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EXTENDING DRAWINGS OF GRAPHS TO ARRANGEMENTS OF
PSEUDOLINES∗

Alan Arroyo,† Julien Bensmail‡ and R. Bruce Richter§

Abstract. In the recent study of crossing numbers, drawings of graphs that can be ex-
tended to an arrangement of pseudolines (pseudolinear drawings) have played an important
role as they are a natural combinatorial extension of rectilinear (or straight-line) drawings.
A characterization of the pseudolinear drawings of Kn was found recently. We extend this
characterization to all graphs, by describing the set of minimal forbidden subdrawings for
pseudolinear drawings. Our characterization also leads to a polynomial-time algorithm to
recognize pseudolinear drawings and construct the pseudolines when it is possible.

1 Introduction

Since 2004, geometric methods have been used to make impressive progress for determining
the crossing number of (certain classes of drawings of) the complete graph Kn. In particular,
drawings that extend to straight lines, or, more generally, arrangements of pseudolines, have
been central to this work, spurring interest in such drawings for arbitrary graphs, not just
complete graphs [2, 4, 5, 6, 12].

In particular, for pseudolinear drawings, it is now known that, for n ≥ 10, a pseudo-
linear drawing of Kn has more than
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crossings [1, 14]. The number H(n) is conjectured by Harary and Hill to be the smallest
number of crossings over all topological drawings of Kn; that is, the crossing number cr(Kn)
is conjectured to be H(n).

A pseudoline is the image ` of a continuous injection from the real numbers R to
the plane R2 such that R2 \ ` is not connected. An arrangement of pseudolines is a set Σ of
pseudolines such that, if `, `′ are distinct elements of Σ, then |`∩ `′| = 1 and the intersection
is a crossing point. Informally, a crossing point or crossing is an intersection point between
two pseudolines that locally looks like a crossing point between two non parallel lines (a
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formal definition of crossing will be given when we introduce the notion of string). More on
pseudolines and their importance for studying geometric drawings of graphs can be found
in [10, 11].

A drawing D of a graph G is pseudolinear if there is an arrangment of pseudolines
consisting of a different pseudoline `e for each edge e of G and such that D[e] ⊆ `e.

In the study of crossing numbers, restricting the drawing to either straight lines
or pseudolines yields the rectilinear crossing number cr(Kn) or the pseudolinear crossing
number c̃r(Kn), respectively. Clearly cr(Kn) ≥ c̃r(Kn) and the geometric methods prove
that c̃r(Kn) > H(n), for n ≥ 10.

A good drawing is one where no edge self-intersects and any two edges share at
most one point—either a crossing or a common end point— and no three edges share a
common crossing. One somewhat surprising result is from Aichholzer et al.: a good drawing
of Kn in the plane is homeomorphic to a pseudolinear drawing if and only if it does not
contain a non-planar drawing of K4 whose crossing is incident with the unbounded face of
the K4 [2] (see Figure 1). By ignoring the grey edges from Figure 1, we see that any such
drawing of K4 contains a B-configuration, depicted as the third drawing of the first row of
Figure 2. Based on our Theorem 2, Theorem 2.5.1 from [3] shows that any non-pseudolinear
drawing contains a B-configuration. Thus, either Fig. 1 or the B-configuration can be
used to characterize pseudolinear drawings of Kn. In [4] pseudolinear drawings of Kn are
characterized as f-convex, and in [5] are characterized as monotone and free of a specific
drawing of K4.

Figure 1: Non-pseudolinear K4 with its crossing incident with the outer face.

Twenty-five years earlier, Thomassen [19] proved a similar theorem for a 1-planar
drawing (that is, a drawing in which each edge is crossed at most once). The B- and
W -configurations are shown as the third and fourth drawings in the first row of Figure 2.
Thomassen’s theorem is: if D is a 1-planar drawing of graph G, then D is homeomorphic
to a rectilinear drawing of G if and only if D contains no B- or W -configuration.

Thomassen presented in [19] the clouds (first column in Figure 2) as an infinite family
of drawings that are minimally non-pseudolinear.

Shortly after Thomassen’s paper, Bienstock and Dean proved that if cr(G) ≤ 3, then
cr(G) = cr(G) [7]. They also exhibited examples based on overlapping W -configurations to
show the result fails for cr(G) = 4; such graphs can have arbitrarily large rectilinear crossing
number.

Despite the existence of infinitely many obstructions to pseudolinearity, we charac-
terize them all.

Theorem 1. A good drawing of a graph G is pseudolinear if and only if it does not contain
one of the infinitely many obstructions shown in Figure 1.
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Figure 2: Obstructions to pseudolinearity.

The drawings in Figure 2 are obtained from the clouds (first column) by replac-
ing at most two crossings by vertices. The formal statement of Theorem 1 is Theorem 10
in Section 6; also a more general version of this statement, Theorem 2, is discussed be-
low. Our result draws a line between the class of pseudolinear drawings and the class of
rectilinear drawings: Our result shows that recognizing pseudolinear drawings is a combina-
torial/topological problem and implies a polynomial-time algorithm to detect pseudolinear
drawings (Theorem 9). This contrast with the rather real algebraic geometry problem of
deciding the stretchability of a drawing, defined as the problem of deciding whether a given
drawing is homeomorphic to a rectilinear drawing. Mnëv [16, 17] showed that deciding the
stretchability of an arrangement of pseudolines is ∃R-hard, implying the ∃R-hardness for
the problem of deciding the stretchability of a graph drawing. Since NP ⊆ ∃R [15, 18, 8],
this in particular shows that the stretchability problem is NP-hard. We refer to Matous̆ek’s
survey [15] for an approachable introduction to the complexity class ∃R.

The natural setting for our characterization is strings embedded in the plane. An arc
σ is the image f([0, 1]) of the compact interval [0, 1] under a continuous map f : [0, 1]→ R2.
Let S(σ) = {p ∈ σ : |f−1(p)| ≥ 2} be the set of self-intersections of σ. A string is an arc σ
for which S(σ) is finite. If S(σ) = ∅, then σ is simple. If σ′ is a string and σ′ ⊆ σ, then σ′

is a substring of σ.

Suppose that σ and σ′ whose intersection σ ∩ σ′ is a finite set and let p ∈ σ ∩ σ.
The rotation at p is a cyclic sequence of substrings determined by a small neighbourhood
homeomorphic to the plane in which p is origin and the substrings incident with p are
rays emanating from p [13, Thm. 3.1]. The strings σ1, σ2 cross at p if they each have two
substrings that alternate σ1 − σ2 − σ1 − σ2 in the rotation at p.

