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Abstract:We investigate strongly nonlinear stationary gravitywaveswhich experience refraction due to a thin
vertical shear layer of horizontal background wind. The velocity amplitude of the waves is of the same order
of magnitude as the background �ow and hence the self-inducedmean �ow alters the modulation properties
to leading order. In this theoretical study, we show that the stability of such a refracted wave depends on the
classical modulation stability criterion for each individual layer, above and below the shearing. Additionally,
the stability is conditioned by novel instability criteria providing bounds on the mean-�ow horizontal wind
and the amplitude of the wave. A necessary condition for instability is that the mean-�ow horizontal wind in
the upper layer is stronger than the wind in the lower layer.
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1 Introduction
The importance of gravitywaves for the atmospheric dynamics andhence forweather and climate forecasting
was established in [6] and [18]. Gravity waves redistribute energy vertically and thereby couple the di�erent
layers of the atmosphere [3, 10]. Usually excited in the troposphere, gravity waves may persist deep into the
upper atmospheric layers [11–13]. On their journey through the atmospheric layers they may interact with
the mean �ow. They exert drag onto the horizontal mean-�ow, produce heat when dissipating [2], and in-
duce mixing of tracer constituents such as green-house gases [22]. To this day, many questions regarding the
sources, propagation and dissipation of gravity waves are still to be answered.

From a conceptional point of view, three distinct types of theories—each with its own bene�ts and
challenges—may be employed to study these questions. First and foremost, linear wave theory provides the
foundation for our understanding of gravity waves. It predicts dispersion, refraction, re�ection, wave packet
formation etc. as long as the amplitudes of the waves can be considered to be in�nitesimally small [5].

For large-amplitude gravity waves, perturbation theory is a versatile and powerful tool leading to weakly
nonlinear wave theory. The key idea of weakly nonlinear theory is to expand the linear solution to the �uid
dynamical equations in an asymptotic series assuming �nite but small amplitude. Corrections of the order
of the amplitude squared to the linear model add new phenomena to wave theory such as wave-mean-�ow
interaction and modulational instabilities [16, 26–29]. For internal gravity waves in the oceans, weakly non-
linear theory is almost always su�cient. However, this is often not the case for atmospheric gravity waves.
When excited over mountains, tropospheric gravity waves may have amplitudes of the order of magnitude of
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the background wind. In the stratosphere and higher, such strong amplitudes are rather the rule than the ex-
ception [9]. The e�ect of increasing amplitude with height is due to anelastic ampli�cation which is absent in
the ocean and caused by the compressibility of air. Themajority of atmospheric gravity waves is excited in the
troposphere. When they extend into higher altitudes, they encounter exponentially decreasing background
density. Due to energy conservation the waves grow exponentially causing strong amplitudes.

The mathematical description of gravity waves beyond weakly nonlinear theory was pioneered by
Grimshaw [14, 15] and further analyzed in [1] and also [24] in terms of modulation equations. In this asymp-
totic theory the small expansion parameter is the ratio between the scale on which the background changes
and the wavelength. There is, however, no further restriction on the velocity amplitude and therefore it is
allowed to be of the same order as the background �ow in contrast to weakly nonlinear theory where the am-
plitude itself is the expansion parameter. Hence, we may call Grimshaw’s modulation equations a strongly
nonlinear wave theory.

The notion of “strongly nonlinear” is stipulated in the following sense. A superposition of solutions from
the class of strongly nonlinear waves does not lead to small errors when inserted into the governing equa-
tions (the Euler or Navier-Stokes equations) as it is the case for the weakly nonlinear theory. Instead such a
superposition generates terms by wave-wave interaction of order unity in the asymptotic limit. However, this
notion does not necessarily imply that the nonlinearities in the governing equation, i.e. the advection terms,
are bigger than the pressure gradient term, say, in terms of non-dimensional analysis. In fact, the asymptotic
expansion of Grimshaw’s theory is such that the perturbation advection terms vanish due to the solenoidal-
ity of the wind �eld. Some theoretical investigations on strongly nonlinear e�ects and their implications with
respect to observations and modeling were performed in [23, 25]. In [25], the spectral stability of strongly
nonlinear wave packets of �nite extent was studied. Among others it was found that, due to very large ampli-
tudes, the velocity of the envelope and the linear group velocity, as given by the derivative of the frequency
with respect to wavenumber, do not necessarily coincide anymore. This property has direct implication for
the interpretation of measurements. In [23], strongly nonlinear, saturated waves where investigated where it
was shown that modulational instabilities may lead to secondary wave generation by direct wave-mean-�ow
interaction.

