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1. Introduction

A complex fluid, also called a non-Newtonian fluid, is “a fluid made up of a lot of differ-
ent kinds of stuff” as described by Gelbart and Ben-Shaul [1996]. This high number of
complexities and their interactions can produce a variety of new nontrivial physical phe-
nomena (Bird, Curtiss, Armstrong and Hassager [1987]), including, for example, the
rod-climbing Weissenberg effect (Dealy and Vu [1977]) and the die swell (Clermont and
Pierrard [1976]). Among the phenomena that have been of particular research interest in
recent years are the flow behaviors in highly elastic complex fluid with a vanishingly small
Reynolds number (Groisman and Steinberg [1998], Thomases and Shelley [2009]). It
is agreed that the peculiar behavior of the highly elastic fluids flow, known as “elastic tur-
bulence,” originates in the strong nonlinear mechanical properties of the polymer solutions
(Groisman and Steinberg [1998]), and it is similar to the phenomena observed from the
strong inertial effects in Newtonian fluids. During the past decade, these phenomena have
been the subject of many theoretical and experimental studies.

The controlling parameter of the strength of the nonlinearity of complex fluid mod-
els is the Weissenberg number or the Deborah number. Roughly speaking, the larger the
Weissenberg number, the stronger the elasticity of the polymer solutions (see Groisman
and Steinberg [1998]). One crucial outstanding problem in computational rheology is that
computations for complex fluid models with a high Weissenberg number have encountered
great difficulty due to a breakdown in the convergence of the algorithms at critical values of
the Weissenberg number. Although some significant progress has been made in recent years
(e.g., Fattal and Kupferman [2004]), the level of fundamental correctness in the relevant
regimes of large Weissenberg number has yet to be obtained. The main aim of this article is
to focus on the issues that arise in simulating highly elastic and high Weissenberg number
flows.

After briefly reviewing recent progress regarding the theoretical and numerical study
of generic polymeric fluids in high Weissenberg number regimes, we will give a detailed
presentation of a family of algorithms originally proposed by Lee and Xu’s [2006] and
some new results developed in the last few years. In particular, we will give a more
refined presentation of the positivity-preserving discretization schemes proposed in Lee
and Xu’s [2006] and present some preliminary numerical experiments. In our discussion,
we will

• demonstrate how a general macroscopic viscoelastic fluid model can be reformulated,
in terms of the conformation tensor, as a Riccati differential equation;
• use this reformulation to establish the positive definiteness of the conformation tensor;
• use key numerical methods based on the Eulerian–Lagrangian method, which dis-

cretizes the momentum equation and constitutive equations by solving the nonlinear
ordinary differential equations that define the characteristics related to the transport
part of the equation;
• discuss how the resulting discrete system can be effectively solved iteratively by com-

bining multigrid and parallel computing techniques; and
• show that the nonlinear iterations uniformly converge and the computational costs of

the methods are uniformly optimal with respect to relevant physical parameters (such
as the Reynolds number and the Weissenberg number) as well as time step and mesh
sizes (see Lee, Xu and Zhang [To appear]).
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The rest of the article is organized as follows. In Section 2, we review the basic properties
of the flow maps, the generalized Lie derivatives, and the algebraic Riccati differential equa-
tions. In Section 3, we introduce the connection between the algebraic Riccati differential
equations and the macroscopic constitutive relations for viscoelastic fluids. In Section 4, we
discuss the properties of various macroscopic models for viscoelastic fluids. In Section 5,
we briefly review the existing numerical schemes designed for simulating viscoelastic fluids
at high Weissenberg number regimes. In Section 6, we discuss the numerical discretization
schemes that preserve the positive definiteness of the conformation tensor. In Section 7, we
briefly consider the solution techniques for the resulting discrete systems. In Section 8, we
show the energy estimate, the long-term stability, and the well posedness, of the discrete
solution, and then in Section 9, we present the implementation details and corresponding
numerical results. Finally, in Section 10, we offer concluding remarks.

2. Flow maps, generalized Lie derivatives, and Riccati equations

2.1. Notation

Throughout this article, we use the standard notation for Sobolev spaces: Hk(�) denotes the
classical Sobolev space of scalar functions on a bounded domain� ⊂ Rd whose derivatives
up to order k are square integrable, with the full norm ‖ · ‖k and the corresponding seminorm
| · |k. The symbol H1

0(�) denotes the subspace of H1(�)whose trace vanishes on the bound-
ary ∂�. We will also discuss the corresponding spaces restricted to the subdomain of �. For
any ω ⊂ �, we denote ‖ · ‖k,ω and | · |k,ω as the norm and the seminorm, respectively, on the
domain ω. The usual L∞-norm and L2-norm will be denoted by ‖ · ‖∞ and ‖ · ‖0, respec-
tively. The symbol L2

0(�) denotes a subspace of L2(�) consisting of functions that have
a zero average. (·, ·) and 〈·, ·〉 denote the classical L2-inner product and the dual pairing,
respectively. The space Lp(0,T;H1(�)) for 1 ≤ p <∞ is the Hilbert space consisting of
functions f (x, t) : �× [0,T] 7→ R such that T∫

0

‖f (·, ν)‖p1 dν

1/p

<∞.

The symbol M denotes the space of matrix-valued functions whose ranges are in Rd×d, and
S denotes the subspace of M consisting of the symmetric matrices. In addition, S+ denotes
the subset of S consisting of positive-definite matrices. Finally, following (Xu [1992]), the
symbol A . B means A ≤ CB with a constant C independent of space mesh size h and time
step k, and A . B is an abbreviation of A . B . A.

2.2. Flow maps and the deformation tensor

Consider a bounded domain� ⊂ Rd (d = 2 or 3) and a velocity field of flow u = (ui) ∈ Rd.
The motion of a particle can be described by the flow map φt,s : � 7→ � such that

∂

∂s
φt,s(x) = u(φt,s(x), s), φt,t(x) = x. (2.1)
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374 Y.-J. Lee et al.

We note that by φt,t(x) = x, we mean that the Eulerian coordinate is coincident with the
Lagrangian (or material) coordinate at time t. As in classical mechanics, the flow map φt,s

is assumed to be a diffeomorphism. Moreover, the flow map satisfies the composition rule,
i.e., φt1,t2φt,t1 = φt,t2 , for any t1, t2 ≥ 0.

By means of this flow map, with an abuse of notation, we define

v(t, s) = v(x, t; s) := v(φt,s(x), s) and v(t, t) = v(t) = v(x, t; t) = v(x, t),

where v can be any (scalar, vector, or tensor) function. Furthermore, for any v(x, t), we have
the following definition of the material derivative:

Dv

Dt
(x, t) :=

∂

∂s
v(φt,s(x), s)

∣∣∣
s=t
=
(
vt + (u · ∇)v

)
(x, t). (2.2)

Of the different conventions to define the gradient of velocity u, denoted by ∇u (or ∇xu),
we use the convention that (∇u)i,j = (∂jui)i,j, i.e.,

∇u :=


∇uT

1

∇uT
2
...

∇uT
d

 =

∂1u1 ∂2u1 · · · ∂du1

∂1u2 ∂2u2 · · · ∂du2
...

...
. . .

...

∂1ud ∂2ud · · · ∂dud

 .
For any two time variables, t1 and t2, we define the relative deformation gradient

F(x, t; t1, t2) (F(t; t1, t2) in short) as follows:

F(t; t1, t2) := ∇zφt1,t2(z), with z = φt,t1(x). (2.3)

In case t1 = t, we have F(t; t, t2) = ∇xφt,t2(x). Geometrically, the deformation gradient
F(t; t1, t2) measures the relative deformation between two configurations at t1 and t2.

From the definition of F(t; t1, t2) and the chain rule, we can derive the following ordinary
differential equation:

∂F(t; t1, t2)

∂t2
=

∂

∂t2
∇zφt1,t2(z) = ∇zu(φt,t2(x), t2) = ∇zu(φt1,t2(z), t2)

= ∇u(φt1,t2(z), t2)F(t; t1, t2) = ∇u(t, t2)F(t; t1, t2) (2.4)

and the initial condition F(t; t1, t1) = δ, where δ is the identity tensor.
Throughout this article, we will only consider incompressible fluids, namely, ∇ · u = 0,

which implies the determinant of F(t; t1, t2) is one, i.e., det F(t; t1, t2) = 1. Therefore, it
is invertible. Furthermore, the inverse of F(t; t1, t2) is given by F(t; t2, t1) unambiguously
because we have the following relation:

F(t; t2, t1) = ∇z′φt2,t1(z
′), with z′ = φt,t2(x). (2.5)

Using (2.5), we can derive the following relation that

0 =
∂
(
F(t; t1, t2)F(t; t2, t1)

)
∂t2

=
∂F(t; t1, t2)

∂t2
F(t; t2, t1)+ F(t; t1, t2)

∂F(t; t2, t1)

∂t2

= ∇u(t, t2)+ F(t; t1, t2)
∂F(t; t2, t1)

∂t2
.
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Therefore, we obtain

∂F(t; t2, t1)

∂t2
= −F(t; t2, t1)∇u(t, t2) and F(t; t1, t1) = δ. (2.6)

2.3. Generalized Lie derivatives

We will now introduce the generalized Lie derivative. For any given continuous function
8(t) = 8(x, t) : �× (0,+∞) 7→M, we define L(t; t1, t2) to be the transition matrix (or
evolution matrix) that satisfies the following ordinary differential equation:

∂L(t; t1, t2)

∂t2
= 8(t, t2)L(t; t1, t2) and L(t; t1, t1) = δ. (2.7)

We can view this transition matrix L(t; t1, t2) as a generalization of the deformation gradient
F(t; t1, t2); when 8(t, t2) = ∇u(t, t2), L(t; t1, t2) reduces to F(t; t1, t2).

The following lemma gives a fundamental property of the transition matrices (see, for
example, Brockett [1970, theorem 2, section 1.4].)

Lemma 2.1 (Composition Rule). For any time levels, t, t0, t1, t2 ≥ 0, we have the following
property

L(t; t1, t2)L(t; t0, t1) = L(t; t0, t2). (2.8)

In particular, we also have

L(t; t1, t0)L(t; t0, t1) = δ.

Furthermore, we have that L(t; t2, t1) is the inverse of L(t; t1, t2) and it satisfies:

∂L(t; t2, t1)

∂t2
= −L(t; t2, t1)8(t, t2) and L(t; t1, t1) = δ. (2.9)

Proof. Given any point y ∈ �, we consider the ordinary differential equation:

∂y(s)

∂s
= 8(t, s)y(s) and y(t1) = y. (2.10)

Then, by definition (2.7), we obtain y(s) = L(t; t1, s)y. Similarly, let z(s) satisfy the follow-
ing ODE:

∂z(s)

∂s
= 8(t, s)z(s) and z(t0) = y(t0). (2.11)

We have the relation:

z(s) = L(t; t0, s)y(t0) = L(t; t0, s)L(t; t1, t0)y.

It follows that z(t1) = L(t; t0, t1)L(t; t1, t0)y, which implies that

z(s) = L(t; t1, s)z(t1) = L(t; t1, s)L(t; t0, t1)L(t; t1, t0)y.
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Consequently, by the definition and the uniqueness of the transition matrix L, we have

L(t; t0, s)L(t; t1, t0)y = L(t; t1, s)L(t; t0, t1)L(t; t1, t0)y, ∀ y ∈ �, s ≥ 0.

Hence, we can get the composition rule. Furthermore, by simply taking t2 = t0, we obtain
the second equation in this lemma.

Hence, we immediately see that L(t; t1, t2)L(t; t2, t1) = L(t; t2, t2) = δ. By taking
derivatives with respect to t2 on both sides, we can obtain

∂L(t; t1, t2)

∂t2
L(t; t2, t1)+ L(t; t1, t2)

∂L(t; t2, t1)

∂t2
= 0.

By plugging (2.7) into the equation above, we can see that L(t; t2, t1) is the inverse of
L(t; t1, t2) and it satisfies the following ODE:

∂L(t; t2, t1)

∂t2
= −L(t; t2, t1)

(
8(t, t2)L(t; t1, t2)

)
L(t; t2, t1) = −L(t; t2, t1)8(t, t2)

and the initial condition L(t; t1, t1) = δ.

Now, we are ready to introduce to the definition and the properties of the generalized Lie
derivative.

Definition 2.1 (Generalized Lie Derivative). We define the generalized Lie deriva-
tive of a symmetric tensor with respect to 8 in the Lagrangian frame as follows: for
t, s ≥ 0,

Lu,8ζ (t, s) := L(t; t, s)
∂
(
L(t; s, t)ζ (t, s)L(t; s, t)T

)
∂s

L(t; t, s)T . (2.12)

In the Eulerian coordinates, we let s = t and

Lu,8ζ (t) := L(t; t, s)
∂
(
L(t; s, t)ζ (t, s)L(t; s, t)T

)
∂s

L(t; t, s)T
∣∣∣
s=t
. (2.13)

The following lemma then gives the generalized Lie derivative defined above in the
Eulerian frame:

Lemma 2.2 (The Generalized Lie Derivative in the Eulerian Frame). For any ζ =

ζ (x, t) : �× (0,+∞) 7→ S, we have

Lu,8ζ (t) =
Dζ (t)

Dt
−8(t)ζ (t)− ζ (t)8(t)T . (2.14)

Proof. Using Eqn (2.9) and the product rule, we have

∂
(
L(t; s, t)ζ (t, s)L(t; s, t)T

)
∂s

=
∂L(t; s, t)

∂s
ζ (t, s)L(t; s, t)T + L(t; s, t)

∂ζ (t, s)

∂s
L(t; s, t)T

+ L(t; s, t)ζ (t, s)
∂L(t; s, t)T

∂s
.
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Hence, we can immediately obtain

Lu,8ζ (t, s) = L(t; t, s)
∂(L(t; s, t)ζ (t, s)L(t; s, t)T)

∂s
L(t; t, s)T

= L(t; t, s)
∂L(t; s, t)

∂s
ζ (t, s)+

∂ζ (t, s)

∂s
+ ζ (t, s)

∂L(t; s, t)T

∂s
L(t; t, s)T .

Using the relation (2.9), we observe that

Lu,8ζ (t, s) =
∂ζ (t, s)

∂s
−8(t, s)ζ (t, s)− ζ (t, s)8(t, s)T . (2.15)

Now, by letting s = t, we get Eqn (2.14) in this lemma.

The derivative Lu,8ζ is known as the Truesdell stress rate (Simo and Hughes [1998]).
The notion of generalized Lie derivatives makes it possible to treat many complicated
time derivatives in a unified way. This observation has been used in developing numeri-
cal schemes effectively in the pioneering work by Hughes and Winget [1980]. The main
advantage that had been obtained was that the temporal discretization induced from this
type of Lie derivative-based algorithms can have the numerical frame indifference, which is
called the incrementally objective discretization. A key observation in Lee and Xu’s [2006]
is that many macroscopic constitutive equations can be reformulated into a well-known sym-
metric matrix Riccati differential equation in terms of the aforementioned generalized Lie
derivatives. Many new numerical methods can be obtained based on this observation. This
will be further explored in Sections 3 and 6.

2.4. A few examples of generalized Lie derivatives

With some appropriate choices of transition matrices, one can consider many types of gen-
eralized Lie derivatives; see especially Hughes [1984] and Simo and Hughes [1998]. For
example, if 8(t) is the zero matrix, then the transition matrix L(t; s, t) ≡ δ and the corre-
sponding generalized Lie derivative are reduced to the usual material derivative (2.2).

We now give a few more examples that will be used in the next section.

Example 2.1 (Upper Convective Maxwell Derivative). If 8(t) = ∇u(t), then the tran-
sition matrix L(t; s, t) = F(t; s, t) is the deformation gradient. From Lemma 2.2, the
generalized Lie derivative with respect to 8(t) is just the upper convective Maxwell deriva-
tive (Oldroyd [1950]):

Lu,8ζ (t) =
Dζ (t)

Dt
−∇u(t) ζ (t)− ζ (t)∇u(t)T , ∀ζ (t) ∈M. (2.16)

Example 2.2 (Lower Convective Maxwell Derivative). If 8(t) = −∇u(t)T , then the tran-
sition matrix L(t; s, t) = F(t; t, s), the inverse of F(t; s, t) (cf. Eqn (2.6)). In this case, we
have that

Lu,8ζ (t) =
Dζ (t)

Dt
+∇u(t)T ζ (t)+ ζ (t)∇u(t), ∀ζ (t) ∈M. (2.17)

This is the well-known lower convective Maxwell derivative.
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These two examples above have been studied in terms of the Lie derivative by
Thiffeault [2001].

Example 2.3 (Gordon–Schowalter Derivative). We can also take 8(t) = R(t) with

R(t) :=
a+ 1

2
∇u(t)+

a− 1

2
∇uT(t),

where a ∈ [−1, 1] is some parameter. In this case, the generalized Lie derivative with respect
to R(t) can be given as follows:

Lu,Rζ (t) =
Dζ (t)

Dt
− R(t) ζ (t)− ζ (t)R(t)T . (2.18)

This is known as the Gordon–Schowalter derivative (Gordon and Schowalter [1972]), in
which the transition matrix is often denoted by E (Johnson and Segalman [1977]), and we
also use this convention in the rest of this article.

