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ABSTRACT

Biofouling of polyamide membranes is one of the main barriers faced by reverse osmosis (RO) technologies to supply fresh water. Currently,

biofouling is addressed by feed water pretreatment using chlorine, followed by membrane cleaning. Chlorine damages polyamide mem-

branes and also generates harmful disinfection byproducts. Thus, safer strategies are needed to prevent biofouling in polyamide

membrane systems. This review investigates the applicability of the following non-oxidizing biocides in preventing and controlling biofouling

in RO systems, including their antimicrobial efficiency, hazard levels, membrane compatibility, and applicability to drinking water treatment:

(1) 2,2-dibromo-3-nitrilopropionamide (DBNPA); (2) 2-methyl-4-isothiazolin-3-one (MIT); (3) sodium bisulfite (SBS), (4) phenoxyethanol (PE), (5)

sodium benzoate (SB). According to this review, MIT and DBNPA present most of the features attributed to an ideal anti-biofouling chemical

but also are the most hazardous biocides. Due to safety and efficacy, none of the five chemicals were determined to be the final solution to

address membrane biofouling. However, alternative RO biocide research is in early development and requires further investigation via bio-

fouling prevention studies. Therefore, future research efforts on the investigation of economic, eco-friendly, and safe antifouling agents to

prevent and treat biofouling in RO systems are paramount to promote sustainable water supply in water-stressed countries.
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HIGHLIGHTS

• An evaluation framework for anti-biofouling safety and efficacy is developed.

• DBNPA is a proficient model of biofouling prevention efficacy.

• MIT is a good model for antimicrobial efficacy, although not for safety.

• SBS is a reference for a membrane-compatible antimicrobial.

• PE and SB are good models for safety in biofouling prevention studies.
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GRAPHICAL ABSTRACT

INTRODUCTION

Reverse osmosis technology background

Water scarcity can be defined as the lack of available freshwater resources to meet standard water demand and is one of the
greatest challenges of this century (Arikrishnan & Rajendran 2021; Zhao et al. 2021). According to WHO (2017), 50–100 L of
water per capita per day is needed to ensure the full realization of the right to water. Eke et al. (2020) reported that water

scarcity is exacerbated by many factors, such as water pollution, climate change, population growth, and industrialization.
According to UN-Water (2021), 2.3 billion people live in water-stressed countries, of which 733 million live in critically
water-stressed countries. Clean water technologies such as membrane and thermal desalination may be applied to address
several long-term potable water demands (Gude 2017; Singh et al. 2020; Singh 2021; Singh & Samsher 2021a, 2021b,

2021c; Van Vliet et al. 2021). Reverse osmosis (RO) polyamide membrane technology plays an essential role in addressing
water scarcity due to its capability of producing freshwater from seawater, brackish water, and different types of wastewater
(Kucera 2015; Zhao et al. 2021). The first documentation of RO polyamide membrane systems was in the 1760s (Kucera

2015). Eke et al. (2020) found that in 2020, 16,880 desalination plants were supplying freshwater with a total worldwide
capacity of 97.2 million m3/day. Also, analyzing recent growth rates of the RO desalination market, Zhao et al. (2021) pre-
dicted that the total worldwide capacity of RO plants will double between 2015 and 2025.

Although membrane-based techniques are important to address water scarcity, membrane systems face many challenges,
such as fouling, scaling, and membrane degradation (Kucera 2019; Zhao et al. 2021). One of the main difficulties in RO tech-
nologies is the biofouling of polyamide membranes (Nguyen et al. 2012; Kucera 2019; Zhao et al. 2021). Fazel & Darton

(2001) investigated the membrane autopsies of 150 membranes used in RO applications from all over the world. The results
showed that all membranes presented biofouling, of which 33% had biofouling as the main cause of systems failure. In a simi-
lar study, Pena et al. (2013) reported that 31.3% of 500 membranes presented severe biofouling causing the collapse of the
membrane systems. The prevalence of this challenge makes the search for novel strategies to address biofouling in polyamide

membrane systems necessary to promote sustainable water supply in water-stressed countries.

Biofilm

A biofilm is a complex structure of microorganisms that can include bacteria, fungi, algae, and extracellular polymeric sub-
stances (EPS). EPS is primarily composed of polysaccharides and proteins (Oh et al. 2018; Kucera 2019). Although the

composition of a biofilm is dependent on temperature, pH, flow, osmotic pressure, and nutrient availability, approximately
90% of its mass is EPS and 10% is microorganisms (Nagaraja et al. 2017; Kucera 2019). Biofilms typically develop at
solid and liquid interfaces and their formation is well characterized. The general steps of biofilm formation (Figure 1) are

attachment, microcolony formation, maturation, and dispersion (Oh et al. 2018; Achinas et al. 2019). Bacteria secrete
EPS, which helps additional bacteria to physically attach to the colony, protects them from antimicrobials, and enables
the bacteria in the colony to communicate via molecular signals known as quorum sensing (Waters & Bassler 2005). Because
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Figure 1 | Typical bacterial biofilm life cycle.
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biofilms form readily, become resistant to antimicrobials, and are physically difficult to remove, they pose a challenge to mem-
brane technologies.
Reverse osmosis biofouling

RO biofouling generally occurs when bacteria in the feed water enter the system and migrate to the membrane surface, where
dissolved nutrients are concentrated due to concentration polarization (Dupont 2021). The design of the spiral wound
elements and surface texture of the polyamide membrane create the ideal biofilm growth environment, perfect for attachment

and accumulation of organisms (Dudley & Darton 1997). Microorganism concentrations as low as 1,000 CFU/mL can cause
severe biofouling in membrane systems (Kucera 2015). Understanding the feed water composition is essential for preventing
microbial growth. The source of feed water (brackish water, seawater, or potable water) impacts the growth conditions, influ-

encing the types of microorganisms encountered including pioneer bacteria such as Staphylococcus aureus and
Pseudomonas aeruginosa (Zhang et al. 2006), which are known to initiate biofilms on membrane surfaces (Curtin 2020).
Further, the concentration of contaminants in the water, such as total organic carbon (TOC) greater than 3 mg/L, can provide
sufficient nutrients to promote bacterial build-up (Kucera 2015; Ras 2016). Ultimately, feed water dictates the biofouling

potential of a membrane system, therefore pretreatment processes and bacteria mitigation through chemical or mechanical
means are essential (Al-Ahmad et al. 2000; Kucera 2015).
Effects of biofouling on RO performance

Membrane biofilm formation significantly impacts the performance of RO systems and increases operational and treatment

costs (Kucera 2015; Dupont 2021). Biofouling of ROmembranes always results in an elevated pressure drop and a decrease in
permeate flux (Ivnitsky et al. 2005; Kucera 2015). Pressure drop is the increase in pressure differential between the feed and
concentrate lines and is a direct result of the pressure loss across the membrane due to friction by foulants (Al-Ahmad et al.
2000; Kucera 2015). Permeate flux is the volumetric flow rate of permeate produced over the membrane area (Kucera 2015).
Permeate flux reduction and increased pressure differential are attributed to the increased resistance due to the low per-
meability of the membrane surface caused by the biofilm (Kramer & Tracey 1995; Abd El Aleem et al. 1998). Other

adverse biofouling effects include the decline in permeate quality from membrane degradation, elevated feed pressure result-
ing in an increase in energy requirements, and shortened membrane lifespan due to additional cleaning treatments leading to
degradation and biodegradation as a result of acidic byproducts from bacteria (Kramer & Tracey 1995; Abd El Aleem et al.
1998). Biofouling impacts on RO systems are summarized in Figure 2.

Techniques for monitoring and detection of biofouling in RO systems are implemented in water treatment operations to
prevent biofouling impacts (Ras 2016). Monitoring practices include, but are not limited to, system performance analysis, fre-
quent water sampling of feed water, permeate and concentrate quality, and physical inspection of the systems (Abd El Aleem

et al. 1998). The biofouling indicators include a decrease in the permeate flow, stable salt rejection (percentage of influent
compound retained by the RO membrane), and a large increase in differential pressure between the feed and concentrate
across all stages of the RO elements (Kucera 2015).
://iwaponline.com/aqua/article-pdf/71/2/261/1011024/jws0710261.pdf



Figure 2 | Consequences of biofouling on RO systems (Kramer & Tracey 1995; Flemming 1997; Abd El Aleem et al. 1998; Baker & Dudley
1998; Nguyen et al. 2012; Kucera 2015; Kucera 2019).
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Addressing biofouling in polyamide membrane systems: oxidizing biocide issues

There are several strategies to address biofouling in RO systems (Siddiqui et al. 2017). Kucera (2019) stated that these strat-
egies may be based on membrane modification, membrane disinfection, membrane cleaning, and bacteria or nutrient
modification. Currently, the effects of biofouling on the performance of RO systems are mainly handled by disinfection

and cleaning techniques. Disinfection of polyamide membrane systems is performed via chemical (e.g. biocide treatment)
or physical (e.g. ultraviolet radiation) methods with the objective of killing or disabling microorganisms in the system.
Then, membrane cleaning is done to remove existing biofilms (Kucera 2019). RO systems are typically chemically disinfected

by either shock dosing or continuously dosing biocides into the system. Continuous dosing is defined as maintaining a fixed
concentration of the biocide in the feed stream of the water treatment process, whereas shock dosing is the intermittent
addition of a biocide into the feed stream at higher concentrations and for a limited time (Bott 1998; Bertheas et al.
2009). Shock dosing is typically performed daily or weekly and can be applied on its own or in addition to continuous
dosing. The aim of shock dosing is to remove any biofilm that has formed since the previous shock dose, while continuous
dosing typically uses the minimum concentration of biocide necessary to maintain control of biofilm formation (Bott 1998;
Grant & Bott 2005). Chlorine is the most common oxidizing biocide used to address biofouling of polyamide membrane sys-

tems and is applied during feed water pretreatment (chlorination) (Nguyen et al. 2012; Kucera 2019). This is because
chemical feed water pretreatment with chlorine is effective against a wide range of microorganisms and promotes rapid
cell death even at low concentrations (Kucera 2015). However, the application of chlorine in RO systems is limited by

many factors since it damages polyamide membranes by oxidative degradation (Kim & Park 2015; Kucera 2015, 2019), it
may form harmful and carcinogenic disinfection byproducts, such as halogenated contaminants, trihalomethanes, and halo-
acetic acids (Kim & Park 2015; Kucera 2015; Kucera 2019), and it is not safe to handle (Silva et al. 2020). Thus, due to the

non-compatibility with polyamide membranes and corresponding hazards, chlorine has to be removed from the RO system
after its application in the feed water pretreatment (dechlorination). Since free chlorine cannot be in direct contact with mem-
branes, chlorine disinfection is only able to reduce or delay the biofouling of polyamide membranes (Kim & Park 2015;

Siddiqui et al. 2017; Kucera 2019). Alternatively, non-oxidizing biocides can be applied in contact with polyamide mem-
branes, thus the use of non-oxidizing anti-biofouling agents has been increasing in RO installations as an alternative to
chlorine in many water treatment applications.
Biofilm prevention versus disinfection

It is important to note that disinfection and membrane cleaning techniques are only able to reduce or delay the effect of bio-
fouling in membrane systems (Siddiqui et al. 2017). In order to find long-term sustainable solutions for biofouling,
preventative treatments should be taken into consideration. Munla et al. (2012) showed that once formed, mature biofilms
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can no longer be removed by shear force and the fouling is considered to be irreversible. This is because when forming bio-

films, microorganisms release EPS, which holds the planktonic cells together and anchors them to the membrane surface.
The EPS then becomes very difficult to remove without some sort of mechanical force, as the gel-like substance cross-
links with the membrane surface and increases the mechanical stability of the biofilm (Nguyen et al. 2012). In addition,

once microorganisms are established into a biofilm matrix, they display different properties and express different phenotypes
than those in a planktonic state, leading to increased resistance to biocides (Bridier et al. 2011). According to Barraud et al.
(2006), bacteria in biofilms can be 1,000-fold more resistant to antimicrobials than those in a planktonic state. On the grounds
that the biofilm matrix consists of a structure that biocides generally cannot fully penetrate, bacteria in deeper layers of the

biofilm are exposed to sub-lethal levels of the biocide, resulting in optimal conditions for biocidal tolerance development
(Waters & Bassler 2005; Bridier et al. 2011). Ultimately, biofouling prevention (1) reduces the amount of irreversible fouling,
(2) reduces the formation of more resistant variants of microorganisms, and (3) ultimately requires lower biocide dosing as

compared to biofouling treatment. As a result, biofilm prevention techniques are preferred to promote sustainable water treat-
ment by RO technologies.

