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Abstract

To improve the energy efficiency of computation, accelerators trade off performance and
energy consumption for flexibility. Fixed-function accelerators reach high energy efficiency,
but are inflexible. Adding programmability via an instruction set architecture (ISA) incurs
an energy consumption overhead, as instructions are fetched and decoded. To reduce it,
hardware-controlled instruction caches and software-controlled components, such as loop
buffers and (programmable) dictionaries improve the energy efficiency of instruction streams
in embedded processors. Reducing the instruction overhead with code compression is well
established and dictionary compression has been an effective approach due to its simplic-
ity. Compared to static dictionaries, adding programmability improves the effectiveness.
However, run-time-programmable dictionary compression and its effect on energy consump-
tion has not been thoroughly studied. We describe a scheme to target energy efficiency by
using fine-grained programmable dictionaries in embedded compute devices. Guided by
compile-time analysis, the dictionary contents are changed during execution. On CHStone
and Embench suites, our method reduces energy consumption on average by 11.4% and
3.8% with negligible run-time overhead. The addition of a loop buffer further reduces the
energy consumption by 19.8% and 4.5% in the two suites. Our results indicate that pro-
grammable dictionary compression allows further energy reductions over an already highly
tuned instruction stream.
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1 Introduction

While dedicated fixed-function accelerators offer the best energy efficiency, they are inflexible
and do not allow executing tasks that they were originally not designed for [1]. By adding
programmability to devices, their flexibility can be improved with the drawback of increased
area and energy consumption caused by the instruction stream from memories to compute
elements. As this does not directly contribute to the processing of data and can consume up
to 70% of total system energy budget [2—4], minimizing it is appealing. As an example: Even
a highly optimized binary precision deep neural network accelerator [5] spends up to 11%
of its energy budget on the instruction stream. This suggests that even though the topic has
seen little research efforts in the recent years, there is room for improvement. Moreover, the
massive popularity of artificial intelligence (Al) applications in the last years has resulted
in the re-emergence of very long instruction word (VLIW) architecture processors, as they
have been implemented in recent accelerator designs such as the Intel Gaudi [6] and AMD
Versal [7]. While they move the complexity of dynamic multi-issue hardware to the compiler,
the effectiveness of VLIW architectures is dependent on the instruction level parallelism that
can be extracted from the target workloads, and can result in excessive overheads in the
instruction stream.

Instruction streams in programmable processors are typically built in a hierarchical man-
ner, as accessing large memory components that are located relatively far from processing is
expensive compared to those that are small and located close to it. In this article, we focus
on the first level (LO) of instruction memory hierarchy, as it is accessed the most frequently.
Typical components used here include filter caches [8] and loop buffers (LB) [9], which both
aim at reducing the cost of executing relatively small loops. Although loop buffers result
in energy-efficient loop execution [10] due to their small access energy, removing accesses
to the more costly memory hierarchy levels when they are in use, and removing the loop
iteration overhead [11], they do not reduce energy consumption outside of loops. In addition,
they are typically limited to straightforward loops with no complex control structures.

Another technique that reduces the amount of accesses to higher memory hierarchy levels,
is code compression. In early publications [12], it was proposed as an approach to reduce code
size in compute systems and alleviate the area and economical cost of memory in systems. In
addition, it allowed a reduction in memory bandwidth requirements. Although the majority
of the previous work [12-22] measures the effectiveness of code compression with static
compression ratio (CR), there have been proposals [19-25] to target dynamic CR, which
measures the amount of instruction bits fetched from external memory. Since components
lower in the memory hierarchy consume less energy, and improving dynamic CR reduces
the number of accesses to higher hierarchy levels, this translates to less instruction stream
energy consumed. As execution amounts of different instructions in programs are biased, i.e.
depend on the input data, compression should emphasize the most executed instructions in
order to reduce the amount of bits fetched, improving the energy efficiency of the instruction
stream.

Although statistical compression methods such as Huffman compression reach better
CRs than dictionary-based approaches, they result in performance overheads [16] due to the
sequential decompression required for the variable-length codewords, resulting in variable
latency. Thus, research efforts have been heavily concentrated on variants of dictionary com-
pression [13, 15, 18, 20-26]. Although the simplest dictionary compression scheme involves
placing instructions into a dictionary and pointing to them with indices in program code,
effective implementation requires design choices on whether to compress all instructions or
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not, and if instructions should be divided into parallel dictionaries as this typically reduces
the total number of dictionary entries required. Moreover, run-time-programmable dictio-
nary compression schemes, where dictionary contents can be changed during execution,
have been less studied. In these schemes, the granularity of dictionary programming requires
an additional design decision.

The contributions of this work are as follows:

e A code compression scheme for embedded systems to increase system energy efficiency
by using run-time programmable dictionaries and a low-overhead decompression hard-
ware design,

e amethod to statically analyze control flow graphs (CFGs) and to organize program basic
blocks into code compression regions, and a heuristic to form instruction bundles from
the most profitable instructions,

e an analytical model for estimating instruction stream energy consumption,

e methodology for sizing the dictionaries and designing instruction streams incorporating
them, and

e evaluation on a single-issue and a wide-issue machine to demonstrate applicability to
different architectures.

This article builds upon our previous work [27], where we introduced the code compres-
sion scheme. More precisely, we described a run-time programmable dictionary compression
scheme accompanied by two algorithms: One to group program basic blocks (BBs) into
regions suitable for code compression, and the second to selectively choose suitable bun-
dles of instructions to compress with the help of an occurrence-cost metric. We showed that
selectively choosing instructions for compression outperforms the previous state-of-the-art
fine-grained programmable dictionary compression method [25], where all program instruc-
tions are compressed.

In addition to entailing the above work, this article provides the following additional contri-
butions: 1) It demonstrates that our approach can be applied effectively to a long instruction
word architecture in addition to a previously evaluated single-issue RISC-V architecture,
2) provides an analytical model for estimating instruction stream energy consumption, 3)
adds methodology for instruction stream design and dictionary sizing with the help of the
analytical model, 4) evaluates the interaction between a loop buffer and the proposed code
compression, and 5) adds benchmarks from the Embench suite in addition to the CHStone
suite. Our results show that designing and implementing our method in a system containing
an already energy-efficient loop buffer further reduces energy consumption in applications
with complex control flow.

The rest of this paper is organized as follows. Section2 reviews the previous work on
instruction compression. Section 3 discusses energy-efficient design choices related to code
compression. Section4 continues by describing the proposed compression approach. Sec-
tion5 introduces the analytical model used in instruction stream hierarchy design space
exploration, and Sect. 6 provides an evaluation of the proposed method and presents results.
Finally, Sect.7 describes the conclusions.

2 Related work

In this section, we review different types of previously proposed instruction compres-
sion methods with an emphasis on dictionary-based approaches. We then revise run-time
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programmable dictionary compression methods from the perspective of programming gran-
ularity. Lastly, we examine more closely the methods used to choose entries in selective
dictionary compression schemes, where all program instructions are not compressed.

2.1 Instruction compression approaches

Previous work has proposed a variety of approaches for instruction compression. Ide-
ally, decompressing the fetched instructions should result in minimal overheads in energy
consumption, area and latency. Statistical compression methods assign variable-length code-
words based on the distribution of symbols. While they result in impressive compression
ratios, they require variable-latency decompression. On the other hand, dictionary-based
compression allows predictable decompression, but does not reach as good compression
ratios.

Wolfe and Chanin [12] used Huffman code to compress instructions. Instructions were
fetched into caches in their compressed form and decoded for execution. Another statistical
method was proposed by Lin et al. [17], who used Lempel-Ziv-Welch (LZW) compression
on program basic blocks. In this approach, a coding table is generated dynamically by the
hardware during execution in both compression and decompression. Upon encountering a
branch target, the table is cleared.

Conte et al. [28] studied a code compression scheme for VLIW architectures. In this
scheme, only no-operations (NOPs) were compressed. The maximum size of the compressed
instructions, MultiOps, was the number of function units in the VLIW processor. contained
and the evaluations were carried out on a TINKER VLIW testbed.

