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INTRODUCTION 

Mathematics is generally viewed as difficult and 
accessible only to few (Boaler & Greeno, 2000).  It 
is often taught as a high-stake performance subject 
that aims at determining who can and who cannot do 
mathematics (Boaler, 2015). Moreover, math 
classrooms are "unusually narrow and ritualistic, 
leading students to reject the discipline at a sensitive 
stage of their identity development" (p.171, Boaler & 

Greeno, 2000). In spite of calls for enhancing sense 
making and reasoning (CCSSM, 2010; NCTM, 2000), 
students’ experiences of learning mathematics in 
secondary school are known to be mostly procedural, 
answer-based, and rely to a large extent on rote 
memorization. Consequently, many students develop 
a rather narrow conception of what math is as well as 
low expectations regarding their ability and 
likelihood to do well in math. 

Our study stems from the belief that meaningful 
and challenging math can be made accessible to all 
students. We strive to offer students opportunities to 
experience different kinds of math learning than 
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those described above. To this end, we designed and 
implemented a special course for undergraduate 
students who consider themselves “non-math” people, 
which satisfied the requirement of a core course in 
quantitative reasoning. The content chosen as the 
focus of this course was basic combinatorics (i.e., 
counting problems) – a topic that is non-procedural 
in nature and could be made accessible to all students, 
or at least to a vast majority. The design of the course 
was inspired by inclusive pedagogical principles that 
motivate and support students’ conceptual learning. 

In this paper we present the characteristics of the 
learning environment that was developed within the 
framework of this course. We then analyze a lesson 
that represents the kind of learning process that the 
students encountered, point to the rich and 
sophisticated kinds of reasoning that they developed 
throughout the course, and discuss how this process 
seemed to have contributed to their views of 
themselves as math learners and their conceptions of 
what math is.  

Our findings point to the feasibility of such a 
course for non-math students, and its potential merit 
in helping students: (i) develop appreciation of 
mathematics as a topic that requires thinking, 
reasoning, and convincing; (ii) become more 
confident in their ability to do math. 

INCLUSION, DISPOSITIONS, AND 
CLASSROOM NORMS in MATHEMATICS 

EDUCATION 
 

The need for inclusion and equity in mathematics 
has been a serious concern of the community of 
mathematics education. For example, Boaler (2015) 
attributes mathematics inequality to stereotyped ideas 
about who can achieve well in mathematics. 
Stemming from this concern, there have been several 
calls for refining practices of teaching mathematics to 
ensure that all students have the opportunity to learn 
mathematics (e.g., Davis et al, 2018; Cobb & Hodges, 
2007). These practices are expected to be responsive 
and attend to the sense(s) that the individual learner 
is making. According to Davis et al, teaching should 
be “both inclusive and deliberate in pedagogy — 
inclusive, in that one intentionally prioritizes the 
voices that constitute the collective, and deliberate, in 
that one purposefully welcomes so-called deviations 
from a lesson timeline to engage in critical 
conversations with learners” (ibid, p. 99).  Further, 

it also calls for listening to students’ responses in a 
broad and genuine sense, that is, listening to the ideas 
they build up, and responding in ways that foster 
their understanding of and interest in mathematics, 
not focusing solely on correctness and efficiency 
(Schulman, 2013).  

Inherent to the concern of inclusion is the concern 
about the dispositions that students develop towards 
mathematics as they engage in classroom activities 
(Gresalfi & Cobb, 2006). According to Gresalfi and 
Cobb (2006), disposition encompasses ideas about, 
values of, and ways of participating with mathematics 
that students develop. This view of disposition is closely 
related to notions of identity and agency (Boaler, 2002). 
Students’ development of interest or a sense of 
affiliation with mathematics is closely related to the 
ways in which they engage with mathematics (Lampert, 
1990; Nasir, 2002). Moreover, pedagogical practices 
have the power to turn disaffected students away from 
mathematics for reasons unrelated to the nature of the 
content (Boaler, 2002). Thus, the kinds of opportunities 
students have to participate in classroom practices have 
bearing on the access they have to doing mathematics 
meaningfully and on the disposition they develop. For 
this reason, the nurturing of students’ dispositions 
should be an intentional part of instructional design and 
pedagogy (Cobb & Hodge, 2007).  

Related to issues of inclusion and dispositions are 
the ways in which classroom norms get constructed 
and established and how individual students engage 
in those practices (Yackel & Cobb, 1996; Lampert, 
1990). Classroom norms have implications for 
students’ interest, motivation, and sense of 
confidence. Moreover, the meaning of “doing math” 
in a particular classroom may account for students’ 
dispositions (Solomon, 2007). Gresalfi and Cobb 
(2006) reflect on their work and suggest that analyses 
of classroom learning environment should focus on 
“the ways in which students interact with classroom 
resources — such as other students, instructional 
materials, and associated tools — the teacher, and the 
ways that these interactions shape and are shaped by 
the development of classroom norms” (ibid, p. 51).  

Classroom norms join with sociomathematical norms 
(Yackel & Cobb, 1996) to form the construct of the 
normative identity as a doer of mathematics (Cobb & 
Hodge, 2007). The normative identity “established in a 
particular classroom indicates the identity that students 
would have to develop in order to affiliate with 
mathematical activity as it is realized in that classroom” 
(ibid, p. 166). A student’s view of what it means to be 



 
ORIT ZASLAVSKY, KATHERINE V. PAULETTI, VICTORIA KRUPNIK    93 

Journal of Educational Research in Mathematics 

good at mathematics may shape their disposition 
towards the subject; however, such personal views can 
be challenged and altered by the normative identity 
established in their mathematics classroom. Ruef (2017) 
reported on the feasibility of such changes, although she 
did not investigate their causes. 

STUDENTS’ STRENGTHS AND 
DIFFICULTIES IN SOLVING 

COMBINATORIAL PROBLEMS 
 

Combinatorics is an important area of discrete 
mathematics, which is “an active branch of 
contemporary mathematics that is widely used in 
business and industry” (NCTM, 2000, p. 31). Not only 
is it connected to people’s everyday experience and 
often to their professional practice as well, it also has 
the potential of creating a rich and motivating 
problem-solving context for students to explore 
(Lockwood, 2013). Consequently, there have been 
calls to include combinatorics as an integral part of the 
mathematics curriculum, from the early elementary 
grades through to the senior high school level (e.g., 
Batanero, Navarro-Pelayo, & Godino, 1997; English, 
1993; NCTM, 2000). Interestingly, on the one hand 
there is evidence that combinatorics can be taught at a 
wide range of levels, from an informal level to a 
formal and highly rigorous one. There are studies that 
show that young children with no prior learning 
history of any counting methods, can come up with 
sophisticated ways of solving counting problems (e.g., 
Maher, Powell, & Uptegrove, 2011a; English, 1991, 
1993). On the other hand, combinatorics is considered 
one of the more difficult mathematical topics to teach 
and learn (Mashiach-Eizenberg & Zaslavsky, 2004).  

Combinatorial problems are non-procedural in 
nature, most problems do not have readily available 
solution methods, and create much uncertainty 
regarding how to approach them and what method to 
employ. Two different solutions yielding different 
answers to the same problem may both seem equally 
convincing, and there are no straightforward 
verification strategies (Mashiach-Eizenberg & 
Zaslavsky, 2004). As Wassermen (2019) noted, 
“…although counting problems can be easy to state, 
they can be deceptively difficult to solve” (p. 16).  

Elementary combinatorial problems deal with 
counting and accounting for all possible outcomes of 
an (actual or thought) experiment. A common thread 
across all combinatorial problems is the need to be 

cautious not to overcount and not to undercount, that is, 
we must “cover” all possible outcomes that are 
relevant to the problem, and make sure we do not 
count any outcome more than once. This is a concern 
from the start, even when one tries to count by listing 
all the outcomes. Usually, unless you have a 
systematic way of counting, you may easily miss an 
outcome or double-count it. 

Combinatorial problems vary along several 
dimensions, including: the kinds of objects that are 
being counted and whether they are distinguishable or 
not (for example, people, numbers, physical objects); 
the relevance of order (does order matter? For example, 
seating people in a row implies that order matters, 
while selecting a committee with no designated roles, 
implies that order does not matter); the possibility of 
repetition or replacement (can the same object appear 
more than once? For example, if we explore 4-digit 
numbers, do we have a restriction on how many times 
a digit can appear in the number?); the underlying 
model – Selection, Distribution, and Partition (for 
details see Batanaro et al, 1997); the mathematical 
expression that is associated with the solution (see 
Batanaro et al, 1997, and Lockwood, Wasserman, & 
McGuffey, 2018). Related to the latter, counting 
problems may examine permutations, arrangements, 
and/or combinations [see Glossary]. 

Some of the above factors contribute to difficulties 
students encounter in solving combinatorial problems. 
Among these factors are the type of problem, the 
nature of the elements that comprise the outcomes, and 
the implicit combinatorial model associated with the 
problem (Batanero et al, 1997; Fischbein & Gazit, 
1988). Lockwood (2013, 2014) provided a model for 
student combinatorial thinking that has three main 
elements: the set of outcomes, the counting process, 
and the mathematical expression associated with the 
solution of the problem. According to this model, there 
is a bidirectional relationship between every pair of the 
elements of the model. Students engage with these 
relationships when solving counting problems. For 
example, a set of outcomes can illuminate a particular 
counting process; a particular counting process can 
result in a specific mathematical expression, etc. 
Lockwood (2013) found that students have difficulty 
in making connections between expressions and sets 
of outcomes. To address this concern, Lockwood 
(2014) argued for a set-oriented perspective toward 
counting, in which a focus on sets of outcomes is an 
intrinsic part to solving counting problems. 
Wasserman (2019) attributes students’ struggles in 
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solving combinatorial problems to the mathematical 
notation and symbolism used, which could inhibit 
students’ development of set-oriented perspectives.   

Lockwood et al. (2018) examined further students’ 
solutions to combination counting problems. They 
distinguish between combination problems that are based 
on an unordered selection of distinguishable objects and 
those that are based on (ordered) sequences of two or 
more indistinguishable objects. They termed the former 
type Category I and hypothesized that this type of 
combination problems’ encoding of sets of outcomes is 
fairly straightforward. The latter type of combination 
problems was called Category II. Problems of Category II 
required encoding the outcomes (the sets of 
indistinguishable objects) with a corresponding set of 
distinct objects. Based on this difference in encoding the 
sets of outcomes, a survey, consisting of combination 
problems (problems that could be solved by using 
binomial coefficients) that had either of the two 
characteristics, was given to 126 students who did not 
take a combinatoric-specific class. They found that 
participants were (statistically) significantly less likely to 
use a combination approach on Category II problems, and 
when using a combination approach, they were more 
likely to do so incorrectly. The authors suggest that 
students may not view these types of problems in a 
similar way and based on Lockwood’s (2014) set-
oriented perspective towards counting perhaps students 
do not recognize that Category II outcomes can be 
encoded as sets of distinct objects.   