Ideal biocide to address biofouling

Bates (1998) described the characteristics of an ideal biocide to prevent and reduce biofouling in polyamide membranes. The

researcher identified that an ideal biocide should have the following characteristics: (1) the biocide should be compatible with
polyamide membranes as well as all system components; (2) it should not pose hazards to human health and the environ-
ment; (3) the biocide should be effective against all types of microorganisms, be able to break up existing biofilms and

disinfect the permeate side; (4) it needs to be biodegradable and inexpensive; and, (5) easy to handle, monitor, and inject
into the membrane systems. Realistically, there is no current biocide available with all of these attributes (Kucera 2019).
The fact that non-oxidizing biocides may potentially be applied in contact with polyamide membranes makes them promising

candidates for long-term biofouling prevention studies. However, few studies were found in the literature that assesses the
application of non-oxidizing biocides to prevent and reduce biofouling in RO polyamide membrane systems and consider
all of these attributes (Siddiqui et al. 2017; Curtin 2020).

Aim and novelty of this paper

This paper intends to fill this research gap by reviewing the ability of five non-oxidizing biocides to prevent biofouling in poly-
amide membrane systems, considering all the attributes identified by Bates (1998), and promoting new, sustainable solutions
to supply water via RO technologies. Specifically, this study presents a review on (a) the applicability of five non-oxidizing

biocides in preventing and controlling biofouling in RO systems, (b) information on new non-oxidizing anti-biofouling
agents under development stages, (c) a comprehensive discussion and analysis on the ability of these biocides to prevent
and control biofouling in regards to the efficiency and feasibility for practical RO application, as well as (d) future research

recommendations.

Biocides

Table 1 details the five non-oxidizing biocides that are discussed in this review. Three biocides are already applied in potable
water applications: (1) 2,2-dibromo-3-nitrilopropionamide – DBNPA (off-line shock feed treatment), (2) 2-methyl-4-isothiazo-

lin-3-one – MIT (off-line shock feed treatment and membrane cleaning), and (3) Sodium bisulfite – SBS (continuous on-line
dechlorination-treatment and membrane storage) (Penna et al. 2002; Williams 2007; Kucera 2015, 2019; Siddiqui et al. 2017).
Since the biocides are currently applied in polyamide membrane systems, they are recognized as reasonable candidates for

biofouling prevention in RO systems. The two remaining biocides are commonly applied as preservatives in home and per-
sonal care products and were selected due to their low associated hazards: Phenoxyethanol (PE) and Sodium benzoate (SB)
(CIR 2001; Buckley et al. 2017; Puschmann et al. 2018; Curtin 2020), making them interesting candidates for biofilm preven-
tion and control.

Each biocide is evaluated on how well it meets the criteria described by Bates (1998), including efficacy in limiting biofilm
formation on RO membranes, membrane compatibility, and relative hazards (Supplementary Material, Figure S1). The effi-
cacy of each biocide is largely determined by its mechanism of action. According to Kucera (2019), biocides are characterized

by their mechanism of action to kill microbiological cells or prevent growth. These groups include electrophiles, with sub-cat-
egories moderate and extreme (oxidants), or membrane-active, with sub-categories lytic and protonophores (Figure 3)
(Chapman 2003). Electrophiles rapidly kill by entering the cell wall or by generating free radicals, which damage intracellular
://iwaponline.com/aqua/article-pdf/71/2/261/1011024/jws0710261.pdf



Table 1 | Structural and chemical formulas of non-oxidizing biocides

Biocide Name CAS-number Chemical formula Structural formula

DBNPA 2,2-dibromo-3-nitrilopropionamide 10222-01-2 C3H2Br2N2O

MIT

2-methyl-4-isothiazolin-3-one 2682-20-4 C4H5NOS

SB

Sodium benzoate 532-32-1 C7H5NaO2

PE

Phenoxyethanol 122-99-6 C8H10O2

SBS

Sodium bisulfite 7631-90-5 NaHSO3

Figure 3 | Mechanism of inactivation by biocides (Chapman 2003; Ferreira et al. 2009; Kim & Park 2016; Kucera 2019).
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proteins, carbohydrates, lipids, and nucleic acids (Amjad 1993). The mechanism of action of membrane-active biocides is the

disruption of the microorganism’s cell membrane function and structure (HNGC 2015). The selection of the correct biocide
depends on the type and number of bacteria present (Cloete et al. 1998). Biofilms can be composed of various bacteria
species, such as fungus, algae, Gram-positive bacteria, Gram-negative bacteria, and yeast, so knowledge of organisms encoun-
tered is important (Cloete et al. 1998). Selecting incorrect biocides or dosages will result in an ineffective disinfection and is

expensive (Cloete et al. 1998). The hazards posed by each biocide are determined from GreenScreen assessments of the
chemicals, and other data collected from the literature (GSC 2021). All biocides are evaluated on their relative risk to the
environment and to human health, including hazards to natural environments, human health after consumption (for cases

of potable water treatment), and human health after handling the chemicals from an operational standpoint. With all of
these attributes considered, the following sections discuss each of the five candidate non-oxidizing biocides and review
their potential to prevent and remove biofouling in RO systems.
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2,2-DIBROMO-3-NITRILOPROPIONAMIDE (DBNPA)

2,2-dibromo-3-nitrilopropionamide (DBNPA) is a halogenated amide and has been documented as an effective non-oxidizing
biocide (Paulus 2005; Kucera 2019). In industry, DBNPA is widely used in water treatment, pulp, and paper but primarily in
the oil industry to treat the water used to prepare fracturing fluids to control microbially induced corrosion of pipes (Paulus

2005; Campa et al. 2019). The application of DBNPA in RO systems is common due to its compatibility with polyamide mem-
branes and fast biocidal response (Al-Juboori & Yusaf 2012; Kucera 2019). The use of DBNPA is prohibited from inline
application for potable water production, due to the harmful toxicity of the hydrolysis byproducts (Blanchard et al. 1987;
Baker & Dudley 1998; Bertheas et al. 2009). The typical membrane application is either by shock (intermittent) or continuous
dosage and is not used for membrane storage because of the short half-life (Ras 2016; Kucera 2019). For instance, the hydroly-
sis half-life values at 25 °C at pH 6.7, 7.7, and 8.0 are 37, 5.8, and 2.0 hours, respectively (Exner et al. 1973). DBNPA acts

rapidly on microorganisms, with a contact time of less than 1 h, and therefore the short half-life is generally not a concern
for water treatment applications (Frayne 2001; HNGC 2015).

Generation

Generally, DBNPA is synthesized with the starting material cyanoacetamide (CAM) and prepared by acid-catalyzed bromi-
nation (Hesse 1896). Polyethylene glycol is the preferred solvent for DBNPA, providing good product stability and solubility

(Wolf & Sterner 1972). DBNPA is soluble in water; however, the solution is only stable in the acidic pH range (Wolf &
Sterner 1972). Therefore, DBNPA is generally available commercially as a 20% active solution in a water/polyethylene
glycol blend (Eachus & Pohlman 2004; Kucera 2019). DBNPA must be stored in non-metal containers, due to incompatibility

with metals (HNGC 2015; Kucera 2019). Moreover, exposure to sunlight (UV) can degrade DBNPA (Exner et al. 1973;
Kucera 2019), significantly reducing the efficacy of the biocide.

Mechanisms of action

DBNPA is an example of a moderate electrophile. Collier et al. (1990) and Slawson et al. (1990) described electrophilic
agents as biocides that react covalently with cellular nucleophiles to inactivate enzymes. Further, studies indicate that elec-

trophiles initiate the formation of intracellular free radicals which contribute to their antimicrobial effects (Chapman & Diehl
1995; Kimura & Nishioka 1997). DBNPA acts by reacting with the sulfur-containing organic molecules in a bacterium cell
such as glutathione or cysteine (Bucs et al. 2018). The reaction is irreversible, resulting in interruption of the transport of com-

pounds, inhibiting the biological processes of the bacterium (Paulus 2005). In summary, DBNPA prevents biofouling rapidly,
by permanently attacking the microbiological cell walls.

DBNPA has a broad spectrum of inactivation, effective at treating Gram-positive and Gram-negative bacteria, yeast, and

fungi (Paulus 2005). However, DBNPA is not particularly effective against algae (Frayne 2001). Studies found in the literature
indicated that DBNPA does not penetrate EPS (Schook et al. 2012; Siddiqui et al. 2017), and therefore DBNPA is not suitable
for removing an established biofilm. For instance, Siddiqui et al. (2017) conducted a study investigating the prevention of bio-
film growth and removal of established biofilms on RO membranes in a bench-top cross-flow system with high biofouling

potential feed water. Results indicated the continuous DBNPA dosage achieved prevention of biofilm accumulation, display-
ing a reduction in pressure drop. In contrast, continuous dosage to an existing biofilm was not effective at removing EPS and
inactive cells or restoring the pressure drop, showing DBNPA is not suitable for curative treatment. However, the DBNPA

dosage was able to prevent further biofilm formation and a further increase in pressure drop (Siddiqui et al. 2017). The results
of the study further confirm that the application of DBNPA is effective for preventing biofouling on RO and not suitable for
removing existing biofilm.

Anti-biofouling effect: dosage and efficacy

In RO applications, DBNPA is typically applied directly to the feed water by continuous injection or shock treatment (Ras

2016; Kucera 2019). The dosage concentration depends on the feed water quality, including the biofouling potential and
required permeate quality (Kucera 2010). A wide range of dosage intervals for continuous and shock injection are rec-
ommended, such as 2.5–10 mg/L for continuous treatment, or shock treatment at 10–30 mg/L for 1–3 h (Schook et al.
2012), every 2–7 days depending on microbial growth (Kucera 2010). Moreover, DBNPA should be applied to a clean mem-
brane for the most effective application for biofouling prevention (Kucera 2019). The biocide is deactivated by reducing
agents, so higher dosages are required in the presence of reducing agents, such as SBS (HNGC 2015). The application of
://iwaponline.com/aqua/article-pdf/71/2/261/1011024/jws0710261.pdf
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DBNPA to control biofouling is more efficient in oxidative conditions compared to reducing environments (Paulus 2005), and

at pH lower than 8 (Schook et al. 2012). Degradation of DBNPA by hydrolysis increases significantly with increasing temp-
eratures and pH (Exner et al. 1973).

Microbial efficacy and dosages of biocides are generally determined by microdilution antimicrobial susceptibility tests

(Fane 2015; Curtin 2020; Curtin et al. 2021). The tests include the minimum inhibitory concentration (MIC), minimum bio-
film eradication concentration (MBEC), minimum biofilm inhibitory concentration (MBIC), and minimum bactericidal
concentration (MBC) (Curtin et al. 2021). According to Andrews (2001), MIC is acknowledged as the ‘gold standard’ for jud-
ging the antimicrobial susceptibility of organisms in the planktonic phase. The author defines MIC as the lowest

concentration of a biocide to inhibit the visible growth of a microorganism after incubation overnight. Further, MIC
values are used by universal diagnostic laboratories to confirm antimicrobial resistance and determine the in vitro activity
of new biocides. The inhibitory values of the non-oxidizing biocides against P. aeruginosa and S. aureus, common pioneer

organisms in membrane systems, for DBNPA and the other selected biocides are displayed in Table 2.