An intersection point between of two strings σ and σ′ is ordinary if it is either an
endpoint of σ or σ′, or is a crossing. A set Σ of strings is ordinary if Σ is finite and any two
strings in Σ have only finitely many intersections, all of which are ordinary. All the sets of
strings considered in this paper are ordinary.

If Σ is an ordinary set of strings, then its planarization G(Σ) is the plane graph
obtained from Σ by inserting vertices at each crossing between strings and also at the
endpoints of every string in Σ. To keep track of the information given by the strings, we will
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always assume that each string Σ has a different color and that each edge in G(Σ) inherits
the color of the string including it.

If Σ is an ordinary set of strings, then, for a cycle C in G(Σ) (which is a simple
closed curve in R2) the edges inside C are those drawn in the closed disk bounded by C
(this includes the edges of C). A vertex v ∈ V (C) is a rainbow for C if all the edges incident
with v and drawn inside C have different colours. The reader can verify that, for each
drawing in Figure 2, if we let Σ be the edges of the drawing, then the unique cycle in G(Σ)
has at most two rainbows. Our main result characterizes these cycles as the only possible
obstructions:

Theorem 2. An ordinary set of strings Σ can be extended to an arrangement of pseudolines
if and only if every cycle C of G(Σ) has at least three rainbows.

Henceforth, we define any cycle C in G(Σ) with at most two rainbows as an obstruc-
tion. A set of strings is pseudolinear if it has an extension to an arrangement of pseudolines.

Theorem 2 is our main contribution. In the next section, we show that the presence
of an obstruction implies the set of ordinary strings is not pseudolinear. The converse is
proved in Section 4 by extending, one small step at a time, the strings in Σ to get closer
to an arrangement of pseudolines. After each extension, we must show that no obstruction
has been introduced. This involves dealing with cycles in G(Σ) that have precisely three
rainbows (that we refer as near-obstructions). In Section 3 we show the key lemma that
if G has two such near-obstructions that intersect nicely at a vertex v, then G has an
obstruction. In Section 5 we present a polynomial-time algorithm for detecting obstructions
and we argue why the proof of Theorem 2 implies a polynomial-time algorithm for extending
a pseudolinear set of strings. Finally, in Section 6, we show how Theorem 1 follows from
Theorem 2 and we present some concluding remarks.

2 A set of strings with an obstruction is not extendible

Let us start by showing the easy direction of Theorem 2:

Lemma 3. If the underlying graph G(Σ) of a set Σ of strings has an obstruction, then Σ is
not pseudolinear.

Suppose that C is a cycle of G(Σ) for some set of strings Σ. We define δ(C) as the
set of vertices of C for which their two incident edges in C have different colours. In a set
Σ of simple strings where no two intersect twice, |δ(C)| ≥ 3 for every cycle C of G(Σ).

Lemma 4. Let Σ be a set of simple strings where every pair intersect at most once. Suppose
that C is an obstruction with |δ(C)| as small as possible. Let S = x0, x1, . . . , x` be a path
of G(Σ) representing a substring of some string σ ∈ Σ such that x0x1 ∈ E(C), x1 ∈ δ(C)
and x1 is not a rainbow of C. Then V (C) ∩ V (S) = {x0, x1}.

Proof. By way of contradiction, suppose that there is a vertex xr ∈ V (C)∩V (S) with r ≥ 3.
Assume that r ≥ 3 is as small as possible. Let P be the subpath of S connecting x1 to xr.

http://jocg.org/
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The facts x0x1 ∈ E(C), x1 ∈ δ(C), and P ⊆ σ imply that x1x2 6= E(C). Because x1 is not
a rainbow for C and no two strings tangentially intersect at x1, the edge x1x2 is drawn in
the closed disk bounded by C. By choice of r, P is an arc connecting x1 to xr in the interior
of C.

Let C1 and C2 be the two cycles of C∪P containing P , labelled so that x0x1 ∈ E(C1).
We shall use the minimality of |δ(C)| to show that C1 and C2 are not obstructions. Then, we
will count rainbows in C1 and C2 to obtain the contradiction that C is not an obstruction.

For a cycle X, let ρ(X) be the set of rainbows of X. For i = 1, 2, let Qi = V (Ci) \
V (P ). As the edges of S are included in the same string, we see that ρ(C1) \Q1 ⊆ {xr} and
ρ(C2) \Q2 ⊆ {x1, xr}. Likewise, δ(C1) \Q1 ⊆ {xr} and δ(C2) \Q2 ⊆ {x1, xr}.

Let us show that C1 and C2 are not obstructions. Because |δ(C2)| ≥ 3 and δ(C2) \
Q2 ⊆ {x1, xr}, |δ(C) ∩ Q2| ≥ 1. Since δ(C1) \ Q1 ⊆ {xr} and x1 ∈ δ(C), |δ(C1)| ≤
|δ(C1)∩Q1|+|{xr}| ≤ |δ(C)|−2+|{xr}| < |δ(C)|. Because |δ(C1)| ≥ 3 and |δ(C1)\Q1| ≤ 1,
|δ(C) ∩Q1| ≥ 2. Since x1 ∈ δ(C) ∩ δ(C2), |δ(C2)| ≤ |δ(C) ∩Q2|+ |{x1, xr}| ≤ |δ(C)| − 3 +
|{x1, xr}| < |δ(C)|. Thus, neither C1 nor C2 is an obstruction.

Finally, as |ρ(C1)| ≥ 3 and |ρ(C1)\Q1| ≤ 1, |ρ(C)∩Q1| = |ρ(C1)∩Q1| ≥ 2. Because
|ρ(C2)| ≥ 3 and |ρ(C2) \ Q2| ≤ 2, |ρ(C) ∩ Q2| = |ρ(C2) ∩ Q2| ≥ 1. Thus |ρ(C)| ≥ 3, a
contradiction.

Proof of Lemma 3. By way of contradiction, suppose that Σ is pseudolinear and that G(Σ)
has an obstruction C.

Consider an extension of Σ to an arrangement of pseudolines, and then cut off the
two infinite ends of each pseudoline to obtain a set of strings Σ′ extending Σ, and in which
every pair of strings in Σ′ cross once. In G(Σ′), there is a cycle C ′ that represents the same
simple closed curve as C. Because every rainbow of C ′ is a rainbow of C, C ′ has fewer
than three rainbows. Therefore, we may assume that Σ = Σ′ and C = C ′. Now, the ends of
every string in Σ are degree-1 vertices in the outer face of G(Σ).

As every string in Σ is simple and no two strings intersect more than once, |δ(C)| ≥ 3.
We will assume that C is chosen to minimize |δ(C)|.

Since C is an obstruction, there exists x1 ∈ δ(C) such that x1 is not a rainbow
in C. Consider a neighbour x0 of x1 in C. Let S = x0, x1, . . . x` be the path obtained
by traversing the string σ extending x0x1, such that x` is an end of σ. By Lemma 4,
V (S)∩ V (C) = {x0, x1}, and because x` is in the outer face of C, the segment of σ from x1
to x` has its relative interior in the outer face of C.