2.5. Riccati differential equations

The classical symmetric matrix Riccati differential equation (Abou-Kandil, Freiling,
Ionescu and Jank [2003]) for a symmetric tensor ζ : �× (0,+∞) 7→ S has this form:

Dζ (t)

Dt
= A(t)ζ (t)+ ζ (t)A(t)T − ζ (t)B(t)ζ (t)T + G(t), (2.19)

with a symmetric positive semidefinite initial condition ζ (t, 0) = ζ 0. Typically, it is assumed
that the coefficient matrices A, B, and G are bounded and that the matrices B and G are both
symmetric and positive semidefinite.

In particular, in this study, we are interested in two important properties of the Riccati
differential equation (2.19):

• Equation (2.19) has a certain closed-form solution, from which the solution ζ can be
proved to be symmetric positive definite under certain conditions.
• The positivity-preserving schemes for such equations can easily be devised, especially

in time, as investigated in the literature, as well as in terms of the solution to the Riccati
form of the ODE (Dieci and Eirola [1996]).

The following theorem shows further how this view can be exploited to establish the
property of the solution to a symmetric matrix Riccati differential equation.

Theorem 2.1 (Solution of Riccati Equations). Equation (2.19) is equivalent to

Lu,8ζ (t) = G(t), with 8(t) = A(t)−
1

2
B(t)ζ (t). (2.20)

Furthermore, we can write ζ in a closed form as follows: for any t, s ≥ 0,

ζ (t) = L(t; s, t)ζ (t, s)L(t; s, t)T +

t∫
s

L(t; ν, t)G(t, ν)L(t; ν, t)T dν, (2.21)
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where the transition matrix L satisfies the following ODE:

∂L(t; t1, t2)

∂t2
= 8(t, t2)L(t; t1, t2) and L(t; t1, t1) = δ.

Proof. We first rewrite Eqn (2.19) in the Lagrangian frame:

∂ζ (t, s)

∂s
= A(t, s)ζ (t, s)+ ζ (t, s)A(t, s)T − ζ (t, s)B(t, s)ζ (t, s)T + G(t, s). (2.22)

Hence, the equivalence between two Eqns (2.19) and (2.20) is straightforward from the
definition of generalized Lie derivatives and (2.15). We can write Eqn (2.20) as follows:

L(t; t, s)
∂(L(t; s, t)ζ (t, s)L(t; s, t)T)

∂s
L(t; t, s)T = G(t, s). (2.23)

This relation can also be cast into the following form:

∂(L(t; ν, t)ζ (t, ν)L(t; ν, t)T)

∂ν
= L(t; ν, t)G(t, ν)L(t; ν, t)T . (2.24)

By taking integration (from s to t) with respect to ν on both sides of the equality above, we
obtain the desired result. This completes the proof.

Remark 2.1 (Positive Definiteness of the Solution). Notice that the expression of ζ given
in Eqn (2.21) suggests that ζ is always positive definite if G and ζ 0 are positive definite.

In the rest of this article, we drop the first variable of the transition matrix L(t; t1, t2)
when t1 or t2 is equal to t. For example, L(t; s, t) is denoted simply by L(s, t). Same notation
applies to the deformation gradient F(s, t) = F(t; s, t) as well.

3. General macroscopic viscoelastic models

Most macroscopic complex fluid models are given by three fundamental equations: the
momentum balance equation, the continuity equation, and a constitutive law. In this sec-
tion, as stated earlier, we will reformulate various constitutive equations from viscoelastic
fluid models into symmetric matrix Riccati differential equations (Abou-Kandil, Freiling,
Ionescu and Jank [2003]). This new formulation will be a key ingredient in understand-
ing viscoelastic fluid models and in developing new numerical algorithms. The link between
viscoelastic fluid models and symmetric matrix Riccati differential equations was first estab-
lished by Lee and Xu’s [2006]. It is then successfully used by Lee [2004] to compute the
falling sphere simulation through the Johnson–Segalman fluids. The close relation between
the general macroscopic viscoelastic fluid models and the symmetric matrix Riccati dif-
ferential equations in this section leads to a number of important numerical schemes for
solving non-Newtonian equations in a unified framework, and it opens new doors to further
development.
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3.1. Basic fluid models

Consider fluids that occupy a bounded domain � ⊂ Rd. Define the Reynolds number Re :=
ŪL̄/η0 where η0 is the zero shear viscosity and Ū and L̄ are the characteristic velocity scale
and the length scale, respectively. The dimensionless form of the momentum balance and
continuity equations in these models can be written as follows:

Re

(
∂u
∂t
+ u · ∇u

)
= −∇p+∇ · T, (3.1)

and

∇ · u = 0, (3.2)

where u is the velocity of the fluids, p is the pressure, and T is the extra-stress tensor that can
be decomposed into two parts (Groisman and Steinberg [1998]) in the dilute polymeric
fluids as

T = 2ηsD(u)+ τ , (3.3)

where ηs is the Newtonian viscosity and D(u) is the symmetric part of the gradient of
velocity,

D(u) =
∇u+ (∇u)T

2
. (3.4)

We remark that 2ηsD(u) is the solvent contribution of the stress. We note also that the tensor
τ is the polymeric contribution of the stress, which arises from the high-molecular-weight
viscoelastic macromolecules and enters the equation of motion linearly.

3.2. The Oldroyd-B model

Most complex fluid models share the same mathematical form for the momentum and con-
tinuum equations as (3.1) and (3.2); different constitutive equations for the polymeric stress
τ lead to different complex fluid models. One basic model for complex fluids that introduces
the outstanding challenge for high Weissenberg number regimes is called the Oldroyd-B
model (Oldroyd [1950]).

The Oldroyd-B model (Oldroyd [1958]) obeys the following constitutive relation for τ :

τ +Wi

(
∂τ

∂t
+ u · ∇τ −∇u τ − τ (∇u)T

)
= 2ηpD(u), (3.5)

where ηp is the polymeric viscosity and the Weissenberg number Wi = λŪ/L̄, where λ, Ū,
and L̄ are the relaxation time, the characteristic velocity scale, and the length scale, respec-
tively. The Weissenberg number is proportional to the material relaxation time.

The Oldroyd-B constitutive model (3.5) can be viewed as the simplest nonlinear exten-
sion of Maxwell’s idea of formulating a system of ordinary differential equations to deter-
mine the stress in terms of the velocity gradient and the time derivative. It is easy to see that
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the upper convective Maxwell time derivative ∂τ
∂t + u · ∇τ −∇uτ − τ∇uT that appears in

the model can be identified to be Lu,∇u (see Example 2.1); therefore, the Oldroyd-B consti-
tutive law can simply be written as

τ +WiLu,∇uτ = 2ηpD(u). (3.6)

It is well known that the Oldroyd-B model reduces to the upper convected Maxwell (UCM)
model for the special case in which ηs = 0. It has been proved that Eqns (3.1), (3.2), and
(3.6) are stable in the sense of Hadamard (Owens and Phillips [2002]).

Writing the constitutive equation as in Eqn. (3.6) is an attempt to relate the stress τ and the
rate of strain D(u). For instance, when Wi becomes zero, the stress is linearly proportional
to the rate of strain, which is the Newtonian constitutive relation; in this case, the Eqns (3.1),
(3.2), and (3.3) become the Navier–Stokes equations. The Weissenberg number Wi is thus
the characteristic constant that distinguishes the polymeric fluids from the Newtonian fluids.

3.3. A reformulation of the Oldroyd-B model in terms of the conformation tensor

We now take the Oldroyd-B model (Oldroyd [1950]) as an illustrative example to show
how the Oldroyd-B constitutive law can be reformulated in terms of the conformation tensor
and viewed as a symmetric matrix Riccati differential equation.

The constitutive law (3.5) is frequently written in terms of the conformation tensor

c := τ +
ηp

Wi
δ. (3.7)

From a physical point of view, the conformation tensor can be regarded as a molecular defor-
mation tensor on a continuum level. More precisely, the conformation tensor is the ensemble
average of the dyadic product of the end-to-end vector of the dumbbell. It is, therefore, sym-
metric and positive definite, and it is often used as a primary variable in viscoelastic flow
calculations (Carreau and Grmela [1987]).

We recall that the rate of the strain tensor D(u) can be expressed in terms of the upper
convected derivative of the identity tensor δ:

Lemma 3.1 (Lie Derivative of the Identity). Let δ be the identity tensor. Then, we have

Lu,∇uδ = −2D(u). (3.8)

This is a direct consequence of the definition of Lu,∇u, and this simple identity plays
a significant role in understanding various constitutive equations. We can reformulate the
model (3.6) as follows:

τ +Wi
(
Lu,∇uτ +

ηp

Wi
Lu,∇uδ

)
= 0. (3.9)

By adding ηp

Wi
δ to both sides of the equation above and using the fact that the operatorLu,∇u

is linear, we obtain(
τ +

ηp

Wi
δ
)
+WiLu,∇u

(
τ +

ηp

Wi
δ
)
=
ηp

Wi
δ. (3.10)

Author's personal copy



382 Y.-J. Lee et al.

In terms of the conformation tensor, the constitutive equation (3.6) becomes

c+WiLu,∇uc =
ηp

Wi
δ, (3.11)

and we observe that Eqn (3.11) can be written such that for Wi 6= 0,

Dc
Dt
−∇u c− c∇uT

+
1

Wi
c =

ηp

Wi2
δ. (3.12)

Remark 3.1 (Algebraic Riccati Form of Oldroyd-B). Equation (3.12) can be further refor-
mulated into the following form:

Dc
Dt
+

(
1

2Wi
−∇u

)
c+ c

(
1

2Wi
−∇u

)T

=
ηp

Wi2
δ. (3.13)

This form can be immediately identified with the symmetric matrix Riccati differential equa-
tion for c as introduced in the general form (2.19) with the choice of the coefficient matrices
that

A(t) =
1

2Wi
δ −∇u, B(t) is a zero matrix, and G(t) =

ηp

Wi2
δ. (3.14)

Remark 3.2 (Positivity of the Conformation Tensor for the Oldroyd-B Model). The pos-
itive definiteness of c is thought to have been first established by Hulsen [1990] directly
from the differential model (3.11). From the Riccati form of the Oldroyd-B constitutive law
(3.13) and Lemma 2.1, it is easy to establish that if c(0) is given to be a positive definite
tensor, then the conformation tensor c is always positive definite since G is non-negative. In
fact, this technique will allow us to provide an integral equivalent equation of the differen-
tial equation given by Eqn (3.12) and establish the positive definiteness of the conformation
tensor c in a transparent manner as well. See Eqn (3.30).

3.4. Conformation tensor formulation of the Johnson–Segalman model

The Oldroyd-B model (3.6) is a basic constitutive model for complex fluids. Many improve-
ments for constitutive equations have been developed from the Oldroyd-B model, e.g., by
modifying the upper convective derivative or by adding additional terms to better fit the
rheological property of the fluids. A few such examples will be discussed in this section.

Let us first consider the Johnson–Segalman model (Johnson and Segalman [1977]):

τ +WiLu,Rτ = 2ηpD(u), (3.15)

whereLu,R is the Gordon–Schowalter derivative as in Example 2.3. The Johnson–Segalman
model is often the model of choice for studying material instability, such as shark-skin and
spurt, which have been the subject of considerable research interest in recent years.

Similar to our approach with the Oldroyd-B model, we first reformulate Eqn (3.15) in
terms of the conformation tensor c. We obtain

Lu,Rδ = −

(
a+ 1

2
∇u+

a− 1

2
∇u
)
−

(
a+ 1

2
∇u+

a− 1

2
∇u
)T

= −2aD(u).
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Therefore, for nonzero Wi and a, the model (3.15) can be written as follows:

τ +WiLu,Rτ = −
ηp

a
Lu,Rδ =⇒ τ +

ηp

aWi
+WiLu,R

(
τ +

ηp

aWi
δ
)
=

ηp

aWi
δ.

Defining c = τ + ηp

aWi
δ, we arrive at the following reformulation of the Johnson–Segalman

model (3.15):

c+WiLu,Rc =
ηp

aWi
δ. (3.16)

Recall that the generalized Lie derivative Lu,R is determined by the transition matrix E(s, t)
that satisfies the following ODE:

DE(s, t)

Dt
=

(
a+ 1

2
∇u+

a− 1

2
∇uT

)
E(s, t) and E(s, s) = δ. (3.17)

The tensor E(s, t) obeying (3.17) was first introduced by Johnson and Segalman [1977]
as a deformation tensor for viscoelastic fluids that have certain degree of nonaffinity. The
parameter a is related to the so-called slippage parameter ξ = 1− a, which measures the
nonaffinity in the reaction of macromolecules under the exerted force from the surrounding
fluids.

3.5. Conformation reformulation for a general viscoelastic model

To summarize, we now discuss macroscopic models that can be written in the following
general form:

Lu,Rc+ αc = βδ, (3.18)

where α ≥ 0 and β > 0 may depend on t and/or c. For instance, the Johnson–Segalman
model can be recovered from Eqn (3.18) by choosing α = 1

Wi
and β = ηp

aWi2
. It would be

of interest to consider Eqn (3.18) as it is, which is because the generalized Lie derivative
Lu,R is ubiquitous in general macroscopic equations. We can, in fact, derive the solution
expression c in terms of the transition matrix E as follows.

Theorem 3.1 (Explicit Solution of the Constitutive Equation). The solution to the consti-
tutive equation in Riccati form (3.18) satisfies

c(t) = exp

− t∫
s

α(ς)dς

E(s, t)c(t, s)E(s, t)T

+

t∫
s

exp

− t∫
ν

α(ς)dς

β(ν)E(ν, t)E(ν, t)T dν. (3.19)
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Proof. Note that Eqn (3.18) can be reformulated as follows:

Lu,8c = βδ,

where the generalized Lie derivative is with respect to

8(t) :=
a+ 1

2
∇u+

a− 1

2
∇uT
−
α(t)

2
.

From the Lemma 2.1, we arrive at the following expression for c:

c(t) = L(s, t)c(t, s)L(s, t)T +

t∫
s

β(ν)L(ν, t)L(ν, t)T dν. (3.20)

On the other hand, the matrix L(s, t) can be expressed as follows:

L(s, t) = exp

− t∫
s

α(ν)

2
dν

E(s, t). (3.21)

To see this, we note that L1(s, t) = E(s, t) is the solution to the following ODE:

∂L1(s, t)

∂t
=

(
a+ 1

2
∇u(t)+

a− 1

2
∇u(t)T

)
L1(s, t)

and the solution to the equation

∂L2(s, t)

∂t
= −

α(t)

2
L2(s, t)

is given by

L2(s, t) = exp

− t∫
s

α(ν)

2
dν

δ. (3.22)

The simple observation that L(s, t) = L1(s, t)L2(s, t) completes the proof.

The simple formulation (3.18) can, in fact, represent many existing models. For exam-
ple, it can represent the well-known Phan-Thien and Tanner (PTT) model Thien and Tan-
ner [1977] and other models that belong to the finitely extensible nonlinear elastic (FENE)
models (Chilcott and Rallison [1988], Ilg, Karlin and Öttinger [2002], Lielens,
Halin, Jaumain, Keunings and Legat [1998], Remmelgas, Singh and Leal [1999],
Szeri [2000]).

Example 3.1 (The Phan-Thien and Tanner Model). The Phan-Thien and Tanner (PTT)
model can be given in the following expression:

F(τ )τ +WiLu,Rτ = 2ηpD(u), (3.23)
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where F is a scalar function defined by

F(τ ) = exp

(
εWi

ηp
tr(τ )

)
, (3.24)

where ε is a parameter. The model (3.23) can easily be transformed in terms of the confor-
mation tensor c as follows:

Lu,Rc+
G(c)
Wi

c = ηp
G(c)
aWi2

δ, with G(c) = F
(

c−
ηp

aWi
δ
)
. (3.25)

Therefore, the PTT model belongs to the class of models that can be represented by
Eqn (3.18).

Example 3.2 (General Single-Variable Models). We note that the general single-variable
models as introduced by Hulsen (e.g., Beris and Edwards [1994], Hulsen [1990]) can be
given in terms of the conformation tensor c as follows:

Dc
Dt
= a(t) c+ c a(t)T + g0δ + g1c+ g2c2, (3.26)

where gi’s (i = 0, 1, 2) are given functions that may depend on time and/or c. Hulsen
[1990] provided a sufficient condition that g0 > 0 for which the conformation tensor c for
models of the form (3.26) remains positive definite for all time if it is positive initially. His
arguments were based on the rate of change in the determinant of c along the trajectory. Our
framework cast (3.26) into the general Riccati equation

Dc
Dt
− A(t)c− cA(t)T = G(t), (3.27)

with the coefficient matrices

A(t) := a(t)+
g1

2
δ +

g2c
2

and G(t) := g0δ.

An alternative reformulation of (3.27) can be given by

Lu,Ac = G(t). (3.28)

This reformulation in terms of the generalized Lie derivative with respect to 8 immediately
proves the positivity of c under the assumption that g0 > 0.