As mentioned earlier, while there is evidence of 
difficulties that students encounter in solving 
combinatorial problems, there is also evidence of students’ 
strengths, with or without formal instruction. For example, 
Fischbein and Gazit (1988) found that students as young 
as ten years old were able to learn some combinatorial 
idea with appropriate instruction that facilitated the use of 
tree diagrams. Interestingly, the teaching they employed 
using tree diagrams changes the relative level of difficulty 
of problems students had exhibited before instruction. 
While at first combination problems were easier than 
permutation problems, after instruction, permutation 
problems became much easier compared to combination 
problems. The explanation the researchers gave for these 
findings is that, in addition to the tree diagram being a 
helpful way to think about permutations, the formula for 
permutations is simpler and more intuitive than the 
formula for combinations. 

Maher et al. (2011a) followed a cohort of students 
engaging in solving counting problems, in a 
longitudinal study, from their elementary grades till 

high-school. Their study was based on none to 
minimal researcher intervention (e.g., to suggest a 
solution pathway) as students were solving counting 
problems collaboratively. At both stages – elementary 
and high-school – students were found to naturally use 
listing methods by types of outcomes in order to solve 
combination problems and, with time, effort, and 
minimal guidance, the high-school students explored 
and were able to explain binomial 
coefficients through the context of concrete problem 
situations. Maher et al.’s (2011a) findings 
suggest that counting problems are naturally accessible 
to various aged students and that the abstract 
combinatorial concepts (such as the notions of 
combinations, or isomorphism) take time to develop. 
One way is through a rich opportunity to explore and 
revisit counting situations and tasks before 
introducing abstract combinatorial concepts and once 
introduced, to encourage explanations of these abstract 
concepts in terms of concrete task situations. 

THE POTENTIAL OF COMBINATORIAL 
PROBLEMS FOR AN EQUITABLE 

LEARNING ENVIRONMENT 
 

Boaler (2015) recommends a number of teaching 
strategies that she considers equitable, which include: 
offering all students high-level content, encouraging 
students to think deeply about mathematics, teaching 
students to work together, helping students become 
reflective about their learning, and working to change 
ideas about who can achieve well in math. Clearly, the 
mathematical content itself is not sufficient to create such 
an equitable learning environment, however, certain 
content lends itself particularly well as a basis for it. The 
studies described above, indicate that the terrain of 
counting problems could be made accessible to students 
of a wide range of age levels, mathematics achievement 
levels, and levels of interest in mathematics. In particular, 
there are several characteristics of counting problems that 
could be used as a springboard for the design of an 
equitable learning environment for students who identify 
themselves as “non-math” persons.  

Counting problems can be accessible to many 
learners with no prior combinatorial background. 
Unlike some other mathematics domains that require 
formal prerequisites, the learning environment around 
counting problems may take non-traditional forms 
(e.g., exploration or discovery learning versus lecture), 
thus, offering multiple entry points. Counting 
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problems can be presented in terms of real-life or 
contextually familiar situations. The literature suggests 
that combinatorial problems of a variety of complexity 
can be solved by students as young as in their 
elementary years and that they facilitate the 
development of natural enumeration processes (Maher 
et al., 2011a; English, 1991). For example, some tasks 
adapted from Maher and her colleagues for 
undergraduate students in the current study were given 
to and solved successfully by fourth and fifth graders 
(Maher, Sran, & Yankelewitz, 2011b). Although the 
reasoning and methods employed to solve the tasks 
may vary for different students, familiarity of contexts 
and the natural ability to count, organize, list, etc. 
make entry accessible to most learners.  

Although accessible, counting problems can also be 
rather challenging for a wide range of students. They 
qualify as high cognitive demand tasks (according to 
Stein, Grover, & Henningsen, 1996) as they: require 
complex and non-algorithmic thinking (i.e., there is 
not a predictable, well-rehearsed approach explicitly 
suggested by the task, task instructions, or a worked-
out example); require students to analyze the task and 
actively examine task constraints that may limit 
possible solution strategies and solutions; require 
students to explore and to understand the nature of 
mathematical processes, relationships, and concepts; 
demand self-monitoring or self-regulation of one's 
own cognitive processes, as it may be hard to verify 
the solution with no readily available verification 
methods, particularly to ensure not to over or under 
count. Verification of solutions to counting problems 
becomes even more challenging when students are 
encouraged to try to come up with multiple solutions 
(as recommended by Bass (2017) and Leikin (2011)). 
This, in turn, may evoke uncertainty and conflict, the 
resolution of which can lead to a deeper understanding 
(Zaslavsky, 2005). If counting problems are carefully 
chosen for context, size (in count required), and 
underlying methods (complexity), they may be both 
accessible for a given population, yet challenging 
enough to elicit verification methods. 

The accessibility of counting problems on the one 
hand, and their challenging aspects on the other hand, 
allow for moving from intuitive/concrete approaches 
(e.g., listing) to more formal, efficient, and 
sophisticated ways. Intuitive and informal methods 
include, for example, enumerative methods that 
produce concrete unordered (e.g., by randomly 
selecting) or ordered (e.g., listing by cases or types) 
sets of outcomes. Formal methods might utilize 

counting principles and additive or multiplicative 
operations, that may emerge from concrete 
experiences and processes of generalization and 
abstraction. Informal or formal methods do not imply 
correctness nor subjectivity/value of one over the other, 
but rather they are used to describe when a solution 
contains an enumeration of concrete outcomes and 
when it does not. Related to this feature, counting 
problems do not necessarily include notation and so 
they elicit devising plans for effective notation. 
Although there are formal mathematical expressions 
(or formulas) that can be applied when solving 
counting problems (some of them appear in the 
Glossary), it is still possible and even beneficial to use 
personal notation to represent outcomes and methods 
of counting (e.g., lists, tree diagrams) that make sense 
to the student. Personal notation could help students to 
reason with the problem and come up with a solution 
without using the formal mathematical expressions. 
Making it legitimate for students to operate on an 
intuitive level while encouraging them to move 
towards more formal methods is another way of 
offering an inclusive learning environment.  

Counting problems can vary based on their solution 
strategies and often require non-procedural or a mix of 
procedural techniques. Thus, memorization of 
counting concepts (e.g., addition or multiplicative 
counting principles) is unlikely to be sufficient to solve 
a problem, particularly with multiple steps. Depending 
on the opportunities for exploration and learning 
environment, counting problems can foster a new 
experience of mathematics that includes genuine 
collaboration and debate. In studying a strand of 
related counting problems, Krupnik (2020) found that, 
given an opportunity to explore tasks with minimal 
researcher intervention, learning of young children 
occurred collaboratively when they were attentive to 
the counter examples and arguments posed by others 
and worked to convince others about their arguments. 
This suggests that the learning environment is 
inextricably related to the potentiality of the 
aforementioned characteristics of counting problems. 

THE STUDY 

1. Goals  

The main goal of the study was to design and 
implement an inclusive yet mathematically challenging, 
quantitative reasoning learning environment for non-
math undergraduate students, and to examine how the 
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learning environment facilitates the development of 
students’ mathematical reasoning and dispositions 
toward mathematics. More specifically, we aim at:  

 
 Characterizing the kinds of reasoning students 

manifest as they solve counting problems; 
 Identifying possible elements in the learning 

environment that may have contributed to the 
development of these kinds of reasoning; 

 Making connections between students’ struggles 
and successes in the course of solving counting 
problems and their views of themselves as 
learners of mathematics and of mathematics; 

 Establishing the feasibility and merits of this 
Learning Environment for “non-math” students 

 
Inspired by the work described above, we designed and 

implemented a learning environment within the framework 
of the “Counting and Chance” course with the intention not 
only to offer students the opportunity to learn the content 
meaningfully but even more importantly, to nurture their 
dispositions. In our analysis, we focus on how students 
interact with each other and with the available tools they 
have as they solve counting problems, in light of the norms 
that were established throughout the semester. We attempt 
to make connections to the dispositions they develop in this 
context. 

2. Characteristics of the Learning Environment 

As mentioned, the study was carried out within an 
undergraduate problem-based course on counting and 
chance (elementary combinatorics and probability) for 
non-mathematics and non-mathematics education 
majors, who took it as a core course in quantitative 
reasoning. The course ran 14 weeks, and met twice a 
week for 75 minutes. In addition, there was an optional 
50-minute recitation session, on a different day.  

There was no required textbook for the course, though 
relevant resources were made available for students on a 
regular basis. In particular, after every class, the instructor 
posted an enhanced power point that included the 
activities for that lesson, including comments, hints, 
solutions that came up in class. These power points also 
included snapshots of students’ work in class, mostly 
those that were presented on the board. The problems 
chosen for the course and their sequencing were inspired 
by and adapted from some research publications (e.g., 
Maher et al, 2011a; Lockwood, Swinyard, & Caughman, 
2015), other publications, and personal communications 
with Lockwood who shared some of the problems she 

used in her undergraduate courses in combinatorics. 
Typically, these problems require coming up with the 
total number of possible outcomes of a particular 
situation. For example, how many domino blocks make a 
full set? Or, how many different choices of pizza do we 
have, if we can choose up to 3 toppings from a given list 
of 3 toppings?  Or, in how many ways can we seat 5 
people in a row? In more conventional terms, we 
included problems that deal with permutations, 
arrangements, and combinations. 

The specific characteristics of the learning 
environment stemmed from the view that what is learned 
cannot be separated from how it is learned and from the 
studies described in previous sections. Thus, the learning 
environment was designed with the following guiding 
principles in mind: (i) build on students’ (intuitive) ideas 
and gradually facilitate the development of more formal 
methods; (ii) emphasize process vs. final answer; (iii) 
establish an atmosphere conductive of sharing and 
communicating ideas and critiquing them (“risk taking”) 
as well as norms of accountability and justification; (iv) 
foster students’ genuine and productive collaborative 
work; (v) encourage multiple solutions; (vi) seize 
opportunities to evoke uncertainty and cognitive conflict 
and facilitate the resolution of them; (vii) keep teacher 
intervention in the learning process to a minimal, mainly 
as a facilitator providing some guidance according to the 
classroom situation. 

3. Overview of the Course  

The implementation of each one of the lessons 
followed a similar structure: (a) whole group task 
introduction, (b) small-group collaboration on the task, 
and (c) whole group discussion of students’ approaches 
and solutions presented on the board, (d) continued 
small-group work on the task, if necessary, (e) 
concluding results of the reasoning to solve the task.  