However, since x1 is not a rainbow, there exists a string σ′ ∈ Σ including two edges
at x1 drawn inside C. Thus, σ and σ′ tangentially intersect at x1, a contradiction.

3 The key lemma

In this section we present the key lemma used in the proof of Theorem 2.

A plane graph G is path-partitioned if for m ≥ 1, there exists a colouring χ : E(G)→
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{1, . . . ,m} such that for each i ∈ {1, . . . ,m}, the edges in χ−1(i) induce a path Pi ⊆ G where
any two distinct paths Pi and Pj do not tangentially intersect. Indeed, every underlying
planar graph G(Σ) of a set of simple strings Σ is path-partitioned. Moreover, every path-
partitioned plane graph can be obtained by subdividing a planarization of an ordinary set of
simple strings. To extend the previously introduced notation we refer to each Pi as a string.
The concepts of rainbow and obstruction naturally extend to the context of path-partitioned
plane graphs.

Suppose that G is a path-partitioned plane graph. Given v ∈ V (G), a near-
obstruction at v is a cycle C with at most three rainbows and such that v is a rainbow of
C. Understanding how near-obstructions behave is the key ingredient needed in the proof
of Theorem 2:

Lemma 5. Let G be a path-partitioned plane graph and let v ∈ V (G). Suppose that C1

and C2 are two near-obstructions at v such that the union of the closed disks bounded by
C1 and C2 contains a small open ball centered at v. Suppose that one of the following two
holds:

1. no obstruction of G contains v; or

2. the two edges of C1 incident with v are the same as the two edges of C2 incident with v.

Then G has an obstruction not including v.

Given a plane graph G, a cycle C ⊆ G and a vertex v ∈ V (C), the edges at v inside
C are the edges of G incident with v drawn inside C. Consider a homeomorphism from a
small disc neighbourhood of v to the plane so that each edge segment incident with v is a
straight ray from the origin (which is v). Since no two strings intersect tangentially at v,
we may assume that the rotation at v has substrings of the same colour making an angle
of π at v. The angles between rays are the angles at v and we associate to them the set of
edges at v drawn as rays inside them. From this geometric perspective, it is obvious that, if
an angle α is less than π, then α is rainbow. This proves the second of the following facts.

Useful Facts. Let G be a plane path-partitioned graph and let v ∈ V (G). Then

1. if α, β are two angles at v with α ⊆ β and β is rainbow, then α is rainbow; and

2. if α and β are two angles such α is not rainbow and β is a proper subangle of the
complement α of α, then β is rainbow.

Proof of Lemma 5. By way of contradiction, suppose that G has no obstruction not includ-
ing v. The “small ball” hypothesis implies that v is not in the outer face of the subgraph
C1 ∪ C2.

We claim that |V (C1) ∩ V (C2)| ≥ 3. Suppose not. For i = 1, 2, let ei and fi be
the edges of Ci at v and let ∆i be the closed disk bounded by Ci. From the “small ball”
hypothesis it follows that (i) ∆1 contains the edges e2 and f2; and (ii) the points near v in
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Figure 3: Auxiliary figures used in the proof of Lemma 5.

the exterior of ∆2 are contained in ∆1. These two properties imply that the path C2 − v
intersects C1 at least twice, and because v ∈ V (C1) ∩ V (C2), |V (C1) ∩ V (C2)| ≥ 3.

From the last paragraph we know that C1 ∪ C2 is 2-connected, and hence the outer
face of C1 ∪ C2 is bounded by a cycle Cout. We will assume that

(*) the cycles C1 and C2 satisfying the hypothesis of Lemma 5 are chosen so that the
number of vertices of G in the disk bounded by Cout is minimal.

Useful Fact 1 applied to the interior angles at vertices of Cout shows that every vertex
that is a rainbow in Cout is also a rainbow in each of the cycles in {C1, C2} containing it.
We can assume that Cout is not an obstruction or else we are done. We may relabel C1 and
C2 so that two of the rainbows of Cout, say p and q, are also rainbows in C1. Neither p
nor q is v because v /∈ V (Cout). Because C1 is a near-obstruction, p, q and v are the only
rainbows of C1.

Since v /∈ V (Cout), by following C1 in the two directions starting at v, we find a path
Pv ⊆ C1 containing v in which only the ends u and w of Pv are in Cout (note that u 6= w
because {p, q} ⊆ V (C1) ∩ V (Cout)). See Figure 3a.

As v is in the interior face of Cout, Pv is also in the interior of Cout. Let Q1
out, Q2

out

be the uw-paths of Cout. One of the two closed disks bounded by Pv ∪Q1
out and Pv ∪Q2

out

contains C1. By symmetry, we may assume that C1 is contained in the first disk. Since
Cout ⊆ C1 ∪ C2, this implies that Q2

out is a subpath of C2.

Our desired contradiction will be to find three rainbows in C2 distinct from v. We
find the first: let C1 − (Pv) be the uw-path in C1 distinct from Pv. The disk bounded by
(C1 − (Pv)) ∪ Q2

out contains the one bounded by C1. Useful Fact 1 applied to the interior
angles at the vertices of (C1 − (Pv)) ∪Q2

out implies that each vertex in C1 − (Pv) that is a
rainbow in (C1 − (Pv)) ∪Q2

out is also rainbow in C1. Since C1 has at most two rainbows in
C1− (Pv), namely p and q, (C1− (Pv))∪Q2

out has a third rainbow r1 in the interior of Q2
out

(else (C1 − (Pv)) ∪Q2
out is an obstruction and we are done). Note that r1 is also a rainbow

for C2.

To find another rainbow in C2, consider the edge eu of C2 incident to u and not in
Q2
out. We claim that either u is a rainbow in C2 or that eu is not included in the closed disk

bounded by Pv ∪Q2
out. Seeking a contradiction, suppose that u is not a rainbow of C2 and

that eu is included in the disk. Then Useful Fact 2 implies that u is a rainbow in C1. As p
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and q are the only rainbows of C1 in Cout, u is one of p and q. Therefore u is a rainbow in
Cout, and hence, a rainbow in C2, a contradiction.

If u is a rainbow in C2, then this is the desired second one. Otherwise, eu is not in
the closed disk bounded by Pv ∪Q2

out. Let Pu ⊆ C2 be the path starting at u, continuing on
eu and ending on the first vertex u′ in Pv that we encounter. Let Cu be the cycle consisting
of Pu and the uu′-subpath uPvu′ of Pv. See Figure 3b.