It should be note here that the analytic expression (3.19) of the conformation tensor c
can be used to derive the corresponding integral models. Indeed, under some appropriate
assumption (such as α ≥ α0 for some positive constant α0 and E(s, t) is bounded for s ≤ t),
we formally obtain the following integral models by taking s→−∞,

c(t) =

t∫
−∞

exp

− t∫
ν

α(ν)

2
dν

β(ν)E(ν, t)E(ν, t)T dν. (3.29)
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In particular, this includes the Johnson–Segalman integral model, which does not seem to
be known in the literature; see Joseph [1990]. Furthermore, as an immediate consequence
of a = 1, we obtain the well-known integral expression for the Oldroyd-B model (3.12) as
follows:

c(t) =
ηp

Wi2

t∫
−∞

exp

(
−

t − ν

Wi

)
F(ν, t)F(ν, t)T dν. (3.30)

Although it has been widely believed that the integral expression (3.30) of the conformation
tensor is equivalent to (3.11) (see, e.g., Renardy [2000b]), a rigorous justification for this
equivalence is missing in the literature (see relevant remarks made both by Joseph [1990,
p.15], Renardy [2000b, p.18]). Note that it is easy to establish that the integral model can
result in the differential model (3.11) by taking the (material) time derivative. With the help
of the Riccati formulation, the justification that the differential model results in the integral
model is completed with ease, which would have been difficult otherwise.

4. Basic mathematical and physical properties of the models

In this section, we give a brief overview of the existing mathematical analysis of basic the-
oretical issues such as the existence and stability of the solution to complex fluid models.
While these theoretical works are obviously of interest themselves, they are also instrumen-
tal to designing of appropriate numerical methods for these models.

4.1. Existence theory

On the mathematical theory for complex fluid models, many fundamental questions, such
as whether (weak) solutions exist, are still open (Chemin and Masmoudi [2001], Lin, Liu
and Zhang [2007], Lions and Masmoudi [2000]). On the Oldroyd-B model, the existence
of global weak solutions even at regimes of low Weissenberg number has not been fully
understood yet. The global existence of weak solutions was established by Barrett and
Süli [2008] for the corotational models, under the assumption that the velocity field is reg-
ularized. For the noncorotational models, like the Oldroyd-B model, both the velocity and
the extra-stress fields are assumed to be mollified in the weak formulations in order to obtain
the global existence of weak solutions (Barrett and Süli [2008]).

Some studies have been published on short-time existence (Guillope and Saut
[1990a,b], Jourdain, Lelivre and Bris [2004], Li and Zhang [2004], Renardy [1991])
and global existence with small initial data (Guillope and Saut [1990a,b], Lin, Liu and
Zhang [2005]) of the solutions. In particular, Lin, Liu and Zhang [2005] established the
existence of classical solutions for the Oldroyd-B model at infinite Weissenberg number
with small initial data. In another notable work, Lions and Masmoudi [2000] proved the
existence of global weak solutions for the corotational Jeffreys model based on the L2-norm
energy estimate for both velocity and stress fields. This type of energy estimate does not,
however, hold for the Oldroyd-B model; therefore, the global existence of the Oldroyd-B
model is still an open problem for general initial data. A stability result has also been
obtained by He and Zhang [2009]: if the initial data is sufficiently close to the equilib-
rium, the solution approaches to the equilibrium with a certain decaying rate measured in the
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L2-norm. The main idea behind the existence and stability proof in He and Zhang [2009]
and Lin, Liu and Zhang [2005] is to take full advantage of the Divergence-free condi-
tion imposed at the velocity field, which is shown to generate a dissipation mechanism and
hence stabilize the equation. This work strongly indicates that incompressibility plays an
important role in the stability of the system. It hints at the importance of preserving incom-
pressibility on the discrete level in order to obtain stable numerical schemes.

While the global existence of the Oldroyd-B model for general “large” data is missing,
there are several global-in-time existence results of some complex fluid models for sim-
ple shear flows. Engler [1987] and Guillope and Saut [1990a,b] obtained global exis-
tence results for shear flows obeying a class of nonlinear integro-differential models and
the Johnson–Segalman model, respectively. This problem has recently been revisited by
Renardy [2009], in which the global existence for shear flow under the PTT (Giesekus
[1982], Thien and Tanner [1977]), and Johnson–Segalman models (Johnson and Segal-
man [1977]) has been established for some parameters, although not for the Oldroyd-B
model. As Renardy stated in Renardy [2009] that the positive definiteness of the confor-
mation tensor is crucial to his proof.

In addition, several studies indicate that the Oldroyd-B model might produce nonsmooth
stress fields; for example, see Renardy [2006] and Bajaj, Pasquali and Prakash [2008].
Renardy’s (Renardy [2006]) results have been correlated with the numerical results of
Thomases and Shelley [2007], where certain numerical evidence of singularity forma-
tion is provided. The latter study tried to explain why the flow-past-cylinder benchmark
problem presents numerical challenges. We note that these singular solutions are obtained
for the steady-state Oldroyd-B model, and it is unclear whether or not singularity will form
for the time-dependent equations.

While global-in-time existence remains illusive for continuous problems, we will estab-
lish the global existence of the discrete solutions for macroscopic viscoelastic models
in this article; see Section 8. Similar to the theories on the continuous level, the strong
divergence-free condition and the positivity of the conformation tensors play critical roles
in our analysis. As suggested by these successful theoretical efforts, our guiding principle
is that the positivity of the conformation tensors and the strong divergence-free condition
for the velocity fields should be both preserved in the fully discrete level. Both ingredients
are crucial in deriving the discrete energy estimates and global existence for the numerical
solutions.

4.2. Energy estimates

Energy estimates are basic ingredients in the analysis of well posedness of the equations, and
they are also crucially important in designing well-posed numerical discretization schemes
as well. We will present some basic energy estimates (Lee and Xu’s [2006], Lozinski and
Owens [2003]) for the continuous equations in this section, and we will later extend these
estimates to the discrete level.

To state the energy estimate, let us first introduce an energy norm for the conformation
tensor:

‖σ‖L1 :=
∫
�

tr(σ ) dx, ∀σ ∈ Sh. (4.1)
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This obviously defines a norm on the space of positive-definite tensors. We note that for
the conformation tensor c, the norm ‖c‖L1 has its own physical meaning as well. The trace
of the conformation tensor c can be viewed as the length from the tail to the head of a
macromolecule: the longer the length, the more elastic energy it stores. We can view ‖c‖L1 as
the total elastic energy due to the interaction between the macromolecules and surrounding
fluids.

Based on this, we can define the total energy (kinetic and elastic) of the fluid at time level
t to be

E(t) := Re‖u(·, t)‖20 +
1

2
‖c(·, t)‖L1 . (4.2)

For all the estimates presented in this section, the following bridging identity is crucial:

(c(·, t) : D(u)(·, t)) =
∫
�

tr(∇u(·, t)c(·, t)) dx. (4.3)

This identity plays a role in bridging the energy term in the momentum equation and its
counterpart in the constitutive equation.

Now, we take the Oldroyd-B model (in terms of the conformation tensor) in the Riccati
form as an example:

Re

(
∂u
∂t
+ u · ∇u

)
= −∇p+ 2µs∇ ·D(u)+∇ · c, (4.4)

∇ · u = 0, (4.5)

∂c
∂t
+ u · ∇c−∇u c− c∇uT

+
1

Wi
c =

ηp

Wi2
δ. (4.6)

From (4.3), we can easily establish the following energy law for Eqns (4.4)–(4.6):

d

dt
E(t) = −ηs‖D(u(·, t))‖20 −

1

2Wi
‖c(·, t)‖L1 +

d

2

1− ηs

Wi2
|�|, (4.7)

where |�| and d are the measure and spatial dimension of the domain �, respectively. From
the energy law (4.7), we can derive the following energy estimate for the Oldroyd-B model.

Theorem 4.1 (Continuous Energy Estimate). For Wi 6= 0, the Oldroyd-B model (4.4)–(4.6)
admits the following energy estimate:

E(t) ≤ e−C1tE(0)+
C2

C1

(
1− e−C1t

)
(4.8)

ηs

t∫
0

‖D(u(·, ν))‖20 dν ≤ E(0)+ C2 t, (4.9)

with the constants

C1 = min
(C�ηs

Re
,

1

Wi

)
and C2 =

d

2

1− ηs

Wi2
|�|, (4.10)
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where C� is a positive constant depending on � only. For the special case when Wi = ∞,
we have

E(t) ≤ E(0) and ηs

t∫
0

‖D(u(·, ν))‖20 ≤ E(0). (4.11)

Proof. From Korn’s inequality, we have the following inequality C�‖u‖0 ≤ ‖D(u)‖0,
where C� depends only on �. The energy law (4.7) then leads to

d

dt

(
Re‖u(·, t)‖20 +

1

2
‖c(·, t)‖L1

)
≤ −ηsC�‖u(·, t)‖20 −

1

2Wi
‖c(·, t)‖L1 +

d

2

1− ηs

Wi2
|�|.

We define C1 = min (C�ηs/Re, 1/Wi) and C2 =
d
2

1−ηs

Wi2
|�| to obtain the following

inequality:

d

dt

(
Re‖u(·, t)‖20 +

1

2
‖c(·, t)‖L1

)
≤ −C1

(
Re‖u(·, t)‖20 +

1

2
‖c(·, t)‖L1

)
+ C2. (4.12)

This estimate gives the desired estimate (4.8) immediately by Gronwall’s inequality. We take
integration with respect to time on both sides of (4.7) to get

Re‖u(·, t)‖20 +
1

2
‖c(·, t)‖L1 + ηs

t∫
0

‖D(u(·, ν))‖20 dν

≤ Re‖u(·, 0)‖20 +
1

2
‖c(·, 0)‖L1 −

1

2Wi

t∫
0

‖c(·, ν)‖L1 dν + C2t

≤ Re‖u(·, 0)‖20 +
1

2
‖c(·, 0)‖L1 + C2t.

This completes the proof.

Remark 4.1 (The Effect of the Weissenberg Number). The parameter Wi is the ratio
between the relaxation time of the macromolecules and the characteristic time. The longer
the relaxation time, the longer it takes for the macromolecules to return to their original
states; this can be interpreted as showing that the fluid is less dependent on its initial state.
This has been correlated in the energy estimate (4.8); that is, the coefficient function multi-
plied to the initial data decays slowly when Wi becomes larger.

5. Existing numerical methods for viscoelastic fluid models

In this section, we offer a brief overview of numerical methods for solving viscoelastic
fluid models, especially in regard to studies focused on the well-known high Weissenberg
number problem (HWNP). The problem is associated with the breakdown of the numerical
solutions to the complex fluid models when the Weissenberg numbers are moderately large.
This outstanding problem has been one of the driving forces for developing new numerical
techniques for complex fluids (see Owens and Phillips [2002]).
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5.1. Mixed formulations

To numerically achieve mesh convergence and long-time stability beyond certain criti-
cal Weissenberg numbers for various viscoelastic models has proven difficult. Numerous
attempts have been made to overcome the high Weissenberg number problem with mixed
finite element methods. Most of the early work on viscoelastic flow analysis is based on the
mixed finite element formulations for (u, p, τ ); see Baaijens’s Baaijens [1998] review for
more details. Two basic problems have been encountered with the above formulations. First,
as the value of the Weissenberg number increases, the importance of the convective term
grows, which makes Galerkin discretizations not suitable. Second, the discretization spaces
for the three variables must be carefully selected with respect to each other in order to satisfy
appropriate stability conditions for the three fields.

Numerical success in the early stage of computational rheology can be found in
Marchal and Crochet [1987], which introduced a new mixed finite element method
for the numerical simulation of viscoelastic flows. In Marchal and Crochet [1987], the
authors showed that the streamline-upwinding (SU) method by Hughes and Brooks [1982]
could be used for viscoelastic fluid simulation in order to stabilize the hyperbolic constitutive
equation. Further, Fortin and Pierre [1989] analyzed the finite element spaces employed
in Marchal and Crochet [1987]. Another approach, introduced by Fortin and Fortin
[1989], used the discontinuous Galerkin (DG) method by Lesaint Raviart [1979] for the
constitutive equation combined with the element-wise streamline-upwinding method for the
momentum equation.

Much work has been done in this line of research. To stabilize the numerical simulation,
these algorithms focus on adding more diffusion to the momentum equation in order to
make the ellipticity of the equation explicit. Sun, Smith, Armstrong and Brown [1999]
summarized the main ideas as follows:

(1) reformulating the momentum and the constitutive equation to make the elliptic char-
acter of this equation explicit with respect to the velocity field;

(2) splitting the formulation into the solution of the velocity-pressure saddle point prob-
lem equations for an incompressible fluid and the calculation of the extra-stress field
from the hyperbolic constitutive equation;

(3) applying numerically stable and accurate methods, like SUPG or DG methods, for
solution of the hyperbolic constitutive equations; and

(4) introducing accurate and smooth interpolation of velocity gradients for additional
numerical stability in solution of the constitutive equation.

King, Apelian, Armstrong and Brown [1988] made the first effort in this direction;
they introduced the explicitly elliptic momentum equation (EEME) and gave a reformula-
tion of the momentum equation that makes its ellipticity explicit for the upper convected
Maxwell (UCM) models. This method was later generalized by Beris, Armstrong and
Brown [1984, 1986]: their elastic-viscous split-stress (EVSS) formulation splits the extra-
stress T into a viscous part and an elastic part; i.e., T = τ v + τ e, where τ v = 2ηaD(u) and
ηa is a parameter for viscosity; in this way, the formulation introduces another variable, the
rate-of-strainD(u). The application of this method has been limited to a few models; further-
more, it introduced a new term containing convected derivatives of D(u). Rajagopalan,
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Armstrong and Brown [1990] modified this method by using a least square approxima-
tion of D(u) and generalized it to the Oldroyd-B model, as well as the Giesekus models.

The EEME and EVSS formulations are significant improvements over previous methods
based on the standard viscous model in terms of numerical stability. They allow numeri-
cally stable and accurate calculations at moderately high Wi values. However, almost every
flow problem has levels of elasticity that cannot be calculated with these methods for any
given finite element mesh. Sun, Phan-Thien and Tanner [1996] argued that the failure
is due to a steep stress gradient and introduced an adaptive way for choosing the viscosity
parameter ηa to tackle the difficulty; this is known as the adaptive viscoelastic stress splitting
(AVSS) method. An alternative EVSS method was proposed in Brown, Szady, Northey
and Armstrong [1993] and Szady et al. [1995], who applied least square approximation
for the gradient ∇u instead of D(u); this type of methods is called EVSS-G. Guenette
and Fortin [1995] and Liu, Bornside, Armstrong and Brown [1998] applied the stress
splitting at the discrete level, which gives the discrete elastic-viscous split-stress (DEVSS)
and DEVSS-G, respectively. Sun, Smith, Armstrong and Brown [1999] combined all
these techniques to create the discrete adaptive viscoelastic stress splitting–discontinuous
Galerkin (DAVSS-G/DG) method, which does exactly what the name suggests.

Besides the finite element formulation, other related discretization schemes, such as finite
volume method and the spectral methods, have been applied to viscoelastic fluids. Just to
mention a few, Hu and Joseph [1990] designed a finite volume (FV) discretization based
on the semi-implicit method for pressure-linked equations revised (SIMPLER) for the UCM
model on orthogonal staggered grids. Oliveira, Pinho and Pinto [1998] generalized this
method to nonorthogonal collocated grids. Alves, Oliveira and Pinho [2003] and Alves,
Pinho and Oliveira [2001] discussed FVM on nonorthogonal grids combined with a high-
resolution scheme (HRS) instead of usual upwind difference schemes for the Oldroyd-
B model and the PTT model for the planar contraction benchmark problem. Chauviére
and Owens [2001] applied the spectral method for viscoelastic flows and introduced the
streamline-upwind Petrov/Galerkin (SUPG) for constitutive equations.

5.2. Steep stress layers and log-conformation formulation

The breakdown of the numerical algorithms for high Weissenberg numbers has often been
associated with the steep stress gradients in the narrow regions of the flow domain. Even for
the well-known flow-past-cylinder problem, which has no geometric singularities and gen-
erates smooth flows, the numerical simulation is still difficult. Observed in many numerical
simulations is that this difficulty inheres in the thin stress layers that develop around the cylin-
der and in the wake along the centerline, where the flow is purely elongational; see the
review by Baaijens [1998] for example. Beris, Armstrong and Brown [1983, 1987]
have demonstrated the formation of elastic boundary layers in both asymptotic analysis and
spectral/finite-element calculations for the flow between two eccentric rotating cylinders.
Renardy [2000a] analyzed the width of the boundary layer and the wake for the UCM
model with fixed Newtonian kinematics. Based on this work, Wapperom and Renardy
[2005] applied a Lagrangian technique to simulate viscoelastic flow past a cylinder bench-
mark problem; they showed that for an ultradilute solution, the governing equations for the
Oldroyd-B model can be solved for arbitrarily large values of Wi under the assumption that
the underlying velocity field is fixed to be Newtonian.
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By far the most successful method is (Fattal and Kupferman’s [2004]) matrix-
logarithm formulation of the conformation tensor for the constitutive laws; this method
introduces a new variable 9 = ln c and rewrite the constitutive equations in terms of 9 for
numerical calculations. The main motivation relies on the fact that the stress tensor is expo-
nential in regions of high deformation rates or stagnation points; numerical instabilities are
caused by failure to balance exponential growth with convection. In Fattal and Kupfer-
man [2004], the authors pointed out the inappropriateness of polynomial-based approxima-
tions to represent the stress.