Membrane compatibility

Non-oxidizing biocides, including DBNPA, are commonly used for RO biofouling control since the chemicals can be applied

directly to the RO elements without the concern of damaging the membranes (HNGC 2015; Majamaa et al. 2011). Kim&Park
(2016) studied the membrane compatibility of DBNPA by completing a series of polyamide membrane destruction tests includ-
ing morphological damage and oxidative damage assessments when contacted with the biocide for 24 h at high concentrations

(1,000–100,000 mg/L). The study compared DBNPA to chlorine, an oxidizing biocide known to damage polyamide mem-
branes. The researchers concluded that the polyamide surface layer was not damaged when treated with high
concentrations of DBNPA, which confirms the industry practice of direct application of DBNPA on polyamide membranes.

Human and environmental health hazards

A summary of the human and environmental hazards levels is detailed in Tables 3 and 4. The hazard information for the
biocides was collected from literature, including GreenScreen assessments and other data collected from Pharos (GSC
2021; Pharos 2021). The hazard levels are sourced from the Pharos database, which is based on the thresholds formed by

the Globally Harmonized System of Classification and Labelling of Chemicals and additional benchmarks for endpoints
by the U.S. EPA’s Design for the Environment (Pharos 2021). The biocides with no hazard level data do not signify the
absence of hazard, but an absence of studies in literature or low-confidence results.

DBNPA is a common treatment to prevent biofouling in RO for non-potable water applications (Al-Juboori & Yusaf 2012;
Ras 2016). However, allowable applications are limited due to the chemical toxicity; DBNPA has been classed as an endo-
crine disruptor by the European Chemicals Agency (ECHA 2019). The application of DBNPA for potable water is prohibited,
due to the passage (0.02%) of DBNPA into the permeate (Baker & Dudley 1998; Bertheas et al. 2009; Schook et al. 2012). In
Table 2 | Inhibitory concentrations of non-oxidizing biocides for P. aeruginosa and S. aureus (Biofilm pioneer microorganisms in RO systems)

Biocide

P. aeruginosa S. aureus

MIC MBEC MBC MBIC MIC MBEC MBC MBIC
mg/L mg/L

DBNPA 80a – 80a – 160a – 160a –

MIT 30b 78b – 22.5b 45c – – –

SB 5,000b 32,200b – 25,000b 16,000d 16,384e 32,000d 25,000b

PE 48,000f 120,000b – 36,000b 1,590b – 3,180g –

SBS 780h – – – 512i – 512i –

Note: MIC, minimum inhibitory concentration; MBEC, minimum biofilm eradication concentration; MBC, minimum bactericidal concentration; MBIC, minimum biofilm inhibitory

concentration. ‘–’: inhibitory concentration was not found in the literature. MIC: The lowest concentration of an antimicrobial that inhibits visible growth of a planktonic culture after

overnight incubation. MBEC: The lowest concentration at which biofilm density is reduced by .90% when compared to control OD values. MBC: The lowest concentration of an

antimicrobial that achieves a 99.9% CFU reduction of the initial inoculum of planktonic cells. MBIC: Same as MBEC but the bacterial inoculation occurs with antibiotic exposure. (Macià

et al. 2014; Wu et al. 2015; Curtin et al. 2021).

Source: aKim & Park (2015), bCurtin (2020), cLundov (2010), dWang et al. (2018), eGüven & Onurdağ (2014), fGillings (2010), gGrecka & Szweda (2021), hPenna et al. (2002) and iFrank &

Patel (2007).

om http://iwaponline.com/aqua/article-pdf/71/2/261/1011024/jws0710261.pdf

er 2023



Table 3 | Human hazard levels of non-oxidizing biocides

Biocides Carcinogenicity

Neurotoxicity
single
exposure

Neurotoxicity
repeated
exposure

Skin
sensitization

Respiratory
sensitization

Eye
irritation

Systemic
toxicity
single
exposure

Systemic
toxicity
repeated
exposure

Endocrine
activity

DBNPA Lowa Lowb Lowc Highd – Highd Moderatea – Highd

MIT Lowe Moderatef Lowf Very highe Lowf Very
highe

Moderateg Moderateg Lowe

SB Lowe Lowh Lowh Lowe Moderatei Moderatee Lowh Lowh Lowe

PE Lowj Moderatek Lowk Lowk – Highk – Lowk –

SBS Lowm – – Highn Highn Higho – – –

Hazard levels: very low, low, moderate, high, very high. ‘–’: data gap.

Source: aZheng et al. (2021), bMin et al. (2019), cChen (2012), dECHA (2019), eCanavez et al. (2021), fBurnett et al. (2010), gKim & Choi (2019), hCIR (2001), iSCCP (2005), jJBRC (2007),
kECHA (2015), mEFSA ANS Panel (2016), nVally et al. (2009) and oWalls et al. (2018).

Table 4 | Environmental health hazard levels of non-oxidizing biocides

Biocides Acute mammalian toxicity Acute aquatic toxicity Terrestrial ecotoxicity Bioaccumulation Chronic aquatic toxicity Persistence

DBNPA Very higha Very highb – – – –

MIT Very highc Very highd Moderatec Very lowe Very highd Lowe

SB Lowg Lowg Moderateg Lowg Lowg Lowg

PE Moderatef,h Lowh – Very lowh Lowh Very lowh

SBS Lowi Moderatej – Very lowi – Lowk

Hazard levels: very low, low, moderate, high, very high. ‘–’: data gap.

Source: aAlexander et al. (2001), bChen (2012), cBurnett et al. (2010), dVan Huizen et al. (2017), eSilva et al. (2020), fUNEP (2004), gWHO (2000), hECHA (2015), iEFSA ANS Panel (2016),
jRyon et al. (2002) and kBaker & Dudley (1998).
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addition, appropriate measures and risk management are required for handling DBNPA because the biocide is harmful by
acute exposure by oral or inhalation pathways and is a skin irritant, skin sensitizer, and causes eye damage (ECHA 2019).

When DBNPA is applied to aqueous solutions, such as RO systems, hydrolysis occurs easily due to the short half-life (Ras

2016). There are two known hydrolysis pathways of DBNPA. The primary degradation products by hydrolysis are dibromo-
acetamide (DBAM), dibromoacetic acid, and dibromoacetonitrile (DBAN) (Exner et al. 1973; Blanchard et al. 1987).
Hydrolysis ends with oxalic acid which oxidizes slowly to CO2 (Paulus 2005). Dibromoacetic acid is more persistent in

the environment with a half-life of 300 days (Exner et al. 1973), and DBAN is three times more toxic than DBNPA, with
LC50 values for DBAN of 0.55 mg/L and DBNPA of 1.8 mg/L (Mayes et al. 1985; Blanchard et al. 1987). Due to the harmful
degradation products of DBNPA, there is a concern for human and environmental impacts when DBNPA is applied to water

systems. A secondary degradation pathway of DBNPA occurs when there is a high ratio of TOC to dose of DBNPA. DBNPA
degrades to monobromonitrilopropionamide (MBNPA) and CAM, where MBNPA is two times less toxic compared to
DBNPA, with the LC50 value of MBNPA as 3.4 mg/L (Mayes et al. 1985; Blanchard et al. 1987).

To further understand the aquatic toxicology of DBNPA, Chen (2012) evaluated the chronic toxicity of the chemical in

Daphnia magna and rainbow trout. The researcher evaluated long-term exposure at relatively low concentrations of
DBNPA, ranging from 0.005 to 0.3 ppm and 14–28 days, depending on species. The author concluded that DBNPA affected
the reproduction and survival of Daphnia magna at concentrations starting at 0.053 ppm, and DBNPA affected the growth of

juvenile rainbow trout at a concentration starting at 0.018 ppm after 28 days of exposure. This study showed preliminary evi-
dence that DBNPA has negative impacts on aquatic life (Chen 2012). Overall, proper risk assessment and chemical
management are essential when applying DBNPA to water systems.

Advantages and limitations

One of the major limitations for DBNPA as a biocide is that it is not effective at removing biofilms from polyamide mem-
branes (Siddiqui et al. 2017). This is because DBNPA is only capable of preventing biofouling as it does not penetrate
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EPS and is most effective when applied on clean membranes (Schook et al. 2012; Kucera 2019). Also, DBNPA must be used

off-line for potable water or food and beverage applications (Kucera 2019), due to health hazard concerns of DBNPA and the
harmful hydrolysis degradation products, DBAN and DBAM (Supplementary Material, Tables S1 and S2) (Exner et al. 1973;
Blanchard et al. 1987). DBNPA is very soluble in water, with a water solubility of 15 g/L at 20 °C (Wolf & Sterner 1972) and

degrades easily due to a short half-life. DBNPA half-life decreases with increased pH, which impacts product stability and the
ease of storage and transportation (Al-Juboori & Yusaf 2012). However, the half-life is generally not an issue for preventing
biofouling since the biocidal action occurs rapidly before hydrolysis making DBNPA an advantageous biocide for shock or
continuous dosage for RO, but not effective for membrane storage (Frayne 2001; HNGC 2015; Ras 2016). Continuous injec-

tion can be more expensive in terms of treatment costs, so shock dosages are typically applied (HNGC 2015; Ras 2016;
Kucera 2019). However, the relatively low concentration required for shock dosages provides a more economic biofouling
prevention treatment when compared to other biocides. Overall, DBNPA is beneficial for RO membrane application due

to the fast-acting and effective prevention treatment at low concentrations and compatibility with polyamide membranes
(HNGC 2015; Ras 2016; Kucera 2019).

METHYLISOTHIAZOLINONE (MIT)

2-methyl-4-isothiazolin-3-one (MIT) is a heterocyclic organosulfur compound commonly used in cooling system applications,

industrial water treatment, cosmetics, and daily life products (such as detergents and paints) due to its wide-spectrum biocidal
efficacy against bacteria, fungi, and algae (Frayne 2001; Williams & McGinley 2010; Majamaa et al. 2011; Silva et al. 2020).
MIT is applied in RO applications as a non-oxidizing biocide in cleaning events and membrane storage either alone or in

combination with 5-chloro-2-methyl-4-isothiazolin-3-one (CMIT) in a CMIT/MIT ratio of 3:1 (Collier et al. 1990; Majamaa
et al. 2011; Kucera 2015; Li et al. 2016). According to Kucera (2015), isothiazolinones are a viable choice to control biofoul-
ing in polyamide membrane systems. However, although MIT applications as a non-oxidizing biocide are known to be
effective in various industrial settings, most of the reports found in the literature were focused on biofouling mitigation by

MIT treatment and few studies were found on its capability in preventing biofouling in RO membrane-based water treatment
systems. In other words, although MIT is widely applied in RO installations, its application for biofouling prevention is not
sufficiently studied.

Generation

The first synthesis of MIT was reported in the 1760s (Crow & Leonard 1964). In this process, MIT was produced through the
cyclization of cis-N-methyl-3-thiocyanatoacrylamide with an overall yield of 80% (Silva et al. 2020). Currently, MIT is syn-

thesized via the cyclization of amides that are produced from carboxylic acids (Silva et al. 2020). The popularization of
the mixture of MIT and CMIT as biocides in the RO industry occurred in the late 1980s (Collier et al. 1990). One of the
most commonly used CMIT/MIT biocides available today is marketed under the Kathon™ brand (Frayne 2001; Majamaa

et al. 2011; Park & Kwon 2016; Daulisio & Schneider 2020). The mixture of isothiazolinones is usually marketed at an
active concentration of 1.5% (1.15% of CMIT and 0.35% of MIT) (Frayne 2001; Kim et al. 2019; Daulisio & Schneider
2020). Although the CMIT/MIT mixture is frequently used in RO applications, the most recent isothiazolinone biocide

applications in water treatment have been based on products containing MIT as the only active ingredient (Williams &
McGinley 2010; Wang et al. 2020; Zeng et al. 2020). This is because treatment and disposal of the RO concentrate resulting
from a CMIT/MIT biocide treatment are very expensive, probably due to the high toxicity of CMIT, which is approximately
one hundred times more toxic than MIT (Williams & McGinley 2010; Silva et al. 2020).