Claim 1. If Pu does not have a rainbow of Cu in its interior, then either Cu is an obstruction
not containing v or:

(a) Cu and C2 are near-obstructions at v satisfying the same conditions as C1 and C2 in
Lemma 5; and

(b) the closed disk bounded by the outer cycle of Cu ∪C2 contains fewer vertices than the
disk bounded by Cout.

Proof. Suppose that all the rainbows of Cu are located in uPvu′. If z is a rainbow of Cu, then
z ∈ {u, v, u′}, as otherwise z is a rainbow of C1 distinct from p, q and v, a contradiction.
Thus, if v /∈ V (Cu), then Cu is the desired obstruction. We may assume that v ∈ V (Cu).

If u′ = w, then C2 = Pu ∪ Q2
out, violating the assumption that v ∈ V (C2). Thus

u′ 6= w. If u′ = v, then the rainbows of Cu are included in {u, u′}, and hence Cu is
an obstruction. However, the existence of Cu shows that both alternatives (1) and (2) in
Lemma 5 fail: condition (1) fails because Cu contains v and (2) fails because the edge of Pu
incident with v is in E(C2) \ E(C1). Thus u′ 6= v.

The previous two paragraphs show that Cu is a near-obstruction at v with rainbows
u, v and u′. Since the interior of Cu near v is the same as the interior of C1 near v, the pair
(Cu, C2) satisfies the “small ball” hypothesis. Thus, (a) holds.

Let C ′out be the outer cycle of Cu ∪ C2. From the fact that Cu ∪ C2 ⊆ C1 ∪ C2 it
follows that the disk bounded by Cout includes the disk bounded by C ′out.

Since p, q ∈ V (Cout), p and q are in the disk bounded by Cout. If both p and q are
in C2, then p, q and r1 are rainbows in C2, and also distinct from v, contradicting that C2

is a near-obstruction for v. If, say p /∈ V (C2), then p is not in the disk bounded by C ′out,
which implies (b).

From Claim 1(b) and assumption (*) either Cu is the desired obstruction or Pu
contains a rainbow r2 of C2 in its interior. We assume the latter as otherwise we are done.

In the same way, the last rainbow r3 comes by considering the edge of C2−Q2
out inci-

dent with w. It follows that v, r1, r2 and r3 are four different rainbows in C2, contradicting
the fact that C2 is a near-obstruction.

4 Proof of Theorem 2

In this section we prove that a set of strings with no obstructions can be extended to an
arrangement of pseudolines.

http://jocg.org/
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Proof of Theorem 2. It was shown in Observation 3 that the existence of obstructions implies
non-extendibility. For the converse, suppose that Σ is a set of strings for which G(Σ) has
no obstructions.

We start by reducing to the case where the point set
⋃

Σ is connected: iteratively add
a new string in a face of

⋃
Σ connecting two connected components of

⋃
Σ. No obstruction

is introduced at each step (obstructions are cycles), and, eventually, the obtained set
⋃

Σ is
connected. An extension of the new set of strings contains an extension for the original set,
thus we may assume that

⋃
Σ is connected.

Our proof is algorithmic, and consists of repeatedly applying one of the three steps
described below.

• Disentangling Step. If a string σ ∈ Σ has an end a with degree at least 2 in G(Σ),
then we slightly extend the a-end of σ into one of the faces incident with a.

• Face-Escaping Step. If a string σ ∈ Σ has an end a with degree 1 in G(Σ), and is
incident with an interior face, then we extend the a-end of σ until it intersects some
point in the boundary of this face.

• Exterior-Meeting Step. Assuming that all the strings in Σ have their two ends in
the outer face and these ends have degree 1 in G(Σ), we extend the ends of two disjoint
strings so that they meet in the outer face.

Each of these three steps either increases the number of pairs of strings that intersect,
or increase the number crossings (recall that a crossing between σ and σ′ is a non-tangential
intersection point in σ ∩ σ′ that is not an end of σ or σ′). Moreover, these steps can be
performed as long as one of the next two conditions holds: (1) at least one string does not
have an end incident with the outer face; and (2) there is a pair of strings that do not
cross. If none of (1) and (2) hold, then our set of strings is extendible into an arrangement
of pseudolines. Henceforth, we will show that, if performed correctly, none of these steps
introduces an obstruction. The proof for each step can be read independently.

Lemma 6 (Disentangling Step). Suppose that σ ∈ Σ has an end a with degree at least 2
in G(Σ). Then we can extend the a-end of σ into one of the faces incident to a without
creating an obstruction.

Proof. A pair of different edges f and f ′ in G(Σ) incident with a are twins if they belong
to the same string in Σ. The edge e ⊆ σ incident with a has no twin.

The fact that no pair of strings tangentially intersect at a tells us that if (f1, f
′
1) and

(f2, f
′
2) are pairs of twins, then f1, f2, f ′1, f ′2 occur in this cyclic order for either the clockwise

or counterclockwise rotation at a. Thus, we may assume that the counterclockwise rotation
at a restricted to the twins and e is e, f1, . . . , ft, f ′1, . . . , f ′t , where (fi, f

′
i) is a twin pair for

i = 1, . . . , t.

To avoid tangential intersections, the extension of σ at amust be in the angle between
ft and f ′1 not containing e. Let e1, . . . , ek be the counterclockwise ordered list of non-twin
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e

f1

ft = e0

α0

e1

e2ek−1

ek

f ′1 = ek+1

f ′t

Figure 4: Substrings included in the disk bounded by C0.

edges at a having an end in this angle (as depicted in Figure 4). We label e0 = ft and
ek+1 = f ′1. If there are no twins, then let e0 = ek+1 = e.

Let us consider all the possible extensions: for i ∈ {0, . . . , k}, let Σi be the set of
strings obtained from Σ by slightly extending the a-end of σ into the face containing the
angle between ei and ei+1. Let αi be the new edge at a extending σ in Σi (see α0 in Figure
4).

Seeking a contradiction, suppose that, for each i ∈ {0, ..., k}, G(Σi) contains an
obstruction Ci. Since αi contains a degree-1 vertex, αi is not in Ci. Hence Ci is a cycle of
G(Σ). Thus, Ci is not an obstruction in G(Σ) and becomes an obstruction in G(Σi). This
conversion has a simple explanation: in G(Σ), Ci has exactly three rainbows, and one of
them is a. After αi is added, a is not a rainbow in Ci (witnessed by the edges e and αi
included in the new version of σ).

Recall from Section 3 that a near-obstruction at a is a cycle with exactly three
rainbows, and one of them is a. Each of C0, C1,...,Ck is a near-obstruction at a in G(Σ).