Let the conformation tensor be c = δ + µp

Wi
τ . Notice that the conformation tensor is

different from that defined in (3.7) by a constant multiplier. We can then write the Oldroyd-
B constitutive equation (3.5) in terms of c:

∂c
∂t
+ u · ∇c−∇u c− c(∇u)T =

1

Wi
(δ − c). (5.1)

The core feature of the transformation is the decomposition of the velocity gradient into a
traceless extensional component B and a pure rotational component R:

∇u = R+ B+ Nc−1, (5.2)

where N is antisymmetric. By plugging (5.2) in the Oldroyd-B constitutive relation, we
obtain

∂c
∂t
+ (u · ∇)c− (Rc− cR)− 2Bc =

1

Wi
(δ − c). (5.3)

Because of the symmetric positive-definite (SPD) nature of the conformation tensor, we
can have the factorization c = U3UT , where U is an orthogonal matrix that consists of the
eigenvectors of c and 3 is a diagonal matrix made with the corresponding eigenvalues of
c. Therefore, we obtain 9 = U(ln3)UT . Then, we can write the Oldroyd-B constitutive
relation in terms of 9 and solve it numerically:

∂9

∂t
+ (u · ∇)9 − (R9 −9R)− 2B9 =

1

Wi
exp(−9)(δ − exp(9)). (5.4)

Note that the positivity of c is guaranteed automatically in this way.
Fattal and Kupferman [2004] reported numerical results on the lid-driven cavity

benchmark for a finitely extensible Chilcott–Rallison (FENE-CR) fluid (Chilcott and
Rallison [1988]) with a Weissenberg number of up to 5.0. Fattal and Kupferman [2005]
made a break-through in HWNP with this idea on the Oldroyd-B model for the lid-driven
cavity benchmark using finite difference methods. Recently, this method has been further
investigated by Pan, Hao and Glowinski [2009] based on the finite element method and
an operator-splitting Lie’s scheme. Hulsen, Fattal and Kupferman [2005] applied the
log-conformation formulation combined with the DEVSS/DG to the Oldroyd-B as well
as the Giesekus model for the flow-past-cylinder benchmark in the finite element context.
Coronado, Arora, Behr and Pasquali [2007], on the other hand, gave an alternative
log-conformation formulation and applied the DEVSS-TG/SUPG method (Pasquali and
Scriven [2002]) for the flow-past-cylinder benchmark. Their reported numerical results
are for Weissenberg numbers of up to 1.8 (Hulsen, Fattal and Kupferman [2005])
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and 1.05 (Coronado, Arora, Behr and Pasquali [2007]). Recently, Afonso, Oliveira,
Pinho and Alves [2009] applied a finite volume method on the log-conformation and
reported computational results for the flow-past-cylinder benchmark up to a Weissenberg
number of 2.5; but mesh convergence was not confirmed for Weissenberg numbers larger
than around 0.9.

The stability of the algorithm in Fattal and Kupferman [2004] has been analyzed by
Boyaval, Lelievre and Mangoubi [2009]. The key ingredients used in the analysis were
the divergence-free condition and the positivity of the conformation tensor. We note that
the log-formulation of the conformation tensor preserves positivity in the discrete sense
naturally. In fact, preserving the positivity of the conformation tensor is regarded as one
of the main issues in developing stable numerical schemes for viscoelastic flows. We next
discuss several attempts to address this issue.

5.3. Positivity-preserving schemes

The HWNP has been closely investigated in correlation with the loss of the positivity-
preserving property of the conformation tensor c on the discrete level (Beris and Edwards
[1994], Dupret, Marchal and Crochet [1985], Hulsen [1988], Joseph and Saut
[1986], Owens and Phillips [2002]). Although there have been many attempts to construct
positivity-preserving schemes, only a handful of schemes are available that preserve the
positive-definite character of the conformation tensor on the discrete level. These include the
log-conformation schemes discussed above. Another notable example is given by Lozinski
and Owens [2003]. Using the fact that the conformation tensor c is positive, they wrote
the conformation tensor c as c = CCT and defined the matrix C by the solution to some
semidiscrete equation. More precisely, let un and cn

= Cn(Cn)T be the nth time step approx-
imate solution to the velocity field u and the conformation tensor c, respectively. Then, Cn

is defined as the solution to the equation given as follows:

Cn
+ k

( 1

2Wi
Cn
+ (un

· ∇)Cn
−∇unCn

)
=

√
cn−1 +

ηpk

Wi2
δ, (5.5)

where k is the time step size. It is further shown that this semidiscretization is consistent
in Lozinski and Owens [2003]. This approach has been further explored by Hao, Pan,
Glowinski and Joseph [2009] as well.

Vaithianathan, Robert, Brasseur and Collins [2006, 2007] have developed a
positivity-preserving algorithm that takes into account that the conformation tensor c can
be decomposed as c = U3UT , where U is the orthogonal matrix that consists of eigenvec-
tors of c and 3 is the diagonal matrix consisting of the eigenvalues of c. They wrote equa-
tions for both 3 and U. These are evolved by solving equations that define these unknowns,
which have been successfully applied for the turbulent flow of a viscoelastic polymer solu-
tion (Vaithianathan, Robert, Brasseur and Collins [2006, 2007]).

Lee and Xu’s’s [2006] made an attempt to tackle the high Weissenberg number problems
by preserving the positivity of the conformation tensors on the fully discrete level. The
idea relies on the link between the constitutive equations and the symmetric matrix Riccati
differential equations (Abou-Kandil, Freiling, Ionescu and Jank [2003], Reid [1972]).
We will demonstrate why this is crucial in the stability of the solutions and prove that the
discrete solution exists in time without break-down in Section 8. More importantly, we will
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show how this approach can be generalized so that the proposed method will be able to
handle most existing macroscopic constitutive equations in a unified and efficient way.

Lee and Xu’s [2006] method is closely related to the method proposed by Petera [2002],
which is based on a conformation tensor formulation of the constitutive laws and the method
of characteristics for the upper convected time derivative directly. Petera [2002] devel-
oped an Eulerian–Lagrangian discretization based on the direct discretization of the gener-
alized Lie derivative introduced by Hughes and Winget in their pioneering work (Fortin and
Esselaoui [1987], Hughes and Winget [1980]). However, this method does not preserve
the strong divergence-free condition. While the method by Petera [2002] can be shown to
preserve the positivity of the conformation tensor, due to the lack of the strong divergence-
free condition in his scheme, stability could not be proven; the relevant energy estimates
were missing as well. Moreover, the fact that the conformation tensor formulations can be
identified with the Riccati equations, as discussed in Section 3, was not noticed there. In
particular, the techniques introduced by Fortin and Esselaoui [1987] have been further
investigated by Kabanemi, Bertrand, Tanguy and Ait-Kadi [1994].

5.4. Constitutive equations with diffusion

Other approaches attempt to stabilize the viscoelastic models by adding a small diffusion
term to the constitutive equations. Considering the fact that the difficulty of simulating and
proving the global-in-time solutions to the general complex fluids lies in the hyperbolic
nature of the constitutive equations, this is a natural choice. Not only does this addition stabi-
lize the equation, it also eases the proof of the global-in-time existence of solutions (see Lin,
Liu and Zhang [2005], for example.) Another existence proof can be found in El-Kareh
and Leal [1989]. Furthermore, Sureshkumar and Beris [1995] investigated this approach
for the Poiseuille flow of the Oldroyd-B model and concluded that a small stress diffusiv-
ity can be introduced so that enhanced stability can be achieved without altering the flow
rheology.

The main issue, which is still open here, is how to impose the boundary conditions upon
adding the diffusivity of the stress fields to the constitutive equations (Beris and Edwards
[1994]). The pure Neumann boundary or the Robin boundary conditions are often given (see
Adams, Fielding and Olmsted [2008], Black and Graham [2001]). It is, however, impos-
sible to know how macromolecules react near the boundary in general and the construction
of the right boundary conditions still remains elusive. In fact, the molecular derivation of
the Oldroyd-B model has the diffusion terms although the diffusivity constant is small, and
it has been shown that, generally, the multiscale approach is more stable (Bajaj, Bhat,
Prakash and Pasquali [2006]). The addition of dissipation, therefore, may help achieve
the stability of the numerical calculations. This technique has been widely used for turbu-
lent drag reduction (Sureshkumar and Beris [1997]). Experiments in Sureshkumar and
Beris [1995] showed that adding the diffusion term in the constitutive equations has definite
positive effects without altering the flow pattern significantly.

6. A family of Eulerian–Lagrangian finite element methods

In this section, we present our numerical methods to solve the viscoelastic flow models intro-
duced in Section 3. Typically, the viscoelastic fluids are described by the time-dependent
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models, and even steady-state computations are generally performed using time march-
ing (Alves, Oliveira and Pinho [2003]) for the corresponding time-dependent problem.
Therefore, our interest lies in developing time-dependent non-Newtonian models and their
time and space discretization. Our aim here is to introduce, in a systematic way, a class of
positivity-preserving discretizations of the Riccati formulation of the constitutive equations
in terms of the conformation tensor. In particular, we will demonstrate that our schemes pos-
sess the important stability property, and we refer to a recent work by Boyaval, Lelievre
and Mangoubi [2009], where similar stability results have been presented as well.

6.1. Temporal discretization

In the Lagrangian frame, it has been established that the general macroscopic constitutive
equation can be cast into (3.18). Therefore, it is natural to employ the Lagrangian approach,
and there are two main ways to use this approach.

The first idea, the pure Lagrangian approach or the method of characteristics, is to follow
the particle trajectories in time and to use the initial positions of the particles as nodes at
which the solutions are evaluated. This approach has an inherent disadvantage in that grid
points can be severely distorted, and therefore, the accuracy of long-time calculations can
easily be degraded. Further, the relocation of particle positions is unavoidable, in which case
it is necessary to interpolate the solutions at the new positions. And, this in turn introduces
additional numerical error (Baaijens [1993]).

In order to avoid mesh distortion, we can view the fixed discretization at any time level
as the particle positions and consider the characteristic foot (or departure foot) as the previ-
ous position of this given particle. This method, known as the Eulerian–Lagrangian method
(ELM) or the semi-Lagrangian method (SLM), was introduced to the finite element commu-
nity in the early 1980s; see Douglas and Russell [1982] and Pironneau [1982].

6.1.1. Eulerian–Lagrangian method for the momentum equation
The ELM begins by establishing the characteristic foot of any given particle at the current
time step. Note that similar approaches have been applied to the computation of viscoelastic
flows in Bonito, Picasso and Laso [2006] and Phillips and Williams [1999] as well.

Let x be the position of any material particle at the current time t; let x also be used to
refer to the particle itself. Suppose that the particle x moves with the velocity u(φt,s(x), s)
at time s. The characteristic foot (or the departure foot) y = φt,s(x) of the particle x at any
previous time s ≤ t can be found by solving the following flow map equation:

∂

∂s
φt,s(x) = u(φt,s(x), s), φt,t(x) = x. (6.1)

A straightforward approximation scheme for (6.1) is the first-order forward Euler
method:

x− y

k
= u( y, s)+ O(k), (6.2)

where k is the time step size k = t − s. We denote the approximate solution to Eqn (6.2) by
ỹ, which satisfies the equation

ỹ = x− ku( ỹ, s). (6.3)
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We note that the characteristic foot ỹ is defined implicitly. Hence, we must apply certain
nonlinear iterations to obtain the solution to Eqn (6.3).

Unfortunately, the explicit Euler scheme does not preserve volume, which is crucial for
the stability of numerical simulations and the convergence of nonlinear iterative methods;
see Section 8 for more detail. Feng and Shang [1995] discussed volume-preserving numer-
ical schemes for the ordinary differential equation (6.1) and noted that the simplest one
replaces u( ỹ, s) in (6.3) with u

(
( ỹ+ x)/2, s

)
, i.e.,

ỹ = x− ku
( ỹ+ x

2
, s
)
. (6.4)

Next, we offer a simple discussion to demonstrate why this scheme is volume-preserving.

Lemma 6.1 (First-Order Volume-Preserving Scheme). Let � ⊂ R2 Suppose u(s) ∈
(H1(�))d and ∇ · u(s) = 0. If the time step size k is small enough, then the scheme (6.4)
is well defined and volume preserving, i.e., det(∇ ỹ) = 1.

Proof. First, if k is small enough, Eqn (6.4) is solvable, and the scheme is well defined.
Now let J := ∇ ỹ be the Jocobian matrix. Taking derivative with respect to x on both sides
of (6.4), we can obtain

J = δ −
k

2
∇u
( ỹ+ x

2
, s
)
(J + δ).

This immediately implies that[
δ +

k

2
∇u
( ỹ+ x

2
, s
)]

J = δ −
k

2
∇u
( ỹ+ x

2
, s
)
.

Hence, if k is small enough, δ + k
2∇u

(
ỹ+x

2 , s
)

is invertible, and we can solve for J. So the

determinate of the Jacobian matrix is

det J = det
[
δ +

k

2
∇u
( ỹ+ x

2
, s
)]−1

det
[
δ −

k

2
∇u
( ỹ+ x

2
, s
)]
.

To show det J = 1, we assume that

k

2
∇u
( ỹ+ x

2
, s
)
=

(
a11 a12

a21 a22

)
and a11 + a22 = 0.

Therefore, by direct calculation, we obtain

det J =
1− a11 − a22 + a11a22 − a12a21

1+ a11 + a22 + a11a22 − a12a21
= 1,

which completes the proof.

Remark 6.1 (Alternative Volume-Preserving Schemes). The scheme (6.4) is only of first
order. An alternative is this second-order scheme:

ỹ = x−
k

2

(
u
( ỹ+ x

2
, s
)
+ u

( ỹ+ x

2
, t
))
. (6.5)
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The aforementioned two schemes (6.4) and (6.5) preserve volume in R2. For three-
dimensional problems, constructing volume-preserving schemes is possible, but more com-
plicated; see Feng and Shang [1995] for details.

We will now apply this idea to discretizing the momentum equation of the Oldroyd-B
model. More specifically, we will assume that the solution at time level s = told is known;
that is, (uold, pold,Told) is given, and for any given mesh points at time level t = tnew, we
let ỹ be solutions to the discrete flow map equation (6.3). Namely, ỹ is an approximation of
the departure foot y = φtnew , told(x). In the Lagrangian view, the momentum equation (3.1)
can be viewed as an ODE; therefore, it can be discretized by using the flow map solutions
as follows:

Re

(
unew
− uold

◦ ỹ

k

)
= ηs1unew

−∇pnew
+∇ · Tnew.

Therefore, we arrive at the following semidiscrete equation (continuous in space
variable):

Re

k
unew
− ηs1unew

+∇pnew
−∇ · Tnew

=
Re

k
uold
◦ ỹ. (6.6)

6.1.2. Eulerian–Lagrangian method for constitutive equations
The particle-following approach (6.6) can be naturally applied to approximate generalized
Lie derivatives as well. We now explain it using the model equation (3.18) with positive
constant parameters α and β as an example.

Approximations based on the generalized Lie derivative First, we consider the numeri-
cal discretization of the generalized Lie derivative Lu,Rζ at time tnew. By Definition 2.1, we
can employ the first-order difference approximation for the time derivative to obtain

E(s, t)ζ (s, t)E(s, t)T − E(s− k, t)ζ (s− k, t)E(s− k, t)T

k

∣∣∣
s=t

=
ζ (t, t)− E(t − k, t)ζ (t − k, t)E(t − k, t)T

k
. (6.7)

Let Ẽ be an approximate solution to the ODE for the transition matrix, namely,

∂E(s, t)

∂t
= R(s, t)E(s, t) and E(s, s) = δ. (6.8)

For example, we can apply the explicit Euler method:

Ẽ− δ
k
= R(told)δ =⇒ Ẽ = δ + kR(told). (6.9)

We can also apply the implicit Euler method:

Ẽ− δ
k
= R(tnew)Ẽ =⇒ Ẽ =

(
δ − kR(tnew)

)−1
. (6.10)
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Using either (6.9) or (6.10) for approximating the transition matrix Ẽ and the approximate
solution ỹ to the flow map equation, we derive a numerical discretization of the generalized
Lie derivative as follows:

Lu,Rζ(t
new) ≈

ζ new
− Ẽ

(
ζ old
◦ ỹ
)
ẼT

k
. (6.11)

This approximation can be easily shown to satisfy the desired property that the conformation
tensor is positive definite in the semidiscrete level when applied to approximate the general
Riccati form of the constitutive law (3.18).

Lemma 6.2 (Positivity-Preserving Semidiscretization). Consider the semidiscrete scheme
(6.11) for the model equation (3.18) with positive parameters α and β, namely,

cnew
− Ẽ(cold

◦ ỹ)ẼT

k
+ αcnew

= βδ. (6.12)

If cold is positive definite, then the numerical scheme preserves positivity, namely, cnew is still
positive definite.

Proof. We can solve the Eqn (6.12) in terms of cnew to obtain

(1+ kα)cnew
= Ẽ(cold

◦ ỹ)ẼT
+ kβδ. (6.13)

As an immediate consequence, if cold is positive definite, then so is cnew.