The objective of this paper is to investigate the interaction of strongly nonlinear waves with a very thin
shear layer. This renders a common situation in the real atmosphere, e.g., when a mountain wave meets
the tropospheric jet and gets refracted [7]. In the setting of linear theory, this situation was studied in the
seminal work [8] using a layered model. They approximated the height-dependent background by piecewise
constant functions. This idea was advanced in [19] for linear wave packets. Wewill adopt the idea of a layered
background atmosphere but for strongly nonlinear waves.

Our main results are necessary and su�cient criteria for the stability of a refracted non-hydrostatic wave
in a two-layered background. If the mean-�ow horizontal wind in the lower layer is stronger than the wind
in the upper layer, then the wave is stable with respect to the modulation equations. If, however, the upper-
layer mean-�ow horizontal wind is stronger, which typically occurs for a gravity wave entering the jet, the
refracted wave becomes unstable if both mean-�ow horizontal winds meet particular upper bounds and if
the amplitude of the wave is su�ciently large.

This work is structured as follows. In section 2, we will introduce Grimshaw’s modulation equations as
our governing equations. Section 3 will be dedicated to the strongly nonlinear wave refracted at a discontinu-
ity as a particular solution to the modulation equations. We will provide numerical evidence for the asymp-
totic consistency of such a wave solution in section 4. The stability of the refracted wave will be analyzed in
section 5. We will summarize the results in section 6 and o�er some concluding remarks in section 7.

In an envisaged second part of the paper, we will investigate the wave solution and the stability results
numerically by means of Large Eddy Simulations.
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2 The model equations
We consider vertically modulated, horizontally periodic, non-hydrostatic, and strongly nonlinear gravity
waves in the unbounded x-z-plane which we model by Grimshaw’s modulation equations [1, 15, 24],

∂kz
∂t + ∂ω∂z = 0 (1a)

ρ ∂a∂t +
∂
∂z (ω̂

′ρa) = 0 (1b)

ρ ∂u∂t +
∂
∂z (ω̂

′kxρa) = 0. (1c)

This coupled set of equations governs the evolution of vertical wavenumber kz, wave action density ρa, and
mean-�ow horizontal wind u. The horizontal wavenumber kx = Kx is a constant being, without loss of gen-
erality, positive. In general, this assumption might be relaxed to horizontally slowly varying wave �elds as
in [24]. The extrinsic frequency ω = ω̂ + kxu is determined by the Doppler-shifted intrinsic frequency which
depends on wavenumber due to the dispersion relation for non-hydrostatic waves,

ω̂ = Nkx
|kkk| , |kkk| =

√
k2x + k2z . (2)

Its derivative with respect to the vertical wavenumber,

ω̂′ = −Nkxkz
|kkk|3 , (3)

represents the vertical linear group velocity. Two coe�cients appear representing the background state of
the atmosphere, the Brunt-Väisälä frequency N and the density ρ which are generally functions of altitude,
z. However, we apply the Boussinesq assumption such that

ρ, N = const. (4)

In Whitham’s modulation theory [29], equation (1a) represents conservation of waves. The second equa-
tion (1b) yields conservation of wave action. Finally, (1c) describes the acceleration of mean-�ow horizontal
momentum due to the convergence of the �ux of horizontal pseudo-momentum kxρa.

3 The refracted wave solution
In this section, we construct an analytical solution to the modulation equations reminiscent of a typical
mountain wave that encounters a jet at a certain height—e.g. the tropospheric or mesospheric jet—and ex-
periences refraction. This is a classical situation from linear wave theory. In contrast to linear theory how-
ever, we will see that the wave modi�es the background �ow by direct nonlinear interaction resulting in a
self-induced mean �ow and Doppler shifting.

When multiplying kx to (1b), then subtracting (1c) and integrating we �nd

u(z, t) = kxa(z, t) + U0(z). (5)

We also �nd U0 as an integration constant that can be identi�ed as the horizontal backgroundwind, thewind
without the occurrence of a wave (a = 0), and u is really the mean-�ow horizontal wind.

