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Abstract
This tutorial covers physical reservoir computing from a computer science perspective. It first defines what it means for a

physical system to compute, rather than merely evolve under the laws of physics. It describes the underlying computational

model, the Echo State Network (ESN), and also some variants designed to make physical implementation easier. It explains

why the ESN model is particularly suitable for direct physical implementation. It then discusses the issues around choosing

a suitable material substrate, and interfacing the inputs and outputs. It describes how to characterise a physical reservoir in

terms of benchmark tasks, and task-independent measures. It covers optimising configuration parameters, exploring the

space of potential configurations, and simulating the physical reservoir. It ends with a look at the future of physical

reservoir computing as devices get more powerful, and are integrated into larger systems.
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1 Introduction

Artificial Neural Networks (NNs) for Machine Learning

are pervasive. Feed forward NNs can be used for classifi-

cation of complex data, and have a well-developed learning

algorithm: back propagation. Recurrent Neural Networks

(RNNs) gain memory through their recurrent connections,

and are hence useful for time series prediction and classi-

fication. However, their standard training algorithm, back-

propagation through time, is more computationally

intensive.

Jaeger (2001) introduced an efficient training algorithm

for random RNNs, one form1 of reservoir computing (RC)

called the Echo State Network (ESN). In an ESN the input

and internal weights of the RNN are chosen randomly, and

only the output weights are trained, in a one-shot non-

iterative algorithm. This algorithm greatly increased the

practicality of RNNs.

An RNN is a specific case of an open dynamical system,

and the ESN training algorithm treats it as a black box, not

changing its internal configuration. It was discovered that a

physical dynamical system could replace the software

RNN in its black box, and be exploited to perform physical

reservoir computing.

1.1 Physical computing

All information is physical (Landauer 1991); all computing

is physical. However, classical digital computing occurs at

a very high level of abstraction, many virtual machine

levels above the underlying physical material, and hence

can be resource hungry. Physical computing refers to

computing happening much closer to the ‘metal’: the

implemented computational model more directly maps to

the physical material, exploiting its natural physical prop-

erties more effectively.

This is how analogue computers work. The computer is

designed to be a physical analogue of the problem being

solved, typically by following the same differential equa-

tion. The computer is set to an initial state analogous to the

problem’s initial state, evolves under its own physical laws,

and reaches a final state analogous to the problem’s solu-

tion. The relevant computational model, covering all such

computations, is the General Purpose Analog Computer
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(GPAC) (Shannon 1941), modelling the programmable

Differential Analyser.

Physical Reservoir Computing (PRC) has a different

computational model: that of RNNs. The aim is to find

physical substrates that follow the model in a way that can

be exploited for computation, and that enjoy the efficiency

advantages of direct exploitation of dynamics. In addition,

a physical reservoir does not need to be electronic: it can be

made of many different kinds of material, that can be

excited by many different modalities of input signal. This

allows for a more natural coupling to environmental inputs.

Individual PRCs have been demonstrated in a wide

range of materials, and performed successfully on small

benchmark problems. However, they still face challenges

of scaling up to more computational power, and discovery

of real-world ‘killer apps’. This tutorial aims to bring the

development of PRCs to a wider computing audience, to

allow further developments of this potentially powerful

technology.

1.2 Tutorial overview

The structure of this tutorial is as follows. Section 2 defines

what it means for a physical system to be a computer,

rather than some other device. Section 3 discusses various

computational models for PRC. Section 4 discusses

choosing the material substrate that forms the core of the

PRC. Sections 5 and 6 discuss input and output, including

encoding, representation, and measurement. Section 7

discusses how to characterise a PRC, in terms of bench-

marks and task-independent measures, and how to use

these to find good configurations. Section 8 discusses uses

of substrate simulation, and Sect. 9 discusses the future of

PRC.

1.3 Further reading

This tutorial provides a computer scientist’s view of PRC.

In addition to this, there are many valuable resources about

RC in general, and PRC in particular. Lukoševičius (2012)

gives useful advice for configuring and training RCs.

Stepney et al. (2018) has a collection of chapters on a

variety of issues in physical computing in general; Naka-

jima and Fischer (2021) has a collection of chapters on

specific PRCs. Nakajima (2020) provides an introduction

to PRC. Tanaka et al. (2019) review the state of the art;

Liang et al. (2024) review and evaluate recent PRC vari-

ants. Zolfagharinejad et al. (2024) provide a wider review

of physical neuromorphic computing. Cucchi et al. (2022)

is another PRC tutorial, from a more materials science and

engineering perspective.

2 Physical computing and AR theory

Before we can describe physical reservoir computing, we

need to address the question: when does a physical system

compute? That is, when is it specifically and reliably per-

forming a computation, as opposed to simply being a

physical system? Attempts to answer this question have led

to philosophical conundrums, from a rock that can compute

any function (Chalmers 1996), to the whole universe being

a computer (Lloyd 2005).

Such answers, whilst providing stimulating philosophi-

cal debates, are not much help to the practical engineer

wishing to build useful devices. Abstraction/Representa-

tion theory (AR/T) (Horsman et al. 2014, 2017, 2018;

Stepney and Kendon 2021) gives a definition of when a

physical system is computing, as opposed to merely

undergoing the physical processes of that system, or being

experimented upon, that can be used to design and analyse

unconventional physical computers.

AR theory distinguishes two kinds of spaces, an abstract

space M of mathematico-logical and computational enti-

ties, and a physical space P of material objects and com-

puting devices, along with a (necessarily informal)

representation relation R : P ! M that mediates between

them. The reverse of the representation relation is the

instantiation relation eR : M ! P, which holds when

abstract entity mp is instantiated as physical object p.

Whereas the representation relation is primitive, the

instantiation relation is a derived relation, requiring char-

acterisation of the physical system and its theories; see

original references for full details.

Abstract computation takes abstract entities to abstract

entities, C : M ! M. Physical evolution takes physical

objects to physical objects, H : P ! P. We link these

Fig. 1 Parallel evolution of an abstract entity and the physical object

it represents: (top arrow) abstract computational dynamics CðmpÞ
gives the resulting abstract state m0

p; (down arrow) the abstract entity

mp is instantiated as physical object p through eR: (bottom arrow)

physical dynamics HðpÞ gives the resulting physical object p0; (up
arrow) R is used to represent p0 as the abstract result mp0 . If

mp ¼e mp0 , the diagram e-commutes, and the physical device

computes. (Adapted from Horsman et al. (2014).)

666 S. Stepney

123



objects and entities through instantiation and representation

(Fig. 1).

We now have two abstract objects: m0
p, the result of the

abstract computation, and mp0 , the representation of the

result of the physical evolution. For some (problem-de-

pendent) error quantity e and distance function d(), if

dðmp0 ;m
0
pÞ� e (or, more briefly, mp0 ¼e m

0
p), then we say

that the diagram in Fig. 1 e-commutes.
We may need to perform substantial experiments on, or

theoretical analyses of, a system, both to determine the

instantiation relation eR, and to characterise the domain in

which the diagram e-commutes. But, given a well-charac-

terised e-commuting diagram over a known domain, we

have a faithful abstract representation of the physical sys-

tem, and we can use that physical system to mirror the

abstract computation: we can use it to compute. The final

abstract state can be known either by computation of the

abstract representation of the system, mp 7!m0
p, or by

instantiating the abstract state in a physical device p,

allowing the physical evolution, p7!p0, and then repre-

senting the resulting object abstractly as mp0 . Given a well-

characterised system, the results differ by less than the

problem-dependent e. In this case, the physical evolution is

indeed computing.

Many devices claimed to be performing computation

(either seriously, or for the point of philosophical debate)

fail to meet the AR/T requirements because they lack any

form of representation, the link between the abstract model

and physical device (for example, the universe-as-com-

puter case). Others fail because they need access to another

computer to ensure that the diagram e-commutes, typically

by performing the entire desired computation post hoc,

hidden in the output representation stage (for example, the

rock-as-computer case). Yet others fail because the system

is not well-characterised, and physical results that coinci-

dentally match abstract ones are cherry-picked, with the

others discarded.

The AR/T model allows for multiple substrates physi-

cally computing according to the same computational

model (as is the case in multiple realisations of classical

computing), and for a given substrate physically computing

according to a variety of computational models (as in the

case of classical computers implementing unconventional

models). Here we focus on a single computational model,

reservoir computing, potentially realised in a variety of

substrates.

AR/T can be used as a framework to encompass the

complete design and analysis of a physical computing

system. There are three typical starting points:

• Substrate first, where the properties and behaviours of a

given substrate are examined in detail, and a corre-

sponding computation model is developed that has

analogous (although more abstract) properties. For

example, early neural network computational models

were derived as highly abstracted models of brain and

other neural functions; the Turing machine model was

derived as a highly abstracted model of how ‘human

computers’ perform calculations (Turing 1937).

• Computational model first, where a model is taken as

given, and a substrate is searched for, or engineered, to

conform to that model. For example, classical digital

computers are engineered to conform to the von

Neumann stored-program computer architecture; neu-

romorphic computers are engineered to conform to the

neural model.

• Co-design (Stepney 2019), where model and substrate

are iteratively designed and engineered together.

The topic of this tutorial, PRC, suggests a computational

model first description. We describe PRC in terms of the

AR/T framework according to the components of Fig. 1:

the top arrow computational model (Sect. 3, reservoir

computing), the bottom arrow physical substrate (Sect. 4,

the device), the down arrow input (Sect. 5) and up arrow

output (Sect. 6), and the requirement that the diagram e-
commutes (Sect. 7, characterisation).