Approximations for the Riccati form of constitutive laws However, the above discretiza-
tion of the generalized Lie derivative is not the only way to obtain positive-definite discrete
conformation tensors. We can simply apply the discretization of the material derivative to
obtain the following semidiscrete systems:

cnew
− cold

◦ ỹ

k
− Rnewcnew

− cnew(Rnew)T + αcnew
= βδ. (6.14)

Known as the Lyapunov equation, this equation can be reformulated as a symmetric alge-
braic Riccati equation by a simple change of variable:(

αk + 1

2k
δ − Rnew

)
cnew
+ cnew

(
αk + 1

2k
δ − Rnew

)T

=
cold
◦ ỹ

k
+ βδ. (6.15)

In fact, the solution cnew is positive definite if cold
◦ ỹ is positive definite.

Approximations based on the explicit solution We can also design numerical schemes
based on the explicit solution of the Riccati form of the constitutive equations. In general, the
numerical schemes based on the analytic solution (3.19) require approximations of E(s, t),
(3.22), and the time integral in (3.19); see Lemma 3.1. Approximations of E(s, t) do not
affect the approximated conformation tensor’s positivity property. The integral expression
in (3.19) should be computed by using numerical quadratures with positive weights in order
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to maintain the positivity property, which is the approach taken by Dieci [1994] and Dieci
and Eirola [1994, 1996].

There are many possible methods based on explicit integral expression (3.19) of the solu-
tion; an extensive list of schemes can be found in Lee and Xu’s [2006]. Here, we present
only one such example: if α and β are both constants, the explicit form of the solution can
be approximated by the left-point Euler method:

cnew
= exp(−kα)Ẽ(cold

◦ ỹ) ẼT
+ kβδ. (6.16)

If we use the first-order Taylor expansion for the exponential function and drop higher-order
terms with respect to k on the right-hand side, then we get the exact same scheme as (6.12).

6.2. Spatial discretization

It is now clear that the Eulerian–Lagrangian framework provides semidiscrete equations,
which preserves the positivity of the conformation tensor. The main goal of this section is to
introduce spatial discretizations so that positivity can be realized in the fully discrete sense
as well. It is worth noting that the Eulerian–Lagrangian approach follows the particle trajec-
tory and the interpolated solution may not be positive even if the solution is positive at mesh
points. This will restrict the choice of the approximation spaces, in particular the approxi-
mate stress field. In this section, we introduce various approximation spaces for which the
positivity of the conformation tensors can be preserved.

6.2.1. Stokes-like saddle point problems
We begin by introducing the equations that will be discretized in space. After applying the
ELM to the model problem (3.1), (3.2), and (3.18), we obtain the following semidiscrete
problem: find (unew, pnew, cnew) such that

Re

k
unew
− ηs1unew

+∇pnew
=

Re

k
uold
◦ ỹ+∇ · cnew (6.17)

∇ · unew
= 0 (6.18)

(1+ kα)cnew
= Ẽ(cold

◦ ỹ)ẼT
+ βδ. (6.19)

We note that Eqn (6.17) is nonlinear and coupled together through the conformation tensor
with (6.19); the nonlinearity also lies in the computation of ỹ and Ẽ. The finite element
spaces for the unknowns u, p, and c should be constructed carefully based on the stability
conditions to keep the solution from blowing up as the mesh size reduces.

In this section, we identify the ingredients necessary to achieving this goal by considering
the momentum equation and continuity equation with the conformation tensor being given
explicitly. We consider the most straightforward linearization method here: the conformation
tensor c explicitly given at each iteration. In each nonlinear iteration, Eqns (6.17) and (6.18)
can be written as the following system of equations up to a simple rescaling: ρ

2u− κ21u+∇p = g

∇ · u = 0,
(6.20)

where g depends on u and ρ2, κ2 . 1.
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The main goal now is to identify stable finite element pairs for the velocity and pressure
so that accuracy is independent of all relevant parameters ρ2 and κ2. We begin by casting
Eqn (6.20) into a weak formulation as follows: find (u, p) ∈ (H1

0(�))
d
× L2

0(�) such that{
ap(u, v)+ b(v, p) = 〈g, v〉 ∀v ∈ (H1

0(�))
d

b(u, q) = 0 ∀q ∈ L2
0(�),

(6.21)

where the bilinear forms ap(·, ·) : (H1
0)

d
× (H1

0)
d
7→ R and b(·, ·) : (H1

0)
d
× L2

0 7→ R are
defined as

ap(u, v) := ρ2(u, v)+ κ2(∇u : ∇v) and b(v, p) := −
∫
�

(∇ · v) p dx.

Here, we use the standard notation that (· : ·) acting on two matrix-valued functions A =
(ai,j) ∈M and B = (bi,j) ∈M denotes

(A : B) :=
∫
�

tr(AB) dx =
∫
�

d∑
i,j=1

ai,jbi,j dx, (6.22)

where tr : M 7→ R is the standard trace operator of a matrix.
Apparently, the bilinear form ap(·, ·) induces a norm

‖u‖2ap
:= ap(u,u) = ρ2

‖u‖20 + κ
2
|u|21.

We now introduce the energy norm |||·||| on (H1
0(�))

d as follows:

|||u|||2 := ‖u‖2ap
+ ‖∇ · u‖20 ∀u ∈ (H1

0(�))
d.

It is then clear that the bilinear forms ap(·, ·) and b(·, ·) are continuous, i.e.,

ap(u, v) . |||u||| |||v||| ∀u, v ∈ (H1
0)

d

b(v, q) . |||v||| ‖q‖0 ∀v ∈ (H1
0)

d, q ∈ L2
0.

We also note that |||u||| = ‖u‖ap for any u ∈N := {v ∈ (H1
0)

d : ∇ · v = 0}. Therefore,
ap(·, ·) is also elliptic on N .

Furthermore, using the following inf-sup condition (or the Brezzi condition) that

sup
v∈(H1

0 )
d

b(v, q)

‖v‖1
& ‖q‖0 ∀q ∈ L2

0, (6.23)

and the fact that ‖∇ · u‖0 ≤ ‖u‖1, we can easily obtain that for ρ2, κ2 . 1,

sup
v∈(H1

0 )
2

b(v, q)

|||v|||
& sup

v∈(H1
0 )

2

b(v, q)

‖v‖1
& ‖q‖0 ∀q ∈ L2

0. (6.24)

This means that the Eqn (6.21) is uniformly stable with respect to the norm |||·||| for the
velocity and ‖ · ‖0 for the pressure.
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6.2.2. Stable discretizations of the generalized Stokes equation
Similar considerations can be directly transferred to the discrete case as well. We assume
that the domain � ⊂ Rd has been partitioned into triangular/tetrahedral elements Th = {E}
and that the conforming and quasi-uniform partition Th satisfies

� =
⋃

E∈Th

E. (6.25)

Based on the partitions Th, we will choose appropriate approximation spaces Vh and Wh for
the primitive variables u and p, respectively.

Consider a discrete weak formulation that is formulated by making the appropriate choice
of space Vh ⊂ (H1

0(�))
d for the velocity and Wh ⊂ L2

0(�) for the pressure: find (uh, ph) ∈

Vh ×Wh such that{
ap(uh, vh)+ b(vh, ph) = 〈g, vh〉 ∀vh ∈ Vh

b(uh, qh) = 0 ∀qh ∈ Wh.
(6.26)

As demonstrated by Xie, Xu and Xue [2008], the uniform well-posedness and error analysis
for the finite element pairs Vh ×Wh can be achieved if we can show that the following two
conditions are satisfied from the well-known (Brezzi theory Brezzi [1974], Brezzi and
Fortin [1991]), namely,

sup
vh∈Vh

b(vh, qh)

‖vh‖1
& ‖qh‖0 ∀qh ∈ Wh, (6.27)

and

∇ · Vh ⊆ Wh. (6.28)

We define a(u, v) := ap(u, v)+ as(u, v) with as(u, v) := (∇ · u,∇ · v). Under the two
afore stated conditions (6.27) and (6.28), we can immediately see that

sup
vh∈Vh

b(vh, qh)

|||vh|||
& ‖qh‖0 ∀qh ∈ Wh (6.29)

and

a(uh,uh) & |||uh|||
2

∀uh ∈N h, (6.30)

where N h := {vh ∈ Vh : ∇ · vh = 0}.
Now, we give some examples of conforming finite element methods that satisfy both

conditions, (6.27) and (6.28).

Example 6.1 (Scott–Vogelius Finite Elements). The P4
0 − P3

−1 Scott–Vogelius ele-
ment (Scott and Vogelius [1985a,b]) is important in fluid mechanics computation. It uses
the piecewise continuous polynomials on triangles of a degree up to 4 to approximate the
velocity field and uses the piecewise discontinuous polynomials of a degree up to 3 for the
pressure. In R2, on each triangle, the P4

0 space has 15 degrees of freedom (DOFs) determined
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by values at three vertices, three quartering points on each edge, and three interior points
inside each triangle. The P3

−1 space has 10 DOFs on each triangle, all of which are given
inside the triangle independently. This element is stable in the sense that it satisfies the inf-
sup condition, if the triangulation is singular-point free (a vertex is called singular if all
edges meeting at the vertex fall into two crossing straight lines). This kind of element is
of key importance because it can preserve the incompressible condition, i.e., the discrete
velocity is divergence-free pointwise.

Example 6.2 (Austin–Manteuffel–McCormick Finite Elements). The tensor-product finite
element in two-dimensional domains given by Austin, Manteuffel and McCormick
[2004] can easily be extended into three-dimensional domains. In each reference triangle,
for the horizontal component of the velocity fields, the product of the cubic Hermite poly-
nomial in the x1 variable and the quadratic polynomial in the x2 variable are used. For the
vertical component of the velocity fields, the product of the quadratic polynomial in the x1

variable and the cubic Hermite polynomial in the x2 variable are used. For the pressure, the
product of the quadratic polynomial in the x1 and x2 variable is used. This element has been
shown to be uniformly stable by Lee, Wu and Chen [2009].

6.2.3. Approximation Space for Stress
Our guiding principle in choosing the approximation space for the stress fields is to preserve
the positivity of the conformation tensor. The main bottleneck in this process is to evaluate
the conformation tensor at any points, which may not necessarily be the mesh points. This
can be reinterpreted as constructing an interpolation operator5S

h : M 7→M, which preserves
positivity in the following sense:

σ > 0 =⇒ 5S
h(σ ) > 0, ∀σ ∈M, (6.31)

where σ > 0 means σ is positive definite.
For this purpose, we first consider the scalar positivity-preserving interpolations. We start

with two simple examples:

Example 6.3 (Piecewise Constant Interpolation). The simplest finite element space that pre-
serves the positivity of the scalar functions is, of course, the space of the piecewise constant
functions. In this case, the existence of the positivity-preserving interpolation operator 5h

is obvious. For example, we can take, on each element E ∈ Th,

5h(g)(x) :=
1

|E|

∫
E

g dx ∀x ∈ E, (6.32)

where |E| is the area of E. It is easy to see that

‖5h(g)‖∞ = max
E

1

|E|

∫
E

g ≤ max
E
|E|−1/2

‖g‖0 (6.33)

and

‖5h(g)‖L1 =

∑
E

∫
E

|5h(g)| ≤
∑

E

∫
E

|g| = ‖g‖L1 . (6.34)

Author's personal copy



Stable Finite Element Discretizations for Viscoelastic Flow Models 403

Notice that these two inequalities are sharp. To see this, we can take a function g that is 1 on
an element E and 0 elsewhere.

Example 6.4 (Piecewise Linear Interpolation). The other choices can be given by continuous
or discontinuous piecewise linear finite element spaces. For cases in which we choose a
globally continuous piecewise linear finite element space, the standard pointwise nodal value
interpolant would be positivity preserving. In case the solution is not smooth or the point
values of g are not well defined, we can define the nodal value of 5h(g)(xi) as the local
mean value as follows:

5h(g)(xi) :=
1

|Bi|

∫
Bi

g dx, (6.35)

where Bi = B(xi, ri(xi)) and where the ball centered at xi and with radius ri(xi) with ri(xi)

small enough so that Bi is contained in the union of closed elements containing xi. This inter-
polation can be shown to be of second-order accuracy (Nochetto and Wahlbin [2002]).
For a case in which we choose a discontinuous piecewise linear finite element space, the
construction of positivity-preserving operator 5h for the above continuous piecewise linear
element can be applied similarly.

Remark 6.2 (High-Order Interpolations). We note that it is well known that the positivity-
preserving interpolant cannot be made for a polynomial of degree 2 or higher. To summarize,
we can choose the approximation space Sh for the conformation tensor as either piecewise
constant or piecewise linear polynomial spaces in case the positivity preserving is the main
restriction and, therefore, the accuracy of the approximations for such choices is either first-
order or second-order.

Now, we introduce a lemma that though simple, is useful, as it allows us to construct
positivity-preserving interpolation operators for tensors based on simple scalar interpola-
tions.

Lemma 6.3 (Positivity-Preserving Interpolations). Let 5h be a positivity-preserving inter-
polation operator for scalar functions, that is, if g > 0 on �, then 5h(g) > 0 on �. Then,
the interpolation operator 5h induces 5S

h such that

5S
h(σ ) = (5h(σ i,j))i,j=1,...,d. (6.36)

And 5S
h is a positivity-preserving interpolation in M.

Proof. We note that the operator 5h defined on scalar functions preserves the positiv-
ity in the sense that g > 0 implies 5h(g) > 0. We choose any positive-definite tensor
σ = (σi,j)i,j=1,...,d ∈M and any nonzero vector ξ = (ξi)i=1,...,d ∈ Rd and observe that

0 < ξTσ ξ =

d∑
i,j=1

ξiσi,jξj =⇒ 0 < 5h
(
ξTσ ξ

)
.
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We exploit the fact that the operator 5h is linear to see that

5h
(
ξTσ ξ

)
=

d∑
i,j=1

ξi5h(σi,j)ξj. (6.37)

Therefore, the operator 5S
h is positivity preserving.

The following simple lemma is useful for deriving the discrete analog of the bridging
identity (4.3) that has been crucially used to obtain the energy estimate in the continuous
level.

Lemma 6.4 (Bridging Lemma). For matrix-valued functions A and B : Rd
→M, the fol-

lowing identities hold true:(
5S

h(A) : B
)
=

(
5S

h(A) : 5S
h(B)

)
=

(
A : 5S

h(B)
)
. (6.38)

Proof. These equalities can be obtained by noticing that5S
h is an L2 projection to the space

of constant matrices. We show a more direct proof here. It is enough to show that for any
scalar functions f and g, we have∫

�

f 5h(g) dx =
∫
�

5h(f )5h(g) dx =
∫
�

5h(f ) g dx. (6.39)

And it can be shown from the following relation:

∫
�

f 5h(g) dx =
∫
�

f
∑

E

 1

|E|

∫
E

g dx

ϕE dy =
∑

E

∫
�

f ϕE dy

 1

|E|

∫
E

g dx


=

∑
E

∫
�

 1

|E|

∫
E

f dy

ϕE dz

 1

|E|

∫
E

g dx

 = ∫
�

5h( f )5h(g) dx.

The second equality follows using the same argument.

Remark 6.3 (Connecting the Momentum Balance with the Constitutive Laws). Lemma 6.4
can be used to establish the discrete analog of the important bridging identity (4.3) in the
continuous level, namely,(

5S
h(∇u) : c

)
=

(
5S

h(∇u) : 5S
h(c)

)
=

(
∇u : 5S

h(c)
)
. (6.40)

We will apply this to obtain the discrete energy estimate in Section 8.

6.3. Full discretizations

In this section, we will conclude our discussion on discretization by combining time and
space discretizations. We choose the approximation spaces Vh ×Wh ∈ (H1

0(�))
d
× L2

0(�)
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so that they satisfy both the inf-sup condition and the strong divergence-free condition. In
addition, we choose Sh to be a symmetric tensor space whose entries belong to the piecewise
polynomial spaces with a degree less than or equal to one.

The weak formulation of the semidiscrete system of Eqns (6.17)–(6.19) can be written as
follows: given uold

h , pold
h , and cold

h , find (unew
h , pnew

h , cnew
h ) ∈ Vh ×Wh × Sh such that for any

(vh, qh, σ h) ∈ Vh ×Wh × Sh,

Re

(
unew

h

k
, vh

)
+ ηs

(
D(unew

h ) : D(vh)
)
−
(
pnew

h ,∇ · vh
)

(6.41)

= Re

(
5V

h (u
old
h ◦ ỹ)

k
, vh

)
−
(
cnew

h : D(vh)
)
,(

∇ · unew
h , qh

)
= 0, (6.42)

(1+ kα)
(
cnew

h : σ h
)
=

(
Ẽh5

S
h(c

old
h ◦ ỹ)ẼT

h : σ h

)
+ β (δ : σ h) . (6.43)

Based on the various approximations for the constitutive equation in Section 6.1.2, we
can devise many approximations for the constitutive equation (3.18). There are a number of
approaches to handling the constitutive laws. The weak formulation (6.43) leads us to the
following discrete equation:

ACh = Fh, (6.44)

where A = (ai,j) ∈M, and ai,j =
∫
�
(1+ kα)ϕjϕi dx and {ϕi}i are the basis functions for

each entry of the stress approximation fields, the entries of Ch are the components of the
expression of the tensor cnew

h in terms of the finite element basis, and Fh is the force terms
due to the right-hand side in Eqn (6.43).