Let us consider a vertically sheared background �ow being piecewise constant with the discontinuity at
z = 0,

U0(z) =
{
U0
1 , z < 0,

U0
2 , z > 0.

(6)
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Then a stationary solution is given by

(kz(z, t), a(z, t))T = (Kz(z), A(z))T =
{
(Kz,1, A1)T, z < 0,
(Kz,2, A2)T, z > 0.

(7)

The mean-�ow horizontal wind really becomes a diagnostic variable due to (5),

u(z, t) = U(z) =
{
U1, z < 0,
U2, z > 0,

Uj = KxAj + U0
j , j = 1, 2. (8)

Here and further on in this investigation, j = 1 denotes the layer below and j = 2 the layer above the discon-
tinuity at z = 0. The constant pieces are determined by integration of (1a) and (1b),

ω̂(Kz,j) + KxUj = constant, (9a)
ω̂′(Kz,j)Aj = constant. (9b)

The integration constant in (9a) must be zero as the extrinsic frequency is readily the derivative of the phase
function with respect to time. Therefore, a stationary phase requires vanishing frequency. By means of this
argument and (2), (9a) can be rearranged to obtain

Kz,j = −
√
N2

U2
j
− K2x . (10)

Equation (9b) provides an interesting physical implication: the vertical wave action �ux is invariant through-
out the layered atmosphere. And in particular, it is constant crossing the interface of the two layers. It can be
shown that this invariance is equivalent to perfect transmission in linear theory ([19] and references therein)
where the transmission coe�cient is de�ned as

TC = Kz,2|B2|2

Kz,1|B1|2
= 1 (11)

whereBj is the buoyancy amplitude being linked to the wave action density via

Aj =
2|Bj|2

N2ω̂(Kz,j)
. (12)

And consequently the re�exion coe�cient ful�lls RC = 1 − TC = 0. Therefore, our refracted wave solution is
valid in the linear limit. Whether it is also valid for large amplitudes, will be veri�ed in section 4.

We need to revisit (10). In order to ensure internal waves we must �nd

Jj ≡
N2

K2xU2
j
> 1 for all j = 1, 2. (13)

Otherwise thediscriminant in (10) is negative corresponding to evanescent or rather externalwaves, i.e.waves
that propagate only in the horizontal direction. Here, we have introduced a new parameter Jj which will be-
come convenient in the analysis of section 5. Please note that the mean-�ow horizontal wind u has become a
diagnostic variable due to (5). Let us concatenate the prognostic variables of the wave solution into a vector,

PPP(z) = (Kz , A)T. (14)

Before we come to the main part of this paper, the stability of the refracted wave, we will test the asymp-
totic validity of this solution numerically.
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4 Asymptotic consistency of the refracted wave solution
Grimshaw’s modulation equations as presented in section 2 (c.f. (1)) are based onWentzel-Kramers-Brillouin
(WKB) theory which assumes a length scale separation between the background variation and the wave-
length. In the present contextwhere the vertical shear layer has a discontinuous shape this assumption is nat-
urally violated. The modulation equations are formulated on a spatial scale comparable to the scale height,
approximately 10 km, forwaveswithmuch smaller vertical wavelengths of around 1 km. If we assume that the
thickness of the shear layer is of similar order of magnitude as the wavelength, then the change inmean-�ow
horizontal velocity appears as a discontinuous jump in the modulation equations. To consolidate the use
of the modulation equations in this limit of a background shear layer thickness comparable to the vertical
wavelength, we employ numerical simulations of the Euler equations for various refracted wave solutions.