Lefurgy et al. [13] observed that programs contain only a small amount of instructions
that are never reused. Compressing these instructions would not have been beneficial but
instead resulted in an overhead. Thus, the authors selectively compressed instructions so that
uncompressed and compressed instructions were interleaved in program code. The authors
evaluated various input sizes for compression ranging from patterns inside instructions to
sequences of consecutive instructions. They conclude that the best static CR is obtained
when instruction patterns are allowed in the compression. Our proposed method similarly
compresses instructions selectively and interleaves them with uncompressed instructions.

Similarly to Lefurgy et al., Benini et al. [23] studied four variants of selective instruction
compression. The authors interleaved dictionary-compressed 8-bit and uncompressed 32-bit
instructions in memory. Each variant used a mark of 8 bits to indicate an uncompressed
instruction after it. Although the authors aim to reduce energy consumption, the effect on it
is not directly evaluated. Instead, the amount of memory accesses and memory bus utilization
are reported. Moreover, overheads stemming from the decompressor implementation are not
evaluated.

Compared to full instructions, the individual instruction fields contain more similar entries
when observing between instructions, requiring less bits to represent the different instructions.
Thus, previous work has looked at how to split instructions into parallel dictionaries, that
are accessed simultaneously when decompressing. Lefurgy et al. [29] studied the effect of
CodePack compression found in the IBM PowerPC processor, where 32-bit instructions are
partitioned into two 16-bit parts and compressed separately with parallel dictionaries. Ishiura
and Yamaguchi [30] proposed an algorithm to partition instructions in VLIW architectures.
Fields of the instructions to compress were constructed in parallel by iteratively merging
them. Our proposed method adopts a similar approach as these works so that instructions are
partitioned into fields and compressed with parallel dictionaries.
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Seong and Mishra [15] proposed to improve code compression with the use of an orthog-
onal method. That is, this approach can be implemented alongside code compression. In
addition to dictionary compression, the authors used a technique, where the difference
between two instructions was encoded as a bitmask in conjunction with the dictionary index.
During decompression, instructions were obtained by performing an XOR operation between
the bitmask and the dictionary entry pointed by the index. This allowed reusing dictionary
entries between instructions, improving the compression ratio. We do not implement orthog-
onal methods such as this as they are out of the scope of this publication.

Das et al. [21] applied dictionary compression to a variable-length instruction set architec-
ture (ISA). The authors used trap instructions to indicate compressed codewords. The authors
argued that even though variable-length ISAs are already compressed so that short codewords
are used for the most common instructions, there is still room for additional compression
using a dictionary-based approach. In this article the two evaluated processor architectures
feature fixed-length instructions.

Lekatsas et al. [18, 31] evaluated performance improvements achieved with code com-
pression. The authors concluded, that compression was able to increase cache hit ratios,
resulting in improved performance.

Netto et al. [20] used four different codeword lengths to index their dictionary. Each
codeword was preceded by a field indicating its length. The authors then assigned instructions
to dictionaries based on their occurrence frequency. In the proposed method, only a single
codeword length is used for compressed instructions.

Bonny and Henkel [16] used Huffman compression in conjunction with instruction split-
ting, where full instructions were divided into variable-length parts to allow better Huffman
compression. In addition, the authors used instruction re-encoding, where they identified
don’t care bits in instructions and used them to improve compression efficiency by matching
the bits with other instructions.

Xie et al. [14] argued that the variable-latency decompression required for statistical
compression algorithms could be addressed by using a variable-to-fixed (V2F) compression
scheme. The authors proposed to use a Tunstall coding tree for compression. This approach
allowed parallel decompression of multiple codewords when using a statistical compression
algorithm.

2.2 Run-time programmability

The majority of previous research has proposed to either have fixed decompression hard-
ware [14, 16, 20, 23] or program dictionaries once at the start of program execution [12, 13,
15, 19, 21, 22]. However, programs may exhibit phases during which the instruction mix
changes, and a single set of dictionary entries may not represent the different phases effec-
tively. In this light, adding run-time programmability to dictionary compression is appealing,
although it results in overheads.

There have been relatively few proposals, where the dictionary contents can be dynam-
ically programmed during execution. Brorsson and Collin [24] evaluated a compression
scheme, where the dictionary contents could be programmed during context switches in pro-
cessors that support multithreading. The authors also evaluated sharing dictionary contents
between multiple contexts. They concluded, that energy consumption and dynamic CR were
improved by programming dictionaries at context switches, if the instruction mixes between
contexts were different. Moreover, the authors stated that the overhead of programming all
entries of a 256-entry dictionary at context switches was negligible.
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Thuresson et al. [25] proposed to update dictionaries at the granularity of program BBs.
In their approach, entries were programmed individually by using special instructions. In
addition to the fine-grained dictionary programming, the authors partitioned instruction words
into parts which were compressed individually by using parallel dictionaries.

2.3 Criteria for selective compression

Ideally, all the instructions of a program should be compressed. However, in real programs
compressing some instructions offer greater benefits than others. This is due to the varied
occurrence and execution counts of different instructions. Also, compressing all instructions
may not lead to the best static or dynamic CR. As more entries are added to a dictionary, the
number of bits required to index them increases. In this light, previous work has selectively
compressed instructions. Li and Chakrabarty [32] showed, that selecting optimal entries from
program instructions for dictionary compression is an N P-hard problem. In the following,
methods proposed by previous work to select dictionary entries are reviewed.

While previous work on selective compression has mostly concentrated on either targeting
static or dynamic CR, Shrivastava and Mishra [22] proposed to gain dual benefits by targeting
both. The authors first used compression to minimize dynamic CR with the guidance of a
dynamic profile, and then compressed the result again with the target of static CR.

Lin et al. [17] aimed to increase the size of individual code regions to compress. The
authors identified branch blocks, also known as superblocks [33], from CFGs. These are
regions of BBs, where branching is only allowed into the first BB. This prevented alignment
issues when branching into compressed code.

Benini et al. [23] used dynamic profiling to select the most used instructions as entries
into a dictionary. The authors concluded that 256 entries were sufficient to cover the majority
of instructions in their benchmark set.

Thuresson et al. [25] proposed to compress all instructions in a program, allowing fixed-
length instructions. This was combined with their scheme where individual dictionary entries
could be programmed during execution. To reuse entries already residing in the dictionary,
the authors proposed a recursive algorithm to decide the location of dictionary programming
instructions. At the beginning of each BB, instructions were programmed into dictionaries if
they were not already in the dictionary. For each entry, the BB’s predecessors were recursively
examined, and if they contained the same entry, the programming instruction was pushed into
that predecessor. In case of a BB requiring more entries than fit into the dictionary, the BB
was split. Immediate values were not compressed, as they required fixing after compression
in case they were used as branch target addresses.

Rawlins and Gordon-Ross [34] studied the interplay of code compression, loop caching
and L1 cache tuning. The authors concluded, that cache tuning alone produced most of the
energy savings. Adding a loop buffer allowed to further reduce energy consumption. The
authors also evaluated a scheme where Huffman-compressed instructions were stored in an
L1 instruction cache and decompressed to the loop buffer. The conclusion was that a loop
buffer increased performance and reduced energy consumption, as it allowed removing the
decompression overhead when executing loops. The authors also concluded, that an algo-
rithm with a lower decompression overhead compared to Huffman should be used. Although
this work did not directly produce novelty for code compression, it is important from the
perspective of energy consumption when designing systems containing loop buffers and code
compression. Our work evaluates a similar system setup, but replaces Huffman compression
with our proposed code compression which has a predictable decompression overhead.

@ Springer



252 J. Multanen et al.

Table 1 presents a qualitative summary of the previous work. The majority of the reviewed
previous work uses dictionary compression, with some works utilizing statistical compres-
sion algorithms. Most works have used static CR as the main metric for evaluating code
compression, with some works using dynamic CR or energy consumption. Most works have
also proposed to decompress instructions when they are fetched. That is, decompression is
performed adjacent to instruction decoding. Most works have also proposed to use selective
compression of instructions.