Remark 6.4 (Discretization Based on the Algebraic Riccati Form). Note that the discretiza-
tion of the material derivative in the constitutive equation (6.14) leads to the following dis-
crete constitutive equation:

cnew
h −5S

h(c
old
h ◦ ỹ)

k
− Rhcnew

h − cnew
h RT

h + αcnew
h = βδ. (6.45)

The equation can be recast into the well-known algebraic Riccati equation called the
Lyapunov equation given as follows:

(
αk + 1

2k
− Rh

)
cnew

h + cnew
h

(
αk + 1

2k
− Rh

)T

=
5S

h(c
old
h ◦ ỹ)

k
+ βδ. (6.46)

Example 6.5 (A Fully Discrete Scheme for the Oldroyd-B Model). We would like to give
a fully discrete scheme for the Oldroyd-B model, (3.1), (3.2), and (3.11), which we will
discuss in later sections; for various other schemes, we refer interested readers to Lee and
Xu’s [2006].

Author's personal copy



406 Y.-J. Lee et al.

Algorithm 1 Full Discretization–One Time Step

Step 0: Given un
h and cn

h.

Step 1: For any particle x, compute the departure feet

ỹ n
= x− k un

h

(
ỹ n
+ x

2

)
.

Step 2: Solve the following nonlinear system:
Re un+1

h − k1hun+1
h + k∇hpn+1

h = k∇h · c
n+1
h + Re5V

h (u
n
h ◦ ỹn),

∇ · un+1
h = 0,

(1+ kα)cn+1
h = Fn+1

h 5S
h(c

n
h ◦ ỹn)(Fn+1

h )T + kβδ,

where Fn+1
h :=

(
δ − k5S

h(∇un+1
h )

)−1
.

7. Fast and robust solvers for Stokes-type systems

As discussed in Section 6, by applying the Eulerian–Lagrangian method (ELM) to the non-
Newtonian models, we reduce the task of solving nonlinear systems of equations to solving
symmetric linear systems of Stokes type at each iteration. Therefore, the optimal solution
methods and multilevel preconditioners for non-Newtonian fluids can be devised, if we can
solve the following Stokes-type equation defined in �:

ρ2 u− κ21u+∇p = g and ∇ · u = 0, (7.1)

where g is a function that depends on the conformation tensor from the constitutive equa-
tion of the underlying model. We note that ρ2 and κ2 in Eqn (7.1) are material-dependent
parameters. (The uniformly stable finite elements with respect to the parameters ρ and κ
were discussed in Section 6.)

7.1. Discrete Stokes-type system

The purpose of this section is to consider the fast solution techniques for such parameter-
dependent problems as the Stokes-type equation given in (7.1). We begin by writing the
discrete weak formulation of the Stokes-type equation (7.1) given as follows: find (uh, ph) ∈

Vh ×Wh such that{
ap(uh, vh)+ b(vh, ph) = 〈g, vh〉 ∀vh ∈ Vh

b(uh, qh) = 0 ∀qh ∈ Wh,
(7.2)

where the bilinear forms are defined as

ap(uh, vh) := ρ2(uh, vh)+ κ
2(∇uh : ∇vh) and b(vh, ph) := −

∫
�

∇ · vh ph dx.
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Throughout this section, for convenience of the presentation, we will consider the opera-
tor form of Eqn (7.2) given as follows:(

Ap B∗
B 0

)(
uh

ph

)
=

(
g
0

)
, (7.3)

where Ap = ρ
2I − κ21h, B = −∇·, and B∗ = ∇h.

Our goal here is to discuss two types of iterative methods for solving the discrete version
of Eqn (7.1): one is the augmented Lagrangian method, and the other is the preconditioned
minimal residual (MinRes) method. For a comparison of the computational costs of solving
techniques for Stokes-type systems, we refer to the recent work of Larin and Reusken
[2008] and references therein; see Xu [2009, 2010] as well.

7.2. Augmented Lagrangian method

Augmented Lagrangian methods for Stokes problems have been introduced by Fortin and
Glowinski in Fortin and Glowinski [1982] and Fortin and Glowinski [1983]. They have
been further discussed in Glowinski and Le Tallec [1989] and Glowinski [2003]. In this
section, we discuss the augmented Lagrangian Uzawa method that can be shown to be fast
and robust with respect to parameters ρ, κ as well as the mesh size h.

We assume that the mixed finite elements employed here satisfy the uniform accuracy for
the aforementioned Stokes-type equation (7.1). Namely, the pair of finite element spaces Vh

and Wh for velocity fields and pressure satisfy the classical inf-sup conditions and the strong
divergence-free condition, namely, ∇ · Vh ⊆ Wh as discussed in Xie, Xu and Xue [2008].
For conforming finite elements, it is well known that the Scott–Vogelius elements Scott and
Vogelius [1985a,b] enjoy the optimal approximation property for the problem (7.1). And
it has recently been established that finite elements introduced by Austin, Manteuffel
and McCormick [2004] have such a property as well Lee [2009]; see Example 6.1 and
Example 6.2.

The Augmented Lagrangian iterative method for the operator form of Stokes-type equa-
tion (7.3) can be viewed as the Uzawa method for the following penalized problem:(

Ap + µ
2B∗B B∗

B 0

)(
uh

ph

)
=

(
g
0

)
, (7.4)

where µ2
≥ 0 is an arbitrary parameter. Note that due to the fact that the strong divergence-

free condition holds for the finite element pair, the formulations (7.3) and (7.4) are equiv-
alent. The optimal choice of damping parameter for the Uzawa method has been discussed
by Nochetto and Pyo [2004].

An application of the Uzawa method with damping parameter µ2 reads as follows: given
(ui

h, pi
h), the new iterate (ui+1

h , pi+1
h ) is obtained by solving the following equations in an

alternating way:

(Ap + µ
2B∗B)ui+1

h = g− B∗pi
h (7.5)

pi+1
h = pi

h + µ
2Bui+1

h . (7.6)
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The contraction factor of the Uzawa iterations (7.5) can be shown to be O(µ−2) when
µ2
� 1 (Lee, Wu, Xu and Zikatanov [2007]). Therefore, if µ2 is big enough, the Uzawa

iteration converges very fast. However, as discussed in Lee, Wu and Chen [2009], the
trade-off for achieving such a fast convergence is the inversion of a nearly singular operator
Ap + µ

2B∗B.
It should be noted here that while the construction of robust multilevel methods for the

operator Ap + µ
2B∗B is well-known, theoretical analysis on this point is missing from

the literature. In fact, Austin, Manteuffel and McCormick [2004] posed the theoreti-
cal justification of their numerical experiments on the multilevel method for the operator
Ap + µ

2B∗B as an open problem. Recent papers by Lee [2009] and Lee, Wu and Chen
[2009], however, have addressed this question. In this article, we will not attempt to repro-
duce this work. Instead, we focus on algorithmic details for the robust multigrid methods for
the operator Ap + µ

2B∗B in terms of µ2 as well as the mesh size, thereby introducing fast
and robust solvers for Stokes-type equations.

We now present the robust multigrid algorithm for Ap + µ
2B∗B in an abstract frame-

work. Let V be a real Hilbert space with the inner product a(·, ·) and the induced norm
‖ · ‖a = a(·, ·)1/2. We begin by constructing multilevel finite element spaces on which our
multigrid method is based. We assume that � has been triangulated by nested triangulations
T1 ⊂ T2 ⊂ · · · ⊂ TL, where TL forms the finest triangulation of �. For each 1 ≤ l ≤ L, we
let {xi

l}i be vertices of the triangulation Tl and denote T i
l by the set of triangles in Tl meeting

at the vertex xi
l. We define the local patch as follows:

�i
l =

⋃
E∈T i

l

E. (7.7)

These patches form an overlapping covering of� for each k. We then build the finite element
spaces on �i

l as follows:

Vi
l = {vl ∈ Vl : supp(vl) ⊂ �

i
l}. (7.8)

Correspondingly, we also define W i
l , the subspace of Wl, which is supported on�i

l. It is then
clear that

V =
L∑

l=1

Vl =

L∑
l=1

Nl∑
i=1

Vi
l,

where Nl is the number of vertices for the triangulation Tl.
We further introduce additional notation that the space N i

l for 1 ≤ l ≤ J and 1 ≤ i ≤ Nl,

N i
l =

{
u ∈ Vi

l : (∇ · u, q) = 0, ∀q ∈ ∇ · Vi
l

}
= {u ∈ Vl : (∇ · u,∇ · v) = 0, ∀v ∈ Vl} .

The robust multigrid method will be constructed by the successive subspace correction
(SSC) method with local exact solvers in each subspace Vi

l. In this setting, it is easy to
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demonstrate that the finite element spaces Vl and Wl generated based on the triangula-
tions Tl are nested, especially for Scott–Vogelius finite elements and Austin–Mantueffel and
McCormick finite elements, namely, we have

V1 ⊂ · · ·Vl ⊂ · · ·VJ, and W1 ⊂ · · ·Wl ⊂ · · ·WJ . (7.9)

Furthermore, in this setting, the following assumptions hold true:

A1: V =
L∑

l=1

Nl∑
i=1

Vi
l and A2: N =

L∑
l=1

Nl∑
i=1

(
Vi

l ∩N
)
.

Under these assumptions, we can establish that the following subspace correction algo-

rithm possesses the optimal convergence property; see Lee [2009] and Lee, Wu and Chen

[2009].

Algorithm 2 Successive Subspace Correction Method

Give the initial guess u0
∈ V and let m = 0.

while The residual is bigger than the given tolerance do
um

0 = um;
for l = 1, . . . ,L do

for i = 1, . . . ,Nl do
Find ei ∈ Vi

l, s.t. a(ei, vi) = g(vi)− a(um
i−1, vi), ∀vi ∈ Vi

l;

um
i = um

i−1 + ei;
end for

end for
um+1

= um
L ;

m = m+ 1;
end while

7.3. Preconditioned MinRes method

In this section, we will introduce another algorithm; for this one, it is not necessary to assume
the strong divergence-free condition. For instance, we can employ the well-known Taylor–
Hood finite elements (Taylor and Hood [1973]) to approximate velocity/pressure fields.
To solve the discrete saddle point problem, we can use the preconditioned minimal residual
(MinRes) method by Paige and Saunders [1975]. Like the conjugate gradient method, the
efficiency of MinRes depends heavily on the construction of preconditioners, which should
be spectrally equivalent to the inverse of the original operator.

The time-dependent Stokes system has the coefficient matrix in the following form

A =
(
Ap B∗
B 0

)
. (7.10)
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For this system, we apply the MinRes method with the block diagonal preconditioners by
Rusten and Winther [1992] and Bramble and Pasciak [1997], namely,

P =
(
PA 0
0 PS

)
,

where PL is a multigrid preconditioner for the Laplace-like matrix Ap and PS is a pre-
conditioner corresponding to the Schur complement. The matrix Ap has a block-diagonal
form with each diagonal block corresponding to a scalar reaction-diffusion problem. And
the Schur complement preconditioner can be chosen to be

PS = max(κ2, ρ2h2)M−1
+ ρ2(−1N)

−1,

where M is the mass matrix for the pressure space and −1N is the auxiliary Laplace oper-
ator with the Neumann boundary condition. This preconditioner is shown to be uniform
with respect to ρ, κ , and h; see Bramble and Pasciak [1997] and Olshanskii, Peters
and Reusken [2006]. Since fast solvers, like multigrid method (Bramble [1993], Brandt
[1977], Hackbusch [1985]), for scalar reaction-diffusion problems are available (see Xu
[2010]), we can solve the Stokes-type system efficiently.

8. Stability analysis and existence of discrete solutions

In this section, we show that our discretization schemes as discussed in Section 6 are stable.
The stability will then be used to establish the existence of the discrete solutions in time
evolution. For simplicity and clarity in presenting the main ideas of the proof, we only
discuss the Oldroyd-B model:

Re
(
∂u
∂t + u · ∇u

)
= ηs1u−∇p+∇ · c, in �× R+,

∇ · u = 0, in �× R+,
αc+ Lu,∇uc = βδ, in �× R+,

u(x, t) = 0, in ∂�× R+,
u(x, 0) = u0(x), in �,
c(x, 0) = c0(x), in �,

(8.1)

with α = 1/Wi and β = ηp/Wi2, in a polygonal domain � ⊂ R2 here. The extension of
these stability and convergence results to more general cases is straightforward.

8.1. Stability analysis for discrete solutions

We first consider the discrete analog of the continuous energy estimate in Theorem 4.1.
We are not aiming to presenting the stability analysis for all the schemes introduced in
Section 6; instead, we focus on a particular scheme and demonstrate unambiguously the
critical role played in the analysis by the positivity of the conformation tensor and the volume
preservation of flow maps.
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Let us now start to investigate the discrete scheme in Algorithm 1: given the solution
(un

h, pn
h, cn

h) ∈ Vh ×Wh × Sh from the previous time level, find (un+1
h , pn+1

h , cn+1
h ) ∈ Vh ×

Wh × Sh by the following relation equations:

Re
(un+1

h −5V
h

(
un

h ◦ ỹn
)

k
, vh

)
− (pn+1

h ,∇ · uh)+ ηs

(
D(un+1

h ) : D(vh)
)

= −

(
cn+1

h : D(vh)
)

(8.2)

(∇ · un+1
h , qh) = 0 (8.3)

(1+ kα)
(

cn+1
h : σ h

)
=

(
F̃n+1

h 5S
h(c

n
h ◦ ỹn)(F̃n+1

h )T : σ h

)
+ kβ (δ : σ h) , (8.4)

for all (vh, qh, σ h) ∈ Vh ×Wh × Sh.

Here, F̃n+1
h =

(
δ − k5S

h(∇un+1
h )

)−1
is an approximation to the deformation tensor F;

see Section 6.3 for more details. And we use the interpolation operator5S
h : L2(�) 7→ L2(�)

introduced in Section 6.1, i.e.,

5S
h(σ ) =

(
5h(σi,j)

)
i,j=1,...,d with 5h(g) :=

∑
E∈Th

 1

|E|

∫
E

g dx

φE(·), (8.5)

where Th = {E} is a quasi-uniform triangular partition of the physical domain � with char-
acteristic mesh size h, and φE is a characteristic function that is one on E and zero elsewhere.

As discussed in Section 6.2.2, we assume that the pair of spaces Vh and Wh satisfy the
inf-sup condition as well as

∇ · uh ∈ Wh ∀uh ∈ Vh. (8.6)

The property (8.6) is crucial to constructing the volume-preserving flow map in both two-
and three-dimensional domains as discussed in Feng and Shang [1995].

The flow map φt,s : � 7→ � can be obtained so that the approximate flow map ỹ satisfies
the following identity:∫

�

g ◦ ỹ dx =
∫
�

g dx ∀ g ∈ L1(�). (8.7)

And (8.7) is the key to deriving uniform energy estimates for the solution to the discrete
model equations (8.2)–(8.4). Recall that the discrete scheme (6.4) preserves volume in R2.
We can easily show that this scheme satisfies (8.7) by simple change of variables.

Now, we are ready to present the discrete analog of the energy estimate.

Theorem 8.1 (Discrete Energy Estimate). The discrete solution to (8.2)–(8.4) admits the
following estimate: if Wi <∞ and n ≥ 1, then

Re‖un
h‖

2
0 + ‖c

n
h‖L1 ≤ c1e−C1tn

(
Re‖u0

h‖
2
0 + ‖c

0
h‖L1

)
+ c2, (8.8)

2ηs

n∑
`=1

k‖D(u`h)‖
2
0 ≤ Re ‖u0

h‖
2
0 + ‖c

0
h‖L1 + c2tn. (8.9)

Here, c1 and c2 are generic constants.
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Proof. From (8.4), we have the following relation:

(1+ kα) cn+1
h

=

(
δ − k5S

h(∇un+1
h )

)−1
5S

h(c
n
h ◦ ỹn)

(
δ − k5S

h(∇un+1
h )

)−T
+ kβδ. (8.10)

We first multiply δ − k5S
h(∇un+1

h ) to the left and δ − k5S
h(∇un+1

h )T to the right of
Eqn (8.10) to obtain that

(1+ kα)
(
δ − k5S

h(∇un+1
h )

)
cn+1

h

(
δ − k5S

h(∇un+1
h )

)T

= 5S
h(c

n
h ◦ ỹn)+ kβ

(
δ − k5S

h(∇un+1
h )

) (
δ − k5S

h(∇un+1
h )

)T
. (8.11)

Hence, by taking trace and then integration on both sides of the equation above, we get that

k(1+ kα)
∫
�

tr
(
5S

h(∇un+1
h )cn+1

h + cn+1
h 5S

h(∇un+1
h )T

)
dx

= (1+ kα) ‖cn+1
h ‖L1 − ‖cn

h ◦ ỹn
‖L1 − dβ|�|k

+ k2β

∫
�

tr
(
5S

h(∇un+1
h )+5S

h(∇un+1
h )T

)
dx

+ k2(1+ kα)
∫
�

tr

(
5S

h(∇un+1
h )

(
cn+1

h −
kβ

1+ kα
δ
)
5S

h(∇un+1
h )T

)
dx. (8.12)

We note that from (8.10), the approximate conformation tensor cn+1
h satisfies

(1+ kα)cn+1
h − kβδ ≥ 0 ∀ n ≥ 1, (8.13)

if the initial condition c0
h ≥ 0. Since cn+1

h is symmetric, by Lemma 6.4 and the discrete
divergence-free condition, we can easily see that∫

�

tr
(
5S

h(∇un+1
h )+5S

h(∇un+1
h )T

)
dx

=

∫
�

tr
(
∇un+1

h + (∇un+1
h )T

)
dx = 2

∫
�

∇ · un+1
h dx = 0 (8.14)

and ∫
�

tr
(
5S

h(∇un+1
h )cn+1

h

)
dx =

∫
�

tr
(

cn+1
h 5S

h(∇un+1
h )T

)
dx

=

(
cn+1

h : 5S
h(D(u

n+1
h ))

)
=

(
cn+1

h : D(un+1
h )

)
. (8.15)
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Finally, based on the volume-preserving property of ỹn, we have ‖cn
h ◦ ỹn

‖L1 = ‖cn
h‖L1 .