4.1 The model setup

For our parameter study we utilize the Large Eddy Simulation code PincFloit in Boussinesq mode with a
second-order MUSCL scheme and a MC Flux limiter [20, 30]. The time integration follows an explicit third-
order Runge-Kutta scheme. To test the validity of the strongly nonlinear refracted wave solution, we choose
a vertically sheared layer in terms of the mean-�ow horizontal wind of the form

U(z) = U1 +
1
2(U2 − U1) tanh

( z
h

)
(15)

where the length scale parameter h controls the shear layer thickness. Furthermore, we consider a stationary
wave obeying (9) generated by (15). The shear layer is then mirrored in the vertical with a matching wave
phase at the boundaries such that vertical periodic boundary conditions can be applied. For such a setup to
be meaningful one has to consider the following constraints.
1. The shear layers andmodel boundariesmust be separatedwell enough to ensure that the periodic bound-

ary condition is practically ful�lled.
2. The well-known static stability criterion [4] must not be violated, that is the buoyancy amplitude of the

wave must satisfy

|B| = αN2/|Kz| < N2/|Kz| (16)

on the entire domain where we call α < 1 the normalized amplitude.
3. The phase of the wave de�ned similarly to (10) must match at the model boundary, that is

z2∫
z1

Kz(z) dz = 2π n, Kz(z) = −
√

N2

U(z)2 − K
2
x (17)

with an arbitrary integer n ∈ Z and the model bounds z1 and z2.
4. The horizontal domain must be characterized by periodic boundary conditions and a domain size being

a multiple of the chosen horizontal wavelengths, λx. That is

lλx = l2πKx
= x2 − x1 (18)

where x1 and x2 are the left and right model bounds and l is an arbitrary integer l ∈ Z.
In accordancewith the scaling assumptionswe choose the parameters summarized in table 1. From these val-
ues we �nd the vertical wavelengths λz,1 = 959m below the shear layer and λz,2 = 1654m above the shear
layer. In order to fully resolve the waves, we choose a vertical resolution of 40m and a horizontal resolution
of 156m. The time step is chosen dynamically by means of a Courant-Friedrichs-Lewy criterion. Initial condi-
tions near the shear layer as described in section 3 are depicted in �gure 1. Here we compare the anticipated
refracted solution for a narrow shear layer with h = 400m ∼ λz (�gure 1a) to a refracted wave solution with
a broad shear layer with h = 4000m� λz (�gure 1b).
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Table 1: Summary of simulation parameters.

parameter value parameter value
∆x 156 m ∆z 40 m
U1 -1.5 ms−1 U2 -2.5 ms−1

N 10−2 s−1 h 0. . .4 km
x1 0 km x2 10 km
λx 5 km α1 0.8
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Figure 1: Initial conditions corresponding to the refracted wave solutions of the (WKB) modulation equations near the shear
layer for h = 400m (a) and h = 4000m (b). The color plots show the vertical velocity corresponding to the wave solution as a
function of x and z. For comparison the shapes of the shear layers are shown.

4.2 The regime of shear layer thickness comparable to the vertical wavelength

Before numerically measuring the validity of the refracted wave solution, it is worth noting that Grimshaw’s
modulation equations (1) are derived under the assumption of the aforementioned scale separation. That is,
vertical length scales comparable to the vertical wavelengths, λz, are of the order of the small parameterO(ε)
relative to themodulation scales of themean �ow, amplitude and phase. Moreover the solution is valid in the
limit ε → 0. Hence, variations in the mean-�ow horizontal wind on scales similar to the vertical wavelength
appear as a discontinuity on the scales of the modulation equations. For the validity of the refracted wave
solution (c.f. section 3) near a discontinuous shear layer on the large scale it is therefore su�cient to show
numerically that the refracted wave solution is valid in the regime h = O(λz).

As a diagnostic for the evolution of the numerical simulations we de�ne a relative error ∆ as follows

∆(x, t) = ‖w(x, z, t) − w(x, z, 0)‖2
‖w(x, z, 0)‖2

(19)

where w(x, z, t) is the vertical velocity and ‖f‖2 is the L2-norm de�ned by

‖f‖2 =

 ζ∫
−ζ

f 2(z) dz


1/2

with ζ = 10km. (20)

We evaluate ∆ for various h at the horizontal center of the domain, x = (x2 − x1)/2, and at a time t = 3h =
10800 s. Note that this time corresponds to the advection time scale given by 1/(KxU) = O(104 s). We �nd
that ∆ is approximately constant for h ≥ 400m at values close to 0.15 (�gure 2a). These correspond to a
small model error presumably caused by the temporal and spatial discretization schemes of the integration.