For a cycle C ⊆ G, let ∆(C) denote the closed disk bounded by C. Both e and α0

are in ∆(C0). Thus, either ∆(C0) ⊇ {e, f1, f2, . . . , ft, e1} (blue bidirectional arrow in Figure
4) or ∆(C0) ⊇ {ft, e1, . . . , ek, f ′1, f ′2, . . . , f ′t , e} (green bidirectional arrow). We rule out the
latter situation as the second list contains ft and f ′t , and this would imply that a is not a
rainbow for C0 in G(Σ).

We just showed that {e, e0, e1} ⊆ ∆(C0). By symmetry, {ek, ek+1, e} ⊆ ∆(Ck).
Consider the largest index i ∈ {0, 1, . . . , k − 1} for which {e, e0, . . . , ei+1} ⊆ ∆(Ci). By the
choice of i, and because {e, αi+1} ⊆ ∆(Ci+1), {e, f ′t , . . . , f ′1, ek, . . . , ei} ⊆ ∆(Ci+1). Apply
Lemma 5 to the pair Ci and Ci+1, where Ci, Ci+1 and a play the roles of C1, C2 and
v. Condition 1 of Lemma 5 holds, and hence we obtain that G(Σ) has an obstruction, a
contradiction.

Lemma 7 (Face-Escaping Step). Suppose that there is a string σ that has an end a with
degree 1 in G(Σ), and a is incident to an interior face F . Then there is an extension σ′ of
σ from its a-end to a point in the boundary of F such that the set (Σ \ {σ}) ∪ {σ′} has no
obstruction.

Proof. Let W be the closed boundary walk (x0, e1, x1, e2, . . . , en, xn) of F such that x0 =
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a

x1 = x8
x2

x3 = x5

x6

x4
x7

Figure 5: All possible extensions in the Face-Escaping Step.

x1
x0

F

x1
fp

F

p p

Figure 6: Transforming Σ into Σp.

xn = a and F is to the left as we traverse W (see Figure 5 for an illustration with n = 9).
For i = 1, . . . , n we let mi be a point in the relative interior of ei, and let P be the list of
non-necessarily distinct points m1, x1, m2, x2 . . . ,mn, which are the potential ends for all
the different extensions. For each p ∈ P , let Σp be the set of strings obtained from Σ by
extending the a-end of σ by adding an arc αp connecting a to p in F (see Figure 5). We
assume that every two distinct arcs αp and αp′ are internally disjoint.

Let fp be the edge e1 ∪ αp in G(Σp); fp has ends x1 and p. Also, let σp = σ ∪ αp.
See Figure 6. Seeking a contradiction, suppose that each G(Σp) has an obstruction.

Claim 2. Let p ∈ P . Then there exists an obstruction Cp in G(Σp) including fp. Moreover,

(1) if p ∈ σ, then Cp can be chosen so that all its edges are included in σp; and

(2) if p /∈ σ, then every obstruction includes fp.

Proof. First, if p ∈ σ, then the string σp self-intersects at p; thus σp has a simple close curve
including fp. In this case let Cp be the cycle in G(Σp) representing this simple closed curve
without rainbows, and thus (1) holds.

Second, assume that p /∈ σ and let Cp be any obstruction of G(Σp). For (2), we will
show that fp ∈ E(Cp).

Seeking a contradiction, suppose that fp /∈ E(Cp).

If p = mi for i ∈ {1, . . . , n}, sincemi is the only vertex whose rotation in G(Σ) differs
from its rotation in G(Σmi), mi ∈ V (Cp). Consider the cycle C of G(Σ) obtained from Cp
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by replacing the subpath (xi−1, mi, xi) by the edge xi−1xi. For each vertex v ∈ V (C) the
colors of the edges of G(Σ) at v included in the disk bounded by C are the same as in G(Σp)
for the disk bounded by V (Cp). Thus, C is an obstruction for G(Σ), a contradiction.

Suppose now that p is one of x1, . . . , xn−1. The only vertex in G(Σ) whose rotation
is different in G(Σp) is p. Therefore, p is a point that is a rainbow for Cp in G(Σ), but not
a rainbow in G(Σp), as witnessed by the two edges of σp that are incident with p and inside
Cp. This contradicts the assumption that p /∈ σ. Hence fp ∈ E(Cp).

Henceforth we assume that, for p ∈ P , Cp is an obstruction in G(Σp) as in Claim 2.

More can be said about the obstructions in G(Σp), but for this we need some ter-
minology. If we orient an edge e in a plane graph, then the sides of e are either the points
near e that are to the right of e, or the points near e to the left of e. For any cycle C of G
through e, exactly one side of e lies inside C. This is the side of e covered by C. For the
next claim and in the rest of the proof we will assume that for p ∈ P , fp is oriented from x1
to p.

Claim 3. For p ∈ P with p /∈ σ, every obstruction in G(Σp) covers the same side of fp.

Proof. Suppose that for p ∈ P there are obstructions Cp and C ′p covering both sides of fp.
Let G′ be the plane graph obtained from G(Σp) by subdividing fp, and let v be the new
degree-2 vertex inside fp.

We consider the edge-colouring χ induced by the strings in Σp. Let χ′ be a new
colouring obtained from χ by replacing the colour of the edge vp by a new colour not used
in χ (see Figure 7). It is immediate that (i) χ′ induces a path-partition in G′; and in the
next paragraph we show that (ii) Cp and C ′p are near-obstructions for v with respect to χ′.

Consider the set of edges in the rotation at p inside the disk bounded by Cp and
assume they are colored by χ. No edge from this set (except fp) can have the same color
as fp or else p ∈ σ, contradicting our hypothesis. Therefore, p is a rainbow in Cp in χ if
and only if p is a rainbow in Cp in χ′. Thus, when we switch from χ to χ′, v is the only
vertex of Cp switching identity (where the identity is to be or not to be a rainbow). As Cp
is an obstruction for χ, then C ′p is a near obstruction at v for χ′. Likewise, C ′p is a near
obstruction for χ′.

As Condition 2 of Lemma 5 holds for C1 = Cp, C2 = C ′p and v = v with respect to
χ′, G′ has an obstruction not containing v in χ′. However, this implies the existence of an
obstruction in G(Σ) with respect to χ, a contradiction.

Recall that the boundary walk of F is W = (x0, e1, . . . , en, xn), with x0 = xn = a.
Since x1 and xn−1 are in σ, the extreme obstructions Cx1 and Cx2 cover the right of fx1 and
the left of fxn−1 , respectively. Thus, there are two consecutive vertices xi−1, xi in W − a,
such that the interior of Cxi−1 covers the right of fxi−1 and the interior of Cxi covers the left
of fxi . Moreover, we may assume that the interior of Cmi includes the left of fmi (otherwise
we reflect our drawing).
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x1
fp

F

p

Cp

C ′
p

(a) χ

x1

F

p

Cp

C ′
p

v

(b) χ′

Figure 7: The two edge colorings χ and χ′ discussed in the proof of Claim 3.

x1

xi

x

fm

fx

Cx

m

(a) Case a.1.

x1

xi

x
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fx

m

Cx

(b) Case a.2.