Taking the facts (8.13), (8.14), and (8.15) into account, we can derive the following inequal-
ity from (8.12):(

cn+1
h : D(un+1

h )
)
≥

1

2k
‖cn+1

h ‖L1 −
1

2k(1+ kα)
‖cn

h‖L1 −
dβ|�|

2(1+ kα)
. (8.16)

We now consider the momentum equation (8.2). Using the energy method, together with
the discrete divergence-free condition and (8.16), we can obtain

Re

k
‖un+1

h ‖
2
0 + ηs‖D(un+1

h )‖20

=
Re

k

(
5V

h (u
n
h ◦ ỹn),un+1

h

)
−

(
cn+1

h : D(un+1
h )

)
≤

Re

k

(
un

h ◦ ỹn,un+1
h

)
−

1

2k
‖cn+1

h ‖L1 +
1

2k(1+ kα)
‖cn

h‖L1 +
dβ|�|

2(1+ kα)
. (8.17)

Applying the Cauchy–Schwarz inequality and the standard kick-back argument, we obtain
the following relation:

Re

2k
‖un+1

h ‖
2
0 + ηs‖D(un+1

h )‖20 +
1

2k
‖cn+1

h ‖L1

≤
Re

2k
‖un

h‖
2
0 +

1

2k(1+ kα)
‖cn

h‖L1 +
dβ|�|

2(1+ kα)
. (8.18)

We are now in the position to show the first estimate (8.8). Multiplying 2k to both sides
of (8.18) and using Korn’s inequality, we obtain that

κ‖un+1
h ‖

2
0 + ‖c

n+1
h ‖L1 ≤ Re‖un

h‖
2
0 +

1

1+ kα
‖cn

h‖L1 +
kdβ|�|

1+ kα

≤ exp (−C1k)
(
κ‖un

h‖
2
0 + ‖c

n
h‖L1

)
+

kdβ|�|

1+ kα
, (8.19)

where κ = Re+ 2kηsC� and C� is a positive constant depending only on �. Here, C1 > 0
is chosen to be a constant such that

max
( Re

Re+ 2kηsC�
,

1

1+ kα

)
≤ exp (−C1k) , 0 ≤ k ≤ 1. (8.20)

Now, we use the induction argument to obtain:

κ‖un
h‖

2
0 + ‖c

n
h‖L1 ≤ exp(−C1tn)

(
κ‖u0

h‖
2
0 + ‖c

0
h‖L1

)
+

kdβ|�|

1+ kα

n∑
l=0

exp(−C1tl)

≤ exp(−C1tn)
(
κ‖u0

h‖
2
0 + ‖c

0
h‖L1

)
+ Cn

2, (8.21)

where

Cn
2 = kdβ|�|

1− exp(−C1tn)

1− exp(−C1k)
. (8.22)
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It is clear that we can choose generic constants c1 and c2 such that

κ‖u0
h‖

2
0 + ‖c

0
h‖L1 ≤ c1

(
Re‖u0

h‖
2
+ ‖c0

h‖L1

)
and Cn

2 ≤ c2. (8.23)

We then obtain the desired result (8.8).
We now drive the other estimate (8.9). First, we multiply 2k to both sides of (8.18) and

take summation for l = 1, 2, . . . , n for both sides to obtain:

2ηs

n∑
l=1

k‖D(ul
h)‖

2
0 ≤ c1

(
Re‖u0

h‖
2
0 + ‖c

0
h‖L1

)
+

n∑
l=1

kdβ|�|,

≤ c1

(
Re‖u0

h‖
2
0 + ‖c

0
h‖L1

)
+ c2tn.

This completes the proof.

We will now consider the limiting case in which Wi = ∞; in this case, α = β = 0.

Corollary 8.1. Assume that Wi = ∞ and α = β = 0. Then, the following estimates hold
true for any n ≥ 1:

Re‖un
h‖

2
0 + ‖c

n
h‖L1 ≤ Re‖u0

h‖
2
0 + ‖c

0
h‖L1 (8.24)

and

ηs

n∑
l=0

k‖D(ul
h)‖

2
0 ≤ Re‖u0

h‖
2
0 + ‖c

0
h‖L1 . (8.25)

Proof. Note that in the limiting case, α = β = 0 and cn
h is itself a conformation tensor for

n ≥ 0. The result then immediately follows from two estimates (8.8) and (8.9) since C1 = 0
and Cn

2 = 0 for all n ≥ 0. This completes the proof.

Remark 8.1 (Effects of Load). When there is a nonzero external force term f on the right-
hand side of the momentum equation (8.2), it can be shown that the energy estimates in
Theorem 8.1 are still valid as long as ηs > 0. In this case, the L2 norm of f will enter into
the constant c2 in the inequality (8.8).

8.2. Existence of the discrete solutions

The discrete model equations (8.2)–(8.4) are fully nonlinear, and the well posedness of this
model is not trivial. The main purpose of this section is to prove the existence of the discrete
solution. We will show that the solution to the discrete problem exists for sufficiently small
time step size k; furthermore, the discrete solution is unique. These will, in turn, confirm that
the discrete problem, (8.2)–(8.4), is well defined. Theoretically, the restriction of k is only
given by the mesh size h.

Let tol be the tolerance for the nonlinear iteration. We assume that un
h, pn

h, and cn
h at the

time level tn are available. Then, we have the following algorithm for time marching:
The Algorithm 3 is a single-step time-marching algorithm. Once the initial condition

(u0
h, p0

h, c0
h) is given, we can proceed to the evolution process. Note that the presence of f on

the right-hand side of the Stokes-type equation is due to the Dirichlet boundary condition.
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Algorithm 3 Nonlinear Iteration

Step 0: Given un
h, pn

h, and cn
h. Set

un,0
h := un

h, pn,0
h := pn

h, and cn,0
h := cn

h.

Step 1: For any particle x, compute the departure feet

ỹn
= x− k un,0

h

( ỹn
+ x

2

)
.

Step 2: For ` = 0, 1, 2, . . ., do

(1) Solve the Stokes-type system
Re un,`+1

h − k1hun,`+1
h + k∇hpn,`+1

h
= Re5V

h (u
n,0
h ◦ ỹn)+ k∇h · c

n,`
h + kf ,

∇ · un,`+1
h = 0.

(2) Update the conformation tensor

(1+ kα)cn,`+1
h = Fn,`+1

h 5S
h(c

n,0
h ◦ ỹn)(Fn,`+1

h )T + kβδ,

where Fn,`+1
h :=

(
δ − k5S

h(∇un,`+1
h )

)−1
.

(3) If ‖un,`+1
h − un,`

h ‖1 ≤ tol and ‖pn,`+1
h − pn,`

h ‖0 ≤ tol, then break.

Step 3: Update solution: un+1
h := un,`+1

h , pn+1
h := pn,`+1

h , and cn+1
h := cn,`+1

h .

Remark 8.2 (Solving the Flow Map Equations). From the energy estimate (8.9), we know
that ‖un

h‖1 is bounded. Hence, if the time step size k is small enough, the nonlinear equation
for the flow map in Step 1 of Algorithm 3 is solvable by the inverse function theorem. We
will discuss iterative methods for solving the flow map equation in Section 9.

Remark 8.3 (Feet Searching). We remark that one of the key ingredients for the Eulerian–
Lagrangian method here used to solve the Riccati form of the constitutive equation is to find
the function values at the departure feet, un,0

h ◦ ỹn and cn,0
h ◦ ỹn, as quickly and accurately as

possible. In Algorithm 3, we did not provide referents for the points x. It can have different
meanings in different discretization methods. But, of course, it is not practical to trace back
through all points. We will explain the implementation details in Section 9.2.1. Usually,
for the finite difference method, x is any grid point; for the finite element method, x is any
quadrature point.

Remark 8.4 (Parallel Computing for Solving Ricatti Equations). We note that the consti-
tutive equations can be solved in a fully parallel way. This is because all the coefficients are
defined locally by a d × d matrix equation in each of the nodes, all of which are completely
independent.

Author's personal copy



416 Y.-J. Lee et al.

The main goal in this section is to show that the Algorithm 3 is convergent in each time
step under certain conditions on the time step size k. This has been discussed by Lee, Xu and
Zhang [To appear]. Before introducing the main existence result, we would like to make a
few comments:

(1) The discrete model, (8.2)–(8.4), is a highly coupled nonlinear system of equations.
Therefore, we need to apply certain iterative methods that lead to the solution implic-
itly given in order to satisfy the discrete models. There are many such nonlinear
iterative schemes, and we focus on one of them in Algorithm 3. Moreover, extending
the existence proof to other methods is possible.

(2) This result can be achieved from the uniform stability estimate established in the pre-
vious section. In addition, we note that the notion we used here as the well posedness
for the solution to the discrete models (8.2)–(8.4) should be distinguished from the
one introduced by Kreiss [2001]. In particular, our result does not necessarily imply
stability with respect to the perturbation of the data.

(3) Our analysis fully exploits the finite dimensionality of the solution space; therefore,
technically, it will be difficult to extend this analysis to the existence analysis for the
continuous level.

Our proof is based on the induction argument. Specially, we will assume that at time
level tn, the discrete solutions un

h and cn
h are well defined and generate a sequence of iterates

according to Algorithm 3 and show that the nonlinear iteration converges and defines un+1
h

and cn+1
h . More precisely, we will show that the solutions at the time level tn+1 can be

obtained uniquely by the Algorithm 3. We note that if un
h and cn

h at the time level tn satisfy
the uniform bounds

‖un
h‖0 . 1 and ‖cn

h‖L1 . 1, (8.26)

the fixed-point iteration (Algorithm 3) converges. We, therefore, conclude our proof by a
simple recursive argument.

Remark 8.5 (Inverse Inequalities). We recall the well-known inverse inequalities
(cf. Brenner and Scott [2002, chapter 4]) that

‖v‖∞ . h−1
‖v‖0 and ‖∇v‖0 . h−1

‖v‖0, ∀ v ∈ Vh. (8.27)

Let us first establish that the sequence generated from Algorithm 3 is bounded uniformly.

Lemma 8.1 (Uniform Boundedness). Suppose that f ∈
(
L2(�)

)2
For sufficiently small k,

the sequence generated by Algorithm 3 is uniformly bounded in L2 norm for the velocity and
L1 norm for the stress field, respectively.

Proof. Using the strong divergence-free finite elements as in Section 6, we have ∇ · un,`
h =

0, for ` = 0, 1, 2, . . . , By Lemma 6.1, it holds that det(∇ ỹn) = 1. Employing the energy
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method and the inverse inequality (8.27), we derive that

Re
∥∥un,`+1

h

∥∥2
0 + k

∥∥∇un,`+1
h

∥∥2
0 ≤

Re

2

∥∥un,0
h

∥∥2
0 +

Re

2

∥∥un,`+1
h

∥∥2
0 + k

∥∥ f
∥∥

0

∥∥un,`+1
h

∥∥
0

+ k
∥∥cn,`

h

∥∥
L1

∥∥∇un,`+1
h

∥∥
∞
.

Therefore, using the Cauchy–Schwarz inequality, we obtain

Re
∥∥un,`+1

h

∥∥2
0 + k

∥∥∇un,`+1
h

∥∥2
0 ≤

Re

2

∥∥un,0
h

∥∥2
0 +

Re

2

∥∥un,`+1
h

∥∥2
0

+ k
(ν−2

2

∥∥ f
∥∥2

0 +
ν2

2

∥∥un,`+1
h

∥∥2
0

)
+ k

(C1h−2

2

∥∥cn,`
h

∥∥2
L1 +

1

2

∥∥∇un,`+1
h

∥∥2
0

)
,

where ν is chosen such that |un,`+1
h |

2
1 ≥ ν

2
‖un,`+1

h ‖
2
0.We can then get, for all ` = 0, 1, 2, . . .,

that

Re ‖un,`+1
h ‖

2
0 ≤ Re ‖un,0

h ‖
2
0 + C1kh−2

‖cn,`
h ‖

2
L1 + C0k‖ f‖20, (8.28)

where C0 and C1 are generic constants independent of k and h. Without loss of generality,
we can assume that both C0 and C1 are greater than 1.

The equation (3) in Step 1 for updating the conformation tensor reveals the following
inequality

‖cn,`+1
h ‖L1 ≤

∥∥Fn,`+1
h

∥∥2
∞
‖cn,0

h ‖L1 + d|�|βk. (8.29)

Combining the last two inequalities, (8.28) and (8.29), we obtain

Re ‖un,`+1
h ‖

2
0 ≤ Re ‖un,0

h ‖
2
0 + 2C1kh−2

∥∥Fn,`
h

∥∥4
∞
‖cn,0

h ‖
2
L1 (8.30)

+ C0k‖f‖20 + 2C1d2
|�|2β2k2.

Now, we define

C :=
(
Re ‖un,0

h ‖
2
0 + 4C1‖c

n,0
h ‖

2
L1 + C0‖f‖20 + 2C1d2

|�|2β2) 1
2 .

And we will show that, if k is small enough, C is a uniform upper bound for ‖un,`
h ‖0 and

‖cn,`
h ‖L1 . This is apparently true for ` = 0. Now, suppose that this is also true for `, and we

can now prove that it is true for `+ 1 with a fixed time step size k.
Using the inequality (6.33) and the inverse inequality, we have

‖5S
h(∇un,`

h )‖∞ ≤ h−1
‖∇un,`

h ‖0 ≤ C2h−2
‖un,`

h ‖0 ≤ CC2h−2.

Hence, we can choose 2CC2k ≤ h2, which implies that δ − k5S
h(∇un,`

h ) is invertible and

that Fn,`
h is well defined. Furthermore, we also have that

‖Fn,`
h ‖∞ ≤

1

1− kh−1‖∇un,`
h ‖0

≤
1

1− CC2kh−2
≤ 2.
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Plugging the inequality above to (8.30), we obtain

Re ‖un,`+1
h ‖

2
0 ≤ Re ‖un,0

h ‖
2
0 + 32C1kh−2

‖cn,0
h ‖

2
L1 + C0k‖f‖20 + 2C1d2

|�|2β2k2
≤ C

2
,

if k ≤ min(1, h2/8). And then (8.29) immediately gives that ‖cn,`+1
h ‖L1 is bounded uni-

formly, which completes the proof.

Remark 8.6 (Condition on Time Step Size). From the proof, we can see that there is an
upper bound for the time step size:

k ≤ min
(

1,
h2

8
,

h2

2CC2

)
,

which depends on neither nonlinear iteration step ` nor time level n. Furthermore, this still
holds for the infinite Weissenberg number case where α = β = 0.

We would like to remark that the Lemma 8.1 also shows that the discrete conformation
tensor given by Algorithm 3 is always symmetric and positive definite.

Theorem 8.2 (Positivity of the Discrete Conformation Tensor). If the initial condition c0
h

is symmetric positive definite and the time step size k is small enough, then the discrete
conformation tensor cn

h is always symmetric positive definite for all n = 1, 2, 3, . . . ,

Proof. It is trivial to the symmetry is kept for all n. We only need to check the positivity
here. From the proof of Theorem 8.1, we have seen that if k is small enough, Fn,`

h is well

defined. Since 5S
h is a positivity preserving interpolation and β > 0, we can obtain that cn,`

h
is positive definite by induction. As this is true for all ` and n, it completes the proof.

We are now ready to show the existence of the solution from the compactness argument.
We will show that the sequence converges to a unique limit and conclude our main result in
this section. To begin with, it is helpful to notice that for any invertible matrices A and B,
we have that

A−1
− B−1

= A−1 (B− A)B−1. (8.31)

We arrive at the main result for this section as below.

Theorem 8.3 (Convergence of Algorithm 3). The nonlinear iteration in Algorithm 3 con-
verges if k small enough.

Proof. For ease of our presentation, we define

e`+1
u := un,`+1

h − un,`
h and e`+1

c := cn,`+1
h − cn,`

h .

By subtracting the momentum equation for un,`+1
h from the equation for un,`

h in Algorithm 3
and taking integration by parts, we obtain that

Re ‖e`+1
u ‖

2
0 + k‖∇e`+1

u ‖
2
0 ≤ k‖∇e`+1

u ‖∞‖e
`
c‖L1 .
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Therefore, by the inverse inequality (8.27) and the Cauchy–Schwarz inequality, we conclude
that

Re ‖e`+1
u ‖

2
0 ≤ C3kh−2

‖e`c‖
2
L1 , ∀` = 0, 1, 2, . . . . (8.32)

By subtracting the constitutive equations for cn,`+1
h and cn,`

h , we obtain the following
inequality:

‖e`+1
c ‖L1 ≤ ‖Fn,`+1

h 5S
h(c

n,0
h ◦ ỹn)(Fn,`+1

h )T − Fn,`
h 5S

h(c
n,0
h ◦ ỹn)(Fn,`

h )T‖L1 .