Nonlinear waves in a sheared atmosphere | 69

0 1000 2000 3000 4000
h (m)

0.14

0.16

0.18

0.20

0.22

0.24
a)

0 1 2 3
time (h)

10

5

0

5

10

he
ig

ht
 (k

m
)

b)

0.4

0.2

0.0

0.2

0.4

w 
(m

s
1 )

Figure 2: (a) Deviation from the initial condition measured by the relative error norm ∆ as de�ned in (19) for various values of h
and (b) Hovmoeller diagram of the vertical velocity w(z, t) in the horizontal center of the domain.

Only in the extreme case of an exactly discontinuous shear layer we �nd a ∆ as large as 0.25 associated to an
adjustment process of the initial conditions.

Since we have h = 400m < 959m ≤ λz, we conclude that the solution suggested in section 3 is asymp-
totically valid in the regime h = O(λz). For a qualitative visualization we show a Hovmoeller diagram of the
vertical velocity at the horizontal center of the domain for h = 400m (�gure 2b). We observe that the station-
ary solution remains visually unperturbed throughout the whole integration even though the normalized
amplitude is as large as α = 0.8. This con�rms the hypothesis that the refracted wave solutions are indeed
valid for h = O(λz) even for very large amplitudes.

Summarizing,wehave employednumerical simulations of the Euler equations for the proposed refracted
wave solutions in thepresence of a shear layerwith varying thickness, characterizedby the length scale h. The
results con�rm that the refracted wave solution is indeed valid in the regime h = O(λz), not only in the linear
regime but also for strongly nonlinear waves with a normalized amplitude as large as α = 0.8. In particular,
we have shown that Grimshaw’s modulation equations still apply even for very thin shear layers.

5 Modulational stability of the refracted wave
In this section, we will study the stability of the refracted wave solution with regard to the modulation equa-
tions. For a more detailed discussion about the perturbation ansatz we refer the interested reader to [25]. Lin-
earizing the governing equations reduced by (5) around the stationary solution PPP combined with an ansatz
for the perturbation

ppp(z, t) = p̃pp(z)eλt , ppp(z, t) = (kz , a)T (21)

yields an eigenvalue problem (L − λ)p̃pp = 0 for a linear di�erential operator L which can be reformulated as
an ordinary di�erential equation

dp̃pp(z)
dz = B(z, λ) p̃pp(z). (22)

The coe�cientmatrixB is obtained by inserting ansatz (21) into the governing equations (1) linearized around
the wave solution PPP. It contains the refracted wave solution and is therefore piecewise constant in z,

B(z, λ) =
{
B1, z < 0,
B2, z > 0.

(23)
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where

Bj =
λ

C2j − K2xAjHj

(
−Cj K2x
AjHj −Cj

)
, (24)

Cj = ω̂′(Kz,j) = −NKx
Kz,j
|KKK j|3

, (25)

Hj = ω̂′′(Kz,j) = NKx
2K2z,j − K2x
|KKK j|5

. (26)

To decide about the stability of our refracted wave solution, we will investigate the spectrum of the linear op-
erator posed by the linearized governing equations. Roughly speaking, the spectrum is the set of all λ ∈ C for
which our operator is not invertible. If the spectrum is contained on the left hand side of the complex plane,
i.e. all <(λ) ≤ 0, then we can say the solution is spectrally stable and unstable otherwise. The spectrum
consists of two qualitatively di�erent subsets de�ned by its Fredholm properties: the essential (continuous)
spectrum and the point (matrix-like) spectrum. We elaborated on this de�nition in terms of Fredholm op-
erators in the context of strongly nonlinear gravity waves in [25]. For the sake of brevity, the details are not
repeated in this paper. We refer to the book of Kapitula and Promislow [17] for a detailed introduction and
precise de�nitions.

5.1 The essential spectrum

The essential spectrum is given by the hyperbolicity of thematrix (24) [17, 21]. Amatrix is said to be hyperbolic
if all its eigenvalues have non-zero real part. The boundaries of the open regions in the complex plane which
comprise the essential spectrum coincide exactly with (24) being not hyperbolic. Therefore, the ansatz

det(Bj(λ) − iµ) = 0, µ ∈ R (27)

leads to the temporal eigenvalues

λ±j (µ) = −iCj µ ± iKx
√
AjHj µ (28)

in terms of the purely imaginary eigenvalues of Bj which are referred to as the spatial eigenvalues. Equation
(28) represents four parameterized curves in the complex plane enclosing the essential spectrum. In partic-
ular, we will �nd unstable essential spectrum if one of the boundary curves enters into the right half of the
complex plane as either left or right from the curve we will �nd essential spectrum. This occurs when Hj < 0
which corresponds to the classical modulational instability criterion [16, 23, 25], i.e

|Kz,j|/Kx < 1/
√
2. (29)