Mechanisms of action

MIT is a moderate electrophile that can enter the cell membrane by diffusion or active cell transport (Kucera 2019; Silva et al.
2020). The mechanisms of action of MIT rapidly inhibit bacteria growth by impairing microbial respiration and energy pro-

duction (ATP synthesis) followed by a slow cell death due to the inactivation of enzymes and irreversible cell damage by free
radicals (Frayne 2001; Williams 2006; Kucera 2019; Silva et al. 2020). Within the cell, the electron-deficient N–S bond of
isothiazolinone reacts with nucleophilic groups, such as thiols present in the active sites of many enzymes and in proteins,

inhibiting enzymatic activity. The nucleophilic reactions between MIT and thiol-containing compounds impair microbial res-
piration, energy production, and other microbial functions causing growth inhibition and cellular death (Collier et al. 1990;
Williams 2006; Kucera 2019; Silva et al. 2020). Microbial growth inhibition usually takes a few minutes and the cell death
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might take several hours (Morley et al. 2005; Kucera 2019; Silva et al. 2020). The slow kinetics of inactivation can be over-

come by increasing the biocide concentration or adding surfactants (Kucera 2019; Liu et al. 2020).
Notably, MIT presents high antimicrobial efficacy against a wide range of microorganisms, such as bacteria, algae, and

fungi (Williams 2006; Majamaa et al. 2011; Kucera 2015). According to Frayne (2001), this antifoulant has optimal biocidal

efficacy against aerobic and spore-forming bacteria at pH 6.5–9. Furthermore, Frayne (2001), indicates that MIT performs best
as a fungicide and an algicide under acidic-to-slightly-alkaline pH levels. These pH ranges match the operational conditions of
polyamide membrane systems, making the application of MIT as an anti-biofouling agent suitable for RO systems. Williams
(2006), in a study on the mechanism of action of industrial isothiazolinone biocides in water treatment applications, con-

cluded that it is very difficult for microorganisms to build up resistance to MIT because the mechanism of action results
in a wide spectrum of inhibitory pathways. In the RO industry, MIT is frequently applied for both membrane storage and
cleaning. This indicates that this chemical cannot only inhibit microbial growth but also it can remove mature biofilms by

disrupting the EPS matrix of the biofilm (Kucera 2015; Kucera 2019; Liu et al. 2020). Therefore, MIT is capable of preventing
and controlling the biofouling of polyamide membranes.
Anti-biofouling effect: dosage and efficacy

Isothiazolones are applied in RO off-line operations for drinking water treatments at dosage rates ranging from 50 to 120 ppm
(1.5% active isothiazoline) with an exposure time of 5–6 h (Frayne 2001; Williams 2007; Kucera 2019). According to Kucera
(2019), the high dosages and long contact period recommended for biofouling control by MIT treatment make its application
less attractive for on-line or shock treatments. Williams (2007) performed various MIC studies on the antimicrobial efficacy of

MIT against different microbial groups using standard MIC protocols. The experiments also covered a broad range of con-
ditions, such as pH 5–8, temperatures of 24–35 °C, media (complex and defined), and incubation periods (1–7 days). The
authors concluded that MIT is a highly effective biocide. The researchers also reported that MIT maintains an excellent anti-

microbial efficiency against different types of microorganisms and physical stability in wide pH (2–10) and temperature
(5–60 °C) ranges. This conclusion is supported by subsequent literature (Majamaa et al. 2011; Park & Kwon 2016; Silva
et al. 2020).

Although MIT is already widely applied to biofouling control in RO systems, there are no laboratory-scale or pilot-scale
studies on RO membrane-based water treatment system units in the literature regarding the application of MIT to prevent
biofouling of polyamide membranes. However, Curtin et al. (2021) tested the efficacy of MIT, SB, and PE in preventing

and removing single-species static biofilm formation in a 96-well plates experiment using Pseudomonas aeruginosa (a
common biofilm former in RO systems) with a final cell concentration of 1� 106 CFU/mL. To assess the antimicrobial effi-
cacy of these biocides, minimum biofilm eradication concentrations (MBEC) and MBIC were determined based on a relative
fluorescence analysis (LIVE/DEAD BacLight staining method). The experiments were performed at 37 °C for 24 h. In the

biofilm removal experiments, the plates contained the highest concentrations of MIT, PE, SB of 600 mg/L, 960,000 mg/L,
and 250,000 mg/L, respectively, while in the biofilm prevention tests, the highest concentrations were three-quarters of
these concentrations. The results indicated that MIT presented lower inhibitory concentrations as compared to SB and PE

(Table 2). The researchers concluded that MIT was the most effective of the three biocides in removing and preventing bio-
film, showing it to be a good model compound as a reference for biocide efficacy in RO studies.
Membrane compatibility

Isothiazolinone biocides such as MIT are inherently biodegradable into less hazardous compounds, inexpensive, and compa-
tible with polyamide membranes as well as all RO system compartments (Majamaa et al. 2011; Kucera 2015, 2019). Majamaa
et al. (2011) performed long-term membrane compatibility tests with both new and used brackish water polyamide mem-
branes at different temperatures (25 and 40 °C). In this study, Majamaa et al. (2011) compared the membrane

compatibility of a CMIT/MIT mixture with DBNPA and sodium metabisulphite (the current standard chemical used for poly-
amide membrane preservation and storage) at active dosage concentrations of 10 mg/L, 30 mg/L, and 3,900 mg/L,
respectively. The performance of the membranes was assessed on salt rejection, transmembrane pressure drop, and permeate

flow after membrane storage periods of 1, 3, 6, and 12 months. The researchers concluded that both CMIT/MIT and DBNPA
were compatible with polyamide membranes and their application to replace sodium metabisulphite is economically feasible
with CMIT/MIT being the most economical option. Furthermore, the membrane performance results showed that CMIT/
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MIT and DBNPA could control microbial growth during all membrane storage periods (Majamaa et al. 2011; Kucera 2019).

Hence, MIT is compatible with polyamide membranes (Williams 2007; Kucera 2015, 2019; Majamaa et al. 2011).

Human and environmental health hazards

Despite presenting remarkable biocidal efficacy in controlling biofouling in RO applications, isothiazolinones are skin sen-
sitizers, eye irritants, ecotoxic, and allergy triggers (Frayne 2001; Willi et al. 2011; Kucera 2019; Curtin 2020; Silva et al.
2020; Curtin et al. 2021); thus, careful handling is required (Willi et al. 2011; Kucera 2019; Silva et al. 2020). In a literature
review on the toxicity profiles of isothiazolinone biocides, Silva et al. (2020) pointed out that isothiazolinone biocides present

potential health hazards for industrial workers and final product users. Maximum permitted concentrations of CMIT/MIT
biocides and MIT biocides in cosmetics (direct human exposure) are 15 and 100 mg/L, respectively (Aerts et al. 2017;
Silva et al. 2020). Workers exposed to higher CMIT/MIT concentrations (.100 mg/L) may experience harmful effects.

For instance, Willi et al. (2011), in a case study on health effects of handling isothiazolinone biocides in industrial settings,
reported severe skin irritation followed by allergic dermatitis of an industrial worker after handling a 3:1 ratio CMIT/MIT
biocide (product concentration of 100 mg/L) applied to control biofouling in a cooling tower. Besides skin irritation and aller-

gies, human exposure to isothiazolinone biocides might cause respiratory problems (Bourke et al. 1997; Lee et al. 2018; Silva
et al. 2020). Regarding the carcinogenic risk of MIT, recent studies show that MIT is not carcinogenic (Burnett et al. 2010;
Kim et al. 2019; Canavez et al. 2021). Kim et al. (2019) assessed the potential risks to human health of the CMIT/MIT biocide

(Kathon™ brand). The authors reported that the CMIT/MIT biocide (30–300 mg/L) presented no evidence of carcinogenic
effects in a 24-month drinking water study in rats. The researchers also reported that the Kathon biocide (400 mg/L) did
not present dermal carcinogenic effects in mice in a 30 months experiment. Similar results were reported by Burnett et al.
(2010) and Canavez et al. (2021).

Along with human hazards, the application of isothiazolinone biocides may pose environmental health hazards (Wang
et al. 2019; Silva et al. 2020). In an extensive literature review on the safety assessment of MIT, Burnett et al. (2010) reported
many acute mammalian studies which indicated that MIT may be lethal if inhaled or ingested. For instance, an acute oral

study showed that the median lethal doses (LD50) for male and female rats were 274.6 mg and 105.7 mg/kg of body
weight, respectively (Burnett et al. 2010). Aquatic toxicity studies showed that MIT is very toxic to aquatic life (Santos
et al. 2016; Van Huizen et al. 2017; Kucera 2019). Van Huizen et al. (2017) investigated the effects of MIT exposure on

five different planarian species, which are common flatworms found in freshwater streams, lakes, ponds, and rivers. The
researchers found that MIT concentrations higher than 4.5 mg/L are lethal to planarians. It also was noted that planarians
exposed to MIT concentrations of approximately 1.7 mg/L presented neuromuscular and epithelial-integrity defects. Further-
more, Santos et al. (2016) assessed the effect of MIT exposure on Xenopus laevis embryos and tadpoles (the South African

clawed frog) wound healing and tail regeneration to investigate the adverse effects of MIT on aquatic animals. The authors
concluded that exposure to MIT impairs tissue regeneration and wound repair in Xenopus laevis which may lead to lethality.
In contrast to these studies, a review by Silva et al. (2020) indicated that MIT is not likely to cause long-term ecological dis-

turbances in aquatic and terrestrial environments because MIT will not persist in the environment due to its rapid biological
and chemical degradation, as well as its diversified modes and rates of dissipation and degradation. The authors also reported
that in several environmental systems, the degradation of MIT will lead to malonamic, malonic, acetic, and formic acids

which will be ultimately converted to CO2 (Supplementary Material, Tables S1 and S2).

Advantages and limitations

The main limitations of MIT biocide treatment are its high toxicity and the long exposure time and high doses needed for
controlling biofouling (Li et al. 2016; Kucera 2019; Silva et al. 2020). Silva et al. (2020) reported many hazards associated
with the industrial use of MIT as a biocide such as high aquatic toxicity and adverse health effects (e.g. eye and skin irritation).
Li et al. (2016) reported that the concentrate containing MIT is not easily and safely disposable, because MIT needs to be

removed from the concentrate as a result of its high toxicity. The researchers also reported that UV radiation and ozonation
can both degrade MIT, providing a possible post-treatment approach for both the concentrate and permeate. However, this
would increase the already high operational cost associated with RO systems. Due to these limitations, Kucera (2019) indi-

cated that MIT might not be ideal for on-line potable water applications.
The main advantages of MIT as an industrial biocide rely on its excellent antimicrobial efficacy, compatibility with poly-

amide membranes, and distinguished biocidal performance in a good range of conditions (Williams 2007; Majamaa et al.
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2011; Kucera 2019). Further, MIT is cost-competitive and very difficult to present microbial resistance (Majamaa et al. 2011;
Kucera 2019). Rapid degradation means that it is unlikely to pose a long-term threat to environmental health (Williams 2007).
According to Kucera (2019), MIT treatment presents an excellent performance in preventing microbial growth in long-term
membrane storage. In addition, MIT is completely soluble in water which facilitates its injection in water treatment appli-

cations (Burnett et al. 2010). However, more studies need to be done to investigate long-term continuous MIT application
for biofouling prevention in RO systems.