3 Choosing a computational model

Physical computing is done with respect to a given com-

putational model or programming paradigm. This defines

the underlying form of the computation shown as the top

arrow in Fig. 1. The computational model gives a seman-

tics to the expression of the desired computation, allowing

the derivation of the result. The chosen substrate must be

able to implement this model on an appropriate domain.

3.1 Examples of computational models

There are many computational models available, such as

classical Turing models, boolean logic and circuits, spin

ices and cellular automata, artificial neural networks, a

variety of quantum models, and more. A computational

model does not have to be universal for it to be interesting

to implement in a physical system. Apart from some

quantum models, all these models can be implemented, or

simulated, efficiently in a classical computer.

Here the focus is on the Echo State Network model of

reservoir computing.
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3.2 The Echo State Network model

The Echo State Network (ESN) model, introduced by

Jaeger (2001), is a discrete time random Recurrent Neural

Network (RNN) with a specific training algorithm. The

recurrency gives RNNs memory, making them suitable for

various time series analysis tasks, but they are hard to train

using conventional techniques, which require computa-

tionally-intensive back-propagation through time. The ESN

approach overcomes this by using an untrained random

network (the ‘reservoir’), with a fast training algorithm of

the linear output layer weights only (Sect. 3.2.4).

This ‘black box’ approach to training ESNs, with no

need to access or modify internal state parameters, makes

them an interesting target for physical computing, using

some material instantiation of the reservoir model.

In this section we review the basic ESN model.

3.2.1 The basic equations

The state update and observation equations are

xðt þ 1Þ ¼ f ðqWxðtÞ þWu uðtÞÞ ð1Þ

vðt þ 1Þ ¼ Wv xðtÞ ð2Þ

where uðtÞ; xðtÞ; vðtÞ are the Nu-d input, N-d state, and Nv-d

output vectors at time t; Wu is the N � Nu random input

weight matrix;W is the N � N random state weight matrix,

normalised to have a maximum absolute eigenvalue of one;

q is the spectral radius modulating that normalisation; f is a

non-linear thresholding function, typically tanhð:Þ; Wv is

the task-dependent trained Nv � N output weight matrix.

Some models also allow the input to be a direct parameter

in the output calculation.

Other authors use minor variants of this basic reservoir

equation, such as uðt þ 1Þ in Eqn. 1, and/or vðtÞ in Eqn. 2.

The form here is discussed in Stepney (2021), which

considers the time taken to process inputs and outputs

through their respective weight matrices.

3.2.2 The input terms

The Nu-d input vector u represents the input to the reser-

voir. In many examples and benchmarks in the literature,

the input is scalar-valued, but it can be a vector repre-

senting multiple input channels. The input vector may be

augmented with a constant bias term as an additional

dimension; if so, even if the external input is scalar-valued,

the resulting input is a vector with Nu ¼ 2.

The N � Nu input weight matrix Wu is used to distribute

the input across the state of the reservoir. In the ESN model,

the weights of the input matrix Wu are chosen randomly,

typically with a uniform distribution Wij 2 U½�1; 1�. They

should then be scaled, or equivalently the input values should

be scaled, such that the input has a sufficiently large effect to

perturb the reservoir dynamics, but not so much that it satu-

rates the system. If different input channels have different

ranges, they may need to be scaled separately. The input

scalingmay need to be done in concert with the spectral radius

q scaling of the state weight matrix (see Sect. 3.2.3).

3.2.3 The state terms

The N-d state vector x represents the states of the N nodes

in the RNN. The N � N weight matrix W represents the

weighted connections between the nodes.

In the ESN model, the weights of the internal state

matrix W are also chosen randomly, typically with a uni-

form distribution Wij 2 U½�1; 1�. There may also be a

density parameter, controlling how many (randomly

selected) weights are non-zero. A density of one corre-

sponds to a fully connected reservoir, lower densities cor-

respond to more sparsely connected reservoirs.

Once the random state weight matrix has been formed, it is

normalised to ensure the echo state property (ESP). TheESP or

fading memory property ensures that the reservoir’s state at

large times is not dependent on details at early times (Jaeger

2001): there is no sensitive dependence on initial conditions. A

sufficient condition to ensure the ESP is to normalise W such

that its largest singular value,maxðriÞ, is one. However, Jaeger
(2001) notes that this sufficient condition is overly restrictive,

and normalising W such that its largest absolute eigenvalue,

max jkij (that is, its spectral radius), is one is adequate to ensure
the ESP in most cases. Hence normalising by the maximum

absolute eigenvalue is traditional in the literature.

Different spectral radii are more appropriate for different

tasks: the weight matrix is normalised, and the spectral radius

parameter q applied explicitly. Jaeger (2007) notes that,

althoughweightmatriceswith spectral radius greater than one

do not have the ESP in isolation, they can still have the ESP if

their input is large enough, and that ‘‘the larger the input

amplitude, the further above unity the spectral radius may be

while still obtaining the ESP’’. Hence the chosen value of q
can affect the appropriate input scaling (Sect. 3.2.2).

The random weights provide a random projection of the

input into a high dimensional space, such that the desired

separation of different classes can be achieved with the

trained linear output transformation Wv. However, some

projections are better than others, in a task dependent manner.

Hence, it is often the case that a sampling over multiple

random input and state weight matrices is performed, and the

best performing one(s) selected for use. In some cases, a well-

performing set of weights may even be searched for using, for

example, an evolutionary algorithm (see Sect. 7.4). If the

weights are optimised for a particular class of tasks, rather
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than a specific task, then it is still the case that training for the

specific task is fast, even if the pre-optimisation is not.

3.2.4 Training the output weights

The Nv-d output vector v represents the trained output from

the RNN. In many examples and benchmarks in the liter-

ature, the output is scalar-valued.

The Nv � N trained output weight matrix Wv is used to

project the high dimensional reservoir state into the output value.

Reservoir training is supervised training. Given a

reservoir and a stream of length S of inputs uðtÞ; t 2 1::S

with a corresponding stream of target outputs v̂ðtÞ; t 2 1::S,

the aim of training is to find the output weight matrix Wv

that minimises the mean square error (Sect. 7.1) between

the observed outputs vðtÞ and the target outputs. This

training can be thought of as ‘programming’ the random

ESN to perform a particular task, whereas adjusting the

internal parameters (Sect. 3.2.3) to values suitable for a

particular task is a form of overall reservoir configuration.

There are two main ways to calculate Wv (Lukoševičius,

2012, §27.4), shown in Algorithm 1. The first is a direct

calculation using the Moore-Penrose pseudoinverse of the

N � S matrix formed from S observations of the state

during training; this is accurate but can be computationally

expensive for large N and S, and requires S � N to avoid

overfitting. The second uses ridge regression with a regu-

larisation parameter b; a larger b can be used to reduce the

size of the components of Wv at the expense of a larger

error. The value for b is task and data dependent, but it can

be found relatively efficiently without the need to run

multiple experiments: simply evaluate Wv over a range of

values of b in Alg.1, line 13. In addition to discussion of

these algorithms, Lukoševičius (2012) has many excellent

tips for training reservoirs effectively, some of which are

specific to ESNs, some of which are also relevant to PRCs.

Once the reservoir has been trained, it should be eval-

uated on independent test data. See Sect. 7.1 for definitions

of measures used to report the performance. This evalua-

tion provides the evidence that the system works suffi-

ciently well for the required computation: it provides a

measure of e in the e-commuting square (Fig. 1).

The key point of this training algorithm is that it does

not iteratively update the values of internal weights. RNNs

are expensive to train with iterative back-propagation,

because the recurrence needs unwinding with back-propa-

gation through time. Jaeger (2001)’s key insight was that a

single-shot learning of the readout weights is sufficient.

Extreme Learning machines (Huang et al. 2006) use a

similar single-shot learning approach, in the context of

feedforward NNs.

It is this training approach, treating the reservoir as an

unmodified black-box, that makes this model particularly

suitable for physical computing: the ESN black box may be

replaced by a suitable physical device. There is no need to

modify internal parameters, and no need for a differen-

tiable model of the device.

One note of caution: Jaeger et al. (2007, Fig. 4)

demonstrate that a good prediction may not hold indefi-

nitely; in the case demonstrated, after many thousands of

timesteps, the prediction diverges. This is typically many

times longer than reservoirs are trained or tested, but

becomes an issue if they are to be deployed.

3.3 Augmenting the basic ESN model

In this section we review some standard ways to augment

the basic ESN model.

3.3.1 Leaky nodes

The basic model, Eqn.1, is often augmented with a leak

term, which allows some of a node’s current state to ‘leak’

into its next state:

xðt þ 1Þ ¼ ð1� aÞxðtÞ þ af ðqWxðtÞ þWuuðtÞÞ ð3Þ

where a 2 ½0; 1� is the leak parameter. This parameter can

be used to provide an extra timescale, in addition to the

discrete ‘clock tick’, to the model.

3.3.2 Feedback

The basic model can be augmented with a feedback term:

xðt þ 1Þ ¼ f ðqWxðtÞ þWuuðtÞ þWfbvðtÞÞ ð4Þ

Algorithm 1 training (Lukoševičius, 2012, §27.4)
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where Wfb is a N � Nv random untrained feedback weight

matrix that feeds back the trained output into the reservoir

state.