The instability growth rate is then Kx
√
Aj|Hj||µ| which happens to be unbounded in µ or in other words

arbitrarily large µ results in arbitrarily large instability growth which would render the problem unphysical
and mathematically ill-posed. The classical modulational stability criterion can be rewritten by insertion of
(10) into (26) as

Jj > 3/2 (30)

providing us with a new lower bound greater than the criterion for non-evanescence in (13).

5.2 The point spectrum

In the following, we assume a stable essential spectrum, so H1 > 0 and H2 > 0. The point spectrum consists
of eigenvalues to which the corresponding eigenfunctions belong. Eigenfunctions must be of the form

p̃pp =
{
p̃pp1, z < 0
p̃pp2, z > 0

, p̃ppj = p̂ppjeσjz + cc (31)
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Figure 3: Sketch of the perturbation

with cc denoting the complex conjugate. We obtain the spatial eigenvalues σj by the solvability condition of
the emerging algebraic system when inserting the ansatz (31) into (22),

σ±j =
λ

±Kx
√
AjHj − Cj

. (32)

Please note that ± indicates two linearly independent solutions. Special care has to be taken for ±Kx
√
AjHj =

Cj. In this very particular case, λ = 0 is the only eigenvalue. Associated basis vectors to the eigenvalues (32)
may be written as

qqq±j = (−K2xσ±j , λ + Cjσ±j )T. (33)

In terms of the basis vectors, the eigenvectors are given by superposition, i.e. linear combination,

p̃ppj = b+j qqq+j eσ
+
j z + b−j qqq−j eσ

−
j z + cc. (34)

To be an eigenfunction at least one of the coe�cients b±j must di�er from zero. Because if all coe�cients
vanish, then the solution is trivial and not an eigenfunction. The eigenfunctionsmust obey three constraints.
1. In the limit z → −∞, the eigenfunctions must vanish.
2. In the limit z → +∞, the eigenfunctions must vanish.
3. At the discontinuity z = 0, the eigenfunctions need to be continuous.
These three constraints constitute perturbations of �nite energy as well as continuous pressure and vertical
wind velocity at the discontinuity of the backround horizontal wind. Figure 3 presents a sketch of the form of
the eigenfunctions in line with the constraints 1–3. They oscillate and decay away from the jump.

Let us �x in the following <(λ) > 0 and by this we ask for unstable eigenvalues. We consider (32) and
distinguish the four di�erent cases that may occur regarding its sign.
• If Kx

√
A1H1 > C1, then <(σ+1) > 0 and <(σ−1) < 0. To meet constraint 1, b−1 = 0 must therefore be true

whereas b+1 ≠ 0 is admissible.
• If Kx

√
A1H1 < C1, then <(σ+1) < 0 and <(σ−1) < 0. To meet constraint 1, b+1 = b−1 = 0 must therefore be

true.
• If Kx

√
A2H2 > C2, then <(σ+2) > 0 and <(σ−2) < 0. To meet constraint 2, b+2 = 0 must therefore be true

whereas b−2 ≠ 0 is admissible.
• If Kx

√
A2H2 < C2, then <(σ+2) < 0 and <(σ−2) < 0. Hence, constraint 2 allows for b+2 ≠ 0 and b−2 ≠ 0.

Next, we investigate the continuity constraint 3, i.e. p̃pp1 = p̃pp2 at z = 0 which yields

b+1qqq+1 = b+2qqq+2 + b−2qqq−2 . (35)

Note that we already anticipated that in all cases b−1 = 0. Given b+1 we can solve (35) for

b+2 =
1
2
+Kx
√
A2H2 − C2

Kx
√
A1H1 − C1

(
1 +
√
H1
H2

)
b+1, (36a)

b−2 =
1
2
−Kx
√
A2H2 − C2

Kx
√
A1H1 − C1

(
1 −
√
H1
H2

)
b+1 . (36b)
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We read immediately from (36) that b+2 = b−2 = 0 if b+1 = 0 which occurs when Kx
√
A1H1 < C1 according

to constraint 1. The latter renders therefore a su�cient condition for stability as, if it is true, there exist only
trivial solution for any<(λ) > 0 andhence it cannot be an eigenvalue. Furthermore, b+2 = 0 ful�lling constraint
2 is only possible if b+1 = 0 due to (36a), but then (36b) yields also b−2 = 0. And again we are left with the trivial
solution. By the same argument, Kx