In the proof of Lemma 8.1, we have seen that Fn,`
h is well defined and also that the ‖Fn,`

h ‖0 ≤

2 for ` = 0, 1, 2, . . . .
Therefore, we have

‖e`+1
c ‖L1 ≤ ‖Fn,`+1

h 5S
h(c

n,0
h ◦ ỹn)(Fn,`+1

h )T − Fn,`
h 5S

h(c
n,0
h ◦ ỹn)(Fn,`+1

h )T‖L1

+ ‖Fn,`
h 5S

h(c
n,0
h ◦ ỹn)(Fn,`+1

h )T − Fn,`
h 5S

h(c
n,0
h ◦ ỹn)(Fn,`

h )T‖L1 .

Using an argument similar to that in the proof of Lemma 8.1, we obtain

‖e`+1
c ‖L1 ≤ 2(‖Fn,`+1

h ‖∞ + ‖F
n,`
h ‖∞)‖c

n,0
h ‖L1‖Fn,`+1

h − Fn,`
h ‖∞

≤ 8‖cn,0
h ‖L1‖Fn,`+1

h − Fn,`
h ‖∞ ≤ 32kh−1

‖cn,0
h ‖L1‖∇un,`+1

h −∇un,`
h ‖0,

where the last inequality is from the inverse inequality and the following fact:

Fn,`+1
h − Fn,`

h = Fn,`+1
h

(
(Fn,`

h )−1
− (Fn,`+1

h )−1
)

Fn,`
h

= Fn,`+1
h

(
δ − k5h(∇un,`

h )− δ + k5h(∇un,`+1
h )

)
Fn,`

h

= kFn,`+1
h 5h(∇un,`+1

h −∇un,`
h )Fn,`

h .

By invoking the inverse inequality again, we conclude that

Re ‖e`+1
u ‖

2
0 ≤ C3kh−2

‖e`c‖
2
L1 ≤ C4k3h−4

‖cn,0
h ‖

2
L1‖e

`
u‖

2
0. (8.33)

For sufficiently small k, more specifically C4C
2
k3h−4

≤ 1/2, Eqn (8.33) implies that the
sequences {‖e`u‖0} and {‖e`c‖L1} are contractions. Hence, un,`

h converges in the L2 sense and

cn,`
h converges in the L1 sense.

Theorem 8.4 (Global Existence of the Discrete Solution). For any initial guess u0
h and

c0
h, there is a positive constant κ0, such that the discrete systems (8.2)–(8.4) have a unique

solution for all n ≥ 0 as long as k ≤ κ0h2.

Proof. This theorem follows directly from Theorem 8.2 by noting that, in its proof, the time
step size k and all other constants appearing in the proof of Theorem 8.2 are independent of
the time level tn.
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8.3. Computational complexity

So far, we have discussed all the details of the fully discrete scheme, Algorithm 3. We can
now further investigate the computational complexity of Algorithm 3.

First, if k is small enough, then the nonlinear equation for the flow map in Step 1, Algo-
rithm 3 is solvable. Specifically, Step 1 can be solved in a fixed number of iterations. Second,
Theorem 8.3 guarantees that the fixed-point iteration for solving the coupled system in Step
2 can also be terminated in a finite number of iterations to any given tolerance tol. Finally,
we have seen that Stokes-type systems can be solved by optimal multilevel methods inde-
pendent of h, k, Re, and ηs. Based on these observations, we can easily see the following
result:

Corollary 8.2 (Computation Complexity). If the time step size k is small enough, Algo-
rithm 1 converges uniformly with respect to Re and Wi and the computational complexity is
O(N log N), where N is the total spatial degrees of freedom.

9. Implementation details and numerical experiments

In this section, we will give details of our implementation of Algorithm 3. We will also offer
some preliminary numerical experiments.

9.1. A benchmark problem

We consider the Poiseuille flow between two parallel plates around a cylinder with circular
cross section for the numerical tests. The problem is well suited as a benchmark problem for
understanding the viscoelastic models in a smooth flow without geometric singularity; see,
for example, Afonso, Oliveira, Pinho and Alves [2009], Coronado, Arora, Behr and
Pasquali [2007], and Sun, Smith, Armstrong and Brown [1999]. We start by describing
the geometry and boundary conditions.

9.1.1. A two-dimensional model problem
Consider the computational domain � ⊂ R2 as described in Fig. 9.1.

We use a symmetric domain with R = 1, H1 = H2 = 2, and L1 = L2 = 15. The ratio of
the distance between the two plates and the diameter of the circular hole is 2.

As discussed in Section 3, the nondimensional Oldroyd-B model can be written as fol-
lows: find (u, p, c) for x ∈ � and t ∈ (0,+∞) such that

Re

(
∂u
∂t
+ u · ∇u

)
+∇p− ηs1u = ∇ · c

∇ · u = 0

1
Wi

c+ Lu,∇uc = (1−ηs)

Wi2
δ.

(9.1)

On the top and bottom walls, we impose the no-slip boundary condition for the flow velocity
u; at the outflow boundary, we give the Neumann boundary condition for u. And the inflow
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Inflow

x2

x1

Bottom wall

Out flow

Top wall

R

H2

H1

L1 L2

Fig. 9.1 Flow-past-cylinder domain

boundary condition for velocity is given by

u =

1.5

(
1−

(x2

H

)2
)

0

 .
Therefore, the average speed of the background inflow fluids is 1.0 in the horizontal direction
and 0.0 in the vertical direction.

9.1.2. Drag coefficient
In order to compare with the established benchmark results in the literature, we focus on the
dimensionless drag coefficient. The definition of the drag coefficient can be given as follows:

FD =
1

U

∫
∂B

(
−pδ + ηs(∇u+∇uT)+ c

)
n · e1 d0, (9.2)

where n is the outer unit normal vector for the boundary of circle ∂B (vector pointing out-
ward from the circle) and e1 = (1, 0)T and U is the mean background flow velocity.

There are two standard ways of computing the drag coefficient: one way is to compute
the line integral directly on the curved boundary as in (9.2); an alternative is to do integration
by parts and transform the integral into a volume integral (see John [2004], for example.)
Let ϕ = (ϕ1, 0)T be a smooth function in � in which ϕ1 equals one on ∂B and vanishes on
∂� \ ∂B. Multiplying ϕ on both ends of (9.1), we obtain that∫

�

Re

(
∂u
∂t
+ u · ∇u

)
· ϕ dx =

∫
�

(−∇p+ ηs1u+∇ · c) · ϕ dx. (9.3)

Applying integration by parts, we get

FD =
1

U

∫
�

{
Re

(
∂u
∂t
+ u · ∇u

)
−∇p+ ηs1u+∇ · c

}
· ϕ dx. (9.4)

Author's personal copy



422 Y.-J. Lee et al.

9.2. Implementation details

In this section, we discuss the details for implementing Algorithm 3 step by step.

9.2.1. Flow map
We first discuss how to numerically approximate the departure foot of any point x in Step 1 of
Algorithm 3 and how to find the value of certain functions at ỹn using interpolation. Notice
that in Step 1 of Algorithm 3, ỹn appears on both sides of the equation for the midpoint
rule. We can use a simple fixed-point iteration or the Newton–Raphson method to solve the
nonlinear equation

G(y) = 0 with G(y) := y+ kun
h

(x+ y

2

)
− x.

In our experiments, we employ the Newton–Raphson method, and we stop the Newton–
Raphson’s iteration once the residual is less than 10−10. In our experiments, the Newton–
Raphson method usually converges in 2 to 4 iterations.

9.2.2. Feet searching
Once the coordinates of the departure foot ỹn are computed as discussed in the previous
section, we need to find the element in which ỹn is located in order to perform interpolations
in Step 2. Note that the time step size is usually small and the departure foot should not
be too far away from the corresponding arrival point x. So it is natural to start searching
for the host element by beginning with the element that contains x and then following the
characteristics to locate the host element of each characteristic foot (Allievi and Bermejo
[1997]). In order to describe the algorithm, we introduce two data structures first:

(i) PATCH(:,x) gives all elements that share a given point x, and PATCH(i,x) is the local
index for the ith element in the patch.

(ii) NEIGH(:,E) gives the neighboring elements of a given element E, and NEIGH(s,E) is
the neighbor of E opposite the side s.

Now, we are ready to describe the feet-searching algorithm.

Algorithm 4 Finding the Host Elements of Departure Feet

Step 0. Set the current element E = PATCH(1, x) and i = 1.

Step 1. Find the reference coordinate r of y in E. If r1 + r2 > 1, then s = 1; else if r1 < 0,
then s = 2; else if r2 < 0, then s = 3; otherwise, return E as the host element of y
and stop.

Step 2. If NEIGH(s,E) has not yet been visited and it is not out-of-boundary, set E =
NEIGH(s,E); else if PATCH(i+ 1, x) is not empty, set E = PATCH(i+ 1, x) and
i = i+ 1. Go back to Step 1.

Step 3. Let E be the next nonvisited element and go to Step 1.
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9.2.3. Stokes solvers
As stated in Section 7, the main computational cost at each iteration in Algorithm 3 is to
solve the Stokes-like systems in Step 2. To date, we have only tested the Taylor–Hood P2

0 −

P1
0 element; our implementation of the Scott–Vogelius P4

0 − P3
−1 is on going. We discussed

two types of Stokes solvers in Section 7. Here, we test the preconditioned MinRes method
using the flow-past-cylinder benchmark problem; we, therefore, (i) test the Stokes solvers
for steady-state problems and (ii) test the time-marching scheme as a smoother to solve
steady-state problems.

We report the dimensionless drag coefficient for various meshes in Tables 9.1 and 9.2
and for iteration numbers in Table 9.3. From Table 9.2, we note that the steady-state solution
does not depend on time step size k. The differences between drag coefficients using different
time step sizes k are less than 10−4.

9.2.4. Using subdivisions to improve accuracy
In order to further improve accuracy, we divide each element E ∈ Th into several subele-
ments and then define the degree of freedom on each subelement for the piecewise constant

Table 9.1
Drag coefficient for steady-state Stokes flow between parallel plates

DOF hmin Drag coefficient Difference

Mesh 1 33001 1.8e-3 132.24599
Mesh 2 58979 7.1e-4 132.30130 5.5315e-02
Mesh 3 109729 3.2e-4 132.33079 2.9488e-02
Mesh 4 213575 2.0e-4 132.34571 1.4917e-02
Mesh 5 416409 7.1e-5 132.35255 6.8414e-03

The convergence rate for the drag coefficient is DOF−1 where DOF is
the degrees of freedom. Reference value = 132.34 ∼ 132.36.

Table 9.2
Steady limit of the drag coefficient for the time-dependent Stokes

flow between parallel plates

DOF hmin k = 0.5 k = 0.1 k = 0.01

Mesh 1 33001 1.8e-3 132.24577 132.24577 132.24577
Mesh 2 58979 7.1e-4 132.30126 132.30125 132.30125
Mesh 3 109729 3.2e-4 132.33078 132.33078 132.33078
Mesh 4 213575 2.0e-4 132.34571 132.34571 132.34571
Mesh 5 416409 7.1e-5 132.35256 132.35256 132.35255

Table 9.3
Number of iterations for the MinRes solver with zero initial guess for the

steady-state Stokes system

Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5

Number of iteration 106 106 109 112 113

The stopping criteria is that the relative residual is smaller than 10−8.
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tensor cn
h. We notice that Marchal and Crochet [1987] have employed a similar technique,

which has been used to enhance stability.
Here, we have some different considerations due to the difficulties that inheres in the

Eulerian–Lagrangian method:

• The integrand on the right-hand side of the momentum equation is usually nonsmooth
(piecewise polynomial), and using subelements can improve the accuracy of numeri-
cal quadrature.
• When the velocity field is nonconstant, the deformed element E(y) changes its shape,

and using subelements can describe the shape of deformed triangles much better.

The extra cost of this approach is that, after locating the host element of yq, we need to find
in the subelement in which it is located and then evaluate interpolation on each subelement.

9.3. Numerical experiments

For the benchmark problem (the flow past a cylinder in a two-dimensional setting), the
Newtonian viscosity ηs chosen is 0.59, and the Reynolds number is assumed to be 0. So
the polymeric viscosity is ηp = 1− ηs = 0.41. For the computational domain in Fig. 9.1,
we take R = 1, H = 2R, and L1 = L2 = 15. Under this setting, many research groups have
obtained results for Wi up to about 1.2, and they have agreed on the problems for Wi ≤
0.7; see Afonso, Oliveira, Pinho and Alves [2009], for example. In this section, we test
our algorithms using the two-dimensional benchmark problem above on different meshes,
with various Weissenberg numbers. The main purpose is to validate the convergence of the
proposed algorithms and the long-term stability of the computation.

First, we fix Wi = 0.1 and 0.5; we use different meshes to test the convergence of the
algorithm. We report drag coefficients in Table 9.4. Notice that the drag coefficients converge
when we refine the mesh.

In order to reduce the error introduced by the interpolation, we employ the subelement
technique introduced in Section 9.2.4. We divide each element into 4 and 16 congruent ele-
ments by applying regular refinement (by dividing each triangle into four smaller congruent
triangles) once and twice, respectively. The numerical results for Wi = 0.1 are reported in
Table 9.5. We find that accuracy is improved by using more accurate interpolation.

We test the proposed algorithm using 16 subelements on a mildly refined mesh (Mesh 2)
for various Weissenberg numbers. As discussed in Section 8, our algorithms remain stable
as the time steps increase. The drag coefficients are reported in Fig. 9.2, and the results are
consistent with the literature at least for Wi less than or equal to 0.75.

We find that the positivity of the conformation tensor can be preserved in the discrete
sense. But we have yet to implement a discretization scheme that will maintain a strong

Table 9.4
Mesh dependence of the drag coefficient for low Weissenberg numbers

Spatial DOF k Wi = 0.1 Wi = 0.5

Mesh 1 6269 2.5× 10−3 127.60 115.41
Mesh 2 25471 1.25× 10−3 129.33 117.23
Mesh 3 102674 6.25× 10−4 129.94 117.99
Mesh 4 412277 3.125× 10−4 130.11 118.35

Author's personal copy



Stable Finite Element Discretizations for Viscoelastic Flow Models 425

Table 9.5
Comparison of drag coefficient for Wi = 0.1 numbers using different

number of subelements

Spatial DOF 1 subelement 4 subelements 16 subelements

Mesh 1 3477 121.96931 124.68434 125.62053
Mesh 2 15509 127.13945 128.40418 128.94619
Mesh 3 25763 128.08089 129.00947 129.28447
Mesh 4 50068 128.41062 129.19577 129.53881
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Fig. 9.2 Drag coefficients for various Weissenberg numbers.

divergence-free condition. Though the algorithm has not been fully realized, we obtained
a stable numerical solution in time. We checked the grid convergence for different Weis-
senberg numbers, and we observed that the numerical solutions for Weissenberg numbers
larger than 1.0 exhibit difficulties in grid convergence. In future research work, we will
work to fully implement the proposed algorithms and study mesh convergence in high Weis-
senberg number regimes.

10. Concluding remarks

In this article, we reviewed the link between various constitutive equations from viscoelas-
tic fluid models and symmetric matrix Riccati differential equations. We presented several
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building blocks for the unified and stable numerical treatment of viscoelastic fluid models.
We provided the proof that the resulting discrete problem admits a globally unique solu-
tion. We discussed how Stokes-type linear systems can be solved effectively using multigrid
methods. We also presented some of our recent efforts to implement the designed algorithms
in order to demonstrate some of our theoretical results.
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aux limites.

Fortin, M., Glowinski, R. (1983). Augmented Lagrangian methods. Studies in Mathematics and its Appli-
cations Volume 15. (North-Holland Publishing Co., Amsterdam). Applications to the numerical solution
of boundary value problems, Translated from the French by B. Hunt and D. C. Spicer.

Fortin, M., Pierre, R. (1989). On the convergence of the mixed method of Crochet and Marchal for
viscoelastic flows. Comput. Methods Appl. Mech. Engrg. 73, 341–350.

Gelbart, W., Ben-Shaul, (1996). The “new” science of “complex fluids”. J. Phys. Chem. 100, 13169–
13189.

Giesekus, H. (1982). A simple constitutive equation for polymer fluids based on the concept of
deformation-dependent tensorial mobility. J. Non-Newton. Fluid Mech. 11, 69–109.

Glowinski, R. (2003). Finite element methods for incompressible viscous flow. In: Handbook of Numeri-
cal Analysis, Volume IX (North-Holland, Amsterdam), 3–1176.

Glowinski, R., Le Tallec, P. (1989). Augmented Lagrangian and operator-splitting methods in nonlin-
ear mechanics. SIAM Studies in Applied Mathematics Volume 9 (Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA).

Gordon, R., Schowalter, W. (1972). Anisotropic fluid theory: A different approach to the dumbbell
theory of dilute polymer solutions. Trans. Soc. Rheo. 16, 79–97.

Groisman, A., Steinberg, V. (1998). Mechanism of elastic instability in Couette flow of polymer solu-
tions. Experiment Phys. Fluids, 10, 2451–2463.
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