As mentioned, the course was problem-based. 
Typically, students would work in class on one or two 
problems per lesson. There were cases where one 
problem took more than one lesson to explore. For most 
of the problems, students were deliberately asked to try 
to solve the problem in multiple ways, unless multiple 
solutions were suggested spontaneously. Rather than 
giving students formulas to apply, or rules of thumb, 
they were offered ways to think about certain situations. 
For example, the “addition principle” was connected to 
the idea of dividing the outcome set into cases (i.e., 
disjoint subsets). It made sense to them that instead of 
counting the number of all possible outcomes, they 
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could count the numbers in each case separately and 
then add them up to get the total. Thus, the choice of 
operation, in this case – addition, seemed very 
reasonable. Similarly, they were introduced to a 
“branching” model, which is basically the idea of a tree 
diagram, where they could picture why multiplying the 
numbers would make sense. The additive model with 
cases helped students focus on the outcome set while 
the idea of branching was closely related to the counting 
process. In terms of Lockwood (2013, 2014), students 
had opportunities to develop a set-oriented perspective, 
as well as conceptualizing of the counting process. 
While students unknowingly developed and used 
common combinatorics formulas throughout the first 
half of the semester, no formula was explicitly 
presented until the combination notation, ൫୬୩൯ , was 

introduced half-way through the course (in Lesson #15). 
Overall, there was a gradual development of more 
formal and generalizable tools, as questions of 
efficiency in reaching a solution began to evolve. 

For this paper we focus mainly on Lesson #17 (out of 
28 lessons). Students were introduced to the notation 
and meaning of ൫୬୩൯ only in Lesson #15, after working 

on a number of combination problems, of both Category 
I and Category II (Lockwood et al, 2018). In Lesson 
#16, students worked on the Four-Topping Whole Pizza 
Problem below (adapted from Maher et al, 2011b). 

 
Four-Topping Whole Pizza Problem (4TWP) 

A pizza shop offers a basic cheese pizza with 
tomato sauce. A customer can then select from 
the following toppings to add to the basic, cheese 
pizza: Onions, Sausage, Mushrooms, and 
Pepperoni. 
How many different choices for pizza does a 
customer have? 
Note that cheese is NOT an additional topping; 
all pizzas have cheese as a topping. Also, the 
order of toppings does not matter either. 
 
They were able to solve the 4TWP problem and 

reason about it in two different ways (by cases 
involving binomial coefficients, or as a power of 2). 
Approaching it by cases, required splitting the 
outcomes set into 5 cases: Case 1: Pizzas with 
exactly 0 toppings; Case 2: Pizzas with exactly 1 
topping; Case 3: Pizzas with exactly 2 toppings; Case 
4: Pizzas with exactly 3 toppings; Case 5: Pizzas with 
exactly 4 toppings. Approaching it by powers of 2 
would suggest that for every topping there are 2 

choices: Choosing it or not choosing it. We can 
describe this counting process as a “branching” 
model, yielding 2ସ.  

In previous lessons students solved similar 
(actually isomorphic) problems, e.g., “The Towers 
Problem” (adapted from Maher and Martino, 1996), 
and with some guidance were able to see the 
connections between these problems. 

In Lesson #17 students were introduced to a more 
advanced pizza problem, that allowed selecting 
toppings just to half the pizza (also adapted from 
Maher et al, 2011b). The reason for including this 
problem at this point, was that they could build on 
their findings for the whole pizza problem, yet there 
was an additional complexity that required additional 
thinking. Nonetheless, students had sufficient tools to 
build on, but could not apply them automatically. 

 
Three-Topping Pizza with Halves (3THP) 

A local pizza shop has asked us to help them 
design a form to keep track of certain pizza sales. 
Their standard “plain” pizza contains cheese. On 
this cheese pizza, one, two or three toppings 
could be added to either half of the plain pizza or 
the whole pie. 
How many choices do customers have if they 
could choose from three different toppings 
(Anchovies, Mushrooms and Pepperoni)? 
 
There are several ways to approach this problem. 

One way would be by listing in a systematic and 
concrete way each possible outcome. This approach 
would require a clear representation of the outcomes 
and a way to monitor that they were not under or 
over counted. The total number of outcomes is 36. 

Another approach could be to treat each half pizza 
separately as a whole pizza and build on what had 
been established previously for the whole pizza 
problem (4TWP). This approach yields 8 different 
combinations of toppings for a given half (allowing 
“no topping”). Then the question remains, how the 
number of possible combinations on each half 
separately helps in finding the total number of 
combinations for the whole pie. At first glance, it 
may appear that multiplying the number of options 
for each half would yield the correct answer, as the 
“branching” way of thinking can be applied here (to a 
certain extent). This would lead to 8 × 8, which in 
fact is overcounting. Taking into account that the 
order of the halves does not matter (we can turn 
around the pie), would suggest dividing 64 by 2. 
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However, this would be undercounting. Figuring out 
how to proceed and what the correct solution might 
be is challenging though accessible. Clearly, there are 
other approaches to solve the problem as well. 

4. Participants  

Participants were undergraduate non-mathematics 
and non-mathematics education majors. Although for 
this paper we focus on the first semester in which the 
course was taught, this course has been offered three 
semesters in a row, with students of similar 
backgrounds and aspirations (altogether, 49 students 
participated in the first three semesters). In the first 
semester there were 12 undergraduate participants 
representing four majors: early childhood and special 
education (3), childhood and special education (2), 
communications (6), and applied psychology (1), and 
were a mix of freshmen (8) and juniors (4). 

5. Data Sources                                                                                   

The purpose of the data collection was to capture the 
development of students’ mathematical reasoning, 
disposition, and confidence, and to this end we collected 
a breadth of data sources, each with its own purpose. 

 Videotaped lessons 
All class sessions (except for the recitation 

sessions) were videotaped using two cameras to 
capture both small group and whole group 
interactions. The video recordings provide us with 
hindsight access related to students and the course. 
Video recordings were transcribed as needed. 

 Audio recorded lessons 
Midway through the semester (Week 8, Lesson 

#13), we began to audio record small group 
discussions to capture conversations that might not 
be audible on video. The audio recorders helped us to 
minimize crosstalk incidents by providing isolated 
audio of individual group discussions that allowed us 
to better recreate simultaneous conversations that 
occur during the small group class segments. The 
audio recorders also pick up small talk, utterances, 
and whispered reactions that video cameras miss 
during whole class presentations. Audio recordings 
were transcribed as needed.  

 Field notes  
Field notes were taken in all classes and provide a 

contemporaneous record of student discussions and 
interactions that took place before, during, and after 

class, some of which was not captured by video 
and/or audio. 

 Course material  
Course material included power point 

presentations of each lesson, classroom and 
homework assignments, students’ written work in 
class and as part of their homework assignments, and 
quizzes. Students’ written work provide us with an 
opportunity to examine students’ mathematical 
thought processes as they worked through counting 
problems.  

 Mathematics Autobiography  
Students’ mathematics histories were collected 

through a mathematics autobiography and were used as 
a baseline to identify students’ dispositions towards 
mathematics and their confidence as mathematics 
learners. The mathematics autobiography was the first 
homework assignment and asked students to respond to 
the following prompts: 

 
1) If you were asked to describe mathematics to 

someone who had never studied or has 
minimal experience with math, how would 
you respond? 

2) How do you feel about mathematics? What 
experiences led you to this feeling? 

3) How confident are you about being able to do 
well in math? What do you attribute your 
confidence level to? 

 Weekly feedback questionnaires 
As part of the course requirements students were 

asked to respond to a weekly questionnaire. The 
purpose of the weekly questionnaire was twofold: 1. 
to encourage students’ timely reflection on their 
learning, and 2. to provide the instructor with student 
feedback that helped to shape future lessons. The 
weekly questionnaires included questions such as: 

 
 Please reflect and specify what has been 

working well for you and what may not have 
been working well for you. 

 Reflect on this week's lessons and discuss 
what, if anything, was interesting, redundant, 
and/or contributed to your understanding. 

 Reflect on today's lesson and discuss to what 
extent it was challenging and how it 
contributed to your learning. Please provide a 
detailed explanation and/or examples.  
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 To what extent do you feel that your 
performance on the quiz reflects the level of 
understanding that you have developed 
throughout the course? Please provide a 
detailed explanation and/or examples. 

 End-of-Semester written questionnaire  
During the last class students were asked to respond 

in writing to a questionnaire that was used as a point of 
comparison to identify any potential changes to 
students’ dispositions towards mathematics and 
confidence as mathematics learners. The questionnaire 
also provided the instructor with student feedback that 
could be used to help shape the course in future 
semesters. The end-of-semester written questionnaire 
included the following questions:  

1. Course activities 
1.1 Which course activities (if at all) did you 

find particularly motivating and/or helpful 
in developing your thinking about counting 
problems? Why? 

1.2 What course activities (if at all) did you find 
the least motivating and helpful in 
developing your thinking about counting 
problems? Why? 

1.3 What suggestions can you offer us for 
improving the course in terms of content, 
structure, activities, management, etc.? 

 
2. Disposition towards mathematics 

2.1 How confident were you about being able to 
do well in math before the course began? In 
what ways, if at all, has your response 
changed over this semester? Please 
prob=vide specific examples to identify how 
this change (or non-change) might have 
occurred. 

2.2 How do you feel about mathematics? What 
experiences led you to this feeling? Please 
consider experiences, both good and bad. In 
what ways, if at all, have these feelings 
changed? Please provide specific examples 
to illustrate this change (or non-change). 

3. Classroom environment 
3.1 Think back to when you took traditional 

math courses in high school and discuss 
how the learning environment (classroom 
setup, lesson delivery, etc.) was structured 

in comparison to the Counting and Chance 
course. What was similar and what different? 

3.2 In what ways did the Counting and Chance 
learning environment promote (or impede) 
your learning? 

3.3 Throughout the semester there were many 
opportunities to collaborate with each other. 
How would you characterize the nature of 
these collaborations? To what extent do you 
feel they were productive? In what ways 
was your collaboration in Counting and 
Chance similar to or different from previous 
experiences you have had with working in 
groups during math class? 

 Anonymous Course Evaluation 
The university asks students to complete an 

anonymous course evaluation in the closing two 
weeks of each semester, the results of which remain 
unknown to the instructor until the respective 
semester is over and all grades have been posted. 

6. Analysis  

As mentioned above, all lessons were video-taped, 
audio-taped, and transcribed. For the purpose of this 
paper, we selected a lesson that captured elements 
that we observed throughout the course. Therefore, 
the task and lesson can be considered generic, rather 
than special cases in our analysis and were chosen to 
exemplify the nature of the entire semester course for 
this population over the different semesters.  