SODIUM BISULFITE

Sodium bisulfite is an inorganic salt, commercially used as a reducing agent in cosmetics, and as a preservative in a variety of
food products and pharmaceuticals (Nair et al. 2003; Macedo et al. 2019; Ohara et al. 2020). In industrial water treatment

applications, SBS is regularly dosed as the reducing agent after chlorine disinfection to remove free chlorine from the system
and is widely used as a preservative during long-term membrane storage (Penna et al. 2002; Kucera 2019). The biocide has
also been dosed to protect pipelines from microbially influenced corrosion and as a quenching compound to remove ozone

from drinking water treatment trains (Park et al. 2011; Kucera 2019). Other applications include the preservation of water
softeners and dechlorinating carbon bed filters (Penna et al. 2002). Most SBS solutions are about 33–37% active (Kucera
2019). Due to its varied applications in water treatment systems, antimicrobial properties, and its comparatively low risk
to the environment, SBS may be suitable to use as a preventative biocide in RO systems.

Generation

As per the following chemical reaction, SBS is formed when sodium metabisulfite (SMBS), a decomposable, white powder, is
dissolved in water (Redondo & Lomax 2001).

Na2S2O5 þH2O ! 2 NaHSO3

Since SMBS is readily soluble in water (3,000 g/L in water at 20 °C, according to Ough & Were (2005)), the compounds
may be considered functionally equivalent in water treatment applications. Both compounds are regularly used as preserva-

tives and gradually oxidize and turn into sulfate due to the loss of sulfur dioxide when exposed to air (EFSA ANS Panel 2016).
In solution, SBS speciates into sufilte di-anions (SO2�

3 ), bisulfite anions (HSO3
�), sulfurous acid (H2SO3), and sulfur dioxide

(SO2), in proportions dependent on pH (Roberts et al. 2012). In a 10% aqueous solution of SBS, the pH range of 2.5–5.5

favors the production of sulfurous acid (EFSA ANS Panel 2016). Solid SMBS has a typical shelf life of 4–6 months under
cool, dry storage conditions (Dow 2011). A typical solution life of SBS varies with concentration. At 100,000, 200,000,
and 300,000 ppm, the solution life of SBS is 1 week, 1 month, and 6 months, respectively (Dow 2011).

Mechanisms of action

At higher concentrations, SBS can be used as a non-oxidizing antimicrobial with a relatively simple mechanism of action.
SBS scavenges oxygen, effectively removing it from the surrounding environment and killing aerobic bacteria (Feiner
2006; HNGC 2015). SBS is a cell membrane-active biocide; its strong bactericidal effect comes from inhibiting key enzymes

in microorganisms, such as those involved in energy production (ATP synthesis) and bacterial metabolism (Irwin et al. 2017;
Ohara et al. 2020). Due to its oxygen scavenging potential, the addition of SBS effectively controls aerobic bacterial growth
but simultaneously creates an environment where anaerobic bacteria can proliferate (Kucera 2019). Additionally, Baker &

Dudley (1998) reported that SBS would be ineffective against bacteria that can adapt to anaerobic conditions, such as sul-
phate-reducing bacteria. SBS is described as having a bacteriostatic effect, since it prevents biological growth but does not
remove existing bacteria (Kucera 2019). As a result, SBS will not be effective on mature biofilms or EPS and is only effective

in feed water that has a low potential for fouling. Ohara et al. (2020) reported that SBS had a strong bactericidal effect at pH
4.6. This is supported by other studies which concluded the efficacy of SBS increased in acidic conditions (Penna et al. 2002;
Ryon et al. 2002; Murano et al. 2005). The effect of temperature on the efficacy of SBS was not found in the literature.

Anti-biofouling effect: dosage and efficacy

Sodium bisulfite is commonly used to limit microbial growth in RO systems through shock dosing and is used as the chemical
additive for inhibiting biological growth during membrane storage (Redondo & Lomax 2001; Kucera 2019). For shocking
dosing, 500–1,000 mg/L, or 0.05–0.1 wt% of SBS is dosed in the feed line for 30 min (Dow 2011; Wei et al. 2012; Kucera
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2019). Shock treatment is carried out every 24 h, or when microbial growth is suspected, in order to control aerobic bacteria

(Dow 2011). An SBS solution of 0.1–1% concentration is used to inhibit biofouling during membrane storage (Penna et al.
2002; Wei et al. 2012; Kucera 2019). Redondo & Lomax (2001) reported that continuous dosing of up to 50 ppm SBS in
the feed stream of RO plants was effective in controlling biological fouling, although this was in low-to medium-fouling poten-

tial seawater.
Baker & Dudley (1998) reported on the efficacy of shock dosing SBS as a biocide, stating that after 4 h of exposure at

500 ppm of SBS, there was a 75% kill noted for aerobic marine bacteria. Alternatively, other data indicated kill rates of
up to 99% for seawater microflora at a concentration of 500 ppm SBS with a contact time of 30 min (Baker & Dudley

1998). A study by Murano et al. (2005), on the bactericidal effects of SBS at varying acidic conditions, reported that SBS
did not affect the viability of the target organism (H. pylori) at neutral pH (7.0) and was more effective at a lower pH.
While studying the effects of SBS on pathogenic microorganisms in catheter lumens, Ohara et al. (2020) confirmed that,

at a low pH, SBS has an evident bactericidal effect against both P. aeruginosa and S. aureus. For SBS in particular, the
type of microorganism present in the feed water will have a significant effect on its relative efficacy. Although SBS is effective
at controlling aerobic bacteria, it creates an ideal environment for anaerobic bacteria and can be ineffective against sulfate-

reducing bacteria which are able to adapt to anaerobic conditions (Baker & Dudley 1998). Penna et al. (2002) listed the
lowest concentration of SBS which prevents visible growth of P. aeruginosa, or the MIC, as 780 mg/L. The MIC and
MBC of SBS found for S. aureus was 512 mg/L. The MBEC and MBIC for either target microorganism were not found in

the literature (Table 2).
Concentrations of SBS used for shock dosing and long-term storage of membranes have been largely accepted as industry

standards; however, the results presented by Baker & Dudley (1998) indicate the questionable efficacy of shock dosing SBS.
SBS has been shown to have a strong bactericidal effect on planktonic cells and is a widely used preservative for relatively

clean membranes during long-term storage, although it is not effective against existing biofilms or anaerobic bacteria.

Membrane compatibility

The compatibility of SBS with RO membranes and overall system components is confirmed by the regular use of the biocide
as a preservative during long-term RO membrane storage, application as an agent in membrane feed water pretreatment, and
common use in a variety of other water treatment processes. Wei et al. (2012) studied the effects of polysulfone ultrafiltration

membrane surface modification by the preadsorption of SBS and found that it improved membrane antifouling properties
while increasing flux and salt rejection. No reports were found in the literature as to whether the same effects would be
seen with the adsorption of SBS on polyamide membranes.

Feed water quality should be carefully monitored to ensure compatibility with the proposed biocide. In cases where the

feed water results in the RO membrane being fouled with heavy metals, SBS will partially convert to oxidants, resulting in
membrane degradation (Dow 2011). If chlorine and SBS are being dosed consecutively in the treatment process, the SBS
injection point may lead to an increase in anaerobic biological growth. In combination with chlorination, Hoeck (2017)

noted a decrease in RO membrane biofouling potential when the SBS injection point was placed between dual media filters
and cartridge filters, and biofouling potential increased as the injection point moved closer to the RO membranes. During
membrane storage, SBS scavenges oxygen from the air, producing sodium sulfate and causing a decrease in pH (Kucera

2019). It is recommended to periodically change the bisulfite solution during membrane storage in order to control changes
in pH so as to not lead to membrane degradation. During RO applications, the process pH after the addition of SBS should be
carefully monitored in order to avoid membrane degradation. Additionally, feed water should be analyzed for heavy metals,

which can react with dissolved SBS and foul the membrane. Overall, as evidenced by its wide use as a preservative during
membrane storage and common application in membrane feed water pretreatment, SBS is very compatible with polyamide
membranes in most cases.

Human and environmental health hazards

It is widely accepted that SBS in small doses is a relatively low-hazard antimicrobial, evident from its varied use in food, cos-
metics, and pharmaceutical products. However, concentrated solutions are irritating to the skin, eyes, and mucous

membranes, and even low doses may cause adverse reactions to individuals with sulfite allergies (Budavari et al. 1989;
Kolaei et al. 2012). Many studies have recognized sensitivity to sulfites in some individuals and reported adverse effects
after topical and oral exposure, ranging from asthma, dermatitis, and rhinoconjunctivitis to life-threatening anaphylactic
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and asthmatic reactions (Vally et al. 2009; García-Gavín et al. 2012; Oliphant et al. 2012). At a neutral pH, a large portion of

aqueous SBS will be composed of the sulfite dianion, which is considered to be responsible for the skin sensitization potency
of SBS (Roberts et al. 2012). As such, SBS requires careful handling since it can pose a high human hazard to individuals who
are sensitive to the compound.

In drinkingwater applications, overdosing SBSmay lead to higher levels of the biocide in distributedwater, potentially causing
human health concerns. The bactericidal effect of SBS on beneficial bacteria in the human digestive systemwas studied by Irwin
et al. (2017), concluding that 2 h of exposure to sulfite concentrations between 250 and 500 ppm could substantially alter the gut
and/or mouth microbiome. In RO applications, overdosing SBS may pose an environmental hazard as excess levels of SBS in

either the concentrate or permeate will scavenge oxygen when distributed to receiving waters. The environmental hazard of
SBS was reported by Ryon et al. (2002), who studied the impact on streams from the use of SBS as a dechlorinating agent.
The study concluded that inaccurate dosing or overfeed of SBS can create an excess of sulfite in receiving waters, potentially lead-

ing to decreases in pH and dissolved oxygen, and causing mortality in fish. As a result, according to Redondo & Lomax (2001),
during shock treatments when the permeate contains 1–4% of the concentration of SBS in the feed water, an assessment of the
permeate quality should be completed prior to discharge to evaluate if the permeate requires further treatment.

Sulfite allergies are relatively common; 1.1–4.5% of the general population are sensitive to sulfites and about 39.9% of posi-
tive test results are considered clinically relevant (Madan et al. 2007; García-Gavín et al. 2012; Häberle et al. 2016). The risk
of severe reactions in certain individuals necessitates careful handling of SBS, especially since occupational exposure is one

of the most common sources responsible for the presentation of sulfite sensitivities (Madan et al. 2007; Vally & Misso 2012).
If there are significant levels of SBS in distributed waters, its oxygen scavenging potential has been shown to threaten certain
aquatic environments; however, SBS does not pose a significant risk to the overall environment as it quickly biodegrades
(EFSA ANS Panel 2016).

Advantages and limitations

By reducing oxygen concentrations, SBS controls aerobic bacterial growth and effectively reduces the potential for membrane
fouling. However, the efficacy of shock dosing SBS has been debated for marine bacteria and microflora, and shock dosing
has been proven ineffective against microorganisms that can adapt to anaerobic conditions (Baker & Dudley 1998). Addition-
ally, the application of SBS is limited to relatively clean water, as it is ineffective against existing biofilms and high-fouling

potential water (Redondo & Lomax 2001). SBS dosing is also not recommended in cases where the feed water contains
heavy metals, as they react with SBS residual, forming oxidants and fouling the membrane (Dow 2011). The optimum
dosing concentration of SBS is dependent on the type of microorganism present and varies as the composition of the feed

water changes, making the optimal dosing concentration of the biocide difficult to maintain. Further, SBS is more effective
at a lower pH, which is not compatible with RO system components. Methods for monitoring SBS dosage, other than moni-
toring the pH of the feed water and biocide solution, were not found in the literature. Overdosing SBS will potentially cause a

higher residual concentration in the permeate stream, decreasing pH and dissolved oxygen content thus posing a threat to
aquatic life, or killing gastrointestinal bacteria after human consumption (Ryon et al. 2002; Irwin et al. 2017). As a result,
treatment with SBS requires off-line dosing in potable water applications and careful monitoring of permeate and concentrate
quality when distributing water to sensitive aquatic environments. A study by Majamaa et al. (2011), on the comparison of

non-oxidizing biocides with SMBS, concluded that SBS is a relatively costly method for limiting biofouling in storage, due
to the high concentration of chemical required and short preservation time in comparison to other non-oxidizing biocides.