A reservoir driven by only output feedback, rather than

external input, is called autonomous. Caluwaerts et al.

(2013) use this approach to generate autonomous gait

patterns in a tensegrity system.

3.3.3 Different neuronal topologies

The classic ESN has a randomly connected topology: W is

random.Different neuron connection topologies, for example,

ring topologies (Rodan and Tiňo 2011) and lattice topologies

(Dale et al. 2021b) also show good reservoir performance.

This demonstrates that the requirements for RC do not depend

sensitively on the precise form of the internal weight matrix.

Suárez et al. (2024) provide a toolkit for instantiating RC

networks with biological connectome data.

3.3.4 Breaking symmetry

Using tanh as the non-linear function f in Eqn.1 has a

limitation, because tanh is an odd function:

tanhðxÞ ¼ � tanhð�xÞ. This can be an issue in some cases

where the task does not have this odd symmetry.

The standard way to break the symmetry is to add a bias

term to the argument of the non-linear function:

xðt þ 1Þ ¼ f ðqWxðtÞ þWu uðtÞ þ bÞ ð5Þ

where b is an N-dimensional bias vector. This can be

implemented by extending the input vector uðtÞ with an

extra constant value, ubðtÞ ¼ ðuðtÞ; 1Þ, and using an N �
ðNu þ 1Þ input weight matrix Wub:

xðt þ 1Þ ¼ f ðqWxðtÞ þWub ubðtÞÞ ð6Þ

Pathak et al. (2018) break symmetry on the output by

adding a non-linear term, as (in the notation used here;

compare Eqn.2)

vðt þ 1Þ ¼ Wv1xðtÞ þWv2ðxðtÞ � xðtÞÞ ð7Þ

where x� y denotes the Hadamard, or elementwise, pro-

duct of vectors x and y.

3.3.5 Suitability for physical implementation

We have the following: (i) the ESN performance is

insensitive to neuronal topology; (ii) training does not

access any internal parameters of the reservoir; (iii) Eqn.1

has the form of a discrete time open dynamical system with

a particular transfer function.

These make the ESN model suitable for PRC. The

(simulated, neuronal) dynamical system can be replaced by

a material system that has an appropriate dynamic response

when driven with an input signal. The material is a black

box reservoir: its internal structure need not have any

analogue of neurons; all that is needed is for the PRC’s

own dynamics to be sufficiently non-linear and dissipative

to satisfy the overall requirements of the ESN model.

Thus the ESN model provides an appropriate computa-

tional abstraction, without needing an implementation of

its detailed internal structure.

3.4 Overcoming state observation limitations

The size of the output weight matrix Wv is Nv � N. This

implies that the entire reservoir state, all N degrees of

freedom, is accessible and observable, to be operated on by

this matrix. In a physical system, this is not necessarily so:

only a few observations of the substrate’s state, Nobs, may

be observable each timestep. In such a case, the output

weight matrix has size Nv � Nobs. Since several aspects of

the computational power of the reservoir are limited by

Nobs (Sect. 7.3), this should be as large as possible. If there

are physical limitations to the number of observations,

there are several approaches to increasing the effective

Nobs, which we review in this section.

3.4.1 Delayed output reservoir

In the extreme case, it may be possible to take only a single

reading from the PRC at each timestep, giving Nobs ¼ 1.

Chen et al. (2022) use a technique from the time-delay

embedding literature to generate a k-d ‘state vector’ from a

time series of k 1-d scalar observations, suitable for their

use in training a neural-ODE model of a PRC.

In the notation used here, the process takes a series of

scalar state observations x(t), and constructs a derived k-d

‘state vector’ xðtÞ as:

xðtÞ ¼ ðxðtÞ; xðt þ 1Þ; . . .; xðt þ k � 1ÞÞT ð8Þ

3.4.2 Delay feedback reservoir

Time multiplexing model

Appeltant et al. (2011) introduce the delay feedback

reservoir computer (DFRC), which has only a single non-

linear node with a single input and output. The output, after a

time delay, is fed back and added to the external input. The

approach allows for an increased size of observable state, at

the expense of higher frequency inputs and outputs.

In standard ESNs, the input is ‘space-multiplexed’

through the random input weight matrix across the degrees

of freedom of the reservoir. In delay feedback reservoirs,

the input is time multiplexed through a random input mask
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of size N: the input is multiplied by the terms in the mask to

give a sequence of inputs,

uðtÞ ! ðumðtÞ; umðt þ 1=NÞ; . . .; umðt þ ðN � 1Þ=NÞ,
where umðt þ k=NÞ ¼ maskðkÞ � uðtÞ. This sequence is fed
into the reservoir at a frequency N times that of the input

frequency. This conceptually adds N ‘virtual nodes’ along

the delay path, leading to an N-node ring topology of the

underlying reservoir.

In the literature, the input is typically a scalar quantity u,

and the mask is a 1d vector of N weights. The approach can

be extended to an Nu-d vector input u, with a matrix mask

of size N � Nu. The mask is simply the input weight matrix

reinterpreted as a time multiplexer, rather than a space

multiplexer as in the ESN case.

The state is read at the end of the delay line at the same

frequency as the masked input, leading to N scalar values

per original timestep. The system’s observed scalar state at

each of these N sub-timesteps is assembled into a single N-

d vector state at each original timestep: xðtÞ ¼ ðxðtÞ;
xðt þ 1=NÞ; . . .; xðt þ ðN � 1Þ=NÞT. The output weight

matrix is trained in the usual way on this state vector.

The time delay is readily implemented by a long optical

fibre, and so this approach is particularly suitable for

optical systems. However, the time delay can also be

implemented in other modalities, making this approach a

favoured one in PRC where the non-linear material has

restricted input and output capabilities. The downside is

that the inputs and outputs need to be fed into and read

from the reservoir at a frequency N times higher than the

external input frequency. For large N, this may lead to

implementation challenges.

Mackey–Glass non-linear node

Appeltant et al. (2011) use a Mackey–Glass system2 for

their non-linear node. This model is derived from a delay

differential equation introduced to model certain physio-

logical systems (Mackey and Glass 1977). The paper

examines various models to characterise illness, including

growth rates of white blood cells in leukaemia, through

changes to the variables that lead to these systems turning

chaotic. The particular model used as the basis for the non-

linear node is (Mackey and Glass, 1977, Eqn.4b):

dP

dt
¼ bhnPðt � sÞ

hn þ Pðt � sÞn � cPðtÞ ð9Þ

where PðtÞ[ 0 is the concentration of circulating blood

cells at time t; s is the time delay between initiating blood

cell production and the mature blood cells being released;

b[ 0 is the base level production rate of cells; h[ 0 is the

baseline concentration; n[ 0 is a real-valued non-linearity

parameter; c[ 0 is the decay rate of cells.

Normalising the concentration with respect to the

baseline, xðtÞ :¼ PðtÞ=h, gives the more usual form of the

Mackey–Glass chaotic equation (Glass and Mackey, 2010,

Eqn.1):

dx

dt
¼ bxðt � sÞ

1þ xðt � sÞn � cxðtÞ ð10Þ

Here x is a dimensionless normalised quantity, expressed in

‘units’ of the parameter h. h is still a parameter of the

model, but is now implicit in the equation: it provides the

scale for the dependent variable x.

There are three timescales in Eqn.10: 1=b (production,

or growth, timescale); 1=c (decay timescale), and s (time

delay). Some authors further normalise these with respect

to the decay timescale, to have two independent timescales:

c=b and cs. However, when using this model in a physical

real-time system, not performing this further normalisation

makes it simpler to map the timescale parameters to

physical timescales.

Appeltant et al. (2011) use the time-normalised model

as the basis for their non-linear node, and add an input

term. Performing an analogous modification on the non-

time normalised Eqn.10 gives

dx

dt
¼ bðxðt � sÞ þ auðtÞÞ

1þ ðxðt � sÞ þ auðtÞÞn � cxðtÞ ð11Þ

where u is a dimensionless input, with the same normali-

sation as x, and a is an input scaling parameter, to bring the

magnitude of the normalised input suitably in line with that

of the state (see Sect. 3.2.2).

The original Mackey–Glass model (Eqn.9) has a posi-

tive-valued dependent variable P. In its adaptation for

DFRC (Eqn.11), care needs to be taken if the input u can be

negative, and make the term xðt � sÞ þ auðtÞ negative. If

this is the case, the non-linearity parameter n should be

restricted to integer values.

The Mackey–Glass system is a particularly common

model for simulated delay feedback reservoirs, as it has

several useful parameters: in addition to the various time-

scale parameters, the non-linearity parameter n moves the

autonomous system between periodic and chaotic beha-

viours. Furthermore, it is readily implemented in hardware

with just a few analogue electronic components, providing

a readily traversable route from theoretical model to

physical implementation.

3.4.3 Rotating neurons

The DFRC architecture is an interesting variant on reser-

voir computing, demonstrating that a full recurrent network

of non-linear nodes is not necessary: a single source of

2 This delay differential equation is also used in a different context in

RC as a benchmark task (see Sect. 7.2.1). These different usages

should not be confused.
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non-linearity, and a single recurrent delay line, is all that is

needed. However, it does have some implementation

issues, such as smoothly integrating the feedback in the

same medium as the rest of the reservoir system, and the

increase in input and output frequency by a factor of

N needed for time-multiplexing.