3 Design choices for energy-efficient code compression

Previous work on code compression has mostly concentrated on optimizing static CR, which
allows the memory footprint of programs to be reduced. On the other hand, targeting dynamic
CR and reducing the overall energy consumption is a less studied direction. With the target
of energy efficiency, the dictionaries should be designed as small as possible, but still allow
a good dynamic CR. With this in mind, the following discusses compression design choices
with the goal of reducing energy consumption.

In the rest of this section, we consider approaches suitable for dictionary compression.
Although methods that produce variable-length code words such as the statistical Huffman
compression [35] or heads-and-tails [36] have been used for instruction compression, their
decompression incurs a performance overhead due to the variable latency [16, 34, 37].

3.1 Selective instruction compression and programmability

Ideally, all the instructions in programs should be compressed to minimize static or dynamic
compression ratio. However, in dictionary compression this leads to large dictionaries if the
application instruction mix is heterogeneous, as even seldom occurring instructions have
to be stored in the dictionary. Previous work [23] has noted that the majority of program
instructions can be represented using a limited amount of dictionary entries that are fixed for
the duration of the program. That is, the dictionary sizes can be kept reasonable by selectively
compressing instructions.

However, having a static dictionary for the program duration is inflexible. Another point
of consideration is, that instruction mixes typically vary between programs, program phases,
and even loops in the program phases. In this sense, dictionary programmability [24, 25]
allows changing the dictionary entries during run-time. By compressing all instructions and
programming the missing entries into dictionaries at the start of each basic block, Thuresson
et al. [25] achieved impressive dynamic CR. However, this results in an excessive amount of
dictionary programming at run-time, when all the entries required for a loop do not fit into the
dictionary. While this is not an issue in cases where the dictionaries can be tailored to a set of
target applications that contain simple loops, it can result in excessive performance overhead
in tasks not known at design time. This overhead reflects negatively on energy efficiency.

In this light, if the programmability is combined with selective compression, dictionary
programming inside loops can be avoided, as we show later in this article.

3.2 Bundling

By limiting the amount of variable instruction lengths, the decompression overhead can be
reduced with the trade-off of compression ratio. In straightforward selective dictionary com-
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compressed_instruction

program_dictionary

ncompressed_instuction [T wa [
's_compressed

¥ decompressed_instruction

Fig. 1 Decompressor with m parallel dictionaries that each have individual number of entries and are pro-
grammable. Compressed instructions consist of indices pointing to the dictionary entries

pression, the number of variable lengths is two: One size for pointing dictionary indices
and another for uncompressed instructions. However, if the compressed and uncompressed
instructions are allowed to be placed arbitrarily in memory, the number of combinations how
the instructions can be aligned is higher than two, when the uncompressed length is not divis-
ible by the compressed length. To solve this problem, consecutive compressed instructions
can be arranged as bundles and aligned with uncompressed instructions, so that a fetch word
always contains either a bundle, or an uncompressed instruction [23]. The compressed bun-
dles are different, but resemble VLIW instruction bundles, which consist of a fixed number
of operations grouped together.

3.3 Dictionary partitioning and sizing

Partitioning instructions into fields and compressing them using parallel dictionaries has been
shown to improve the static CR [30]. Compared to a single large dictionary, this allows the
individual dictionaries to represent more instructions with relatively fewer entries. This is due
to the amount of different entries varying between fields. Typically register and immediate
field values experience the most changes during program execution. Implementing individual
dictionaries for these fields allows good compression ratios, whereas fields with lower rate
of change can be combined and placed into the same dictionary. Dictionary partitioning is
illustrated in Fig. 1, where the amount of entries in dictionaries can be sized individually
based on target applications or the ISA characteristics corresponding to the field. Bypassing
the dictionaries and directly using uncompressed instructions is done using the multiplexer
in the lower region of the figure.

Deciding the number of parallel dictionaries and instruction bit indices that will be com-
pressed in each dictionary requires careful attention. Assuming that the instruction fields
between different instructions contain repetition, selecting a single dictionary results in poor
CR, as the number of instruction combinations is high in a flexible instruction set processor.
On the other hand, dividing instructions excessively into many dictionaries also results in
poor CR, as each dictionary requires individual addressing bits in the compressed instruc-
tion. Moreover, some instruction fields use more encodings than others depending on their
function. This requires consideration for the amount of entries in each parallel dictionary.
The optimal amount of dictionaries and the number of their entries depends on the target
applications and their instruction mixes.
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3.4 Entry selection

In addition to selectively compressing instructions and aligning compressed bundles with
uncompressed instructions, program code structures should be taken into account to minimize
dynamic CR and energy consumption. In schemes with programmable dictionaries, since
there is an energy (and performance) overhead from the dictionary programming, cost analysis
is required per code region to determine if it should be compressed.

Moreover, partitioning instructions into fields and using parallel dictionaries in a scheme
with selective compression complicates the entry selection. Let us assume that the dictionary
sizes should be minimized to optimize energy consumption. As compressing an instruction
requires entries from all the parallel dictionaries, and the occurrence of entries varies between
instructions, it is not trivial to select entries resulting in minimal dynamic CR. Moreover,
when the selectively compressed instructions are grouped as fixed-size bundles, the cost of
the whole bundle has to be considered.

4 Programmable dictionary code compression for energy-efficiency

This section introduces our method which builds upon the energy-efficient design choices
discussed in Sect. 3. It combines run-time programmable, individually sized parallel dictio-
naries with selective instruction compression, as well as compressing instructions in fixed-size
bundles in order to avoid costly variable-length decoding. Details of the hardware implemen-
tation were introduced in [27], and as they are relatively straightforward, we do not further
elaborate them in this article.

Our method primarily targets the reduction of dynamic CR. Whereas targeting static CR
reduces the program size, we aim to improve energy efficiency by reducing the number of
bits fetched, even with the expense of increasing code size. As loops are hot spots in program
execution, we do not program the dictionaries during their execution in order not to cause
excessive performance overheads. Instead, the dictionaries are programmed upon entering
a loop region. These loop regions are decided during compilation based on a static CFG
analysis.

In the following, our code compression algorithm and dictionary design choices are dis-
cussed in detail.

4.1 Bundling

Figure 2 describes instruction alignment alternatives in schemes where the amount of different
instruction lengths is limited to two. To avoid the complexity of variable-length decompres-
sion, we place compressed instructions as bundles into the memory, as illustrated in Fig. 2c.
This allows interleaving compressed and uncompressed instructions, yet guaranteeing fixed
alignment of the compressed instructions. In our approach, a bundle cannot contain fewer
instructions than its defined size. The bundles are sized to fit into the uncompressed instruc-
tion length. This allows uncompressed instructions to be accessible in one fetch, as opposed
to the alternative in Fig. 2a. Also, it allows the uncompressed instruction length to remain
unchanged, as opposed to the alternative in Fig. 2b. This is done for convenience, as many
ISAs utilize instructions whose lengths are a power of two, allowing straightforward interac-
tion with memory components that are similarly sized. Because we require instructions to be
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A A | B | C
B D

(b) Instruction alignment to a multiple of compressed
D instructions.

(a) Instruction alignment to com-
pressed length. Uncompressed

instruction D is divided into multiple A | E | c !
fetch words i.e. Dg, D; and D2 in
this example. (c) Instruction alignment to uncompressed length.

Fig.2 Different instruction alignment options for compressed instructions. A, B and C are compressed instruc-
tions, whereas D is an uncompressed instruction. Padding is coloured black

program
CFGs &

D T

uncompressed _ _ _ compression dlctl(c):leaant;ofrr]ame a:(??:(;?r:’p?:;rsyé d branch target . compressed
. i program
program e S (entry selection) instruction insertion g

Fig.3 Compression flow of of our method. Based on a static CFG analysis, compression regions and dictionary
frames are created, after which special instructions are inserted to control the dictionary compression. As a
last step, branch target addresses are fixed due to code size changes

compressed as bundles, the same instruction can occur in both uncompressed and compressed
forms in the program, and even inside one BB.