Although comparatively costly, SBS in solution is easy to use as it can be directly injected into the feed stream during

normal plant operation and can be easily stored as SMBS (Dow 2011). Additionally, SBS is formed by dissolving SMBS
in water, indicating very easy generation (Dow 2011). Other advantages include that, along with limiting microbial fouling
in RO systems, SBS dosing can be used to control colloidal fouling (Redondo & Lomax 2001; Singh 2015) and the acidic

reaction of SBS allows for calcium carbonate control (Wei et al. 2012). Overall, the compatibility of SBS with polyamide
membranes, its widespread use as a preservative during membrane storage, and its easy application make it a worthy prospect
to investigate further as a preventative biocide in RO systems.

PHENOXYETHANOL (PE)

2-phenoxyethanol (PE), an aromatic glycol ether, is widely used as a personal care product preservative due to its broad anti-
microbial activity (Paulus 2005; Puschmann et al. 2018; Akgündüz et al. 2020). PE is commonly added to cosmetic and
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pharmaceutical products, such as hand disinfecting biocidal products and vaccines (ECHA 2018; Puschmann et al. 2018). PE
is a biocide of special interest, due to its chemical and physical properties, including effectiveness as a solvent and antimicro-
bial (Paulus 2005; Lilienblum 2016). The preservative, naturally found in green tea, has a weaker inhibitory effect on desirable
skin-resident bacteria than other cosmetic chemicals preservatives (Lilienblum 2016); therefore, PE is used in a large range of

skincare and cosmetic products, such as mascara and sunscreen creams (Hawley 1971; Gosselin et al. 1976; Kabara 1984).
Although there is no evidence of PE application to industrial water systems in literature studies, PE exhibits beneficial charac-
teristics as a biocide and may have the potential for use on RO systems (Curtin 2020; Curtin et al. 2021).

Generation

2-phenoxyethanol is manufactured by processing phenol with ethylene oxide in the presence of a catalyst under pressure and
high temperatures (Kabara 1984). The preservative is commonly produced in laboratories due to the importance of purity in

the cosmetic and pharmaceutical industry (Akgündüz et al. 2020). Stability of the biocide has been demonstrated and preser-
vative activity does not decrease with time; PE can withstand prolonged storage, transportation, or use (Paulus 2005).

Mechanisms of action

2-phenoxyethanol has a large spectrum of antimicrobial activity and is effective against Gram-negative, Gram-positive, molds,
and yeast (Dréno et al. 2019; Canavez et al. 2021). It is noted that PE is more effective against Gram-positive than Gram-nega-

tive bacteria (Paulus 2005). The mechanism of action of PE is as a lytic membrane-active biocide (Chapman 2003). It acts by
disrupting the bacterial cell membrane, leading to rapid cell lysis and leakage of the cellular protein (Gilbert et al. 1977;
Fitzgerald et al. 1992). PE destabilizes the cell membrane by uncoupling oxidative phosphorylation, preventing respiration,
and obstructing malate dehydrogenase (Dréno et al. 2019), an enzyme responsible for a metabolic reaction pathway

(Cunningham et al. 1997). PE also acts as a biocide by using a direct inhibitory effect on microbial DNA and RNA synthesis
and increases the permeability of the cell membrane to potassium ions (CIR 1990), resulting in cell death.

Anti-biofouling effect: dosage and efficacy

In the health and personal care industries, PE is used as a preservative or antimicrobial agent with the typical concentration
range from 5,000 to 10,000 mg/L (Paulus 2005). The biocidal efficacy of PE is most effective in the pH range of 4–5 (Paulus

2005). According to Paulus (2005), the use of PE alone in formulations is rarely sufficient in terms of efficacy. To increase the
antimicrobial efficacy, PE is generally blended with other preservatives such as dibromodicyanobutane, PHB ester, iodopro-
pinylbutylcarbamate, and formaldehyde.

The efficacy of PE, including the MIC, MBIC, and MBEC are displayed in Table 2. The inhibitory concentrations presented

in Table 2 indicate that PE will be more effective at lower concentrations to prevent biofouling compared to removing the
existing biofilm as indicated by the MBIC and MBEC, respectively. The information also confirms that PE is a weaker anti-
microbial when compared to DBNPA or MIT and will need to be applied to RO at higher concentrations (Kim & Park 2015;

Curtin 2020; Curtin et al. 2021).

Membrane compatibility

There were no studies in the literature of PE being used as a biocide to prevent biofouling in water treatment applications,
including RO, or for membrane storage, therefore, no studies verifying PE compatibility with RO membranes. However,
due to its non-oxidizing nature, we hypothesize that PE is compatible with polyamide membranes.

Human and environmental health hazards

The use of PE is considered safe for consumers of all ages when applied as a preservative in cosmetic products at a maximum
concentration of 10,000 mg/L (DEPA 2015; Lilienblum 2016). PE is a rare sensitizer and is considered one of the most well-

tolerated preservatives used in personal care products (NASMHP 2019). PE can cause toxic effects if inhaled, ingested, or
skin contact, including skin, lung and liver irritation, kidney, and liver damage (Dréno et al. 2019; Akgündüz et al. 2020).
Moreover, the U.S. Food and Drug Administration reported that high doses of PE may cause dehydration, vomiting, nervous

system problems, and diarrhea in infants and nursing mothers (Hall & Al 1981; Mácová et al. 2008). Therefore, safety pre-
cautions and appropriate personal protective equipment must be considered when handling PE concentrations over
10,000 mg/L.
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In several studies, PE is confirmed as a very low hazard for environmental fate, including persistence and bioaccumulation

(ECHA 2015; CPA 2016). Researchers Lyman et al. (1990) estimate that PE will not hydrolyze in the environment because of
the absence of functional groups that hydrolyze under environmental conditions (Supplementary Material, Tables S1 and S2).
In addition, acute aquatic toxicity and chronic aquatic toxicity scored low hazard based on the LC/EC50 and NOEC values

(ECHA 2015). However, the chronic aquatic NOEC values are assigned low confidence and therefore additional testing is
required. In summary, PE generally has minimal impact on the environment and aquatic life and is therefore inherently
safer for water treatment applications than many other choices.

Advantages and limitations

A major limitation of PE involves the low biocidal efficacy, indicated by the high MIC and MBEC values which would result
in higher concentrations needed when applied to RO systems (Curtin 2020; Curtin et al. 2021). The larger dosage will result in

the application of PE to be more expensive, even though the preservative is known to be low cost in the cosmetic industry
(Weyl et al. 1996). As a result of the high concentration required for application, the presence of total dissolved solids will
increase, potentially exceeding water quality guidelines. Another drawback of PE is there is no evidence that PE is compatible

with polyamide membranes, disinfects the permeate, or whether it is more effective at preventing or removing biofouling
when dosed continuously or intermittently. Nevertheless, since PE is a non-oxidizing biocide, it can be hypothesized that
PE will be compatible with polyamide membranes. The advantages of 2-phenoxyethanol include the preservative stability

and solubility (Poudrier 1990; Paulus 2005). PE is soluble in water at 26,700 mg/L water at 20 °C (Haynes 2010). The preser-
vative stability benefits the application for water treatment, including ease of chemical injection, storage, and versatile use
including membrane storage. Other advantages of PE include low environmental and human impact, so handling and dispos-

ing of biocide waste will likely be safe when concentrations are less than 10,000 mg/L (DEPA 2015; ECHA 2015; Lilienblum
2016).

SODIUM BENZOATE

Sodium benzoate is the sodium salt of benzoic acid. Benzoic acid is the simplest aromatic carboxylic acid and it is commonly
found in nature (Qualley et al. 2012). Chipley et al. (2020) reported that SB is inexpensive and easy to obtain. It is used as a
preservative in cosmetic and personal care products, such as foundation, cologne, shampoo, and moisturizer. (CIR 2001). It is
used as an antimicrobial in food and is Generally Recognized as Safe (GRAS) by the United States Food and Drug Admin-

istration up to a concentration of 1,000 mg/L (CFR 2020). Many bacterial and fungal species are effectively inhibited and
killed by SB (Karabay et al. 2006). SB is used in pharmacology to treat urea cycle disorders (Husson et al. 2016), acute hepatic
encephalopathy (Sushma et al. 1992), as an add-on drug to treat schizophrenia (Lane et al. 2013), and in combination with

other compounds to treat various types of headaches (Yucel et al. 1999). SB is not used in polyamide membrane systems but it
is a promising antimicrobial because it is inexpensive, very soluble in water, and kills a variety of microorganisms.

Generation

The synthesis of SB consists of the neutralization of benzoic acid using sodium bicarbonate, sodium carbonate, or sodium
hydroxide (WHO 2000; Johnson et al. 2017) as shown in Figure 4. Benzoic acid is produced by the decarboxylation of phtha-

lic anhydride, alternatively, the chlorination of toluene to benzotrichloride, which is hydrolyzed to benzoic acid (Johnson
et al. 2017). Benzoic acid can also be produced via the liquid phase oxidation of toluene (WHO 2000).

Mechanisms of action

Sodium benzoate is a weak acid with a pKa of 4.2 (Sagoo et al. 2002). Weak acid preservatives are more generally effective at
lower pH values because a larger portion of the acid molecules is neutrally charged. If a molecule is neutrally charged, there is
Figure 4 | Neutralization of benzoic acid.
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a higher chance of it diffusing across a cell membrane. Krebs et al. (1983) showed that benzoate acts as an antifungal against

S. cerevisiae by greatly decreasing the intracellular pH. At low extracellular pH, neutral benzoic acid diffuses into the intra-
cellular space at which point the benzoic acid is subjected to physiological pH 7.4. Since the intracellular pH is higher than
the pKa of benzoic acid, it dissociates from its acidic proton. The yeast was able to maintain a physiological pH in media

conditions that ranged from pH 2.5 to 7.4 in the absence of SB. The researchers noticed there was a great decrease in intra-
cellular adenosine triphosphate (ATP) upon treatment with benzoate. Krebs et al. (1983) hypothesized that benzoate
inhibited glycolytic enzymes such as phosphofructokinase but this hypothesis was rejected when there was no specific block-
age of glycolysis (Warth 1991). Between 60 and 120 mg/L of benzoic acid, Warth (1991) found the fermentation rate, ATP

concentration, and intracellular pH of S. cerevisiae declined. At relatively high benzoic acid concentrations, 0.12–300 mg/L,
growth was fully inhibited but the cells did not rapidly die. A similar mechanism is believed to be the reason for the antibac-
terial effects of SB. When the intracellular pH decreases, the bacterium must pump protons out of the cell to maintain

physiological pH (Chen & Zhong 2018). This pumping consumes ATP which inhibits bacterial growth and can result in
cell death. Based on this mechanism, it is classified as a protonophore (Figure 3). The antimicrobial activity of benzoate is
effective against fungi, Gram-positive bacteria, and Gram-negative bacteria.