We then divided it into chronological segments 
that reflected the typical structure of the lessons, 
according to the setting (whole class – opening; 
initial pairs/groups – problem-solving; whole class – 
sharing; return to groups or changes in grouping – 
problem-solving, discussion, formulation of a 
complete solution and justification, etc.; whole class 
– closure). For each segment each author individually 
annotated them to highlight the development of each 
group’s interaction with group members/instructors 
pertaining to the solution of the task and their 
argumentation in support of their reasoning. We 
discussed our annotations to come to a unified 
understanding of our observations of the 
development of the class’ problem-solving.  

Then episodes were identified that conveyed the 
kinds of thinking, reasoning, struggles and 
accomplishments students manifested within the 
segment of a particular class setting. Once the 



LEARNING TO SOLVE COUNTING PROBLEMS: 
100   CHALLENGES AND OPPORTUNITIES FOR NON-MATH MAJORS 

2020, Special Issue 

episodes were identified and compared within a 
segment and across segments, themes about the 
mathematical learning environment, and the nature of 
and the reasoning that was elicited by the counting 
problem emerged. We purposefully chose an excerpt 
from an episode to focus on and illustrate a theme 
from each segment (although not only one theme 
existed in each segment and each theme was not 
unique to a particular segment or episode). 

In order to examine whether there were changes in 
students’ dispositions towards mathematics and their 
views of themselves as learners of mathematics, we 
first did a side-by-side comparison of the two 
questions that appeared on both the mathematical 
autobiography and end-of-semester questionnaire. 
For each of these two questions, we identified words 
and phrases used by students that were indicative of 
their affective characteristics and mathematics 
learner confidence pre- and post-course. Following 
this initial comparison, we turned to the end-of-
semester written questionnaires to examine to what 
each student attributed their change(s) in disposition 
and/or confidence. Once the attributes were identified, 
we revisited the segments and episodes presented 
below to determine if and where such attributes were 
present during the lesson. Finally, we examined the 
anonymous course evaluation to determine whether 
there was any further indication of changes in 
students’ dispositions towards mathematics and their 
views of themselves as learners of mathematics, 
again by examining the language used by students. 

FINDINGS 

The lesson we present had a similar class structure 
(i.e., segment) as described earlier.  We use this lesson 
to convey how the learning environment unfolded, to 
show what students were able to do, and how they 
supported their reasoning. 

The findings are separated into two parts. Part 1 is 
organized by three themes that emerged as students’ 
reasoning developed within each segment. Themes 
are presented in the same chronological order as the 
segments. Each theme begins with a general 
explanation, followed by a context of the segment(s) 
and a transcripted excerpt (with commentary) of an 
episode occurring within a segment(s). Utterances 
from transcripts are denoted by “L” and the 
corresponding number (e.g., L5).  

Part 2 presents the ways in which students 
characterized their pre- and post-course dispositions 

towards mathematics and their views of themselves 
as learners of mathematics. Part 2 is organized in 
three parts: students’ disposition towards 
mathematics, students’ confidence as mathematics 
learners, and the affordances they attribute to the 
learning environment in shaping both. 

Part 1: Students’ Reasoning 
The following occurred as the lesson unfolded into 

four distinct segments: 
 

Segment 1. Initially four pairs solved the problem 
in the following ways, with flexibility 
to move around and talk to other 
groups:  

 

i. Pair 1: Yesenia and Carly counted by types of 
outcomes and came up with a list that seemed 
to them to cover all outcomes (i.e., 8 whole 
pizzas with same toppings on both halves, 8 
pizzas on one half 0 topping and on the other 
the 8 topping combinations, 3 pizzas with one 
different topping on each half, 3 pizzas with 
two topping on one half and one topping on 
the other) 

 Solution: 21 outcomes  
 

ii. Pair 2: Rosalind and Doug also counted by 
types, though different than Pair 1, and came 
up with a list that seemed comprehensive to 
them. 

 Solution: 21 outcomes (interestingly, they 
also listed at first exactly 21 outcomes as 
Pair 1 did, but the specific set of outcomes 
they listed was different than the set of 
outcomes Pair 1 listed) 

 

iii. Pair 3: Elena and Lisa built on the previous 
class’ ideas treating each half pizza as a whole 
pizza and were able to justify why each half of 
a pizza had 8 options. They multiplied 8 
options by 8 options to find 64 outcomes. 
They adjusted their solution to remove 
duplicates by dividing 64 by 2 to find 32 
outcomes after they compared their solution 
with Pair 2.  

 Solutions: First 64, then 32 outcomes. 
 

iv. Pair 4: Veronica and Ethan built on the 
previous class’ ideas, identifying and 
justifying the 8 options for each half, then 
multiplying 8 by 8 and dividing by 2.  

 Solution: 32 outcomes.  
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Segment 2. Different approaches and results selected 
for presentation to the whole class: first, 
Carly’s list, arriving at 21 outcomes by 
cases (Pair 1), and then Veronica’s 
multiplication/division calculations, 
arriving at 32 outcomes (Pair 4). Students, 
including Rosalind who had different 
outcomes in her own solution list, added 
to Carly’s list to arrive at 36 outcomes. 
The class then analyzed Veronica’s 
calculations for over or under counting.  

Segment 3. Students returned to pair or small 
group collaboration about the two 
solutions presented to resolve 
discrepancies of which solution to trust, 
36 by a case list (to which we refer as 
Solution A) versus 32 by calculations 
(to which we refer as Solution B), and 
why 32 had missing outcomes. Some 
groups decided on 36 as a final answer 
and searched for the missing 4 in the 
calculated solution that gave 32.  

Segment 4. Whole class resolution of the 
undercounted outcomes, putting it all 
together, and closure. 

 

Note that the entire lesson was devoted to solving the 
3THP.   

The following themes emerged (in parentheses are 
the lesson segments that will be presented to 
illustrate the theme): 

 

1. The accessible yet challenging nature of the 
counting task (Segment 1);  

2. Conflict and uncertainty (Segments 2 and 3);  
3. Resolution of the conflict (Segment 4) 

 

Note that these themes were present throughout 
the lesson.  

Theme 1: The accessible yet challenging nature of 
the counting task 

At the start, when the students were presented 
with the 3THP, they did not have any obvious way to 
solve it, nor a reliable way to verify their solution. 
Participants did not have a readily available 
procedure or prescribed mathematical tool. Thus, the 
task naturally elicited the groups to reason about 
which strategies (e.g., would listing by cases be a 
long process?) and which mathematical tools to use 
(e.g., choosing between counting operations of 
addition or of multiplication). On the other hand, the 

task was accessible and required minimal prior 
knowledge. As we will see below, they had available 
tools and ways to try out. Each student could begin 
working on the problem in a meaningful way, and 
could make some progress towards a complete 
solution, regardless of the approach s/he took. The 
careful choice of “size” (e.g., number of toppings) 
was small enough to be manageable if explored by 
listing all possible outcomes (the total of 36), yet – 
was not too small to make the listing trivial. 
Moreover, students could utilize counting tools that 
were established in prior lessons or different task 
situations, but the procedures to using those tools 
were not readily available or automated. For example, 
they could build on their solutions to the whole-pizza 
problem in the previous lesson. While the problem 
situation appears to be very similar, these two 
problems are not isomorphic, even if you treat each 
half pizza separately as a whole pizza. 

Segment 1: Initial working in pairs in collaboration 
This class segment illustrates the accessibility of 

the task. Pairs 1 and 2 and Pairs 3 and 4 entered the 
problem in different ways. In Episode 1 (Table 1), 
building on a solution to the 4TWP approached by 
cases (0, 1, 2, 3 topping cases), Elena, from Pair 3, 
identified the case options for each half. Specifically, 
she established that for each half, separately, similar 
to the whole pizza problem with up to 3 toppings, 
there were altogether 8 combinations/options of 
toppings. Then, using tools established in the 
previous lessons, she and Lisa multiplied the 8 
options of one half by the same 8 options for the 
other half of a pizza to obtain 64 outcomes. Rosalind 
and Doug, from Pair 2, drew on a listing strategy by 
cases to begin this task. They constructed 21 
outcomes. 

Episode 1 illustrates the challenging yet accessible 
nature of the task. Each pair identified a method to 
arrive at a solution. During this segment, not 
illustrated by this episode, the instructor suggested to 
Pair 3 and 2 to discuss their differences. In discussion 
with Pair 2, Lisa recognized double-counting in their 
methodology. Lisa and Elena adjusted their solution 
by dividing 64 by 2 to arrive at 32 outcomes and the 
groups discussed the possibility that Rosalind and 
Doug’s list of 21 may have missed 11 outcomes. The 
two different answers and the pedagogical move to 
ask the pairs to compare, elicited exploration to find 
the missing outcomes together. In the next episode, a 
new solution is presented to the whole class and a 
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conflict in different solutions prompts students to 
reason about the meaning of their methods.  

Theme 2: Conflict and uncertainty  
Conflict arose naturally and elicited tension about 

what solutions to trust. In some cases, answers were  
the same, but each method required justification to 
verify if the answers were correct (e.g., two different 
strategies produced 21 number of outcomes, yet not 
the same 21 outcomes, as in Segment 1, Pairs 1 & 2). 
An inherent norm in this particular learning 
environment was that even if the answers were the 
same, it did not mean the reasoning was correct. In 
other cases, answers were different, using similar 
approaches (e.g., by listing one group produces 21 
outcomes and another 36 outcomes) or differed 
approaches (e.g., using mathematical tools versus 
listing). There was an iterative nature to examining 
and “correcting” initial “answers” and a culture of 
encouraging multiple ways to solve a problem with 
supportive reasoning. Students provided arguments 
or methods of verification for solutions and strategies 
(such as to make meaning to strategies in the context 
of the task situation). Students dealt with ideas of 
under or over counting their outcome solutions. 
Furthermore, students were encouraged throughout 
the semester to examine the advantage of 
generalizable, formal, or more efficient methods. The 
search to verify or need to prove and understand 
formal methods that had potential for generalizability 
became a norm. 

 In this lesson, conflict naturally arose about 
different final answers between to two appearing 
convincing solutions. The segments will illustrate 
how conflict elicited student examination and 
reconciliation. At the first stage, students were 
uncertain about which answer to trust. An episode for 
Segment 2 (whole class sharing), shows students 
examining the formal methods used in Solution B. 
They analyzed if Solution B was an over or under 
estimate by examining the multiplication and 
division operations used. The students attempted to 
understand the meaning of the generalizable solution 
(the math tools used) in terms of concrete pizzas.  