4.2 Selective bundle-based code compression

Figure 3 presents the compression flow of our method. Although the method can be integrated
into a compiler, it is described here as a post-pass, with the assumption that the relevant
program information is retained after compilation. The compression of a program begins by
constructing a CFG for each of its functions. Next, BBs belonging to loops are grouped into
compression regions similar to superblocks [33]. The compression regions are created out of
separate nested loops in a program. In programs with complex loop structures, this results in
relatively large compression regions. Assuming that the amount of non-identical instructions
increases as the loop size increases, having large compression regions does not minimize the
dynamic CR or energy consumption, but finding the optimal compression region granularity
can be considered as a separate research topic and is left for future work.

Next, a dictionary frame, which refers to the entries corresponding to a compression
region, is created for each compression region if it is beneficial for dynamic CR. To avoid
bias due to data-dependent execution, we do not use dynamic profiling, but instead rely on
static CFG analysis. Our bundle-aware compression algorithm used to create the dictionary
frames is presented in Fig. 4. As inputs, it takes the compression regions based on the program
CFGs, as well as the parameter n for the required number of compressed instructions per
bundle. In this work, the value of n is determined as a by-product of a design space search
as described later. The algorithm starts by processing each compression region on line 1.
The algorithm selects dictionary entries from the instructions by starting from inner loops.
If all of the loop’s instructions fit into the dictionaries (lines 19-22), all required entries are
selected and the next loop level is examined. This is continued until the dictionaries are full,
or no more instructions can be compressed.
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Input compression regions
Output dictionary frames
n = consecutive instructions required for a bundle

1: for all region in regions do
2 while dictionaryFrame not full and BBsToHandle do
3: while true do
4: groupValid = True
5: bestGroup = None
6: i, newEntriesRequired, bestScore = 0
7 while i < region.instructions.length do
8: candidateBBGroup = region.instructions[i:i+n-1]
9: for instruction in candidateBBGroup do
10: if instruction not isFirstIn(candidateBBGroup) then
11: break
12: end if
13: for all field in instruction do
14: if field.encoding not in dictionaryFrame[fieldldx] then
15: newEntriesRequired += 1
16: end if
17: end for
18: end for
19: if candidateBBGroup.fitsInto(dictionaryFrame) then
20: for all unique entry in candidateBBGroup.entries do
21: numOccurrences += entry.occurrencesIn(region)
22: end for
23: else
24: groupValid = False
25: end if
26: if groupValid then
27: score = numOccurrences/newEntriesRequired
28: if score < bestScore then
29: bestGroup = candidateBBGroup
30: bestScore = score
31: end if
32: end if
33: i+=n
34: end while
35: if bestGroup != None then
36: dictionaryFrame.addEntriesFrom(bestGroup)
37: else
38: break
39: end if
40: end while
41:  end while
42: end for

Fig.4 Pseudocode to create dictionary frames. The algorithm tries to first fit inner loops into dictionaries. In
case a loop level does not fit, a heuristic is used to select beneficial entries

Upon encountering a loop level whose instructions do not fit into the dictionaries, we
calculate an occurrence-cost score for each candidate bundle on line 27. When bundling is
used in conjunction with parallel dictionaries, simply selecting the most occurring entries
for each dictionary does not result in the most instructions compressed, as all the fields of
an instruction have to be selected for it to be compressed. In this case, greedy selection
of entries can in the worst case result in no instructions being compressed, although valid
entries have been chosen for the dictionaries. This occurs when each bundle has an instruction
which contains a field that is not selected as an entry, prohibiting the compression of that
bundle. In addition, exhaustively searching for the best entries proved to be prohibitively
time-consuming in our early experiments. The occurrence-cost score is representative of the
number of entries in the compression region that can be represented if a candidate bundle is
compressed, as well as the amount of new entries required in the dictionaries. To add new
entries to the dictionaries, there is a cost of

N

cost, = Zr,, (D

n=1
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Input D, F, targetPrograms
Output dictionarySizes

1: for all din D x F do

2 if bundleSize == 1 then

3 continue

4 end if

5. for all program in targetPrograms do

6 compressedProgram = compress(program, d)
7 results.append(analyzeTrace(compressedProgram))
8 end for

9:  programSetResults.append(geoMean(results))
10: end for

11: dictionarySizes = programSetResults.minEnergy()

Fig.5 Selection of the number of entries for the parallel dictionaries presented as pseudocode. D = range of
entry counts to sweep, F' = individual dictionaries, d = cartesian product of D and F. With the constraint of
uncompressed word length as the maximum length of a compressed bundle, a sweep is performed over all
dictionary sizing combinations. If the combination is valid, dynamic traces for a set of target programs are
used to calculate an energy cost function

where N is the number of consecutive instructions in a bundle and r,, is the number of new
entries that would be added to the dictionaries. The occurrence-cost score is then calculated

with
cost,

(@)

SCOre e =
s

where cost, is calculated using Eq. 1 and s is the number of static occurrences in the
whole region for the entry candidates in the bundle. On lines 28-30 and 35-39 in Fig. 4, the
candidate bundle with the lowest occurrence-cost score is selected to be compressed, in case
there is at least one valid bundle for compression.

4.3 Parallel dictionary sizing

As the relationship between the number of dictionary entries, bundle size, dynamic compres-
sion ratio, and energy consumption is not trivial, we decide the parallel dictionary sizes by
exhaustively sweeping the combinations of dictionary sizes. As a starting point, we assume
that the instructions have been divided into fields, each corresponding to a dictionary. The
sweeping process is described as pseudocode in Fig. 5. As input, the algorithm takes a set of
target programs, a range of entry amounts to sweep, and the instruction bit indices that each
dictionary compresses. On line 1, the cartesian product over the valid range of the number of
entries to sweep D and the individual dictionaries F is performed. Combinations resulting
in only one compressed instruction per bundle are discarded on lines 2 and 3. As we always
align bundles to uncompressed instruction length, a single compressed instruction per bundle
would not be beneficial. A set of target applications is iterated over in line 5. In line 6, the
program is compressed, during which the algorithm described in Fig. 4 is used. As a parame-
ter the sweeping algorithm takes d, the combination of entry counts for each dictionary. The
energy consumption of the compressed program is analyzed using a dynamic trace. On line
9, the geometric mean of the program set is calculated. Although we chose geometric mean
in order not to let outlier programs bias the compression, other types of means could be used
depending on the desired behaviour. After sweeping across all the combinations, the entry
amount combination resulting in the lowest energy consumption is selected on line 11.
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LL1

[TT] fil_amount [O[1]
log,(max_dict_size)+2

(a) Header instruction, which starts the pro-
gramming of a new dictionary frame. It
indicates the number of entries after it to be
written into the dictionaries.

[entygn | [Centyy [ entryy [0[0]

(b) An entry, which is used to program m
dictionaries in parallel.

|‘ instr,, ===

instr, [ instr, [1]0]

(c) A bundle of p compressed instructions. A
compressed instruction contains an index to
each of the parallel dictionaries.

header 01
entry, 00
entryn.q 00
uncompressed 11

compr. bundle 10

compr. bundle 10
uncompressed 11
uncompressed ‘11

(d) Example of instruction layout in memory.
A header instruction indicates that the fol-
lowing n entries are to be programmed into
the dictionaries. Compressed instructions are
interleaved with uncompressed instructions.
Two bits are used to indicate the type of
instruction.

Fig. 6 a Special instructions used to control dictionary programming, b, ¢ compressed instructions, and d an
example of placement in memory

4.4 Programmable dictionary control

During execution, a special header instruction shown in Fig. 6a is used to start the program-
ming of dictionaries. The instruction indicates the number of entries to sequentially program
into the dictionaries, and writing always starts from the first index. Upon encountering a
header, the current content of the dictionaries is considered invalid. In case there are fewer
entries in a dictionary than indicated by the header, that dictionary is not written into after
reaching the maximum number of entries. As the dictionary decompressor is naturally placed
before the instruction decoder, the header instruction is handled inside the decompressor, and
is not passed to the instruction decoder. The entries to be programmed shown in Fig. 6b are
placed after the header, as illustrated in Fig. 6d. As the length of the entries is the same as the
uncompressed instruction length, each of them requires a single fetch. In our approach, the
processor is stalled while the dictionaries are programmed. After the entry count indicated
by the header is reached, execution continues. The figure shows an example where the code
contains uncompressed instructions that are executed as such, and compressed instructions,
which are effectively indices to the dictionary entries.