√
A2H2 > C2 is hence a su�cient condition for stability. In conclusion,

there are nontrivial solutions, which happen to be unstable, if

Kx
√
A2H2 < C2, (37a)

Kx
√
A1H1 > C1. (37b)

6 Summary
In this section, we summarize and reformulate the results of the previous sections. We may rewrite our crite-
rion from the point spectrum in terms of the normalized amplitudes of the waves αj ∈ (0, 1) which relates to
the wave action density by

Aj =
N2

2K2z,j ω̂(Kz,j)
α2j (38)

when combining (12) and (16).
Thus, by inserting (38) and (13) into the criteria (37) and rearranging by means of (25) and (26), the re-

fracted wave is statically stable but unstable due to perturbations from the point spectrum if

1 > α21 >
2
J1
(J1 − 1)2
2J1 − 3

, (39a)

2
J2
(J2 − 1)2
2J2 − 3

> α22 > 0. (39b)

To have unity as the upper bound for the right hand side in (39a) implies that J1 ∈ (2,∞). It represents a
particularly narrowing bound on the amplitude in the lower layer as,

min
J1∈(2,∞)

2
J1
(J1 − 1)2
2J1 − 3

= 8
9 . (40)

The minimum is assumed at J1 = 3, so at best 1 > α1 >
√
8/9 ≈ 0.94. Zero as the lower bound for the left

hand side in (39b) is met if J2 > 3/2 which is the same bound from the stable essential spectrum.
Utilizing the fact that the vertical wave action �ux is invariant across the interface (cf. (9b)), we �nd

C1A1 = C2A2. We combine our �nding with (38) and obtain

α21 =
√
J1 − 1
J2 − 1

J1
J2
α22 (41)

which we substitute in (39). The resulting inequality reads

1
J22

(J2 − 1)3/2
2J2 − 3

> 1
J21

(J1 − 1)3/2
2J1 − 3

(42)

being the same as g(J2) > g(J1). Notice that the function g is continuous as well as monotonically decreasing
in (3/2,∞) and hence

J2 < J1 (43)

which implies due to (13) that |U1| < |U2|.
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In conclusion, a refracted gravity wave, that is statically stable, non-evanescent, non-hydrostatic and
features a stable essential spectrum of the linearizedmodulation equations, becomes unstable due to pertur-
bations from the point spectrum if

|U1| <
1√
2
N
Kx

, |U2| <
√

2
3
N
Kx

, |U1| < |U2| (44a)

and

α21 >
2
J1
(J1 − 1)2
2J1 − 3

, J1 =
N2

K2xU2
1
. (44b)

7 Discussion
On the one hand, the constraint on the normalized amplitude in the lower layer for an emerging instability
is extreme. It is at best 94% of the saturation amplitude or higher. On the other hand, the conditions for the
mean-�ow horizontal wind favorable for instability are fairly common. A typical situation where this type of
instability may occur is the lower edge of the atmospheric jets where a mountain wave enters a strong shear
zone from below and gets refracted into the jet. It is not unlikely that such a wave has large amplitude due to
anelastic ampli�cation.

The perturbation a�ects not only the wave properties but also the mean-�ow horizontal wind as a diag-
nostic variable due to (5). Alsoweobserve that perturbations decay exponentially away from thediscontinuity
of the background wind (cf. �gure 3 for illustration). We conclude therefore that a point-spectrum instability
is localized at the jump. Due to these observations we can suspect an attenuation of the sharp gradient in
the background horizontal wind by an instability from the point spectrum. In conclusion, strongly nonlinear
gravity waves may serve as a mitigation of strongly sheared �ows.

By means of Large Eddy Simulations we will investigate the dynamics of the point-spectrum instabilities
at the shear layer in a successive paper where we will also explore in detail how this mechanism competes
with other known instability processes.
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