An episode for Segment 3 (return to group problem-
solving) shows a shift of focus in one group’s attempt to 
advance their understanding of that approach. As they 
became more confident about the validity of the 
concrete list in Solution A, they progressed to a more 
focused goal that dealt with overcounting or 
undercounting to overcome uncertainty of the formal 

methods. This group began to trust Solution A and tried 
to bridge the two solutions by addressing how Solution 
B undercounted. 

Segment 2: Carly’s and Veronica’s presentations of 
two different solutions and class reactions 

We present Segment 2 where Carly presented her 
solution with a list of 21 combinations by partial 
cases. Rosalind, Elena, Yesenia, and others added to 
the list, thereby providing “counterexamples” to 
eliminate the answer of 21 pizzas (see Figure 1). 
With new additions to the list, the class 
collaboratively arrived at 36 outcomes (Solution A). 

 

Figure 1. Carly’s Solution with added outcomes by 
classmates 

 

Then, Veronica presented Solution B with 32 
outcomes obtained by multiplying 8 options for one 
half of a pizza by 8 options for the other half of a 
pizza and dividing by 2! to remove duplicates (see 
Figure 2), since the “order” of each half did not 
matter. She used mathematical tools in a similar way 
as Elena and Lisa (see Episode 1, Table 1).  

 

Figure 2. Veronica’s Solution in Segment 1 
 
After the presentations of the two solutions, the 

teacher prompted the class to comment on them. The 
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students offered their arguments to the class. We 
present a transcript of Episode 2 (Table 2) of Elena 
and Veronica analyzing the meaning of the 8 options 
on one half multiplied by the same 8 options on the 
other half divided by 2! in the context of half-pizzas. 

Elena initially argued by example (the 0 topping 
cheese pizza and the 3 same toppings on both halves 
pizza) that some pizzas were not duplicated by the 
multiplied count to justify the need to replace 
removed pizzas. Veronica argued by example (one 
topping of mushroom on both halves of a pizza) that 

a single topping pizza was duplicated in the count. 
Her reasoning for the duplicated pizzas was that the 
sides of the halves made a difference (this reasoning 
is invalid). 

The purpose of illustrating this segment and 
episode was to show the focus moved from 
comparing two solutions to analysis of one method. 
Interestingly, the uncertainty elicited some 
students to try to make sense of the solution that 
was more formal by utilizing counting operations 
and tools (see Table 2). Recall, a goal in this 

Table 1. Episode 1 – two pairs’ initial problem solving strategies 

Transcript : Elena and Lisa (Pair 3)  Transcript : Rosalind and Doug (Pair 2) Commentary 

Elena: I really think we have to solve this 
the same way as we did the last time, but 
instead of adding [the cases] we multiply 
the possibilities of one side of the pizza by, 
I don’t know, the other side because for 
every cheese half you can have like 
Anchovies, mushrooms, pepperoni [Elena 
returns to her Lesson #16 notes as she 
writes case possibilities for one side of a 
pizza (Figure 3)]  

Figure 3. Elena’s Lesson #17 notes 

Rosalind: I wasn’t here the last time, so first 
I decided I was just gonna draw them all 
out, but then I realized that for let’s say a 
pizza that like half cheese and then half 
toppings, for the toppings you have like, 
I’m thinking, three different toppings 
options, right? 
Doug: yeah 
Rosalind: I don’t know, I was just gonna 
write it out. I’m confused. 
Doug: I think we should do that first. Write 
every possibility out 
Rosalind: Yeah, should we do that? 
Doug: Yeah. 

Elena and Lisa use the cases of pizzas with 
0, 1, 2, and 3 toppings to make progress in 
the new half pizza situation. They identify 8 
options for each half. Not shown in this 
transcript, they then multiply 8 options by 
8 options to obtain 64 outcomes at first.   
Rosalind and Doug decide to make a list. 
Not illustrated in this transcript, they list by 
types of pizzas to obtain 21 outcomes.  

 

Table 2. Episode 2 – Students’ arguments about the presented solutions 
Transcript Commentary 

1. Elena: I was wrong [referring to her 32 when seeing 36 listed 
outcomes-page 13 of main]… I think it’s 36… I think when we 
divide by 2, it takes away like the full pizza. Does that make 
sense? 

2. Veronica: Like all cheese?  
3. Elena: Yeah. Because if you do like the branching way – if you 

have like one [pizza] with the 0 toppings is just cheese that’s 
only happening once [counted once] when you branch it off. 
So, if we divide by 2–. And it’s the same thing [counted once] 
for the 3-topping pizza. 

4. Veronica: But if you say you get one pizza of just mushroom 
from half, you can have mushroom 1 and mushroom 2. That’s 
the same thing as mushroom 2 and mushroom 1. That’s also 
one whole mushroom. 

5. Elena: Yeah. You’re right. That’s true. I don’t know. 
6. Veronica: That’s why in my head I was like “oh, you have one 

whole pizza of just one topping” but that’s essentially the 
same thing as picking one topping here [points to half 1] and 
then picking the same topping again [points to half 2] 

7. Elena: Yeah like the whole pizzas happen twice which is why 
we’re dividing it. But then I don’t know where the other four 
come from. 

Elena’s first argument was that the “full pizza” occurred only once 
and thus, dividing by 2 removed non-duplicated outcomes. 

Elena’s terminology, "branching way," is a reference to the 
multiplicative counting principle and how the tree diagram 
representation of combinations “branch out.” Combinatorial 
principles such as the Fundamental Counting Principle (Product 
Rule) were never explicitly presented in the course, so students had 
their own descriptors.) 

Veronica counters Elena’s claim with an example that “mushroom 1 
and mushroom 2…[is] the same thing as mushroom 2 and 
mushroom 1” which was also the same as “one whole mushroom.” 
Based on evidence of her prior solution presentation, she is 
reiterating her claim here that the whole mushroom pizza is double 
counted in the multiplication.  

Notice Elena agrees with Veronica that “whole pizzas happen 
twice” and indicates conflict as to the missing four pizzas that were 
counted in the solution of 36 (Note that Elena would later return to 
her initial claim that whole pizzas were not duplicated when she 
engaged in the small group with Lisa, Rosalind, and Doug). 
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mathematics course was to have students move 
towards using mathematical tools. Although listing 
was not very efficient, by listing carefully in a 
group’s effort students were able to find all 
outcomes without overcounting. The other groups 
used math tools that were built from the previous 
4TWP Problem. When they trusted the listing, they 
began to focus on the meaning behind their 
operations within the context of this new situation. 
Segment 3 shows their attempt to identify the 
missing outcomes in the undercounted Solution B 
as compared to the list solution (Solution A).  

Segment 3: Small group collaboration about the two 
solutions presented 

The class was prompted by the instructor to 
address the tension between under and 
overcounting outcomes. The instructor offered 
method to resolve the conflict by asking the class 
to study the two solutions and identify the over or 
under counted outcomes. She also reminded the 
class that “order” of each half did not matter in 
this counting problem. Note that also in the 
previous 4TWP Problem the order of the toppings 
did not matter. However, in this problem, an 
additional aspect of “order” needed to be 
considered:  

 
 “Maybe there’s something there that 
needs to be thought out. You already 
accounted for the fact that it doesn’t matter 
which half, right? Because you know when 
we get a pizza and turn it around, you 
don’t know which half is which, right? So, 
now I want you to think more and come up 
with some resolutions...If you think it’s 32, 
then you have to find four that they 
overcounted. And if you think they’re 
right [Carly & Yesenia’s listing of 36], you 
have to find out where you’ve 
undercounted.”  

 
Elena, Lisa, Rosalind, Ethan, and Doug from 

Segment 1 communicate their ideas, scrutinizing 
the multiplication operation to make sense of and 
account for the types of pizza combinations that is 
“counted” in the multiplication strategy. They 
continued their collaboration to explore whether 
certain pizza combinations were duplicated in the "8 × 8". It is evident that they began their search 
for a resolution with the assumption that there 

were 36 outcomes, and so, they attempted to 
identify why their solution is four fewer. Lisa 
returned the conversation back to Elena’s 
argument that not all outcomes were double-
counted (Table 3, L3 – L7). Elena provided 
examples of pizzas that were and were not 
duplicated (this opposed her initial agreement in 
Episode 2 with Veronica that pizzas with single 
same-toppings on both halves were double-
counted). Notice the examples that Elena provided 
were of no or one same topping on both halves. 
Rosalind supported her argument and claimed that 
the four missing outcomes were the result of 
dividing those pizzas.  

Note that in the 3THP, there were 8 pizza 
outcomes with same combination of toppings on 
both halves that were undercounted by the division 
of 2 from 8 × 8. The students tended to look at a 
subset of those undercounted outcomes. They 
identified a discrepancy of 4 between the Solutions 
1 and 2. When they trusted Solution 1 they tried to 
detect the missing outcomes. They identified the 
missing outcomes to be the 0-topping cheese pizza 
and the pizza with the single same-toppings on 
both halves to address the discrepancy of the 
difference (of 4) between the two solutions. They 
did not realize there were 4 other outcomes that 
also were undercounted (same combination of two 
or three toppings on both halves). 

Theme 3: Resolution of the conflict  
In a mathematics classroom a balance and 

tradeoff exist between students solving a 
challenging, accessible task and some turning 
point or closure. On the one hand the instructor 
was only offering prompts to identify the 
uncertainties students might deal with in their 
small groups. On the other hand, when an impasse 
occurred there was a need for more guidance or 
interference. The role of the teacher became 
guided to help students move forward, while still 
maintaining student notation and solution ideas. 

Segment 4: Whole class discussion and conclusions 
After the instructor checked in with each group 

regarding their findings, she shifted the class back to 
a whole class format. Episode 4 (Table 4) illustrates 
the conclusion of the class session where resolution 
took place with real-time class constraints. Building 
on students’ representations and ideas (Ethan’s 
representation question about Carly’s list in Table 4,  
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L1 & L2), the instructor slightly modified the 
representation to depict what students were referring to 
as “whole/full pizzas” as being constructed from two 
identical halves with the same topping on either side. 
Elena claimed this new representation resonated with 
her. Elena and Lisa then contend that there were four 

pizzas that were not double counted. The instructor 
redirected the class to attend to the modified 
representations, resulting in Rosalind and Veronica 
recognizing that there were eight such pizzas with the 
same toppings on either side.  

Due to real-time class constraints and decision- making 

Table 3. Episode 3 – a group debate 
Transcript Commentary 

1. Lisa: If we undercounted, we would’ve undercounted four. 
What did you [Elena] say, like the whole pizzas?  

2. Elena: Yeah. 
3. Rosalind: And that makes sense because there are four whole 

pizzas. There’s a full cheese, there’s a full– 
4. Lisa: I know it makes sense, but we didn’t undercount those 

[‘whole pizzas’].  
5. Rosalind: When you divided, don’t you eliminate those 

because you’re eliminating all the double counting and 
mushroom, mushroom is the same. 

