alternative C9β-hydroxylation catalyzed 

by CYP76M6 to form oryzalexin E (Wu et al., 2013). D) Both CYP99A2 & 3 can convert 

C19 of syn-pimaradiene to a carboxylic acid, although this olefin can be alternatively 

hydroxylated at C3β by CYP701A8 or C7β by CYP76M8. The C19 oxidation catalyzed by 

CYP99A2 & 3 is relevant to momilactone biosynthesis (Shimura et al., 2007), while those 

catalyzed by CYP701A8 and CYP76M8 may be relevant as well (Kitaoka et al., submitted).
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