As the header instruction encoding can be customized per target processor, it can be
implemented by adding bits to the instruction words, or by using free ISA encodings. Figure 6
shows an example of the first case, where two bits of an instruction are used to identify the
instruction type. The same bits are also used to identify compressed and uncompressed
instructions.

4.5 Design considerations

By deciding the entries to compress based on a static profile, our method aims not to be biased
due to data-dependent control flows in profiling runs. However, using dynamic profiling
would likely be beneficial in cases where the control flow is more predictable and not data-
dependent. For example, complex loop structures with multiple inner loops that have static
iteration counts are currently not considered. In these cases, more frequently executed loops
could be favoured when selecting entries for compression, instead of compressing the whole
nested loop.
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After compression, immediate values used for branch target addresses require fixing.
For uncompressed instructions, this is trivial. However, in ISAs where the same bit indices
can represent immediate values or instruction fields depending on the instruction template,
compressing them poses a problem: (Part of) an immediate value used for branch addressing
cannot share a dictionary entry with other instructions, because fixing it would change that
entry. This would also change the bit pattern for the instruction sharing the entry. Thus, it is
better to include instruction metadata in the compression, and treat branch immediate entries
as always requiring new entries from dictionaries. Similarly, PC-relative branching requires
consideration, as code compression can change the target addresses.

In our compression method, the entries to be programmed are always located after a header
instruction. Another option would be to store the entries in a dedicated memory region, from
where they would be fetched upon encountering a header instruction. This might be useful
in a scheme, where the dictionaries would be programmed in a more fine-grained manner
than the current approach. For example, if encountering the same dictionary frame that is
currently stored, a branch over the entries would be required when they are stored directly
after the header.

In our approach, execution is stalled while programming the dictionaries, as the entries are
located in the program code after the header. While the amount of stall cycles could likely be
reduced with prefetching schemes, these would not likely results in significant performance
improvements, as the dictionaries are programmed relatively seldom. However, the effect of
prefetching may be more significant, if more fine-grained compression region strategies are
used.

Also, the number of instructions in a bundle is fixed at design time, and we only allow
one bundle size in addition to uncompressed instructions. Although allowing variable-length
bundles may improve the compression, studying the optimal amount of bundle sizes as well
as selection of entries in this scheme is outside of the scope of this article.

5 Instruction stream design by analytical modeling

To minimize the instruction stream energy consumption, its components must be selected and
sized according to the expected target applications. Overly large components lead to poor
utilization and energy overheads, whereas excessively small components cannot contain
working sets of applications and require constantly changing their contents. Due to the large
number of combinations resulting from different components and their sizing, implementing
and verifying them on logic level becomes excessively laborous. To explore the instruction
memory hierarchy design space, we construct an analytical energy consumption model of
instruction stream components, similar to previous works [38, 39].

The system configurations used in the instruction stream design space exploration are
illustrated in Fig. 7. The baseline system in Fig. 7a consists of a processor core and an
SRAM main instruction memory (IMEM). Other components included in the model are an
L1 instruction cache (L1I$), the decompressor of our compression method (dict), and a loop
buffer (LB).

Energy consumption is obtained using the access counts per memory level multiplied by
the energy per access of the respective memory level. The total system energy consumption
is obtained with

Etotal = Ecore + Ermem + Eri1s + Edicr + ELB 3)
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IMEM core

(a) Baseline.

[dict]
IMEM | L1I1$ core IMEM | L1I$ -| D— core

(b) Instruction memory and L1 instruc- (c¢) Instruction memory, L1 instruction
tion cache. cache and our dictionary decompressor.

[dict] [LB]
IMEM{ L1is H - Hl core
IMEM{~+ L1I$ I core
(e) Instruction memory, L1 instruction
(d) Instruction memory, L1 instruction cache, our dictionary decompressor, and
cache and a loop buffer. loop buffer.

Fig.7 Components and configurations used in the analytical modeling of instruction stream hierarchies

where the energy consumption of components in Fig. 7 are represented. If a component
is not used in the configuration, its energy consumption is set to zero. For the targeted
embedded scenarios, we assume that the main instruction memory content is not changed
during execution. The loop buffer and programmable dictionary are always written only
before starting loop execution.

Computing energy for baseline configuration: For a given application, we compute the
processor core energy E.,-. with total number of cycles and average energy per cycle as:

E ore = total_cycles - energy_per_cycle

The average energy per cycle does not take into account different program phases, but is
the result of total energy consumed in an application divided by the application cycle count.

We obtain the IMEM energy consumption Ej gy by retrieving the number of accesses
(reads) and multiplying it by an energy per read value:

Eryem = IMEM _accesses - energy_per_read

Computing energy for the LI cache: For a given application, we estimate the total cache
energy with the number of cache accesses and miss count for a particular cache configuration.
We assume that the energy consumed for a miss and a hit is known. The energy consumption
is computed as:

Epi1s = (L1_accesses — L1_misses) - energy_per_hit
+ L1_misses - energy_per_miss
Computing energy for the loop buffer: For calculating the LB energy consumption, we
assume that the energy per active cycle (execution from LB), energy when filling the LB, and

the idle energy are known. We calculate the total LB energy consumption with these three
values and the cycle count corresponding to each:

Epp = LB_active_cycles - energy_per_active_cycle
+ LB_fill_cycles - energy_per_fill_cycle
+ (total_cycles—LB_active_cycles—LB_fill_cycles)

-energy_per_idle_cycle
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Computing energy for the programmable dictionary: To obtain the energy consumption
of decompression, we divide program execution cycles into three subcomponents similar to
the loop buffer: Active, fill, and idle. We assume that the energy consumption for each is
known. The total energy consumption E4;.; is then obtained by multiplying each value with
the corresponding number of cycles and adding the results together.

Egict = idict_active_cycles - energy_per_active_cycle
+idict_fill_cycles - energy_per_fill_cycle + (total_cycles

—idict_active_cycles —idict_fill_cycles) - energy_per_idle_cycle

6 Evaluation

In our previous work [27] we evaluated our proposed code compression on a single-issue
RISC-V processor, where it allowed a 5.5% reduction in system energy consumption on
average and 21% in the best case. Although the previous state-of-the-art in programmable
dictionary compression achieved better dynamic compression ratios, it had a large runtime
overhead for programming dictionary entries, whereas the overhead was negligible with
our proposed method. In this section we extend our work and evaluate the applicability of
the method to statically scheduled multi-issue architectures. To this end, we implement our
method in a transport triggered architecture (TTA) [40] processor. TTA is an exposed datapath
architecture, where the programmer explicitly controls the transportation of operation input
and output operands on data buses. An issue slot is reserved in the instruction word for each
data bus. The TTA processor is selected as the evaluation platform as it can be considered as a
superset of VLIW architectures. Both are statically scheduled multi-issue architectures with
TTA having more degrees of freedom in operand movement due to the explicit datapath, and
a VLIW can be modeled by constraining a TTA processor. The architectural details relevant
to this work are listed in Table 2. For the purposes of this work, the TTA programming details
are omitted, as they are not relevant.

Although previous work [17] has presented heuristics to group instruction bit indices to be
compressed in parallel dictionaries, it was out of the scope of this article. For the evaluation of
our approach, we manually selected the instruction bit groups for each parallel dictionary by
observing the instruction template of the TTA processor. More precisely, the bits representing
each issue slot were compressed separately. These are shown in Fig. 8. The imm ctrl field
is used to select an instruction template between either a "regular” instruction or a 32-bit
immediate value, and was grouped with issue slot 4. Although this coarse-grained grouping
may not result in the optimal organization, it is an instinctive grouping and used here to
illustrate the effectiveness of our approach as we show later.