6. Lisa: No because by multiplying 8 by 8, we multiplied 
mushroom-one/mushroom-two, mushroom-two/mushroom-
one. 

7. Elena: But I’m saying cheese, just if you have cheese, the only 
time the zero topping is occurring is once. You’re not gonna 
have cheese, cheese [pizza with cheese on both halves], 
cheese, cheese [duplicate pizza with cheese on both halves]. 

8. Lisa: Oh, four of those [Lisa’s face indicated a light bulb went 
off]… But we need to add four to this [to the number 32 to get 
36]. 

9. Rosalind: You’re undercounting according to that [motions to 
Carly’s list]. 

10. Elena: I know. [Long pause] I don’t know. I’m ready to give 
up...I think dividing by 2... 

11. Lisa: ...li ke cuts something out. 
12. Elena: Because like Mushroom [taps left hand middle finger]-

Pepperoni [taps left hand index finger] and then Mushroom 
[taps right hand middle finger]-Pepperoni [taps right hand 
index finger] that occurs twice. 

13. Lisa: Yeah. 
14. Elena: But like mushroom [gesturing with a switch of her index 

and middle fingers] and mushroom doesn’t occur twice? [her 
statement turns into a question] 

15. Lisa: I thought by multiplying it by each other you’re like 
gonna have like this occur twice, so like P-one, P-two, and 
then P-two, P-one and that’s why we divide by half, cause it’s 
like the same thing. I don’t know. I get why we would add 4, 
but I also don’t understand. 

 […] 
16. Rosalind: I’m gonna go with this one [pointing to Carly’s 

solution on the board]. Now we’re trying to reason why it’s 
four more. Then we’re just counting that it’s the full pizzas 
that we eliminated that happens to be exactly four. 

[…] 
17. Abigail: Yup, cause that one [Carly’s solution on the board] 

you can see them all, so I feel like that one is going to be right 
[Carly’s list solution], but that’s the one [points to Veronica’s 
multiplication solution] that makes sense to me. 

Lisa references Elena’s initial claim from Episode 1 that pizzas with 
the single same-topping on both halves were undercounted.  

Rosalind agrees with Elena’s initial claim that “whole pizzas” were 
not double-counted. She supports her reasoning by referencing 
four pizza combinations with only cheese or a single topping of 
mushroom, anchovy, or pepperoni on both halves. (Note there are 
four other pizza combinations of the same toppings on both 
halves.) 

Lisa explains that the single same-topping on both halves are 
double-counted in 8 × 8. She uses an example of a pizza with 
mushroom on both halves would be duplicated. 

Elena provides an example of a pizza combination (the no topping 
on both halves) that occurs only once.  

Lisa notes that four pizzas (it may be the case that these are the 
zero or one topping on the whole pizza) should be added to the 
number solution of 32 obtained from the multiplication. Rosalind 
makes reference to the 36 listed pizzas. They each agree that 
something is missing, implicitly agreeing that 36 is the solution. 

Elena provides an example of a pizza combination (one different 
topping on each half) that occurs twice and counter argues Lisa’s 
claim (in L6) that the mushroom, mushroom pizza occurs only once. 
Notice her argument turns into a question. 

Elena is “ready to give up,” before she resorts to using gestures that 
mimic the symmetry of the outcomes (L12; L14).  Lisa responds to 
this with continued confusion: “I get why we would add four, but I 
also don’t understand.” 

Rosalind and Abigail point out that the listed solution of 36 is their 
reference for reasoning about the difference of four pizzas in the 
two solutions. Although Abigail claimed the other method made 
more sense to her, interestingly, Carly’s listing solution was relied 
upon by the students in this episode as the correct solution “cause 
you can see them all.” 

*Notice that some students refer to four “whole” or “full” pizzas as 
a single same-topping on the whole pizza – a plain cheese pizza, a 
pizza with pepperoni, a pizza with mushroom, and a pizza with 
anchovies. Therefore, when Rosalind claims the “full 
pizzas…happens to be exactly four” she may be referring to the four 
aforementioned pizzas. Elena and Lisa also refer to pizzas with the 
focus of one topping on one half of the pizza and one topping on 
the other half of the pizza. Note that the latter and former 
references are the same pizza combinations if the same topping is 
on both halves. 
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on the part of the instructor that students could easily 
follow, the instructor modified the calculations of 
Veronica’s and Elena’s groups to arrive at a new total 
of 36 pizzas. Through the instructor’s prompting, 
students assisted with the new calculation. 

Part 2: Students’ Dispositions 
Data collected via the mathematics 

autobiographies and final course reflections reveal 
shifts in students’ dispositions towards mathematics 
and their confidence as a mathematics learner, as 
well as student insight into the affordances of 
collaboration in the counting course. 

 
Students’ dispositions towards mathematics 

In their pre-course mathematics autobiographies, 
students drew on their K – 12 mathematics 
experiences when reflecting on their feelings about 
mathematics. In their post-course final reflections, 
students were asked to revisit their feelings about 
mathematics and identify in what ways, if any, their  
feelings had changed since writing their mathematics 
autobiography. The students wrote their final 
reflections in class, without looking back at their 
initial autobiographies. Note that there were 10 
students who responded to both the autobiography 
and the final questionnaire.  

Table 5 presents a sample of pairs of responses 
that allow us to compare how students described their 
feelings about mathematics in response to the 

Table 4. Episode 4 – whole class discussion and closure 
Transcript Commentary 

1. Ethan: Actually, I have a question for you guys [turns to Carly 
and Yesenia]. So, do you see like the second column of blue 
where its AM [see Figure 4]. What’s the difference with that 
and with the fourth row? 

2. Carly: AM is on the entire pizza [second column], while AM is 
on half [fourth row]. 

3. Instructor: Could I please maybe introduce slightly additional 
notation? I don’t know if it’s going to be helpful or the 
opposite, but I’ll try. Maybe it’s going to help some of you. 
These eight - right - are really like taking this. I’m writing them 
a little differently [see Figure 5 in green]. Does this make 
sense?  

4. Elena: Yeah, that’s how I’ve been thinking about it. 
5. Instructor: So, how many of these cases do we have that are 

really not double? 
6. Lisa: Four 
7. Instructor: How many? Look there [modified representations]. 
8. Elena: Four. 
9. Rosalind: Eight. 
10. Instructor: We have 8. 
11. Unknown: We’re all wrong [laughs]. 
12. Veronica: Oh! 
13. Instructor: You see it? 
14. Veronica: It’s when both sides have the same combo. 

[Instructor modifies the calculation by subtracting 8 from 64, then 
dividing by two, and reintroducing an addition of 8. With the two 
solutions now with the same answer of 36 outcomes, students 
audibly react]  
15. Instructor: Magic or not?  
16. Elena: No way! 
17. Ariana: Kind of.  
18. Elena: That’s kind of crazy.  
19. Instructor: Is it? Or beautiful?  
20. Elena: Beautiful. I would say beautiful. 
21. [laughs are heard] 
22. Lisa: I would literally never come to that. I don’t think I’d ever 

come to that by myself.  

Following Ethan’s question and Carly’s response, the instructor 
introduces a modified notation for the pizza representations.  

 

Figure 4. On the left, Ethan’s reference to 2nd column and, on the 
right, his reference to 4th row (L1). 

 

Figure 5. Representations of pizzas, split into 2 halves, with the 
same topping on either side 

According to Elena, this notation provided a visual to her thinking 
(L4).  

The instructor then revisits under and overestimating in L5. 
Through a series of questions, the instructor and students analyze 
the types of pizzas “when both sides have the same combo (L14) 
that were not duplicated. New calculations are made using similar 
approaches of Veronica’s and Elena’s groups to obtain 36 
outcomes. 

Note the excitement when they fully “got it”. An Aha moment, 
accompanied by surprise and joy. 
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following prompts, before the course began and after 
it ended. These responses relate to the prompt 2 of 
the mathematics autobiography and prompt 2.2 of the 
end-of-semester written questionnaire.  

Pre-course mathematics autobiography. In their 
mathematics autobiographies, a range of feelings 
about mathematics emerged through the use of 
phrases such as “am not a fan,” “love-hate 
relationship,” and “fun for me.” When describing the 
origin of their feelings about mathematics, students 
reflected on a variety of experiences: the nature of 
learning mathematics (e.g., “…filled with a 
considerable number of rules, formulas, and patterns 
that you must know...”), teacher pedagogical 
decisions (e.g., “…my dislike for math comes from 
the way in which I was taught math…”), evolving 
experiences (e.g., “I used to love math…[AP 
Statistics] became overwhelming.”, relevance to their 
lives (e.g., “…I don’t find relevant to my day to day 
life…”), and past performance (e.g. “…I continued to 
struggle with it every year.”) were each noted by 
multiple students as reasons for their pre-course 
feelings about mathematics. 

Post-course final reflection. In their final 
reflections, a shift in feelings about mathematics 
emerged through the use of phrases such as “different 
mindset,” “less intimidated,” and “more validated.” 
When describing the ways in which their pre-course 
feelings had changed, students returned to the same 
themes as addressed in their mathematics 
autobiographies: the nature of learning mathematics 

(e.g., “…understand the concept behind the math…”), 
teacher pedagogical decisions (e.g., “…focused on 
your reasoning…”), evolving experiences (e.g., “…I 
began to appreciate the aspects that made it 
difficult…”), relevance to their lives (e.g., “…I'll 
know how to approach in my everyday life…”), and 
past performance (e.g., “…maybe the case wasn't that 
I was bad at math…”). 

Student confidence as a mathematics learner. 
In their pre-course mathematics autobiographies, 

students reflected on their confidence as a 
mathematics learner, as well as to what they 
attributed their confidence. In their post-course final 
reflections, students were asked to revisit their pre-
course confidence and identify in what ways, if any, 
their confidence had changed since writing their 
mathematics autobiography.   

Table 6 presents a comparison of how each 
student described their confidence as a mathematics 
learner in response to prompt 3 of the mathematics 
autobiography and prompt 2.1 of the end-of-semester 
written questionnaire. 

Pre-course mathematics autobiography. In their 
mathematics autobiographies, all students described 
their confidence in their ability to do well in math 
using qualifiers, such as “pretty,” “somewhat,” and 
“not particularly.” Students attributed their pre-course 

                                          
1 Rosalind wrote this in her week 5 reflection. We bring it here for 

brevity, as she reiterated this in length in the end-of-semester 
questionnaire  

Table 5. Pre and post course reflections on dispositions towards mathematics 
 Pre-course Mathematics Autobiography End-of-Semester Written Questionnaire 

Charlotte 
…I never grew to love math as I continued to struggle with it 
every year… 

… prior to this course maybe the case wasn’t that I was bad 
at math… 

Abigail …I have not liked math... …I now appreciate math… 

Yesenia …I usually don’t find math fun… 
...there are certain concepts & problem types that I do like 
or mind less… 

Jennifer … I never really was comfortable with math… …I think I can enjoy math at a certain pace… 

Elena I have always had a love-hate relationship with math… 
This class does a good job…taking away that 
intimidation…it's okay to make mistakes. 