Anti-biofouling effect: dosage and efficacy

Table 2 shows the inhibitory concentrations of SB against relevant biofilm pioneer microorganisms. Karabay & Sahin (2005)
reported that SB was effective against methicillin-resistant S. aureus (MRSA), and methicillin-sensitive S. aureus (MSSA) iso-
lates in vitro. MSSA and MRSA isolates were obtained from hospitalized patients. Both isolates were sensitive at SB

concentrations of 32 mg/L and up. Karabay et al. (2006) also studied the activity of SB against Enterococcus species. The
authors found that the minimum concentration of SB used to inhibit 90% of microorganism growth (MIC90) against
E. faecalis was 64 and 32 mg/L against E. faecium. Salmonella species were isolated and cultured from chicken samples

by Er et al. (2014), and the antibacterial properties of preservatives were tested in microtiter plates. The MIC of SB was
found to range from 25 to 250 mg/L at pH 7, whereas the MBEC was 1,600–7,600 mg/L. Bacteria were consistently inhibited
more effectively at lower pH. There have been no experiments using SB to prevent or treat biofouling in RO systems.

Haque et al. (2005) assessed preventing bacterial attachment and biofilm formation in fresh water using SB. The authors
used SB dispersed in solution and entrapped in silicone coatings over a sampling period of 28 days. The optimal concen-
tration of dispersed SB was 700 mg/L. This concentration led to 3.3% biofilm surface coverage (79% reduction relative to
control) of silicone slides after 28 days. The bacteria were isolated from fresh lake water and enriched during the challenge

period of SB incubation.

Membrane compatibility

The direct application of SB in RO systems has not been demonstrated yet. Mohammad & Ali (2002) used SB along with

other chemicals of interest to study rejection rates of polyamide nanofiltration (NF) membranes. The researchers concluded
that SB was consistently rejected by NF membranes and it did not reduce the salt rejection of the membranes over time for
different permeate fluxes signifying no inherent membrane degradation. The results support the potential polyamide NF mem-
brane compatibility with SB; however, no direct analysis of degradation on the polyamide surface was completed. The results

reported by Mohammad & Ali (2002) indicate that SB might also be directly compatible with polyamide RO membranes
since NF membranes and RO membranes are made of the same polymeric materials. This is supported by the mechanism
of antimicrobial action of SB, which is non-oxidizing.

Human and environmental health hazards

The biodegradation of SB is rapid in aerobic, aqueous conditions such as seawater (WHO 2000). No experimental data is
available detailing the accumulation of SB in the environment, but it acts similarly to benzoic acid, which poses a low
environmental hazard (Supplementary Material, Tables S1 and S2). In the mitochondria, SB and glycine are combined to

form hippurate, which is then cleared by the kidneys (Badenhorst et al. 2014). SB is metabolized into hippurate to increase
hydrophilicity, which decreases the diffusion of benzoate back over the inner mitochondrial matrix. Lennerz et al. (2015)
performed oral administration of the GRAS dose of SB in combination with glucose to study its effect on glucose homeostasis

in humans. They found no statistically significant difference in serum insulin or plasma glucose between consumption of glu-
cose beverages with and without SB. Ingestion of SB was found to significantly influence circulating hippurate, acetyl lysine,
and anthranilic acid. Benzoate caused a significant decrease in glycine. Lennerz et al. (2015) provided good insight into the
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acute effects of GRAS benzoate consumption, but the study does not allow us to draw conclusions about long-term exposures

or doses higher than the GRAS dose. Considering this evidence, SB has low human and environmental risk generally, and
especially when compared to other biocides used in water treatment.

Advantages and limitations

Sodium benzoate is very soluble in water, up to 550,000 mg/L (Haque et al. 2005), which enables practical use in RO systems.
SB is relatively inexpensive compared to other non-oxidizing biocides such as MIT and DBNPA. It is similarly priced to PE
and SBS from common chemical suppliers. Depending on the microorganism PE may be more or less effective per dollar

spent than SB (Table 2). SBS is less expensive than SB to achieve similar outcomes. The human and environmental hazards
are low and SB is biodegradable. SB has relatively high MIC, MBIC, and MBEC values, which would require larger doses
when compared to other antimicrobials to achieve similar outcomes (Table 2). This drawback can be offset by how inexpen-
sive it is. According to Mohammad & Ali (2002), SB does not pass into the permeate, and therefore, does not disinfect it. To

date, SB has not been used in RO application but it is a promising biocide that poses a little relative hazard to humans and the
environment (Tables 3 and 4).

OTHER NON-OXIDIZING BIOCIDES

We have selected an additional four non-oxidizing biocides that are promising for use in RO applications. These biocides have

not necessarily been studied in membrane applications, but based on their antimicrobial properties and compatibility, we
believe they should be considered for future research and use. Limited data have been reported on these chemicals and
whether they can effectively prevent biofouling. Human and environmental toxicity studies should be done on these

additional biocides to determine if they are suitable for potable water uses.

Lauroyl arginate ethyl

Lauroyl arginate ethyl (LAE) is a cationic biocide that acts by interacting with the negatively charged membrane of bacteria,

which ruins its integrity (Kim & Park 2016). LAE was approved as a food additive by the FDA in 2005 (U.S. FDA 2005). It is
currently used as a preservative for food and beverages (Woodcock et al. 2009) and is found in some mouthwashes (Pilloni
et al. 2018). Kim & Park (2016) evaluated LAE for use in RO systems and found that it does not damage polyamide mem-

branes. Four bacterial species of interest (P. aeruginosa, E. coli, S. aureus, and E. faecalis) were used to test LAE and
DBNPA to compare antimicrobial activities. LAE had a higher killing effect than DBNPA against every bacteria tested in
suspension. LAE was also superior to DBNPA at inhibiting biofilm formation and destroying biofilms. The water flux of a
polyamide membrane was not influenced by increasing concentrations of LAE except for at 100,000 mg/L which the authors

proposed was caused by residual LAE on the membrane surface. Hawkins et al. (2009) studied the in vitro and in vivometab-
olism of LAE in humans. The authors found LAE was rapidly metabolized into naturally occurring dietary molecules and
concluded it poses little to no safety risk as a food preservative. One drawback of LAE is how expensive it is (Kim &

Park 2016). Overall, because of its low toxicity, antimicrobial properties, and membrane compatibility, LAE is a very prom-
ising chemical for polyamide filtration use.

Polyhexamethylene guanidine hydrochloride

Polyhexamethylene guanidine hydrochloride (PHMGH) is a cationic polymer that has shown to be strongly biocidal yet has
low toxicity to humans (Park et al. 2020). PHMG is written as an ambiguous salt form of PHMG, whereas PHMGH specifies
the hydrochloride salt. Oulé et al. (2008) showed that PHMGH acts as an antimicrobial by causing tears in the cell mem-

brane, which spills the cytoplasmic contents into the media and kills the cell. The positive charge of PHMGH interacts
strongly with bacterial membranes and displaces stabilizing Mg2þ and Ca2þ. Suspensions of S. aureus and P. aeruginosa
were treated with various molecular structures of PHMG by Wei et al. (2009), and it was found that aqueous PHMGH
had excellent antimicrobial activity when the molecular weight was above 640 Da. Kim et al. (2016) subjected rats to aero-

solized 100 nm PHMG-phosphate particles to study pulmonary inflammatory and fibrotic responses. The researchers found
inflammatory cytokines, ROS generation, fibrosis, and airway barrier injuries in the rats. Mathurin et al. (2012) tested
PHMGH against several reference bacteria and fungi. The researchers proposed that PHMGH was less effective against

fungi compared to bacteria because of their rigid cell wall. PHMG was reacted with ethylene glycol diglycidyl ether and sub-
sequently chemically grafted onto polyamide (PA6) membranes (Ye et al. 2020) to study its antimicrobial and chemical
properties. The PHMG bonded to the polyamide membranes inhibited the growth of E. coli and S. aureus by more than
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99.99%. Additionally, the study showed that PHMG did become unbonded from the membrane and leach into the water, and

the modified membranes kept their mechanical properties. It has been used in cooling water systems (Amjad & Demadis
2015) but not in RO systems.

Benzyldimethyldodecyl ammonium chloride

Benzyldimethyldodecyl ammonium chloride (BDMDAC) is a quaternary ammonium salt agent and cationic biocide, rou-
tinely used as a disinfectant in swimming pools and industrial cooling water systems (Ferreira et al. 2009; Liu et al. 2011).
BDMDAC forms an electrostatic bond with the negatively charged sites on microbial cell walls, causing cell lysis, disrup-
tion of cell-wall permeability, and reduced intake of nutrients to the cell (Liu et al. 2011). BDMDAC has very good
inactivation potential, but Gomes et al. (2014) concluded that it was unsuccessful at removing biofilms. Further,

BDMDAC has been found to be notoriously ineffective for Gram-negative bacteria, specifically, P. aeruginosa (Hegstad
et al. 2010). Alternatively, Gomes et al. (2021) found that BDMDAC in combination with mechanical stress was effective
in removing mature biofilms, although not completely. A study by Hegstad et al. (2010) reported that quaternary

ammonium compounds (QACs) generally have poor degradability and that the concentration of QACs in sewage depends
on the alkyl chain length, of which C12 (the alkyl chain length of BDMDAC) was the most prevalent. Additionally, QACs
are generally low cost but can be deactivated by hardness and have poor compatibility with polyanionic polymers (Frayne
2001). The ineffectiveness of BDMDAC on the primary microbiological problem area, Gram-negative bacteria, along with

the observed retention in sewers and receiving waters, limits the application of BDMDAC and other QACs as biocides in
RO systems. As a result, BDMDAC is not considered a promising candidate for application as a preventative biocide in RO
systems.

Sodium nitroprusside

Sodium nitroprusside (SNP), a nitric oxide (NO) donor compound, has a direct effect on biofilm reduction through the

release of the NO free radical. SNP releases NO at picomolar and nanomolar levels, which have been shown to interact
with sessile P. aeruginosa cells and function as a signal for the cells to transition back into a planktonic-like state, resulting
in the reduction of total biofilm surface and the restoration of cell vulnerability to antimicrobials (Barraud et al. 2009; Nguyen

et al. 2012). Alternatively, Nagaraja et al. (2017) concluded that SNP acts by degrading polysaccharides in the biofilm layer.
SNP is highly soluble in water (400 g/L, 25 °C) and has the greatest efficacy at pH 5.0, with decreasing amounts of NO
released up to pH 7.2 (Nagaraja et al. 2017). Multiple studies have found NO donor compounds to be effective against

both Gram-positive and Gram-negative bacteria, and overall broadly effective on single-and multi-species biofilms (Hetrick
et al. 2008; Barraud et al. 2009). This is supported by Nagaraja et al. (2017), who reported that SNP effectively dispersed
a multi-species biofilm from an industrially fouled RO membrane. Further, SNP was found to be more effective in recovering

membrane permeability as compared to DBNPA (Nagaraja et al. 2017). The concentration of released NO that is effective
against biofilms is several orders of magnitude below toxic levels and so should not pose a threat to humans or the environ-
ment (Barraud et al. 2009; Nagaraja et al. 2017). Although results from previous studies look promising, a recent paper
reports that some bacterial pathogens have evolved mechanisms for NO resistance (Hoeck 2017). Still, NO donor com-

pounds such as SNP, which are still in the pilot-scale of testing, can be further investigated for compatibility with RO
membranes and efficacy in RO systems.
DISCUSSION

The biofouling of polyamide membranes is one of the most challenging barriers faced by RO technologies to achieve a sus-
tainable water supply. Membrane biofouling results in (1) an increase in the energy demand and capital cost of RO systems,
(2) reduction of membrane lifespan due to frequent cleanings, and (3) loss of productivity. According to Kucera (2019), the

traditional methods applied to address biofouling, feed pretreatment by chlorine disinfection, and membrane cleaning by non-
oxidizing biocides, are not efficient to solve the problem of biofouling because they are not preventive techniques. To over-
come these issues, the introduction of new sustainable anti-biofouling agents and practices to the RO market is necessary.