The TTA instruction length is designed to be 64 bits wide after adding the two bits required
for the dictionary control as described in Fig. 6. The instruction length is formed by first
selecting the desired operations for the architecture and tuning the interconnection network
between the function units to reach a desired level of performance. In our TTA model, the
instruction length increases by adding operations and connections between function units.
The issue width described in Table 2 is also a product of this exploration. Then, with addi-
tional operations, increasing immediate value widths, and further tuning the interconnection
network, the instruction length is set to the nearest power of two to provide future readiness
for integration with common memory components.
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Table2 TTA core characteristics

Issue slots Instruction length ISA Scheduling Control

5 64b Custom Static Unconditional branches +

Predicated execution

imm ctrl issue slot 3 issue slot 1
dict ctrl issue slot 4 issue slot 2 issue slot 0
62 61 46 32 24 17 0

Fig.8 TTA instruction template. Each “regular” instruction has five issue slots. By using the two immediate
control bits, 32-bit immediates can be issued by using a combination of the issue slots. Two bits are used
for controlling the dictionary compression. The TTA processor’s issue slots present a natural grouping for
instruction bit indices, when forming the parallel dictionaries. Would be nice to show how the bits are grouped
into dictionaries

In addition to the CHStone [41] benchmarks used for evaluations in our previous work [27],
we evaluate the compression on the TTA processor with Embench [42] benchmark suite.
Seven out of 22 benchmarks were used, as the rest had qualities not suitable for our eval-
uations. Two of the benchmarks use recursive functions, which the current compression
algorithm does not handle due to the lack of whole-program and call graph analysis. The
other discarded benchmarks had 64-bit datatypes that are not supported in our current com-
piler, and floating point data types, whose soft emulation would not produce representative
results.

Correct functionality of our approach is verified by compressing the evaluated benchmark
programs, implementing the decompression hardware in RTL and simulating the design in
ModelSim and comparing the traces produced by the executed programs to reference runs.
The loop buffer (LB) used in evaluations is software-controlled, uses zero-overhead looping
and supports single-level loops with no control flow inside. It is verified in the same fashion
as the decompressor hardware. Designing the TTA core and generating RTL for it, as well as
compiling target applications and producing the reference run traces from ISA simulations
is done with OpenASIP, formerly known as TTA-based Co-design Environment (TCE) [43].

Synopsys Design Compiler is used to synthesize the designs on a 28 nm process. Power
consumption is estimated using switching activity information files (SAIFs) produced by sim-
ulating the post-synthesis netlists in ModelSim. Access energy consumption for the SRAM
instruction memory is obtained from CACTI [44]. Latch-based register file memories were
used to store the entries for dictionaries and loop buffers.

6.1 Instruction memory hierarchy design

To select the system configuration for further energy consumption evaluations, we used the
analytical model introduced in Sect. 5. Values obtained from the post-synthesis netlist simu-
lations fed into the analytical model as access energy consumption estimates are illustrated
in Fig. 9. Here, the L1 cache energy consumption was the largest of the components at
all capacities. The dictionary and LB components had similar access energy consumption
at small capacities, but the dictionary started consuming more energy when increasing the
capacity. This was due to the addressing logic required for each parallel dictionary. Here the
decompressor had five parallel dictionaries, one for each TTA issue slot.
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Fig.9 Average energy per access of different instruction memory structures using post-synthesis netlist sim-
ulations in the 28 nm technology (0.9V, 25 C, 500 MHz). These values were used in the analytical modeling.
The entry size is 64-bit for all memory structures except the dictionary, where 5 sub-words are fetched from
the dictionaries and combined to a single instruction

We assume the size of the main instruction memory IMEM to be 8192 lines (64-bit wide),
as this was the minimum size to fit all of the evaluated benchmarks. The memory consumes
approximately 14.45 pJ/access according to CACTL

To select a reasonable instruction memory hierarchy, we first sized the L1 instruction
cache, as this was considered a suitable approach by Rawlins and Gordon-Ross in schemes
using code compression and loop buffering in conjunction [34]. We assumed a common
cache line size of 16 B, and the cache was direct-mapped. Instruction traces for the CHStone
and Embench benchmark sets were obtained using the OpenASIP toolset ISA simulator. For
these applications, the cache with 256 lines (4 KiB) resulted in the lowest energy consumption
when taking the average over the benchmark set. The energy consumption for this benchmark
set is not reduced on average when using more than 256 cache lines due to the increased
access cost and insufficient improvements in hit rates. In aes, gsm, motion, and sha a cache
with 128 lines resulted in lower energy consumption.

6.2 Dictionary sizing

After fixing the L1 instruction cache parameters, the parallel dictionary sizes (number of
entries) were decided using the sweeping algorithm described in Fig. 5. The results are
obtained by sweeping across dictionaries with 8, 16, 32 and 64 entries and using the analyti-
cal model to obtain access energy consumption. As a constraint, the compressed bundles were
aligned to the uncompressed instruction length of the TTA processor. In this case, the instruc-
tion length is 62, to which two dictionary control bits are concatenated, forming a 64-bit final
instruction. As explained in Fig. 6¢c, the number of compressed instructions in a bundle is
obtained by adding the number of indexing bits required to index the parallel dictionaries,
and checking how many compressed instructions can be bundled with the length constraint.
If required, the compressed bundles are padded to meet the uncompressed instruction length,
and bundles with size of one are not allowed, as this would worsen the compression ratios.
Figure 10a and b show the results of the dictionary sizing sweep. In the two figures,
each benchmark set was used to calculate the dynamic CR and energy consumption values.
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Fig. 10 Results of bundle size and dictionary size sweep. Lower is better. The best individual entry amounts for
dynamic CR and energy consumption annotated inside square brackets. Dynamic CR is the best at bundle size
two, as this allows relatively large dictionary sizes to accommodate more of different entries, and compressible
bundles are more likely with smaller bundle sizes. However, the lowest energy consumption is obtained with
a larger bundle size, as this decreases the number of cache accesses and allows smaller dictionary size

The figures illustrate the relationship of the number of compressed instructions per bundle,
number of dictionary entries, dynamic CR and energy consumption. Different data points
illustrate the range of results obtained for the configurations. In the figures, a lower value is
better, and the individual dictionary sizes for the best cases of dynamic CR and energy are
annotated inside the square brackets.

In CHStone, minimal dynamic CR and energy consumption are obtained at different
bundle sizes. Best dynamic CR, 0.61, is reached at bundle size two, and increases in relation
to the bundle size. As our approach can only compress full bundles of consecutive instructions,
the compression algorithm is more likely to find valid bundles at small bundle sizes. However,
energy consumption is not minimized with the best dynamic CR. Remember that we set a
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Fig. 11 Dynamic CR and runtime overhead on TTA processor. Results are relative to uncompressed execution.
Lower is better

constraint for the bundle to fit into the uncompressed instruction length. This translates to more
entries per dictionary at small bundle sizes, thus allowing more instructions to be compressed.
The dictionary access energy depends on the number of entries, resulting in relatively high
energy consumption at the small bundle sizes. The minimum energy consumption is reached
at bundle size of three in Fig. 10a, which is a sweet spot in terms of dictionary entry amounts,
instructions that can be compressed, and the dictionary access energy. Here the dynamic CR
is 0.71. Although at bundle size 4 the dictionary size and access costs are relatively low, the
number of valid bundles found by the compression algorithm is also low, resulting in poor
dynamic CR.

Similar relationship between energy consumption and bundle size is seen in Embench,
where bundle size 3 results in the best energy consumption. However, bundle size 3 also
results in the best dynamic CR of 0.69. Although there are no large differences in the number
of instructions compressed at bundle size 2 and 3, the larger bundle size requires fewer bits
to be read from the next level in instruction stream hierarchy, resulting in lower dynamic CR.

Based on the results of the sweep, the 5 dictionaries for the TTA processor were selected
to have 32, 8, 8, 16, and 32 entries, and a bundle size of three instructions was chosen as
these resulted in the lowest energy consumption in the analytical model.