Liang et al. (2022) introduce the ‘rotating neuron’

architecture, designed to overcome some of these imple-

mentation issues by more readily permitting an all-analogue

implementation (although potentially introducing different

implementation issues). This has N non-linear nodes con-

nected in a cycle. A rotor feeds a differently weighted input

to each neuron: the rotor rotates by 1/N each timestep, so at

the next timestep each input weight is used for the next node.

A similar rotor setup is used for the output. The authors

demonstrate this is mathematically equivalent to a simple

cyclic reservoir, which itself is of comparable power to a

fully connected reservoir (Rodan and Tiňo 2011).

3.4.4 Discussion

What these variant approaches demonstrate is that the specific

underlying architecture of an ESN, that of being a random

recurrent neural network, is not critical to the functioning or

power of the reservoir. Different topologies and different

output styles can be exploited to make the reservoir easier to

physically construct, and to increase its computational

capacity. The engineered substrate need not correspond

faithfully to the internal structure of the ESN computational

mode. Nor need it correspond faithfully to any of these

variants: they could be modified, extended, or combined as

engineering constraints and task requirements dictate.

4 Choosing a material substrate

As mentioned above, AR/T can be used in a ‘substrate first’

manner for designing and analysing physical computing,

but here we are starting with the computational model,

reservoir computing, then evaluating substrates in this

context. This is the bottom arrow of Fig. 1.

4.1 Everything reservoirs

From a materials science perspective, there is an embar-

rassment of riches, because nearly every substrate ‘reser-

voirs’ to some degree or other. A wide range of substrates

are described in the literature, including analogue elec-

tronic circuits, atomic switch systems, carbon nanotubes,

magnetic metamaterials, memristors, MEMS devices,

octopus arms, opto-electronics, photonics, spintronic sys-

tems, tensegrity structures, and more (Allwood et al. 2023;

Caluwaerts et al. 2013; Dale et al. 2021a; Dion et al. 2018;

Grollier et al. 2020; Jensen and Tufte 2017; Nakajima

et al. 2013; Nowshin et al. 2020; Tanaka et al. 2019;

Nakajima and Fischer 2021).

The reason nearly every substrate ‘reservoirs’, despite

most substrates having nothing approaching an internal

neuronal structure, is to do with the black box nature of the

reservoir, and the form of its dynamics, eqns.1 and 2.

The black box nature means that the substrate does not

need to mirror a random RNN: it merely needs to have a

high-dimensional state that can be measured (either

directly, or exploiting delayed outputs, see Sect. 3.4.1),

that undergoes an analogous dynamics when excited by an

input, and that has the fading memory property. Equa-

tion 1, an RNN, is just a special case of a (discrete time)

non-linear dynamical system.

Most substrates are non-linear dynamical systems, and

these dynamics can be directly exploited computationally.

They are also dissipative, and hence have fading memory.

Given the wide range of potential substrates, this tutorial

cannot be a cookbook of how to build a specific PRC;

instead, it focusses on the general design questions that

need to be addressed in different ways for different

systems.

4.2 Not everything reservoirs well

From an engineering perspective, the choice of a suit-

able substrate for a given class of application requires

consideration of how the dynamical system can be engi-

neered into a system that is a good reservoir, and interfaced

effectively. The main issues with finding an appropriate

substrate concern:

1. Matching its natural timescale with that of the input (if

being used in real-time), so that its memory fades, but

not too fast (Sect. 4.3);

2. Ensuring that it is robust to environmental effects and

noise (Sect. 4.4);

3. Achieving sufficient computational capacity for the

application (Sect. 4.5);

4. Exciting it with the inputs (Sect. 5);

5. Measuring states and getting the outputs (Sect. 6);

6. Configuring it for different applications, or tuning its

performance for a given application (Sect. 7).

4.3 Timescales

For a PRC interfacing to a real world input, there are two

timescales of interest: that of the input, and that of the

substrate.

The timescale of the input is partly given by the phe-

nomenon producing it, and partly by any preprocessing

performed. The timescale of the substrate is given by its
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natural dynamics, and depends on the underlying physical

system. Response frequencies of different systems range

over many orders of magnitude, from gigahertz or terahertz

in photonic and magnetic systems to sub-hertz in tensegrity

and chemical systems.

If the natural dynamics of the substrate is much faster

than the input, then it will have relaxed and have no

memory of the previous input by the time the next arrives.

Alternatively, if its natural dynamics is much slower, it will

not be able to respond substantially to an input before the

next arrives. The timescales need to be commensurate.

4.4 Robustness and noise

In PRC, the physical properties of the substrate are being

exploited directly. These properties may change with

environmental changes, such as temperature and sur-

rounding RF noise. The substrate may need to be calibrated

to current environmental conditions (or use its own com-

putational properties to correct for them), and may need to

be isolated from environmental noise that cannot be com-

pensated for in the device. In particular, the system needs

to be isolated from any interface, measurement, and

experimental devices that might themselves be reacting

physically to the inputs, and thereby contributing an

unwanted extra dynamics to the system.

Even if the temperature of the device is kept constant,

the substrate itself will have internal thermal noise. There

may also be other forms of internal noise. Multiple mea-

surements of the substrate state, xðtÞ, may be needed to

obtain an average response.

An additional form of noise is measurement noise. The

state of the substrate is measurable only with limited pre-

cision, and the measurements may vary due to noise of the

measurement device.

4.5 Computational capacity and scaling

The computational capacity of a reservoir is governed by

the number of observable nodes (Sect. 7.3): the input is

projected into a high dimensional space, and sufficient

dimensions must be observable so that a linear output layer

can separate different classes of inputs.

Having a larger device may allow more inputs to be

provided, and outputs to be read, in parallel, although with

some kinds of devices, these numbers might scale with

perimeter rather than area of material. Even if a substrate

supports a large number of state observations, it might not

realise its full potential capacity, due to intrinsic dynamical

limitations. This may be a function of the configuration

parameters (Sect. 7), or the physical configuration of the

material. For example, if the dynamics is dominated by

edge effects, a rectangular rather than square device of the

same area might perform better (Dale et al. 2021c); dif-

ferent thicknesses of substrate might perform differently

(Dale et al. 2024).

4.6 Physical reservoirs with neuronal structure

As noted in Sect. 3.3.5, the material substrate of a PRC

need not have a neuronal structure. However, some archi-

tectures do have such a structure, explicitly wiring together

nonlinear components into a network, thereby giving

access to the internal weights W. The ESN model uses

random weights, but, as noted at the end of Sect. 3.2.3,

these weights may need to be modified to improve per-

formance. It can be similarly worth training the connection

weights in a PRC that has a neuronal architecture.

Training the weights of a PRC is more difficult than

training an RNN: there is noise, and there may be no dif-

ferentiable model of the nodes for calculating backpropa-

gation gradients. Additionally, training requiring multiple

evaluations can be slow in hardware. Recent work has been

tackling these issues in a variety of ways; see, for example,

Manneschi et al. (2024), Momeni et al. (2024), Nakajima

et al. (2022), Wright et al. (2022).

5 Input

The first link between the abstract computational model

and the physical computing device is established by the

instantiation of inputs (the down arrow of Fig. 1).

There are distinct kinds of input to a PRC being used to

compute:

• Substrate configuration values that make the system a

good reservoir;

• Input interface values including Wu;

• Trained output weight matrix Wv for performance of a

particular task (Sect. 6);

• Input stream u for the specific task instance.

5.1 Substrate configuration values

Substrate configuration values are what makes a material a

specific reservoir substrate, what makes it a specific com-

puter; they can be thought of as the analogue of the ESN

parameters such as W and q (Eqn.1).

These may be fixed hardware values, such as material

dimensions and component placement, applied when

engineering the substrate. They may be field programmable

values, such as applied voltages, used when the system is

running. Field programmable values may be varied for

different tasks.
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Suitable configuration values may be found through

search (Sect. 7.4) in physical or simulated systems

(Sect. 8).

5.2 Input interface values

In the ESN model, the input weight matrix Wu takes the

external input and distributes it randomly to each node. For

vector valued input, it distributes a randomly weighted sum

of each vector component to each node.

In a PRC substrate, there may be no direct analogue of

an ESN’s nodes. A means of distributing the input signal

with different weights to stimulate different degrees of

freedom of the substrate needs to be devised and imple-

mented. The temporal input masking for DFRCs requires

different design considerations: a given input signal needs

to be modulated over time.

If negative-valued weights are required, this may con-

strain implementation options: for example, voltages can

be negative or positive, but resistances are positive only.

This constraint may be overcome by offseting the mapping

between abstract and physical values, for example, by

mapping the abstract interval ½�1; 1� to the physical

interval ½250X; 750X�.
Other design considerations include modality changes: is

the external input the same modality as that applied to the

substrate, or is some transduction layer needed, for example,

from acoustic input to electrical stimulus. In many cases, this

transduction is achieved using conventional computing,

with associated analogue to digital conversion of the phys-

ical input, digital multiplication by the input weight matrix,

then digital to analogue conversion to stimulate the sub-

strate; fully analogue implementations are rare.

ESN input weights are randomly chosen, but improved

values may be found by search. For PRC, input weights can

also be chosen randomly, or, like substrate configuration

values, may be optimised through search. Similarly, if the

input weights are field programmable, they may be opti-

mised for different tasks.