Rosalind 
[Although] I don’t have the “math brain” I still enjoy learning 
math… 

I think my perspective on math has tremendously shifted for 
[from] a negative one to an exciting one…1 

Doug I personally am not a fan of mathematics… 
…I began to appreciate the aspects that made it [math] 
difficult… 

Ethan I don’t have any strong opinions towards math... I feel good about math…. 

Veronica I am quite comfortable with math… 
…I feel even more validated in terms of my 
skills/knowledge… 

Carly I enjoy mathematics…math is fun for me. I enjoy mathematics… 
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confidence to a variety of reasons: teacher pedagogical 
decisions (e.g., “…if my past teachers had taken more 
time to explain…”), particular high school math 
courses (e.g., “…fairly ‘confident’…until I took Pre-
Calc…”), past performance (e.g., “…because of my 
past success in math…”), time since last math class 
(e.g., “…I haven’t taken it [math] in a couple 
years…”), and individual attitudes (e.g., “…I have 
gained confidence in my work ethic and depend on 
this…) were each given as reasons by multiple 
students to explain their pre-course level of confidence.  

Post-course final reflection. In their final reflections, 
a shift in students’ confidence as mathematics learners 
emerged for those on the lower end and middle of the 
confidence spectrum, as seen through the use of 
phrases such as “more comfortable,” “more confident,” 
and “I can do at least some math.” Students who 
initially seemed to be on the higher end of the 
confidence spectrum remained there. Regardless of 
their initial confidence, students largely attributed their 
post-course confidence to the nature of the learning 
environment (e.g., “…class collaboration helped 
immensely,” “…it is very rewarding to share and get 
feedback…while learning where I messed up…,” “…it 
is not just about the answer …,” “...thinking without 
formulas or equations was new for me.”). 

 
Affordances of the learning environment  

In the post-course reflection questionnaire, students 

who shared that they sensed a change in their 
disposition towards mathematics or about their 
confidence in being able to do well, were encouraged 
to reflect on encounters they may have had that 
contributed to this sense of change. In Table 7 we 
present a sample of students’ responses to these 
prompts. Their responses point to elements in the 
learning environment that they attributed to the shifts 
they described. For each of these responses, we tried 
to identify occurrences in Lesson #17 that could 
account for these responses. In particular, we looked 
at the parts of the lesson that the reader is already 
familiar with, from Part 1 of the Findings (see Tables 
1, 2, 3, & 4).  

The first three are attributes of changes in students’ 
feelings about math and the last three are attributes of 
changes in students’ confidence as mathematics 
learners. 

 
Course Evaluation 
Course evaluations are done directly through the 

university. The students fill them online 
anonymously, voluntarily (there is no sanction for 
not filling it), and the instructor receives the 
responses only after the semester is over and all the 
grades have been posted. 
Two open ended questions on the course evaluation 
results seem relevant to our study and may support 
some of the claims we have made so far. We bring 
below a few responses that are particularly relevant. 

Table 6. Pre and Post course reflections on the ability to do well in mathematics 
 Pre-course Mathematics Autobiography End-of-Semester Written Questionnaire 

Charlotte …my confidence in my math abilities are not high… … there was always another [method] that I understood.  

Abigail I do not feel very confident … This course has helped me to view math in a new way… 

Yesenia It depends. My level of confidence can be attributed to the 
type of math that I am tasked with doing and the manner in 
which I am expected to solve the problems. 

Not very confident at all…I sometimes confuse topics rather 
easily… 

Jennifer …I’m kind of confident… …Now I know I can do at least some math. All other kinds of 
math not so much. 

Elena …I am not particularly confident… …now I feel much more comfortable… 

Rosalind My confidence is not in the subject but rather has to be in 
myself… 

…reasoning skills that I never thought I could have entering 
this course… 

Doug …I am not very confident… …I became more comfortable… 

Ethan I am pretty confident… I felt pretty comfortable with math coming in; however, this 
course definitely changed how I look at math. By solving 
different problems & thinking without formulas or equations 
was new for me. 

Veronica …I would say I am somewhat confident… …This class has made me feel more confident... 

Carly To a certain degree, I am confident… …the contents of this class forced me to challenge myself… 
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A response to the following question: What did the 
instructor do well? 

 

 … Furthermore, she [the instructor] did a great 
job of encouraging us and letting us learn and 
discover on our own before jumping in a giving 
us the answers. She cared a lot about the reasons 
why we perform certain math functions and I like 
how she encouraged us to explain our work - it 
made me think deeper about the math. She also 
was very helpful in relieving my test anxiety. She 
assured me throughout the course that she cares 

more about my thinking and my explanations 
than the perfect answers. 

 

Responses to the following question: What 
additional comments would you like to share about 
your experience in this course? 

 

 This course was one of the most impactful I have 
taken [at the university] so far. I hope it is offered 
in the future and would recommend it to anyone 
who has ever felt that math is a difficult or 
inaccessible subject, because this course changed 
my experience of math. 

Table 7. Attributions made in final reflections to the learning environment
 Attributions in final reflections: Reference to Lesson #17  

Elena … I think the lack of emphasis on final answers helps 
this [intimidation] because you're focused on your 
reasoning rather than a number; it's okay to work 
through misunderstandings. 

When Veronica’s solution is challenged, the debate is focused on why 
Elena and Veronica had differing views. (Theme 2, Segment 2, Table 2, 
L1 – L4) 
After the conflict arose, students were prompted to examine which 
solution was flawed, why it was flawed, and what could be modified to 
address the flaws. (Theme 2, Segment 3, Table 3) 
The instructor addressed student misunderstandings during the 
resolution. (Theme 3, Segment 4, Table 4, L3 – L14) 

…now I feel much more comfortable not only in my 
abilities as a student, but also with the idea of 
making mistakes. I think class collaboration helped 
immensely. 

Elena changed her answer three times (64, 32, 36) during this task. 
Each change stemmed from Elena’s refining and justifying her 
(revised) thought process, rather than from “fixing mistakes”. (Themes 
1 – 2, Segments 1 – 3, Tables 1 – 3) 
Each segment of the task required student collaboration 
(Themes 1 – 3, Segments 1 – 4, Tables 1 – 4).  

Veronica … I realized I was able to support/show my logic and 
math is not simply a right or wrong thing. 

Veronica presented a strong justification for a flawed solution, which 
the instructor never dismissed as “wrong.” Instead, students 
investigated its merits and flaws as they worked to determine if 
Veronica’s solution captured all the outcomes. (Theme 2, Segment 3, 
L1 – L7) 
Only at the resolution stage, towards closure, the instructor built on 
Veronica’s ideas, and suggested a modification to her solution by 
addressing the flaws while validating Veronica’s thought process. 
(Theme 3, Segment 4, Table 4, L5 – L14) 

… This class has made me feel more confident in 
sharing my logic and ideas because though my 
answer may be wrong, it is very rewarding to share 
and get feedback on the parts I logically was able to 
solve, while learning where I messed up. 

Despite Carly’s listing of 36 outcomes, Veronica still shared her 
solution of 32 (Theme 2, Segment 2, Table 2) and defended her 
reasoning when challenged by Elena (Theme 2, Segment 3, Table 3).   
During the resolution, the instructor’s modification of Carly’s 
representations helped Veronica understand where the flaw in her 
reasoning was. (Theme 3, Segment 4, Table 4, L13 – L14). 

Charlotte 
 

…now my feelings towards mathematics have 
changed because I understand the concept behind 
the math… 

The instructor suggested a slight modification of Carly’s 
representations to help her and other students uncover on their own 
which outcomes were missing from Veronica’s solution. This led to an 
understanding of why Veronica’s solution was undercounted by four 
and how to modify it so that it counted all outcomes. (Theme 3, 
Segment 4, Table 4, L3) 

… approaching problems in many different ways 
helped me realize that even if I could not grasp one 
method of finding the solution there was always 
another that I understood. 

There are multiple points of entry and solution paths. (Theme 1, 
Segment 1, Table 1) 
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 As a person that struggles in math this class was 
an enjoyable way to understand the concepts 
within math.  

 I have never been a big fan of math. In fact, I have 
always struggled in my math classes and have 
suffered from test anxiety in this subject. This is the 
first math class that I have ever taken that has 
successfully relieved my anxiety. We have been 
trained to focus on the answer in math and whether 
it is correct or not. In this class, we focused more on 
the process of getting to the answer and 
understanding why we need to perform specific 
functions. As a student looking to go into education, 
this was very useful to me. I now feel more equip to 
teach young students the subject of math and that I 
can ensure that they will understand why they have 
to perform certain functions and that the answer is 
not the only thing that matters. This class made me 
view math in a way that I have not done before and I 
am really happy that I took it. 

 The class was thought provoking and very engaging. 
 

As an anecdote, several months after the semester 
was over, Rosalind sent an email to the instructor, in 
which she wrote: “It was such a pleasure being in 
your class last semester as I felt it was the first math 
course that I fully understood and enjoyed. Your 
teaching styles really contributed to my new found 
confidence in math.” 

DISCUSSION 
Our findings provide a glimpse into how 

combinatorics may evolve in an authentic situation of a 
real classroom – a formal undergraduate course for 
students who are not majoring in mathematics related 
subjects. These findings establish the feasibility and 
point to the merits of such a course. They add to 
findings from other studies that were carried out in 
informal settings (e.g., the work of Maher et al., 2011a), 
or in university courses for mathematics or mathematics 
education majors (e.g., Wasserman & Galarza, 2019).  

In a time when equity in education is a major 
concern, our study addresses this concern in a unique 
way. In the spirit of Boaler’s (2015) recommendations, 
we take equitable teaching to mean offering all 
students an opportunity to engage in challenging and 
meaningful mathematics and to think deeply about 
mathematics. This is in contrast to a common 
assumption that students who do not do well in 
standard school mathematics will not be able to do 

well in more sophisticated math. The ways in which 
students are usually assessed for decisions regarding 
their tracking builds on this (invalid) assumption 
(Boaler, 2015). Our findings suggest that students who 
may have done poorly in mathematics in K–12 grades, 
can develop sophisticated reasoning and problem-
solving strategies in a challenging topic, if made 
accessible to them. Their experiences in this course 
changed some students’ ideas of who can and what it 
means to do well in mathematics. This is in line with 
Ruef’s (2017) findings that over a 7-month course that 
incorporated open tasks and developed a “safe ground 
for risk-taking that public sensemaking demands”, six 
grade students’ perceptions of what it meant to be a 
‘good math student’ shifted from features such as 
speed, following directions, doing homework 
assignments, to features such as being brave in 
presenting their work, feeling comfortable making 
mistakes, as well as being active agents. Our findings 
indicate also that the Counting and Chance course led 
to some shifts in students’ dispositions, and that they 
attributed these shifts not only to the supportive 
atmosphere and opportunities to interact with their 
peers, but even more so to the mathematical reasoning 
and understandings that they developed. 