If there is time, analyze and illustrate the size of compression regions and the loops in
them, so that we can motivate future work (better compression region analysis)

6.3 Compression ratios and performance

Results for dynamic CR in CHStone and Embench are presented in Fig. 11a and c. Our
compression method results in a dynamic CR of 0.71 on average for CHStone and 0.69
for Embench, which are similar to the values obtained earlier for a single-issue RISC-V
core [27]. Mips and Huffbench result in the worst dynamic CR, as both benchmarks consist
of a large loop containing a large number of instructions. As a result, a relatively small
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Table 3 Static CR results when using our compression method on the TTA processor with CHStone and
Embench benchmarks

CHStone  Adpcm  Aes Blowfish GSM Mips Motion ~ SHA Avg
1.01 1.00 0.71 1.07 0.99 1.09 1.06 0.99
Embench  Tarfind  Qrduino  Primecount  Matmult-int ~ Huffbench  Edn cre32 Avg
1.01 0.98 1.05 0.99 0.97 1.09 1.10 1.03

portion of the frequently executed loop instructions are compressed. The best dynamic CR,
0.56, is obtained in crc32, where 69% of all executed instructions are compressed. This
is explained by the straightforward structure of the benchmark, where a two-level nested
loop constitutes the benchmark body. The inner loop has 13 instructions, of which 9 are
compressed. Benchmarks resulting in high dynamic CR due to a large number of instructions
in their frequently executed loops suggest that a more fine-grained program analysis and
compression could lead to lower dynamic CRs.

To estimate the difference in compression ratios resulting from our method and optimal
compression, we can assume that in the ideal case all instructions in a program would be
compressed. To simplify, we can assume that the number of headers and entries is negligible,
although in reality their number depends on the instructions mix, as well as number and size
of dictionary frames. For the sake of this estimation, we can also assume that the number
of BB instructions in compression regions always align perfectly with the bundle size. With
these assumptions and the bundle size of three that was selected for the TTA processor, the
ideal dynamic CR is 0.33. Although the value is a crude simplification, the large difference
between it and the obtained results shows, that there is room to improve in regards to the
compression algorithm. The difference between the ideal dynamic CR and the obtainable
dynamic CR when accounting the headers and entries can be more realistically estimated
when more fine-grained dictionary programming is studied, and is left as future work.

The dictionary programming runtime overhead on the total runtime in cycles is shown
in Fig. 11b. The average runtime overhead is 0.13% in CHStone. This indicates that the
dictionary programming overhead has a negligible impact on performance. Blowfish has a
very low runtime overhead yetrelatively low dynamic CR due to alarge amount of instructions
being represented by a relatively small amount of dictionary entries. Embench similarly
results in negligible runtime overheads in all the benchmarks as seen in Fig. 11d.

Static CRs are presented in Table 3, where lower is better. Even though the main target of
our approach is reducing the dynamic CR, the static CR (code size) is also reduced by 1%
on average in CHStone. This is explained by the large compression regions and relatively
small amount of dictionary entries. In addition, our approach currently targets nested loops,
and a small part of the code can end up constituting most of the runtime. In Embench, the
code size was increased by 3% on average. The code size is increased, when the number of
inserted headers and dictionary entries outweighs the reductions caused by the compressed
instructions. Crc32, which has the lowest (best) dynamic CR, also has the highest static CR.
This is due to the benchmark being small, and the good dynamic CR results enabled by the
compression of only 9 instructions. The code size is increased because there is little reuse of
entries inside the dictionary frame. That is, the instructions have a diverse instruction mix.

Blowfish has a low static CR for the same reason as it has a low dynamic CR: relatively
many instructions are compressed by relatively few entries. In addition, those instructions
constitute a large part of the whole code.
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Fig. 13 TTA core energy consumption in Embench benchmarks, relative to baseline system

6.4 Energy consumption

Figure 12 and 13 present the energy consumption for the TTA core on the CHStone and
Embench benchmarks. Remember that in Sect. 6.1 we used the analytical instruction stream
model to conclude that a 256-line cache resulted in the lowest energy consumption on average
when compared to a system with only an instruction memory and the processor. As exploring
the full instruction stream design space exhaustively would have been excessively time-
consuming, the design process in Sect. 6.1 started by deciding the cache size only. Thus, the
256-line cache was chosen and used when selecting the individual parallel dictionary sizes.
However, at this point we can examine the behaviour also on other cache sizes. It follows
from the L1 cache exploration that, on average, a 256-line cache leads to the lowest energy
consumption for CHStone, while Embench benchmark performs best with a 128-line cache,
due to the absence of loops with large bodies.

On average, adding an L1 cache to the system reduces the system energy consumption
to 0.192 and 0.160 respectively, compared to the baseline. The addition of our proposed
dictionary compression further reduces the energy consumption from 0.192 and 0.160 to

@ Springer



268 J. Multanen et al.

0.3

0.25

- |
. L " - " " N
0.15 [ ] I I l

A B CD A B CD A B CD A B C D A B C D A B C D A B CD A B CD
adpcm aes blowfish motion sha avg.
Ll 256, LB- 32

0.2

0.1

0.

o
a

0

H Core ®|Mem = Cache ®IDict mLB

Fig. 14 System-level energy breakdown relative to baseline for CHStone benchmarks for different system
configurations as depicted in Fig. 7 (configuration A: L1 cache, B: L1 cache + IDict, C: L1 cache + LB, D:
L1 cache + IDict + LB)

0.170 and 0.154, respectively, an average reduction of 11.4% and 3.8% over just an L1 cache
without dictionary decompression. The largest energy savings for the CHStone benchmarks
in the L.1-256 configuration are obtained for the aes (9.1%), blowfish (16.9%) and sha (8.2%)
applications, due to their high dynamic CRs. Despite its high dynamic CR, the gsm energy
savings are slightly lower (7.0%), which can be attributed to its higher .1 cache miss rate.
The mips benchmark does not significantly benefit from dictionary compression due to its
low dynamic CR resulting from its complex loop structure as discussed earlier.

The largest energy savings for the Embench benchmarks in the L1-128 configuration
are obtained for the crc32 (9.1%), edn (6.4%), and tarfind (6.3%) applications, due to their
high dynamic compression ratios. Huffbench and grduino hardly benefit from the dictionary
decompression due to their low dynamic CR.

Despite L1-256 being the energy-optimal configuration for CHStone, on average, Fig. 12
shows some significant dictionary energy reductions for adpcm, blowfish and mips in the L1-
128 configuration. When observing the cache performance, it turns out that L1-128 leads to a
significant number of cache misses for adpcm (13.5%), blowfish (37.1%) and mips (10.5%),
while cache misses in the other benchmarks are all in the range of 0.03%—3.1%. Using a
dictionary reduces the number of cache misses significantly, due to fewer instructions being
fetched, and for blowfish the miss rate is also significantly reduced from 37.1% to 2.13%,
caused by the working set size reduction. This suggests, that in some cases our approach
allows to increase the effective size of the cache by fitting more instructions into it.

6.5 Adding a loop buffer

In this section we discuss the effects of implementing our method in a processor that utilizes
a loop buffer. This is a common instruction energy and performance optimization [45, 46].
Therefore, we will evaluate the energy efficiency of the TTA core with a loop buffer, as
depicted in Fig. 7d and e. It is important to note that the loop buffer will decrease the
effectiveness of the dictionary on straightforward loops. This is because our compression
currently prioritizes inner loops, for which the LB is also used. The loop buffer also has a
lower access energy as illustrated in Fig. 9, as it is more simple by design, compared to a
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Fig. 15 System-level energy breakdown relative to baseline for Embench benchmarks for different system
configurations as depicted in Fig. 7 (configuration A: L1 cache, B: L1 cache + IDict, C: L1 cache + LB, D:
L1 cache + IDict + LB)

hardware-controlled cache and dictionary. Additionally, it saves the instruction fetch of the
compressed instruction word that the dictionary has to perform.