5.3 Input stream

There are different uses of the input stream:

1. Washout, to remove the influence of any previous

computing activity;

2. Training, to provide outputs for training the output

weight matrix Wv (Sect. 3.2.4);

3. Testing, for evaluating how well the trained reservoir

performs (Sect. 7.1);

4. Task, for using the trained reservoir to compute.

All of these require the same consideration of physical

constraints.

Encoding

The physical signals comprising the input stream may be

directly sensed inputs, such as acoustic or magnetic signals,

in which case the data is trivially encoded as analogue

values.

In other uses (particularly in benchmarking and char-

acterisation, Sect. 7), some separate source of data may

need to be encoded in the physical signal, or, more usually,

directly sent to the input interface processing layer

(Sect. 5.2).

If significant transduction is performed, consideration of

how the raw input is encoded for stimulating the substrate

is needed. For example, audio inputs might be fourier

transformed, with different frequency components extrac-

ted. If the input is encoded as the modulation of some

carrier signal, then it could be amplitude or frequency

modulated. Experimentation might be needed to discover a

good encoding. Ideally, such preprocessing should be

minimised, and its cost needs to be considered as part of

the overall computational cost (Blakey 2017).

Normalisation and modality

Physical inputs should be normalised to the dynamic range

acceptable to the substrate, to avoid damaging or saturating

it. Normalisation might also require amplification, so that

the input signal sufficiently stimulates the PRC.

For vector input, on multiple channels potentially from

different sources, the separate channels may need to be

normalised individually. If the individual inputs are of

different modalities, extra care is needed to ensure they all

receive equal attention from the reservoir.

Timescale: discrete or continuous

The input timescale and the reservoir timescale need to

match (Sect. 4.3). If the input is from a real-time source,

then the substrate needs to be matched to it. If it is not real-

time data (for example, benchmark data), then the input

rate can be matched to the substrate.

The ESN model is a discrete time model. If the input is

discrete (again, for example, because it is ESN benchmark

data), then it can be fed into the reservoir at discrete time-

steps. If the input is continuous data, then there are two

approaches. It can be discretised through a standard ‘sample

and hold’ approach. Alternatively, if the input interfacing

(Sect. 5.2) has been implemented in an analogue manner,

the input can be fed as a continuous signal to the reservoir.

6 Output

The other link between the abstract computational model

and the physical computing device is established by the

representation of outputs (the up arrow of Fig. 1).
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Many of the issues in designing the output are com-

plementary to designing the input:

• Exciting the reservoir state with inputs, versus measur-

ing reservoir state for output

• Processing external inputs through the input weight

matrix, versus processing measured state values through

the output weight matrix

• Encoding data in the input stream, versus decoding

output data from the output stream

6.1 Measuring reservoir state

A means of measuring a high-dimensional reservoir state

that can then be multiplied by the output weight matrix

needs to be implemented. A given substrate, despite

potentially having a high number of internal degrees of

freedom, may have a restricted number that can be readily

observed. Dimension-increasing techniques (Sect. 3.4)

may be needed, which may add complexity to the

implementation.

6.2 Output weight matrix

Output weight matrix values are in essence the program

that makes the RC perform a particular task. They are

found through training (Sect. 3.2.4).

In the ESN model, the measured state of the nodes, x, is

multiplied by the weight matrix Wv to give the trained

output v. Implementing this involves many issues similar to

those of implementing the input weight matrix (Sect. 5.2),

some in reverse, for example: accessing and gathering the

state values, implementing negative-valued weights, and

modality transduction.

The output is often assumed to be digital and electronic,

so often the observed state is passed through analogue to

digital conversion, and the output weight matrix multipli-

cation is performed digitally.

6.3 Decoding the output stream

Even if a fully analogue approach to output weight matrix

multiplication is designed, some form of final output dis-

cretisation is needed to implement the standard training

algorithm (Sect. 3.2.4). Having the input and output time-

steps the same makes this training much simpler (Cucchi

et al. 2022, Sect.3.3).

A fully analogue means of generating the output stream

potentially allows embedded devices with multiple output

modalities, allowing outputs to be directed to a range of

other embedded processors and actuators.

Once the raw physical output has been extracted from

the reservoir, as a voltage value, or a spin, or some other

quantity, further processing and filtering can be applied as

needed. For example, an averaging across multiple sources

might be needed to reduce noise, thresholding might be

applied to determine a dominant value. The final value, if

to be used in some other computation, may needs to be

represented at a higher level of abstraction in the usual

manner in computing (decoding as bits, digits, or other

symbols, for example).

In the case of a feedback reservoir (Sect. 3.3.2) or

DFRC (Sect. 3.4.2), the output will need to be fed back in

as another source of input. This may require a change of

modality and rescaling.

7 Characterising the computational capacity
of a PRC

Once we have the links between the abstract computational

model and the physical computing device from the

instantiation of inputs and the representation of outputs, the

final part of the physical computing design and analysis is

to ensure that the resulting diagram ‘sufficiently com-

mutes’ (the ¼e in Fig. 1). Once this has been established,

the device can be used to compute thereafter.

7.1 Defining the error

Several different error measures, for how much the

observed output deviates from the target output, are used in

the literature. Here we document the most common ones.

Notation

Given a time series3 v ¼ vðtÞ; t 2 1::T , we write the mean

of these values in the usual way as

hvi :¼ 1

T

X

T

t¼1

vðtÞ ð12Þ

In the following definitions, the target time series is v̂ and

the observed is v.

Mean square error, MSE

Mean squared deviation of observed and target output

values; analogue of the variance. If the values have

dimension D, the MSE has dimension D2

MSE ðv̂; vÞ :¼ 1

T

X

T

t¼1

ðv̂ðtÞ � vðtÞÞ2 ¼ hðv̂� vÞ2i ð13Þ

3 Here, for notational simplicity, values at each time point are

assumed to be scalar, v(t), and we use v to denote the list of length

T formed from the time series of these scalar values. The definitions

can be extended to vector-values data points in the usual way.
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Root mean square error, RMSE
Root mean squared deviation of observed and target

output values; analogue of the standard deviation. If the

values have dimension D, the RMSE also has dimension D.

RMSE ðv̂; vÞ :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MSE ðv̂; vÞ
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hðv̂� vÞ2i
q

ð14Þ

Normalised mean square error, NMSE
The normalised measures are normalised with respect to

the deviation of the target from its mean. The NMSE is

dimensionless: it is independent of the units or scaling of

the target values. NMSE = 1 if each vt is set to the mean

target value hv̂i (Lukoševičius 2012, p.661).

NMSE ðv̂; vÞ :¼ MSE ðv̂; vÞ
MSE ðv̂; hv̂iÞ ¼

hðv̂� vÞ2i
hðv̂� hv̂iÞ2i

ð15Þ

Normalised root mean square error, NRMSE

This is the measure most commonly used in the

literature.

NRMSE ðv̂; vÞ :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NMSE ðv̂; vÞ
p

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hðv̂� vÞ2i
hðv̂� hv̂iÞ2i

s

ð16Þ

7.2 Benchmarking

Benchmarking is a popular way to evaluate the computa-

tional capacity of a device.

7.2.1 Common RC benchmarks

There are several common benchmarks used in the RC

literature. These can be sub-divided into (Wringe et al.

2024):

• Classification tasks, of classifying input sequences;

• Imitation tasks, of imitating the behaviour of an open

dynamical system, given the same inputs;

• Prediction tasks, of predicting the next item(s) in a time

series of a closed dynamical system (or a dynamical

system where the inputs are unknown or not provided).

Examples of classification tasks include the TI-46 Isolated

Spoken Words Dataset classification (Doddington and

Schalk 1981), often restricted to just the spoken digits

subset. Examples of imitation tasks include NARMA

(Sect. 7.2.2), and channel equalisation (Mathews and Lee

1994; Jaeger and Haas 2004). Examples of prediction tasks

include the Santa Fe Data Set A laser task (Hübner et al.

1994), the sunspot prediction task (NCEI, nd), and the

Mackey–Glass equation (Eqn.10)4.

A great variety of datasets that can be used for bench-

mark tasks, although not yet common in the RC literature,

can be found in Gilpin (2021)’s database of chaotic

dynamical systems, all specified according to guidelines

proposed by Gebru et al. (2021).

7.2.2 NARMA

The NARMA (nonlinear autoregressive moving-average)

benchmark is possibly the most common benchmark used

in the RC literature, so we spend some time here discussing

it and its limitations.

The NARMA-N time series is an open delay difference

dynamical system. It is an imitation task: the reservoir is

trained to imitate, or reproduce, the observed NARMA

dynamics given the same inputs.

The general form of the NARMA-N family (Atiya and

Parlos 2000; Rodan and Tiňo 2011) is:

xðt þ 1Þ ¼ axðtÞ

þ bxðtÞ
X

N�1

i¼0

xðt � iÞ
 !

þ cuðt � N þ 1ÞuðtÞ þ d

ð17Þ

Its (quadratic) non-linearity comes from the various

xðtÞxðt � iÞ terms, and the uðt � N þ 1ÞuðtÞ term; it also

requires memory of the previous N states.