Based on the work presented herein, there are many potential candidates to prevent biofouling in RO systems. These biocides
may come either from the non-oxidizing biocides already applied in RO installations, such as MIT, DBNPA, and SBS or low-
hazard chemicals like SB and PE. However, the main limitation to finding an ideal biocide to address polyamide membrane
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biofouling relies on the difficulty to find antifoulants that are (a) efficient in preventing and treating biofilms, (b) compatible

with membranes, (c) non-hazardous, and (d) inexpensive.
Figure 5 provides a comparison between an ideal biocide applicable to biofouling prevention and control in polyamide

membrane systems and the five selected biocides discussed herein. Table 5 presents a summary of the main advantages

and limitations of all anti-biofouling agents reviewed in this study in addressing biofouling prevention in RO systems.
Among all five biocides discussed in detail, in terms of inhibitory concentrations (Table 2) and effectiveness against a
wide spectrum of microorganisms (Figure 5), MIT presented the best antimicrobial efficiencies to prevent and disinfect mem-
brane biofouling. On the other hand, due to the high doses needed for biofouling control and toxicity, MIT also presented the

highest hazards to humans and aquatic life if compared to the other biocides, limiting its use in continuous inline water appli-
cations. DBNPA showed to be effective against biofouling prevention in clean membranes, showing a fast kill response and
good compatibility with polyamide membranes. The studies discussed in this paper indicated that DBNPA is not effective

against existing biofilms. It also has a short half-life of around 24 h in pH levels typical of polyamide membrane applications,
and it may present adverse effects to humans and the environment (Figure 5 and Table 5). These constraints limit the long-
term application of DBNPA in biofouling prevention in drinking water applications.

Different from the other two commercial non-oxidizing biocides applied in the RO market (DBNPA and MIT), SBS can be
applied in continuous inline drinking water applications. Nevertheless, high concentrations of SBS in the water distribution
system due to overfeeding may pose adverse effects to humans if ingested, and to aquatic life. In polyamide membrane appli-

cations, SBS is the standard chemical for dechlorination and membrane storage (Kucera 2019). According to the literature,
SBS presented moderate antimicrobial effects against aerobic bacteria, as compared to other chemicals; however, it was not
effective against anaerobic bacteria or existing biofilms (Figure 5, Tables 2 and 5). SBS is also more effective at low pH, which
is a concern for RO applications because low pH levels damage polyamide membranes. The high doses and associated costs

required to prevent microbial growth, along with the efficacy of the biocide restricted to low-fouling potential water, limit the
application of SBS for biofouling prevention in RO systems. Further research needs to be done to determine minimum inhibi-
tory concentrations of biofilm pioneers in RO systems for SBS as well as DBNPA (Table 2). For these reasons, the application

of DBNPA, MIT, or SBS is not recommended as a permanent solution to prevent biofouling in potable water membrane
system applications.
Figure 5 | Ideal biocide for RO polyamide membrane applications. White color refers to data gaps. Green refers to ‘yes’ or low-hazard level,
orange refers to medium hazard level, and Red refers to ‘no’ or high hazard level. Please refer to the online version of this paper to see this
figure in colour: http://dx.doi.org/10.2166/aqua.2022.118.

://iwaponline.com/aqua/article-pdf/71/2/261/1011024/jws0710261.pdf
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Table 5 | Summary of main advantages and limitations of non-oxidizing biocides for biofouling prevention in polyamide membrane systems

Biocide Advantages Limitations Development stage

DBNPA 1 – Fast biocidal activitya

2 – Prevents biofilms wellc
1 – Not effective against existing biofilmsb

2 – Short half-life at pH higher than 7d
Full-scale applications

MIT 1 – Effective against a wide range of
microorganismse

2 – Inhibits growth and kills biofilm pioneersc

1 – Hazardous chemicalc

2 – RO concentrate needs to be treatedf
Full-scale applications

SBS 1 – Good for long-term RO applicationsc

2 – Effective against biofilm pioneersc
1 – Not effective against anaerobic bacteriac

2 – Expensive compared to other biocidesg
Full-scale applications

PE 1 – Effective against biofilm pioneersh

2 – Low hazardsh
1 – High doses needed for biofouling
preventionh

Under development
stage

SB 1 – Effective against biofilm pioneersh

2 – Inexpensivei
1 – Moderate doses needed for biofouling
preventionh

Under development
stage

LAE 1 – Compatible with polyamide membranesj

2 – Treats and prevents biofilmsj
1 – More effective against bacteria in
suspensionj

Under development
stage

PHMGH 1 – Effective against biofilm pioneersk

2 – Low hazardsl
1 – Less effective against fungim Under development

stage

BDMDAC 1 – Low hazardsn 1 – Not effective in removing existing biofilmso

2 – Not effective against biofilm pioneersp
Under development
stage

SNP 1 – Effective against biofilm pioneersq

2 – Removes existing biofilmq
1 – Hazardous at high concentrationsr

2 – May lead to microbial resistances
Under development
stage

Source: aSchook et al. (2012), bSiddiqui et al. (2017), cKucera (2019), dExner et al. (1973), eSilva et al. (2020), fLi et al. (2016), gMajamaa et al. (2011), hCurtin (2020), iChipley et al. (2020),
jKim & Park (2016), kWei et al. (2009), lPark et al. (2020), mMathurin et al. (2012), nTan et al. (2017), oGomes et al. (2014), pHegstad et al. (2010), qBarraud et al. (2009), rNguyen et al.

(2012) and sHoeck (2017).
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Despite the factors limiting the application of these three commercial biocides, they should still be considered in RO bio-
fouling control and prevention studies. This is because each of these three imperfect biocides is a model of several of the

features found in the ideal biocide described by Bates (1998). MIT is a good model of a biocide that presents high antimicro-
bial efficiency as it is concurrently effective in preventing and removing existing biofilms. DBNPA is a good reference for a
fast response biocide which is effective in biofilm prevention. SBS is a model for a low-hazard chemical that is compatible
with polyamide membranes and effective against biofilm pioneers. It is important to notice that the discussion of biofouling

prevention should also include biofouling treatment. As such, the search for low-hazard alternatives, simultaneously effective
in biofouling prevention and biofilm removal, should be continued.

According to the results summarized in Figure 5, PE and SB presented lower human and environmental hazards as com-

pared to MIT and DBNPA. PE was the safest chemical among all five biocides and both PE and SB are able to prevent biofilm
pioneers (Figure 5 and Table 5). However, although PE and SB are not expensive products, the relatively high doses required
to achieve biofouling prevention would make their application quite expensive and allowable concentrations a significant

concern, limiting the use of these biocides in potable water RO applications (Figure 5 and Table 5). Furthermore, similar
to SBS, PE and SB biocides are most effective at low pH, which makes their use for continuous treatment in polyamide mem-
branes less attractive. Therefore, further studies need to be conducted to evaluate the feasibility of applying SB and PE in

biofouling prevention in polyamide membrane systems.
Several promising non-oxidizing biocides in the very early stages of development were identified in this paper (Table 5).

Among the promising non-oxidizing biocides discussed herein, LAE and PHMGH showed to be the most attractive candi-
dates to prevent biofouling in RO systems due to their high effectiveness against biofilm pioneers and low associated

hazards. However, comprehensive studies on membrane compatibility, human and environmental hazards, biocidal effective-
ness against dynamic biofilms, and RO market readiness are necessary to determine the feasibility and applicability of those
chemicals in potable water RO system applications.

In this review, many research gaps were identified in the process of selecting an effective, economic, and eco-friendly biocide
applicable to polyamide membrane systems. Biofouling prevention studies are almost non-existent in the literature and unlike
for the prevention of planktonicmicrobial growth (CLSI-M02 2018; CLSI-M07 2018; CLSI-M11 2018; CLSI-M100 2021), there
om http://iwaponline.com/aqua/article-pdf/71/2/261/1011024/jws0710261.pdf
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are no standard protocols available to test new biocides for biofouling prevention in RO systems. Although there is still a need

for standardized protocols to test the efficacy of biocides in preventing biofouling, the metrics and figures of merit for compre-
hensive monitoring and diagnosis of membrane biofouling are well known (Kucera 2015). A sizable body of literature exists
already on different methodologies to perform (a) membrane autopsies, (b) biofilm detection, (c) impacts of biofouling on

RO systems’ performance, (d) risk assessment, and (e) antimicrobial efficacy analysis (Nguyen et al. 2012; Kucera 2015;
Curtin 2020; Curtin et al. 2021). The translation of research study standard protocols to the industry will depend on the metrics
selected to measure biofouling. There are various techniques available to investigate the effects of biofouling on membrane sys-
tems in an academic laboratory with spectroscopic facilities, while themajority of available research techniques may be limited

in industry. Therefore, the industry applicability of standard protocols and techniques is necessary for testing the effectiveness of
biocides in RO systems. Furthermore, more studies need to be done to investigate the long-term application of the selected bio-
cides as well as new alternatives for preventing biofouling in RO systems. With the exception of DBNPA, no studies from

laboratory-scale to full-scale in RO treatment units were found in the literature investigating the use of MIT, PE, SB, and
SBS to prevent biofouling in RO systems. Also, further research needs to be performed to evaluate the polyamide membrane
compatibility of PE and SB. Moreover, more studies need to be conducted to determine minimum inhibitory concentrations

against known biofilm pioneers (including P. aeruginosa and S. aureus) for all biocides, specifically for DBNPA and SBS.
CONCLUSIONS AND PROSPECTS

The biofouling of polyamide membranes results in detrimental effects on the performance of RO systems such as an increase
in the required operational pressure, a decrease of freshwater production, shortening of membrane lifetime, and increase of
operational cost and energy consumption. Overcoming the existing challenges of biofouling in membrane systems is essential

to promote sustainable water supply in water-stressed countries. To overcome these challenges, the introduction of new sus-
tainable anti-biofouling agents into the RO market is necessary. This review provided a comprehensive analysis of the
applicability of five non-oxidizing biocides (MIT, DBNPA, SBS, PE, and SB) to prevent biofouling in polyamide membranes

to optimize RO system performance in drinking water applications. To summarize the major results for each biocide in
addressing biofouling in RO systems: (1) MIT presented better antimicrobial efficiencies to prevent and disinfect biofilms
in polyamide membranes when compared to other biocides; however, its use in potable water applications may pose

threat to humans and the environment; (2) DBNPA showed to be very efficient in preventing biofouling, but its short half-
life around neutral pH, low efficiencies against mature biofilm, and hazards limit its application in drinking water treatment
by RO technologies; (3) SBS may be applicable inline RO application for potable water treatment. However, its low antimi-
crobial efficiency and pH effectiveness dependency bring concerns for RO applications; and (4) PE and SB were the safest

biocides; however, the high doses required to prevent biofouling may limit their application in polyamide membrane separ-
ation technologies. Overall, MIT and DBNPA are excellent models for biofouling prevention studies, between them
possessing most of the key features of an ideal biocide when compared to the other biocides discussed in this study. SBS pro-

vides a great reference for antimicrobial efficiency against biofilm pioneers. PE and SB provide a good model for low-hazard
biocides.

Based on this review, further research efforts should focus on (a) identifying inhibitory concentrations of these biocides

against biofilm pioneers such as Pseudomonas aeruginosa and Staphylococcus aureus; (b) testing the applicability of these
chemistries in preventing and controlling biofouling of polyamide membranes through long-term biofouling prevention
studies on laboratory-scale, pilot, and full-scale RO treatment systems; (c) verifying the compatibility with polyamide mem-

branes through short and long-term exposure studies, and (d) developing protocols to test the efficacy of green biocides
preventing biofouling in RO systems; (e) finding better candidates for biofouling prevention. Ultimately, these studies will
result in the optimization of RO system performance, minimization of operational costs and energy consumption, increase
in reliability and environmental performance, and ensure the sustainable application of RO technologies in mitigating

water scarcity.
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