Figures 14 and 15 depict the energy savings relative to the baseline for all system con-
figurations while assuming instruction memory hierarchy parameters that had the lowest
average energy consumption for each benchmark set. Configurations A and B correspond to
the configurations with only an L1 cache and L1 cache with dictionary, respectively, as were
depicted in Figs. 12 and 13. Configuration C considers an L1 cache with loop buffer, and
configuration D combines the loop buffer with dictionary decompression.

For the CHStone benchmarks we consider the L.1-256, LB-32 configuration. On average,
extending configuration B with a loop buffer (B— D) leads to an additional 19.8% energy
savings. However, the variation between benchmarks is quite significant. The LB is heavily
utilised for the gsm (86.6%), motion (97.8%) and sha (94.6%) benchmarks, which leads
to tremendous energy savings in the instruction delivery. It should be noted that for these
benchmarks the loop buffer overlaps with the compressed code regions, which causes the
minimal energy contribution of the dictionary in configuration D, compared to C. When the
dictionary can be used for a significant part of the application, and the loop buffer usage is
limited, as is the case for aes and blowfish, having a dictionary improves energy efficiency
over just having a loop buffer. For mips the energy savings of both the loop buffer and
dictionary are limited, as neither can be used effectively.

For the Embench benchmarks we consider the L.1-128, LB-16 configuration, as most
applications have smaller inner loops and working sets when compared to CHStone applica-
tions. On average, extending configuration B with a loop buffer (B— D) leads to an additional
4.5% energy savings. The LB is heavily utilized for crc32 (99.7%), edn (84.5%), matmult-int
(88.3%) and tarfind (69.5%). In these benchmarks the compressed loops mostly overlap with
the LB. For huffbench, primecount and grduino adding a dictionary improves the energy effi-
ciency only slightly, due to the low dynamic CR. For primecount and grduino a loop buffer
cannot be effectively used, which results in a small energy penalty due to the idle overhead
of the LB.

It should be noted that the current compression algorithm does not consider the LB as part
of the system. This leads to compressing parts of the code that will end up in the LB anyway,
thereby not optimally using the limited dictionary space.
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Asaconclusion, adding our dictionary compression scheme in conjunction with an already
energy-saving LB can help in reducing instruction stream energy consumption in processors
especially when the LB cannot be used efficiently for all loops. Although the LB is an energy-
efficient component due to its simple nature and removal of loop iteration overheads, its use
is limited in complex applications. From the perspective of our compression method, the
presence of the LB should be taken into account when performing program compression,
and the development of such compression algorithms requires further research.

6.6 Comparison with previous work

Table 4 presents comparison with previous work on code compression. The majority of
previous research measures its effectiveness with static CR and impact on performance,
whereas only a few works report dynamic CR. Similarly, the effect on energy consumption is
typically not measured. Although the numbers reported in previous work have been produced
in various system setups, the comparison provides ballpark numbers to the effectiveness of
compression. The dynamic CR results are also similar on average. Although the dynamic CR
reported by Thuresson et al. [25] is significantly lower than other methods, we previously
observed [27] that large loops result in significant dictionary programming overheads in their
method. As the dictionary entry amounts are fixed at design time and their method compresses
all program instructions, dictionary programming is required at each loop iteration if the loop
instructions require more entries than the dictionary has.

Itis interesting to note that Seong et al. [15] and Shrivastava & Mishra [22] reported similar
significant improvements in static CR, when a bitmask scheme was used in conjunction with
dictionary compression. This suggests that there could be further gains to be achieved also
for our approach. However, the authors did not measure the effect on dynamic CR which is
the primary target of our method.

Previous works typically report execution time improvements due to improved cache hit
ratios. However, this suggests that the evaluated caches are relatively small and result in rela-
tively many misses during execution, or that the baseline compression method itself incurs a
performance overhead which is then improved in the work. Unlike this work, they do not eval-
uate energy consumption. In our evaluation in an embedded system scenario we found that it
is typically beneficial for energy consumption if the cache is large enough to accommodate
frequently executed loops, as filling the cache from the next level in instruction stream hier-
archy is expensive. Our compression method does not add significantly to program execution
time when compared to the baseline system. In this light, the comparison of performance
improvements is not meaningful as we reach the lowest energy consumption with already
relatively large caches whose hit rates are not further improved with compression.

Although only a few works have evaluated the effect of compression on energy con-
sumption, the reported results have been significant. Similar to our work, Benini et al. [19]
observed that the improvements of code compression on dynamic CR are reduced in a systems
containing an instruction cache, as the cache itself reduces memory traffic.

7 Conclusion
This paper presented our programmable code compression method, which reduces energy

consumption by improving the dynamic compression ratio and reducing the amount of
accesses to higher hierarchy levels of the instruction stream. Based on a literature review of
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Table4 Comparison of previous code compression methods. Reported results

Static CR Dynamic CR  Runtime w.r.t. baseline ~ Energy w.r.t baseline

CCRP [12] 0.73 0.67—0.86 0.75—1.10

Lefurgy et al. [13] 0.61-0.74 1.0

Benini et al. [23] 0.41-0.52

Lekatsas et al. [18] 0.38—0.89

Benini et al. [19] 0.59—1.28 0.25-1.3 0.38—1.98 0.35—-1.9
Netto et al. [20] 0.71-0.88 0.78

Das et al. [21] 0.70—0.90

Brorsson & Collin [24] 0.67—0.79  0.50—0.80 1.08—1.12 0.50—0.91
Xie et al. [14] 0.56—0.83

Linetal. [17] 0.74—0.83

Seong et al. [15] 0.55—-0.65

Thuresson et al. [25] 0.88—0.96 0.42 1.01

Bonny & Henkel [16] 0.42—0.50 1.13—1.18

Shrivastava & Mishra [22]  0.60—0.65 0.05—1.0

This work 0.71-1.10  0.56—0.91 1.00—1.01 0.09—0.20

energy-efficient design approaches for code compression, we divided instructions into fields
which are compressed individually using parallel dictionaries. We then grouped selectively
compressed instructions into fixed-length bundles, and aligned them with uncompressed
instructions. The contents of the parallel dictionaries were programmed during runtime by
using special instructions. This was done outside of loop regions to avoid excessive perfor-
mance overheads.

We also described an approach to select parallel dictionary sizes based on an analytical
energy consumption model, and a method using the same analytical model to estimate the
best instruction stream hierarchy in terms of energy consumption including an L1 instruction
cache, a loop buffer, and our programmable dictionary compression.

To demonstrate applicability on different processor architectures, we evaluated our method
on a VLIW processor in addition to a previous evaluation on a RISC-V single-issue processor.
The VLIW evaluation was done using benchmarks from CHStone and Embench suites.
Our approach resulted in dynamic compression ratios of 0.71 and 0.69 averaged for the
benchmark suites, similar to the previously obtained RISC-V results. Unlike the state-of-
the-art programmable dictionary compression, our method resulted in negligible runtime
overheads while producing good dynamic compression ratios.

To evaluate the effect of instruction stream components, we chose a system consisting of
an SRAM instruction memory and the VLIW core as the baseline. This configuration was
extended with an L1 cache. On average, extending this system with adictionary leads to 11.4%
and 3.8% system energy savings, for the CHStone and Embench benchmarks, respectively.
Adding a loop buffer improves the energy efficiency by an additional 19.8% and 4.5% on
average for the CHStone and Embench, respectively. This complete instruction delivery
optimization consisting of an L1 cache, dictionary compression, and loop buffer reduces
the relative energy to 0.14 and 0.15 on average for the CHStone and Embench benchmarks,
respectively. For simple applications consisting of straightforward loops, a loop buffer allows
the instruction stream’s proportion of total energy consumption to reach relatively low values.
However, having dictionary compression and a loop buffer in a system helps in reducing
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energy consumption in more complex applications containing loops where the loop buffer
cannot be used.

Investigating the effects of whole-program analysis and more fine-grained compression
region selection inside nested loops is left as future work. In addition, further research on
compression algorithms is necessary in case of systems containing dictionary compression
and a loop buffer. Our approach will also likely benefit from at least two complementing
methods: Instruction re-encoding [16] and using bitmasks to indicate differences between
similar instructions [15].
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