Atiya and Parlos (2000, Eqn.86) introduce this equa-

tional form to define NARMA-10. They use inputs

u 2 U½0; 0:5�, and parameter values

ða; b; c; dÞ ¼ ð0:3; 0:05; 1:5; 0:1Þ.
Adapting this for different values of N reveals that the

equation can rapidly diverge if not tuned correctly. Indeed,

even the standard NARMA-10 setup does itself occasion-

ally diverge (Kubota et al. 2021). Other authors have

defined the form for further values of N, and taken a variety

of approaches to controlling divergence. For example,

Schrauwen et al. (2008, p.1164) define NARMA-30 with

different parameter values of (0.2, 0.04, 1.5, 0.001), nev-

ertheless, it too very occasionally diverges; Rodan and

Tiňo (2011, Eqn.6) defines NARMA-20 and add a tanhð:Þ
wrapper to stop divergence; Fujii and Nakajim (2017,

Eqn.18) define NARMA-5, 10, 15, and 20 with the stan-

dard parameter values but a reduced input range

u 2 U½0; 0:2�.
Furthermore, various NARMA timeseries each have

their own range of output x values. For example, Atiya and

Parlos (2000)’s NARMA-10 x values range between (ig-

noring divergences) 0.15 and 1, Fujii and Nakajima

(2017)’s NARMA-10 with reduced u range has x values

ranging between 0.15 and 0.25, and Schrauwen et al.

(2008)’s NARMA-30 x values range between (again

4 As noted earlier (Sect. 3.4.2), this is a different use of the Mackey–

Glass system from its use as the non-linear component in DFRC.
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ignoring divergences) 0 and 0.6 (see Fig. 2, top). Even

using consistent parameter values and input range yields

systematically different output ranges for different values

of N (see Fig. 2, bottom). This makes any performance

comparison as a function of N problematic.

There are several issues with the NARMA benchmark:

divergence, a multitude of parameter values in the litera-

ture, and difficulty of making any conclusions as a function

of N. As such, its use as a benchmark should be approached

with caution. NARMA has features of a non-linear memory

task, so using the generic, and more readily interpretable,

information processing capacity measure (Sect. 7.3.2)

overcomes these limitations.

7.2.3 Issues with benchmarks

A given reservoir might perform very well on one class of

benchmark tasks, but less well on others. A range of

benchmark classes should be used. Even so, using bench-

marks as ameans to assess general capabilities of a reservoir,

as opposed to capabilities on specific tasks, have their issues.

Different benchmark tasks may require very different

computational capabilities; for example, one task may

require memory of many past inputs, but little processing,

whereas another may require the opposite. How does

performing well on one of these tasks transfer to the suit-

ability of the reservoir for another?

Also, it is often interesting to assess how reservoir

capabilities scale with reservoir size or other parameter

values. This requires a parameterised range of task diffi-

culties. Even benchmarks that appear to have such a

parameter (for example, NARMA, Sect. 7.2.2) are not easy

to interpret in this manner.

7.3 Task-independent measures

Because of the issues with benchmarks, task-independent

measures, more closely related to underlying theoretical

computational concepts, can be used to assess generic

properties of reservoirs. There are several theoretical mea-

sures that can be used for simulated ESNs, where one has

access to the internal parameters of the system. However, for

PRC, measures that rely only on the input–output mapping,

rather than on, say, building two reservoirs with only a small

difference in internal state, are needed, since one rarely has

access to internal values in the manner needed.

There are several measures that fulfil these requirements.

Dale (2018), Love et al. (2021) discuss a range. Here, we

describe some rank-based measures, and some memory

capacitymeasures, that are often used in the literature. These

measure different capabilities of the reservoir.

7.3.1 Rank-based measures

We can calculate a general rank measure of an N-node ESN

as follows.

1. Provide input to the reservoir.

2. Measure the reservoir state x at S	N timepoints ti,

giving a sequence of N-d (column) vectors xi.

3. Construct the N � S matrix X, where column i is xi. So

X ¼ ½x1 x2 . . . xS�.
4. Calculate the rank of X.

What distinguishes the various rank measures is the form

of the input; what distinguishes the variant implementa-

tions in the literature are the state measurement points.

The maximum possible value of the rank is minðN; SÞ.
Here we have N � S, so the maximum possible value is N.

Kernel rank and generalisation rank

The particular rank property being calculated depends on the

nature of the input. Legenstein and Maass (2007), Büsing

et al. (2010) introduce two such measures: kernel quality

(kernel rank,KR), andgeneralisation rank (GR), in the context

of evaluating the classification capability of neuronal circuits.

Kernel rank (KR) measures how well the inputs are

projected into a high dimensional state space, such that

they can be separated by a linear output weight matrix.

Fig. 2 The NARMA family, for various parameter values

N; ða; b; c; dÞ; umax, same random inputs ui, plotted for timesteps

t ¼ 100� 400. (top) blue, Atiya and Parlos (2000)’s original

NARMA-10 values, 10, (0.3, 0.05, 1.5, 0.1), 0.5; orange, the original

values, but with umax ¼ 0:2; green, Schrauwen et al. (2008)’s values

30, (0.2, 0.04, 1.5, 0.001), 0.5. (bottom) Fujii and Nakajima (2017)’s

approach, using Atiya and Parlos (2000)’s original values but with

umax ¼ 0:2: blue, N ¼ 5; orange, N ¼ 10; green, N ¼ 15; red, N ¼ 20
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High KR indicates good separability. Generalisation rank

(GR) measures how robust the reservoir is to noise and

avoiding overfitting. Low GR indicates good robustness to

noise.

The original definitions are in the context of classifica-

tions tasks, and continuous spike train inputs (Legenstein

and Maass 2007), or discrete time binary inputs (Büsing

et al. 2010). These definitions need to be adapted and

interpreted for the discrete time, real-valued inputs of RC,

and times series tasks. There are two main approaches in

the literature.

Direct translation The original definitions use S distinct

input streams, and measure the state at time T, corre-

sponding to the end of the input. For KR, these streams are

maximally different, for GR, they are set to be similar.

Vidamour et al. (2022) use a direct translation of this

approach, with each stream’s values drawn from U½�1; 1�.
In the case of GR, the last few values of each stream are set

to be the same values, making the streams similar. Büsing

et al. (2010), Vidamour et al. (2022) take the length of this

common tail to be 3. The resulting measures are given in

Algorithms 2 and 3.

Algorithm 2 KR, Vidamour et al. (2022)

Algorithm 3 GR, Vidamour et al. (2022)

Adapted translation

Dale et al. (2019) use a different interpretation, which is

computationally less intensive (requiring S inputs, rather

than S� T), and adapted to time series tasks (where the

reservoir state at each timepoint is used), but is further

from the original definitions. In this approach, there is a

single input stream, of length S, and the reservoir state is

measured at each timepoint. For KR, the stream’s values

are drawn from U½�1; 1�, thereby making them distinct; for

GR they are drawn from U½�d; d�, a small amount repre-

senting the noise, thereby making them similar. The choice

of d is somewhat arbitrary, but should represent the

expected level of noise in the inputs. The resulting mea-

sures are given in Algorithm 4. In Dale et al. (2019), KR

has range r ¼ 1; GR has range r ¼ 0:1.

Algorithm 4 KR and GR, Dale et al. (2019)

Choosing parameter S

Büsing et al. (2010) use the minimal value S ¼ N, giv-

ing a square matrix M. Dale et al. (2019, §D.a) note that

the measured rank increases with S, until it eventually

converges (Fig. 3). This is due to increasing the chance that

the sampled inputs drive the reservoir into the full space

that it can reach. Preliminary investigation should be per-

formed to establish a suitable value for S.

Calculating the rank

The standard way to calculate the rank of the matrix M

is to use singular value decomposition (SVD). This gives

M ¼ URVT, where U and V are rotation matrices, and R is

an N � S diagonal matrix. The diagonal values ri of R are

the singular values, which are real and non-negative. The

rank ofM is the number of these ri that are non-zero. Rank
is an integer, so, for small N, this can result in a very

granular measure.

Due to numerical effects and noise, typically all the

singular values derived by this process are non-zero, but

some may be very small. To make the measure meaningful

(rather than always N) in practice a threshold is chosen,

below which the singular values are taken to be effectively
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zero. This threshold is typically expressed as some per-

centage of the maximum singular value. (It should not be

chosen as an absolute value, as rescaling M, for example,

due to a change in physical units, similarly rescales the ri.)
The threshold value is essentially arbitrary, and affects the

measured rank (Fig. 3), so should be stated in any results.

An alternative to this integer-valued rank with threshold

is the real-valued effective rank (Roy and Vetterli 2007;

Love et al. 2021). Normalise the singular values to sum to

one: pi ¼ ri=
P

i ri. The effective rank is defined as

expð�
P

i pi ln piÞ. In the case that R of the singular values

are the same, and the rest are zero, then each pi ¼ 1=R or 0,

giving an effective rank of R, which is the same as the

standard rank value. For other cases, effective rank gives

continuous values, has no arbitrary threshold, and weights

the singular values according to their size, potentially

giving a more meaningful result.

Discussion of rank measures

For KR, alg.2 reduces to alg.4 if T ¼ 1 (and r ¼ 1).

These variants can be considered essentially the same

measure, as they typically give similar results: they are

merely altering which states are used in the calculation.

For GR, algorithm 3 and algorithm 4 are more different,

both in how they define similarity, and in the range of

inputs used to drive the reservoir. They can give quite

different results, so should be considered distinct measures.

GR has further issues in its definition, in particular, the

definition of ‘similarity’ is somewhat arbitrary. Other

measures might be preferable, for example, entropy based

measures (Griffin and Stepney 2024), but are not yet as

well-established in the literature.