Figure 8: Illustrations for Claim 4.a.

The next claim is the last ingredient to obtain a final contradiction. To make the
notation simpler, we let x = xi−1 and m = mi.

Claim 4. Exactly one of the following holds:

(a) x ∈ σ, m /∈ σ and G(Σm) has an obstruction covering the side of fm not covered by
Cm; or

(b) x /∈ σ and G(Σx) has an obstruction covering the side of fx not covered by Cx.

Proof. By redrawing the arcs representing fx and fm, we will assume that they only intersect
at x1. In particular this redrawing creates two copies of the edge e1.

First, suppose that x ∈ σ. For (a) we have two cases depending on whether xxi is
an edge in Cx.

Case a.1 xxi /∈ E(Cx). See Figure 8a.

Let C ′m be the cycle obtained from Cx by replacing the edge fx by the path P = (x1,
fm, m, mx, x). Since x ∈ σ, by the choice of Cx (Claim 2), all the edges in Cx are in σx.
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Therefore, by Claim 2.1, all the edges in C ′m, with the possible exception of mx, are in σm.
Thus C ′m is an obstruction in G(Σm).

Now we show that C ′m covers the right side of fm. The disk bounded by P ∪ fx is to
the right of fm as this side of P ∪ fx is included in the bounded face F . Since the interior
of Cx is to the right of fx, the interior of C ′m covers the right side of fm.

Finally, note that m /∈ σ, or else, C ′m ⊆ σm and hence by the choice of Cm, and
Claim 10, C ′m = Cm. However, this contradicts that Cm covers the left side of fm. Thus,
(a) holds.

Case a.2. xxi ∈ E(Cx). See Figure 8b.

Let C ′m be the cycle obtained from Cx by replacing the path (x1, fx, x, xxi, xi) by (x1, fm,m,
mxi, xi). Since x ∈ σ, by the choice of Cx (Claim 2), all the edges in Cx are in σx. Therefore
all the edges in C ′m are in σm. Thus C ′m is an obstruction in G(Σm).

Now we show that C ′m covers the right side of fm. The disk bounded by fx∪fm∪xm
is to the right of fm as this side of fx ∪ fm ∪ xm is included in the bounded face F . Since
the interior of Cx is to the right of fx, the interior of C ′m covers the right side of fm.

Finally, as C ′m ⊆ σm and by the choice of Cm, C ′m = Cm. However, this contradicts
the assumption that Cm covers the left side of fm. Thus, (a) holds.

Turning to (b), let us suppose that x 6∈ σ.

x1

xi

x

fm

fx

m

P

Cm

(a) Case b.1.

x1

xi

x

fm

fx

m

Cm

(b) Case b.2.

Figure 9: Illustrations for Claim 4.b.

Case b.1. x ∈ V (Cm). See Figure 9a.

Let T be the triangle bounded by fx, fm and xm. The interior face of T is to the left
of fx and to the right of fm. Let P be the mx-path of Cm − fm and let P ′ be the xx1-path
of Cm −m. Since the interior face of T is a subset of F , P and P ′ are drawn in the closure
of the exterior of T (possibly P = (m,mx, x)).

Let C be the simple closed curve bounded by P ∪ fx ∪ fm (in other words, C is
obtained from T by replacing xm by P ). Seeking a contradiction, suppose that xm is
in the closed exterior of C. Then, P ′ is included inside the cycle C ′ = P + xm. Since
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V (C ′) ⊆ V (Cm) and Cm is included in the disk bounded by C ′, the number of rainbows
in C ′ is at most the number of rainbows in Cm. Then C ′ is an obstruction in G(Σm) not
containing fm, contradicting Claim 2.2. Thus, xm is inside C.

Our last observation implies that P ′ is an arc connecting x1 and x in the exterior
of C. Since the interior of Cm covers the left of fm, the interior of C ′x = P ′ + fx covers
the left of fx. The cycle C ′x is an obstruction because V (C ′x) ⊆ V (Cm) and Cm is included
inside C ′x.

Case b.2. x /∈ V (Cm). See Figure 9b.

In this case we let C ′x be the cycle obtained by replacing the path (x1, fm, m,mxi,
xi) in Cm by the path P = (x1, fx, x, xxi, xi) in G(Σx). Since Cm covers the left of fm and
F is bounded, C ′x covers the left of fx.

To show that C ′x is an obstruction, note that Cm is inside C ′x and that V (C ′x)\{x} ⊆
V (Cm). Thus, all the rainbows of C ′x in V (C ′x) \ {x} are also rainbows in Cm. Since x /∈ σ,
we see that x is a rainbow in C ′x, but is not a vertex of Cm. To compensate, we note
that m is a rainbow in Cm that is not in V (Cx): if m is not rainbow, both fm and xxi are
included in σ, implying that x ∈ σ. This shows that C ′x has at most as many rainbows as
Cm. Therefore C ′x is the desired obstruction.

Claims 3 and 4 contradict each other, so, for some p ∈ P , G(Σp) has no obstructions.

Lemma 8 (Exterior-Meeting Step). If all the strings in Σ have their ends on the outer face
of G(Σ) and the ends have degree 1 in G(Σ), then we can extend a pair disjoint strings so
that they intersect without creating an obstruction.

Proof. First, consider a simple closed curve in the outerface of
⋃

Σ closely following the
outerboundary of

⋃
Σ. Then, by slightly modifying this curve, we obtain a simple closed

cuve O containing all the ends of the strings in Σ, but otherwise disjoint from
⋃

Σ. See
Figure 10.

O

Figure 10: Construction of the curve O.

Suppose σ1, σ2 are two disjoint strings in Σ. For i = 1, 2, let ai, bi be the ends of σi;
since σ1 and σ2 do not cross, we may assume that these ends occur in the cyclic order a1,
b1, b2, a2. We extend the ai-ends of σ1 and σ2 so that they meet in a point p in the outer
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O
σ1 σ2

p

a1

b1 b2

a2

∆1 ∆2 ∆3

Figure 11: Exterior-Meeting Step.

face, and so that all the ends of σ1 and σ2 remain incident with the outer face (Figure 11).
Let Σ′ be the obtained set of strings.

Seeking a contradiction, suppose that G(Σ′) has an obstruction C. Since G(Σ) has
no obstruction, p ∈ V (C). Our contradiction will be to find three rainbows in C. Note that
p is a rainbow. To obtain a second rainbow, traverse C starting from p towards a1. Let
d1 be the first vertex during our traversal that is not in the extended σ1, and let c1 be its
neighbour in σ1, one step before we reach d1. Since b1 has degree one, c1 6= b1.