We identified several types of reasoning that 
students employed, in the context of solving the half-
pizza problem (3THP). These occurred in other 
problems throughout the course as well. One 
approach focused on listing outcomes by cases 
(Lockwood, 2013), which indicates a set-oriented 
perspective according to Lockwood (2014), and 
resonates with Maher et al.’s (2011a) findings. Two 
pairs (Pair 1 and Pair 2) used a systematic method of 
counting, by looking at subsets of the outcome set 
(i.e., types of pizzas). Both pairs obtained an 
incomplete list that included 21 pizzas (out of the 
total of 36 possible outcomes), though each pair 
looked at different subsets, and by coincidence got to 
the same number. In the course of reaching the full 
list of outcomes, students began reasoning iteratively 
with counter-examples to the (wrong) assertion that 
the list of 21 outcomes was complete. Because the 
two lists of 21 were different, each pair was able to 
find some outcomes (or types of outcomes) that the 
other pair didn’t include. Together as a class, 
students identified both missing categories of types 
of pizza and missing outcomes within the categories, 
until they exhausted all 36 possibilities. This 
reasoning led to the full outcome set that became the 
“trusted” solution. Interestingly, different from the 
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children in Maher et al.’s study (2011b), the 
undergraduate students did not justify their reasoning 
for the completeness of the co-created list (although 
the teacher suggested that they deal with the 
possibility of missing or duplicate outcomes in the 
list). The other two pairs (Pair 3 and Pair 4) 
employed what may be considered analogical 
reasoning (Gentner & Maravilla, 2018), by building 
on solutions to problems that they had solved earlier 
(e.g., the 4TWP problem), and mapping the previous 
solution to a whole pizza problem to each half of the 
pizza in the new problem, obtaining 8 different types 
of half-pizza. This approach occurred in other cases 
as well, once students identified problems that seem 
different (in context) but are the same (in structure), 
as Maher and Martino (1996) term isomorphic 
problems (for example, there is an isomorphism 
between the Towers Problems and Pizza Problems 
mentioned earlier). Once they established the number 
of combinations for each half-pizza, they applied the 
Multiplicative Counting Principle, and realized that 
they had to account for double counting, obtaining 32 
as their solution. However, there still remained a 
difference of 4 between the different approaches, 
which led them to scrutinize over the differing 
solutions and move between the “trusted” set of 
outcomes and the mathematical expression associated 
with their solution, in search of a convincing 
resolution (Lockwood, 2013 & 2014). 

By looking more holistically at our data, we were 
able to illuminate the nature of the collaborative 
problem-solving processes that took place in this course 
and the progression in students’ thinking. Rather than 
identifying certain patterns of student thinking (whether 
productive or less productive) or focusing on their 
strategies, we tried to capture the complexity of this 
environment, and in particular – paths through which 
knowledge was collectively constructed. We identified 
reasoning and justifications, that were continuously 
challenged, due to the lack of readily verification 
methods and the role of the instructor as a facilitator. 
The fact that formulas were introduced rather late in the 
course, and only after students gained some concrete 
experiences that helped them make sense of these 
formulas beforehand, created a situation in which they 
had to reason within each problem instead of trying to 
(mindlessly) apply a formula. Moreover, typically, 
problems were not categorized by the instructor into 
types, so in order to build on their accumulating 
experiences, students began looking, on their own, for 
similarities between problems that they had already 

solved. Thus, they often asked themselves how 
problems that appeared to be different (e.g., in the 
objects under consideration or the situation described) 
may be related structurally. This led naturally to notions 
of relatedness and isomorphism that are critical for 
problem-solving (Silver, 1979; Maher et al., 2011a; 
Pólya, 1945). The emphasis on the thinking process and 
reasoning underlying their solutions rather than on the 
final (correct) answers seems to have contributed to 
students’ willingness to “take risks” and share their 
ideas openly, even if they are likely to err, which in 
return led to rich debating and an inner need to justify 
and convince (Zaslavsky et al., 2012). This need 
emerged naturally from the context, not in response to a 
formal requirement (similar to the classrooms described 
in Yackel & Cobb, 1996 and Lampert, 1999). 

The challenging nature of counting problems 
together with the pedagogy that was employed 
elicited a lot of encounters of uncertainty, as 
manifested in the analysis of the episodes of Lesson 
#17. Fischbein (1987) asserts that the need for 
certitude is a strong driving force for learning, which 
explains the students’ persistence in trying to reach 
resolution. Apparently, the learning environment was 
rich in giving rise to various types of uncertainty. 
Actually, all three types of uncertainty that Zaslavsky 
(2005) discusses were evoked spontaneously: 
uncertainty that arises by competing claims (e.g., 
which of two different or contradicting solutions is 
correct, if any); uncertainty that arises when facing 
an unknown path or questionable conclusion; and 
uncertainty that arises by non-readily verifiable 
outcomes. Consequently, students often expressed 
frustration and confusion. This can be expected, as 
Stein et al. (1996) maintain that high cognitive 
demanding tasks (in our case – counting tasks) 
require considerable cognitive effort and may involve 
some level of anxiety due to the unpredictable nature 
of the solution process required. Nonetheless, 
students seemed resilient to confusion; it did not stop 
them from perseverance, and to some –overcoming 
the confusion felt very rewarding. 

As conveyed by the excerpts from Lesson #17, 
collaboration was a key component in the learning 
environment of this study. There have been calls for 
teaching students to work together (e.g., Boaler, 
2015), and studies that point to the merits of working 
in pairs or small groups (e.g., Forman, 1989; Leikin 
& Zaslavsky, 1997; Mashiach-Eizenberg & 
Zaslavsky, 2003; Yackel, Cobb, & Wood, 1991).  In 
the end-of-semester questionnaire, students indicated 
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that the collaborative part of the course contributed 
the most to their learning as well as to their 
enjoyment of the course. This is reflected, for 
example, in Ethan’s words: “I enjoyed and got out a 
lot out of the collaborative work, because we were 
encouraged to look at the same problem in different 
ways, which is different than working together to get 
an answer”, and in Carly’s words too: “The 
collaboration allowed for the formation of a diverse 
set of ideas and was always productive.” It appears 
that the benefits that Davidson and Kroll (1991) 
attribute to collaborative work, came to play in the 
Counting and Chance course, in particular increased 
conceptual understanding, and improved attitudes or 
motivation. It should be noted that the genuine 
collaboration emerged mainly from the nature of the 
tasks (e.g., evoking uncertainty, lending themselves 
to different solution paths). There was no need in 
structuring the work in pairs or small groups (in 
contrast, for example, to the work of Leikin & 
Zaslavsky, 1997). In addition, this collaborative 
context called for considering multiple solutions for a 
given problem spontaneously, some of which 
highlighted different counting principles and helped 
connect them. The value of multiple-solution 
connecting tasks for facilitating theory building and 
development of conceptual understanding in 
mathematics has been widely recognized (Bass, 2017; 
Kondratieva, 2011; Leikin, 2011). Unlike most work 
on multiple-solution tasks, in the current study there 
was no need to carefully select and design a task with 
multiple solutions, as this is inherent in the nature of 
counting problems. Moreover, in combinatorics, 
counting the total number of elements of the same 
outcome set in two different (valid) ways, could 
constitute a proof of a mathematical identity (e.g., the 
sum of the binomial coefficients and the 
corresponding power of 2).   

The focal course of our study follows English’s 
(2011) and other calls for school mathematics to 
prepare students for their future careers in a society 
that is constantly changing and to address the 
increasing complexity of learning and learners in 
ways that advance their mathematical understanding 
within and beyond the classroom. She argues for 
fostering complex learning through activities that 
encourage knowledge generation and active 
processing. English considers four features that are 
especially important in advancing students’ 
mathematical learning: (i) constructing important 
ideas and processes; (ii) describing, explaining, 

comparing, assessing, and justifying; (iii) creating 
multiple representations in format and choice; and (iv) 
using creations to make predictions. Our findings 
indicate that all four key features were present in the 
Counting and Chance course. 

Finally, a significant implication of our study is 
that it offers a way to interweave a challenging 
mathematical content and an equitable learning 
environment that can be implemented in various 
contexts. Specifically, it can be an integral part of the 
high-school curriculum, as recommended by NCTM 
(2000). As illustrated, there are no prerequisites 
needed for making good progress in the course. The 
students that participated in the study did not take 
any additional mathematics courses since graduating 
from high-school. They could have studied this 
course much earlier. A course like this could counter 
balance the common mathematics experiences many 
students have in classes in which the focus of 
teaching mathematics is on carrying out procedures 
and getting the correct answers. Interestingly, 
although this was a content course, one of the 
students (Abigail) who studied in a childhood 
education program, reflected on her take away from 
the course, and wrote: “As a future educator, it is 
important to understand the why – not just the how”.  
There were other students who shared with us 
spontaneously that this course inspired them to teach 
differently (not just math) in their future career.   

GLOSSARY 

 The Factorial of a natural number n is the product 
of all positive integers up to n. It is denoted by: n! 

 A Permutation of n distinct objects is an 
arrangement, or ordering, of the n objects. The 
number of permutations of n objects is n!. 

 A Combination [of k out of n distinct objects] is an 
unordered selection, or subset, of k out of the n 

objects. ൫୬୩൯ denotes the number of combinations of 

k objects out of a set of n objects. 

 ൫୬୩൯ is also called a binomial coefficient, because of 

the following identity: ൫୬଴൯ + ൫୬ଵ൯ +⋯+ ൫ ୬୬ିଵ൯ + ൫୬୬൯ = 2୬  (this forms a 

typical row in the Pascal’s Triangle) 
 Category I of combination problems (according to 

Lockwood et al, 2018), lend themselves to 

considering ൫୬୩൯ as: ൫୬୩൯ = ୬∙(୬ିଵ)⋯(୬ି୩ାଵ)୩!   
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 Category II of combination problems (according to 
Lockwood et al, 2018), lend themselves to 

considering ൫୬୩൯ as: ൫୬୩൯ = ୬!୩!∙(୬ି୩)! 
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