If the physical inputs are provided as a modulation to

some driving input, for example, as amplitude modulation

to a sinusoidal magnetic field, then all the input streams

used for measuring KR and GR should be similarly added

to that driving input.

7.3.2 Memory capacity

Linear memory capacity

Jaeger (2002) introduces (linear) memory capacity for a

reservoir with scalar input. Given input uðtÞ 2 U½�1; 1�,
the reservoir is trained to reproduce this input, delayed by a

number of timesteps k. To do this, the target output vector

is defined as v̂ðtÞ ¼ ðuðt � 1Þ; uðt � 2Þ; . . .; uðt � kÞ; . . .ÞT.
Then linear memory capacity for a delay of k is defined as

the covariance squared of the delayed input and the

respective observed output, normalised by the variances of

the input and the observed output:

MCk ¼
cov2 uðt � kÞ; vkðtÞð Þ
varðuðtÞÞvarðvkðtÞÞ

ð18Þ

MC ¼
X

1

k¼1

MCk ð19Þ

where vk is the kth component of the trained output vector

vðtÞ ¼ WvxðtÞ, the reservoir’s ‘memory’ of the k-delayed

input value.

Jaeger (2002) shows that for i.i.d. (independent and

identically distributed) random input, MC�N. White et al.

(2004), Rodan and Tiňo (2011) also investigate this MC.

As the delay k grows, each MCk tends to decrease (and

the corresponding NRMSE tends to increase), indicating

that inputs after longer delays are remembered less well,

and are dominated by noise. In the formal definition of MC

(Eqn. 19) the sum over delays goes to infinity; since the

small values at high k are essentially noise, however, they

should be neglected, so in practice a cutoff is used. Dambre

et al. (2012, SupMat3.2) define a threshold based on the

size of the reported capacity. Dale (2018) uses a cutoff of

kmax ¼ 2N (number of nodes).

Non-linear memory capacities

Dambre et al. (2012) generalise the definition of linear

memory capacity in a way that allows them to define

various non-linear capacities, too: they call this Informa-

tion Processing Capacity (IPC). In these cases, in addition

to remembering past inputs, the output is required to be a

non-linear function of those inputs, for example, a cubic

function such as u3ðt � 1Þ or uðt � 1Þu2ðt � 2Þ. The cases

where the polynomials involve different time delays are

called cross memory capacities (Duport et al. 2012).

Dambre et al. (2012) use sets of orthogonal polynomi-

als, to cover all possible non-linear capacities and cross

memory capacities with no double counting. They use

Fig. 3 Illustration of the Dale et al. (2019) algorithm for KR (y-axis),
as a function of length of stream S (x-axis) and threshold (blue line

10% of maximum singular value, orange 5%, green 2%, red 1%,

purple effective rank). The two plots show two different N ¼ 100

node reservoirs, each with three different input streams; the variation

between reservoirs is much larger than the variation between inputs
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normalised Legendre polynomials for reservoir inputs

uðtÞ 2 U½�1; 1�. They note that different sets of orthogonal

polynomials should be used for different input distribu-

tions, for example, Hermite polynomials for Gaussian-

distributed inputs. Orthogonal sets of trigonometric func-

tions can also be used as the basis.

As with linear memory capacity, the reservoir is trained to

output the relevant (here, polynomial) function of its delayed

input. For a given degree d of polynomial (linear, quadratic,

cubic, etc), the contributions for all delays k, including all

combinations of delays in the cross memory capacities, are

summed to give an IPC for that degree. Hence linearmemory

capacity is the IPC for degree d ¼ 1. Dambre et al. (2012)

prove that the total IPC (from the contributions of all the

linear and non-linear polynomials) is MC ¼ N for a system

with fading memory. Tsunegi et al. (2023) measure the IPC

of a physical spintronic oscillator.

This procedure is computationally intensive, as there are

many combinations of polynomials and delays as degree

d increases. Contributions at high d decrease, and a cutoff

at large d is used. The same observed state data can be used

in all the training.

7.3.3 Discussion of task-independent measures

On the one hand, task-independent measures are to be

preferred for characterising general reservoir properties, as

they minimise bias towards particular inputs or behaviours.

Additionally, their results are more readily interpretable in

computational terms, and have theoretical bounds. For

example, although NARMA (Sect. 7.2.2) looks similar to a

non-linear (quadratic) memory capacity, it is unclear

exactly what it is measuring, how to generalise it, or what

any theoretical bounds on its performance might be.

Kubota et al. (2021) use NARMA-10 as a case study, and

critique it, in their in-depth analysis of IPC.

On the other hand, since there is no specific well-defined

task involved, definitions of the measures may differ in the

literature (Sect. 7.3.1). They can also have multiple arbi-

trary parameters (such as thresholds and input stream

lengths). It can be hard to compare results if these details

are not reported.

These measures may have particular mathematical

properties (such as rank bounded by N, or IPC MC ¼ N).

However, these are theoretical properties, and both

numerical noise (finite input streams and other influences

of randomness) and, in physical systems, experimental

noise and systematic effects, can make these theoretical

properties either trivially achievable (such as ranks, naı̈vely

calculated, always being N), or require arbitrary cutoffs and

thresholds to get meaningful results.

In summary: task-independent measures reduce bias and

can be computationally meaningful; however, the functions

calculated and parameter values used in their measurement

need to be explicitly reported, and may vary from system to

system.

7.4 Searching for good reservoir configurations

ESNs and PRCs are not in fact black boxes: they have

many configuration parameters that can be adjusted to

affect performance. As can be seen from Fig. 4, the values

of the task-independent measures varied widely amongst

randomly chosen ESNs. To find a specific ESN good for a

particular task requires a search through ESN parameter

space. The same is true for PRCs, where the configuration

parameter space is substrate and architecture specific.

Optimising PRCs

The approach of searching for good configuration param-

eter values follows from the original in materio computing

approach (Miller and Downing 2002), where material con-

figurations (for example, voltages applied at certain positions

on the substrate) are evolved such that the system can perform

a specific computational task directly. The evaluation of the

fitness function is performed directly on the device, leading to

‘substrate in the loop’ evolution (Harding and Miller

Fig. 4 The effective KR, effective GR (Alg.4) and linear MC (Eqn.19

with cutoff kmax ¼ 2N) of 20,000 randomly selected N ¼ 100 node

ESN reservoirs, displayed as a Scatter Plot Matrix (SPLOM: diagonal

shows single measure histograms; upper triangle, pairwise scatter

plots; lower triangle, pairwise kernel density estimate plots). Random

parameters: random input weight matrix, Win elements 2 U½�1; 1�;
random state weight matrix, W elements 2 U½�1; 1� then normalised

such that the maximum absolute eigenvalue max jkij ¼ 1; spectral

radius q 2 U½0:5; 2�; W density (proportion of non-zero weights)

2 U½0:2; 1�; bias input 2 U½T ;F�
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2004, 2005; Clegg et al. 2014;Mohid et al. 2014a, b, c). Each

new task requires its own separate evolutionary search.

Dale et al. (2016a, b) use similar substrates, and evolve

configurations to perform the higher-level task of ‘being a

PRC’, which can then be trained and retrained for a specific

tasks. This substantially reduces the time-intensive evolu-

tionary search stage, which needs be performed only once,

to evolve the PRC configuration values, not for each

individual task.

The search process needs to restrict the various config-

uration parameter values to the physically realistic region,

to ensure devices are not damaged by being driven outside

their design domain during the evolutionary process.

Some configuration parameters require more effort to

search over if they are not readily adjustable in a design

loop, if they are not ‘field programmable’. Such parameters

include component values, material composition, and

device size and shape, where a change in value requires

fabrication of a new instance of the device. In such cases

the search might be performed in simulation, if there is a

sufficiently good model available (Sect. 8), with only a few

devices being fabricated to validate the search process.

Care needs to be taken if the search process moves pro-

posed solutions outside the domain of validity of the

simulation.

Optimising for tasks

Optimisation requires an objective function, or fitness

function. What this should be for a good generic reservoir

configuration is not clear. Using specific benchmarks

biasses towards those tasks. Using task-independent mea-

sures raises the question: what are suitable values of these

measures? The answer is that the most appropriate values

are task-dependent: some tasks might require high memory

capacity, whereas others might do better with a higher

kernel rank and lower memory capacity.

How much to tune a PRC through re-evolving config-

uration parameters, versus reusing a generic configuration,

depends on the desired performance, and the use context. If

a given reservoir is to be switched between multiple tasks,

it might be worth training several configurations, and

switching between those as well as switching output

weights. In other cases, the reservoir might be required to

perform two tasks simultaneously. For example, Cucchi

et al. (2022, Sect.2.1.1) describe a hypothetical case of a

reservoir being trained to simultaneously classify a time

series as a whole, and to detect anomalies within the time

series. In this case, the output weight layer would need to

be trained on a single ‘compromise’ reservoir, that can

perform each task adequately, but possibly not as well as if

it were optimised for either specific task.

7.5 Exploring reservoir configurations: CHARC

It is possible to search for a good reservoir configuration

for a particular task, where there is a well-defined objective

function (Sect. 7.4). However, a rather different class of

task might require a new search for a differently configured

reservoir. These individual searches give little insight into

the full range of capabilities of a potential substrate.