The strings σ1 and σ2 divide the disk bounded by O into three closed regions ∆1,
∆2, ∆3 such that ∆1 ∩∆2 = σ1, ∆2 ∩∆3 = σ2 and ∆1 ∩∆3 = ∅ (see Figure 11).

Claim 5. The cycle C has a rainbow included in ∆1.

Proof. First, suppose that d1 /∈ ∆1. In this case, c1 is a rainbow because otherwise there
would be a string σ that tangentially intersects σ1 at c1. Thus, if d1 /∈ ∆1, then c1 is the
desired rainbow.

Second, suppose that d1 ∈ ∆1. Let P1 be the path of C starting at c1, continuing on
the edge c1d1, and ending at the first vertex we encounter in σ1. Let C ′ be the cycle enclosed
by P1 ∪ σ1. Since C ′ is not an obstruction, there is one rainbow of C ′ that is an interior
vertex of P1; this is the desired rainbow of C. This concludes the proof of Claim 5.

Considering σ2 instead of σ1, Claim 5 yields a third rainbow in C inside the region
∆3 analogous to ∆1, contradicting that C is an obstruction. Hence Lemma 8 holds.

We iteratively apply the Disentangling Step, Face-Escaping Step or Exterior-Meeting
Step without creating obstructions. Each step increases the number of pairwise intersecting
strings in Σ until we reach a stage where the strings are pairwise intersecting and all of them
have their two ends in the unbounded face. From this we extend them into an arrangement
of pseudolines. This concludes the proof of Theorem 2.
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5 Finding obstructions and extending strings in polynomial time

We start this section by describing an algorithm to detect obstructions. Henceforth, we
assume that the input to the problem is the planarization G(Σ) of an ordinary set of s
strings Σ. For the running-time analysis, we assume that n and m are the number of
vertices and edges in G(Σ), respectively. Since G(Σ) is planar, m = O(n). Moreover, if Σ is
pseudolinear, then n ≤

(
s
2

)
+ 2s =

(
s+2
2

)
− 1. At the end of this section we explain how to

extend Σ (if possible) in polynomial time.

Recall that each string in Σ receives a different colour; this induces an edge-colouring
on G(Σ) where each string is a monochromatic path. An outer-rainbow is a vertex x ∈
V (G(Σ)) incident with the outer face and for which the edges incident with x have different
colours. Next we describe the basic operation in our obstruction-detecting algorithm.

x

Figure 12: From Σ to Σ− x.

Outer-rainbow deletion. Given an outer-rainbow x ∈ V (G(Σ)), the instance G(Σ−x) is
defined by: first, removing x and the edges incident to x; second, suppressing the degree-2
vertices incident with edges of the same colour; and third, removing remaining degree-0
vertices (Figure 12 illustrates this process). Edge colours are preserved.

It is easy to verify thatG(Σ−x) is the planarization of an arrangement of strings. The
colours removed by this operation are those belonging to strings that are paths of length 1 in
G(Σ) incident with x. Our obstruction-detecting algorithm relies on the following property:

(**) if x is an outer-rainbow of G(Σ), then there is an obstruction in G(Σ) not including x
if and only if there is an obstruction in G(Σ− x).

This property holds because cycles in G(Σ) − x and in G(Σ − x) are in 1-1 corre-
spondence: two cycles correspond to each other if they are the same simple closed curve.
This correspondence is obstruction-preserving.

Let us now describe the two subroutines in our algorithm. For this, we remark that
an outer-rainbow of G(Σ) is a rainbow for any cycle containing it.

Subroutine 1. Detecting an obstruction through two outer-rainbows x and y.

(1) Find a cycle C through x and y whose edges are incident with the outer face of G(Σ).
If C exists, then this cycle is unique and can be described as the outer boundary of
the block containing x and y. If no such C exists, then output No obstruction through
x and y. Else, go to Step 2.
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(2) Find whether there is a third outer-rainbow z ∈ V (C)\{x, y}. If such z exists, update
G(Σ)←− G(Σ− z) and go to Step 1. If no such z exists, output C.

Correctness and running-time of Subroutine 1: If an obstruction through x and y exists,
then x and y are in the same block (some authors use the term ‘biconnected component’).
Since x and y are incident with the outer face, the outer boundary of the block containing x
and y is the cycle C from Step 1. This C can be found by considering outer boundary walk
W of G(Σ) and then by finding whether x and y belong to the same non-edge block of W .
Finding W is O(m) and computing the blocks of W via a DFS takes O(m) time.

In Step 2, if there is a third outer rainbow z in C, then no obstruction through x
and y contains z. Property (**) justifies the update that takes O(m) time.

A full run from Step 1 to Step 2 takes O(m). Moving from Step 2 to Step 1 occurs
O(n) times. Thus, the total time for Subroutine 1 is O(mn) = O(n2).

Subroutine 2. Detecting an obstruction through a single outer-rainbow x.

(1) Find a cycle C through x whose edges are incident with the outer face of G(Σ). If no
such C exists, output No obstruction through x. Else, go to Step 2.

(2) Find whether there is an outer-rainbow y in V (C) \ {x}. If no such y exists, output
C. Else, apply Subroutine 1 to x and y; if there is an obstruction C ′ through x and
y, then output C ′. Else, update G(Σ)←− G(Σ− y) and go to Step 1.

Correctness and running-time of Subroutine 2: If G(Σ) has an obstruction through x, then
there is a non-edge block in G(Σ) containing x. The outer boundary of this block is a cycle
C through x having all edges incident with the outer face. As in Subroutine 1, Step 1 takes
O(m) time.

Detecting the existence of y in Step 2 is O(m) because to detect rainbows in C,
each edge incident with a vertex in V (C) is verified at most twice. The update in Step 2 is
justified by Property (**). Since Step 2 may use Subroutine 1, Step 2 takes O(n2) time. As
moving from Step 2 to Step 1 occurs O(n) times, the total running-time for Subroutine 2 is
O(n3).

We are now ready for the algorithm to detect obstructions.

Algorithm 1: Detecting obstructions in G(Σ).

(1) Find a cycle C having all edges incident with the outer face. If no such C exists,
output No obstruction. Else, go to step 2.

(2) Find whether there is an outer rainbow x ∈ V (C). If not, output C. Else apply
Subroutine 2 to x; if there is an obstruction C ′ through x, output C ′. Else, update
G(Σ)←− G(Σ− x) and go to Step 1.

Correctness and running-time of Algorithm 1: If G(Σ) has an obstruction, then it has a
non-trivial block whose outer boundary is a cycle C as in Step 1. As before, C and x as in
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Step 2 can be found in O(m) steps. If C has not outer rainbow x, then C is an obstruction;
Property (**) justifies the update in Step 2.