The CHARC (CHAracterisation of Reservoir Comput-

ers) framework (Dale et al. 2019) instead seeks to char-

acterise the full potential of a substrate to be configured for

a range of tasks. Instead of using an optimising search with

a fitness function, CHARC uses Novelty Search (Lehman

and Stanley 2008, 2011). Rather than trying to find a

configuration that maps to an optimal place in some fitness

landscape, novelty search attempts to find a collection of

configurations that map to an approximately uniformly

distribution in some ‘behaviour space’. In CHARC, the

configuration space is whatever the configuration parame-

ters are for the given substrate reservoir, and the behaviour

space is taken to be the (KR, GR, MC) values of the rel-

evant reservoirs. The method is not dependent on this

particular choice of measures; further or different measures

can be used to define different behaviour spaces as

appropriate. The search is needed, because a uniform dis-

tribution of parameter values in configuration space does

not map to a uniform distribution in behaviour space

(Fig. 4).

The characterisation process is as follows:

1. Use CHARC to characterise ESNs of a particular size

(number of nodes N). This provides the baseline, and

need be done only once for a given N, not for every

substrate. N is typically a little larger than the expected

equivalent N of the PRCs, given by the number of

observed nodes, possibly augmented by a method such

as that described in Sect. 3.4.

2. For each desired task, find the position in this

behaviour space, (KR, GR, MC)task, where the optimal

ESN lies. This location gives the optimal ESN for this

task.

3. For each given substrate instance, use CHARC to

characterise the PRC in the same manner.

4. Examine the behaviour space volume occupied by the

substrate’s CHARC results: this gives a measure for

the ESN-equivalent size of the PRC, and hence for the

range of behaviours the substrate instance can realise.

5. For each desired task, use the values of (KR, GR,

MC)task found in the ESN step, and back-map to the

substrate configuration values that give these same

values. Use these configuration values as a starting

point to further optimise the configuration, eg, by hill

climbing, if needed.
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See Dale et al. (2021b) for examples of the technique

applied to a carbon nanotube PRC, and a simulated feed-

back delay RC.

8 Simulating a substrate

Although it is not necessary to have a detailed under-

standing of substrate dynamics to use a PRC, it can help

when designing one. It may be possible to build a PRC

purely empirically, but when trying to optimise a design or

characterise a substrate (Sect. 7), a physical model can be a

great help, both for suggesting the design space, and for

exploring it in simulation.

Allwood et al. (2023, Sect.IV) discuss a range of models

for nanoscale magnetic systems, from general purpose phy-

sics simulators to higher level, special-purpose models.Many

authors develop bespoke simulators for their own substrates.

In some cases there may be no straightforward way to

model a substrate of interest, for example, due to irregu-

larities in the material. Then it may be useful to learn a

proxy model of the device, for example, through the

approach of neural-ODEs and neural-SDEs (Chen et al.

2022; Manneschi et al. 2024). These models have the

advantage of being both learned (so little or no prior model

knowledge is needed) and differentiable (for use in other

models).

It is necessary to simulate the input and output pro-

cesses, too. For example, if using an existing simulator

built for a different purpose, it may be necessary to add the

input term in a manner analogous to modifying the

Mackey–Glass system (Eqn.10) to include inputs (Eqn.11).

Any pre-processing of inputs should also be simulated, to

enable the effects of noise and limited precision to be

included. The internal state of a simulated system can often

be examined directly: the mapping between the micro-

scopic modelled state values and the experimentally mea-

surable macroscopic values needs to be determined, as does

any limitation to the number of values measurable.

If using a simulation in a design search loop, it is

important to have reality checks. Evolutionary search is

notorious for exploiting bugs in simulations in order to

optimise a fitness function (Lehman et al. 2020), and

novelty search as used in CHARC (Sect. 7.5) specifically

pushes the design space envelope, potentially outside the

domain of applicability of the simulation.

9 The future of PRC

The goal of PRC is twofold: to exploit the natural physical

dynamics of substrates to perform efficient computation,

and to interface naturally to the physical world. Combined,

this promises a route to smart sensors and edge computing,

where sensing, processing, and signal transduction are all

performed seamlessly and efficiently in the same system.

For example, one potentially exciting application is

recognising that a robot body is a dynamical system, and

exploiting this for computation (Hauser et al. 2011;

Nakajima 2020; Hauser 2021).

PRC research is moving towards its goal, but has some

way to go still. Currently, the main focus is on material

substrates, and how they can be made into reservoirs. In the

move to real world applications, interfacing, scaling, and

training all need to be addressed, moving from single

embedded devices with digital interfacing, to architectures

of fully embodied devices, integrated into the overall

system.

9.1 Interfacing

Some applications are integrating sensing and processing

in a single device, such as the MEMS accelerometer PRC

(Barazani et al. 2020; Chiasson-Poirier et al. 2022) being

developed for gait analysis. However, fully analogue

implementations, including the interfacing to input weights

(Sect. 5.2) and output weights (Sect. 6.2), are rare.

Embedded reservoirs intended to solve a variety of tasks

would potentially need dynamic reconfiguration, of both

their configuration parameters and their output weight

matrix, which will require more complex interfacing.

9.2 Theory and training algorithms

The ESN training algorithm (Sect. 3.2.4) is also used to

train PRCs, even thought they do not necessarily have the

same dynamics as an ESN. All the theoretical results relate

to the ESN model. The training algorithm is robust, but

there is potentially room for improvement by adding some

extra facilities or different approaches (Manneschi et al.

2023).

Theoretical modelling and training architectures of

multiple connected PRCs, particularly heterogeneous ones,

is pushing the state of the art.

9.3 Multi-reservoir architectures

Rather than scaling individual reservoirs (Sect. 4.5), one

might wish to connect multiple reservoirs in a network of

reservoirs, ‘deep’ reservoirs (Gallicchio et al. 2017), or a

reservoir of reservoirs. Homogeneous sub-reservoirs give

an easier model, and a potentially easier training approach.

Heterogeneous reservoirs would allow for multiple sub-

strates, multiple timescales, multiple input and output

modalities, and individual configurations tuned for differ-

ent parts of the task.
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System architectures will need to combine such devices

into larger solutions, including other sensors and actuators,

and potentially digital processors to perform the compute-

intensive tasks beyond the range of reservoirs’ capabilities.

PRC is not the last word in physical computing. It does

have a computational model particularly suited for smart

sensors and edge computing, but other forms of computing

exist. An overarching physical computational model, uni-

fying neuromorphic, probabilistic, dynamical systems,

classic symbolic computing, and more (Jaeger 2021b;

Jaeger et al. 2023), could be the way forward for more

complicated systems incorporating computational devices

implementing a range of different paradigms.

10 Conclusions

PRC demonstrates that physical materials can naturally

compute, although care needs to be taken in distinguishing

true computation from mere physical time evolution. Small

reservoirs of single materials are routinely designed, built

and evaluated. Reservoirs with larger computational

capacity, fully analogue, and parts of larger systems, are

needed for the technology to reach its full potential. This

requires both computational theory and materials engi-

neering advances.
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Hübner U, Weiss C-O, Abraham NB, Tang D (1994) Lorenz-like

chaos in NH3-FIR lasers (data set A). In: Weigend AS,

Gershenfeld NA (eds) Time series prediction: forecasting the

future and understanding the past. Westview Press, pp 73–104

Jaeger H (2001) The ‘‘echo state’’ approach to analysing and training

recurrent neural networks - with an erratum note. Bonn Germany

German Nat Res Center Inf Technol GMD Tech Rep 148(34):13

Jaeger H (2002) Short Term Memory in Echo State Networks.

Technical Report GMD report 152

Jaeger H (2007) Echo state network. Scholarpedia 2(9):2330

Jaeger H (2021a) Foreword. In Nakajima and Fischer 2021:v–xi

Jaeger H (2021b) Toward a generalized theory comprising digital,

neuromorphic, and unconventional computing. Neuromorph

Comput Eng 1(1):012002

Jaeger H, Haas H (2004) Harnessing nonlinearity: predicting chaotic

systems and saving energy in wireless communication. Science

304(5667):78–80

Jaeger H, Lukosevicius M, Popovici D, Siewert U (2007) Optimiza-

tion and applications of echo state networks with leaky-

integrator neurons. Neural Netw 20(3):335–352

Jaeger H, Noheda B, van der Wiel WG (2023) Toward a formal

theory for computing machines made out of whatever physics

offers. Nat Commun 14(1):4911

Jensen JH, Tufte G (2017) Reservoir computing with a chaotic circuit.

In ECAL 2017, Lyon, France, pages 222–229. MIT Press

Kostitsyna I, Orponen P, editors (2021) UCNC 2021 Espoo, Finland,
volume 12984 of LNCS. Springer

Kubota T, Takahashi H, Nakajima K (2021) Unifying framework for

information processing in stochastically driven dynamical sys-

tems. Phys Rev Res 3(4):043135

Landauer R (1991) Information is Physical. Phys Today 44(5):23–29

Legenstein R, Maass W (2007) Edge of chaos and prediction of

computational performance for neural circuit models. Neural

Netw 20(3):323–334

Lehman J, Clune J, Misevic D, Adami C, Beaulieu J, Bentley PJ,

Bernard S, Belson G, Bryson DM, Cheney N, Cully A, Donciuex

S, Dyer FC, Ellefsen KO, Feldt R, Fischer S, Forrest S, Frénoy
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