Since Step 2 may use Subroutine 2, a full run of Steps 1 and 2 takes O(n3) time.
Since Step 2 goes to Step 1 O(n) times, the running-time of Algorithm 1 is O(n4).

Algorithm 1 and the constructive proof of Theorem 2 imply the following result.

Theorem 9. There is a polynomial-time algorithm to recognize and extend an ordinary set
of strings that are extendible to an arrangement of pseudolines.

Proof. Let Σ be an ordinary set of s strings. First, note that if n = |V (G(Σ))|, m =
|E(G(Σ))|, and Σ is extendible, then n ≤

(
s
2

)
+ 2s. Hence n,m = O(s2).

Assume that G(Σ) has not obstructions, by first verifying that n ≤
(
s
2

)
+2s and then

running Algorithm 1. For each end in each string in Σ, we keep track of whether one of the
Disentangling, Face-Escaping or Exterior-Meeting Steps apply.

The Disentangling and Face-Escaping Steps consist on extending one end a of a fixed
string σ ∈ Σ in different ways to find an obstruction-free set of strings. For the Disentangling
Step, the number of possible extensions is bounded by the maximum degree of G(Σ); for the
Face-Escaping Step, the number of possible extensions is bounded by twice the length of the
face containing the end that we are extending. Thus, each step lead to O(m) possibilities,
and testing obstructions in each of them is O(n4). Thus, the Disentangling and the Face-
Escaping Steps take O(n5) time.

The Exterior-Meeting Step is O(m2) because for this step we just need to record the
number of the pairwise disjoint strings in Σ and the set of strings that have ends incident
with the outer face; if all the strings have their ends in the outer boundary, the extension is
performed as in the proof of Lemma 8.

As there is a total of O(s2) extending steps, extending Σ is O(s2(n5 + m2)) =
O(s12).

6 Concluding remarks

In this work we characterized in Theorem 2 sets of strings that can be extended into ar-
rangements of pseudolines. Moreover, we showed that the obstructions to pseudolinearity
can be detected in O(n4) time, where n is the number of vertices in the planarization of the
set of strings.

An easy consequence of Theorem 2 is the following (presented before as Theorem 1).

Theorem 10. Let D be a non-pseudolinear good drawing of a graph H. Then there is a
subset S of edge-arcs in {D[e] : e ∈ E(H)}, such that each σ ∈ S has a substring σ′ ⊆ σ
for which

⋃
σ∈S σ

′ is one of the drawings represented in Figure 2.

Proof. Take C an obstruction of the planarization associated to D. Let δ(C) ⊆ V (C) be
the vertices that in C are incident with two different strings in Σ = {D[e] : e ∈ E(H)}.
We choose our obstruction C so that |δ(C)| is as small as possible.
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Decompose C into a cyclic sequence of paths P0, . . . , Pm, where Pi connects two
points in δ(C) and it is otherwise disjoint from δ(C). Using Lemma 4, one can show
that P0, . . . , Pm belong to distinct edge-arcs σ0, . . . , σm ∈ Σ, respectively. For each Pi, we
consider the string σ′i, obtained by slightly extending the ends of Pi that are not rainbows
in C; we extend them along σi.

Let x ∈ δ(C) be an end shared by Pi−1 and Pi. If x is not a rainbow for C, then x
is a crossing between σi−1 and σi. Moreover, the arcs added to Pi−1 and Pi at x to obtain
σ′i−1 and σ′i are inside C. If x is a rainbow in C, then Pi and Pi−1 are not extended at x,
and x acts as one of the degree-2 vertices in Figure 2. The rest of the points in δ(C) are
crossings in

⋃m
i=0 σ

′
i facing the interior of C. Since C has at most two rainbows,

⋃m
i=0 σ

′
i is

one of the drawings depicted in Figure 2.

Theorem 2 can also be applied to show that a drawing of Kn is pseudolinear if and
only if does not contain the B-configuration (Theorem 2.5.1 in [3]). We sketch the proof of
a specific case of this theorem in the next two paragraphs and comment on the general case
afterwards.

Suppose that G(Σ) is the planarization of a non-pseudolinear drawing D of Kn for
which we would like to show that D contains a B-configuration. Consider an obstruction
C of G(Σ) minimizing |δ(C)|, where δ(C) are vertices of C incident with edges in C having
different colours. For illustrative purposes, let us assume that C contains two vertices from
V (Kn). Since C is an obstruction, u and v are the only rainbows of C.

An edge e of Kn is involved in C if C contains a subarc of D[e] (see Figure 13).
By using Lemma 4 is not hard to show that every edge involved in C is drawn inside C.
Consider all the vertices incident with an edge involved in C and let D′ be the drawing of
the complete graph induced by these vertices. Then, D′ has at most two vertices in its outer
boundary, namely u and v. Thus, the outer boundary of D′ is incident with at least one
crossing. The K4 containing this crossing is drawn as in Figure 1 with its crossing incident
with the outer face. This K4 contains a B-configuration.

The proof for the general case, where C does not necessarily contains two vertices of
Kn, is considered in full detail in [3], and uses the complete subgraph induced by the edges
involved in C combined with the fact that |δ(C)| is minimal.

e

u

v

C

Figure 13: An edge e involved in the obstruction C.

A drawing is stretchable if it is homeomorphic to a rectilinear drawing. There are
pseudolinear drawings that are not stretchable. For instance, consider the Non-Pappus
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configuration in Figure 14. Nevertheless, the following is an immediate consequence of
Thomassen’s main result in [19].

Figure 14: Non-Pappus configuration.

Corollary 11. A 1-planar drawing of a graph is stretchable if and only if it is pseudolinear.

Proof. If a drawing D is stretchable then clearly it is pseudolinear. To show the converse,
suppose that D is pseudolinear. Then D does not contain any obstruction, and in particular,
neither of the B- and W -configurations in Figure 2 occurs in D. This condition was shown
in [19] to be equivalent to being stretchable.

One can construct more general examples of pseudolinear drawings that are not
stretchable by considering non-strechable arrangements of pseudolines. However, such ex-
amples seem to inevitably have some edge with multiple crossings. This leads to a natural
question.

Question 1. Is it true that if D is a pseudolinear drawing in which every edge is crossed
at most twice, then D is stretchable?

We believe that there are other instances where pseudolinearity characterizes stretch-
ability of drawings. A drawing is near planar if the removal of one edge produces a planar
graph. One instance, is the following result by Eades et al. that can be translated to the
language of pseudolines:

Theorem 12. [9] A drawing of a near-planar graph is stretchable if and only if the drawing
induced by the crossed edges is pseudolinear.
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