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a b s t r a c t

Christoffersen, Jacobs, and Ornthanalai (2012) (CJO) propose an interesting and useful
class of generalized autoregressive conditional heteroskedasticity (GARCH)-like models
with dynamic jump intensity, and find evidence that the models not only fit returns data
better than some commonly used benchmarks but also provide substantial improvements
in option pricing performance. While such models pose difficulties for estimation and
analysis, CJO propose an innovative approach to filtering intended to addresses them.
However, some statistical issues arise that their approach leaves unresolved, with
implications for the option pricing results. This note proposes a solution based on using
the filter and estimator proposed by CJO but interpreted in the context of an alternative
model. With respect to this model, the estimator is consistent, and likelihood-based
model comparisons and hypothesis tests are valid.

.

1. Introduction

Much interest exists in models for asset returns that
include dynamic jump intensity, going back to seminal work
by Chan and Maheu (2002) and Maheu and McCurdy (2004).
In more recent work, Rangel (2011) examines the effects of
news events on jump intensity, and Christoffersen, Jacobs, and
Ornthanalai (2012) (CJO) and Santa-Clara and Yan (2010) find
that dynamic jump intensity plays an important role in option
port from Australian
3356.
tate University, USA.
rham),
pricing. In a somewhat different vein, Wright and Zhou (2009)
find that evidence extracted from high-frequency stock index
returns supports the premise of time variation in jump mean,
variance, and intensity and that jump variance (but not
intensity) has strong predictibility for excess bond returns.
Aït-Sahalia, Cacho-Diaz and Laeven (2013) suggest an innova-
tive modeling framework with origins in epidemiology to
explain the presence of time-varying jump intensity based on
mutually exciting jump processes (Hawkes processes).

CJO propose an interesting and useful class of generalized
autoregressive conditional heteroskedasticity (GARCH)-like
models with dynamic jump intensity. They find evidence that
the models not only fit returns data better than some
commonly used benchmarks but also provide substantial
improvements in option pricing performance. In the model
of primary interest in that paper, the returns process is driven
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by two dynamic state variables: one is closely related to
standard GARCH volatility factors, and the other generates
time-varying jump intensities. We refer to this as the GARCH
dynamic jump intensity (GARCH-DJI) model.

While such models pose difficulties for estimation and
analysis, CJO propose an innovative approach to filtering
that addresses these issues. However, the filter they
propose lacks a key property. That is, the filtered states
are not equal to their expected values conditional on the
relevant information set. Furthermore, while CJO refer to
the estimator they propose as a maximum likelihood
estimator (MLE), it is not the MLE for the GARCH-DJI
model they study.

A model, however, can be constructed that represents a
well-defined data generating process based on the CJO
filtering algorithm. We refer to this as the FILTER-DJI
model. For this model, the states are trivially identified.
And it is this model for which the estimator proposed by
CJO is in fact the MLE.

In this note, we investigate some characteristics of
GARCH-DJI and FILTER-DJI models. We find that for a given
parameter vector the two classes of models represent
similar data generating processes, but some clear differ-
ences exist. When applied to simulated data generated
from a GARCH-DJI model, we show that the filter proposed
by CJO is biased. The estimator they propose is also biased,
and hypothesis tests have incorrect size. In a Monte Carlo
study, we find that the coverage ratio of a nominal 95%
confidence region for the model parameter vector is only
39%. Furthermore, the log likelihood values reported by
CJO and used for model comparisons are not valid.

With respect to the FILTER-DJI model, in contrast, the
estimator maintains the usual attractive properties of max-
imum likelihood estimation. In particular, when interpreted
in the context of this model (instead of the GARCH-DJI
model proposed by CJO), parameter estimates (including
those reported by CJO) are consistent, hypothesis tests are
correctly sized, and model comparison results are valid.

There are implications for option pricing. The approach
proposed by CJO involves simulating option prices condi-
tional on an estimated parameter vector and filtered
states. While the estimator is consistent for the parameters
of the FILTER-DJI model and the filter is unbiased (condi-
tional on a parameter vector), neither of these properties
holds for GARCH-DJI, the model under which option prices
are simulated. Option prices implied by the two models
are close at short times to maturity, but they diverge as
time to maturity increases.

A more fundamental issue underlying the one involved
here is a subtle but important one for economists working
with state space models. Even if a filter that provides unbiased
estimates for the states is available (a condition not satisfied
by the GARCH-DJI model), treating the extracted states as
known and using them for maximum likelihood estimation
will not in general yield a consistent estimator or correct
values for the log likelihood. For valid statistical analysis,
either the state uncertainty must be integrated out or the
model reformulated in such a way as to eliminate it. (In
special cases, such as the linear Gaussian state space model,
the integral may be computable analytically.) This point has
been noted in a related setting by Fleming and Kirby (2003).
Because the class of models proposed by CJO, and
others like it, have properties that are of considerable
interest for applied work, it is important that subsequent
work have a solid theoretical foundation to build upon.
The FILTER-DJI model proposed here provides one possible
workaround for the estimation issues left unresolved by
CJO. While the estimation results and model comparisons
reported by CJO are not valid in the context of the GARCH-
DJI model, they are valid if interpreted in the context of the
FILTER-DJI model. This note thus provides a constructive
solution that reaffirms the usefulness of CJO's empirical
findings and helps open the way for further research
building on their work.

2. Two dynamic jump intensity models

The GARCH-DJI model proposed by CJO is given by

Rt ¼ μtþztþyt ð1Þ
and

μt ¼ rtþ λz�1
2

� �
hztþ λy�ξ

� �
hyt ð2Þ

where Rt is a log return, λz and λy are risk premia, rt is the
risk-free rate, zt �Nð0;hztÞ, and yt is a Poisson jump
process with intensity hyt, mean μJ , and variance σ2J . The
dynamics of variance (hzt) and jump intensity (hyt) are
given by

hz;tþ1 ¼wzþbzhztþ
az
hzt

ðzt�czhztÞ2þdzðyt�ezÞ2 ð3Þ

and

hy;tþ1 ¼wyþbyhytþ
ay
hzt

ðzt�cyhztÞ2þdyðyt�eyÞ2 ð4Þ

with initial conditions hz0 and hy0. The terms hzt=2 and
ξhyt ¼ ðeμJ þσ2

J =2�1Þhyt in Eq. (2) are convexity adjustments.
The full model has parameter vector θ¼ ðλz; λy;μJ ;σJ ; az; bz;
cz; dz; ez;wz; ay; by; cy;dy; ey;wyÞ.

Let nt denote the number of jumps at time t. Then, ðRt jrt ;
hzt ;hyt ;ntÞ �NðμtþntμJ ;hztþntσ2

J Þ and ðnt jhytÞ � Poisson
ðhytÞ. Integrating across nt, Rt jrt ;hzt ;hyt is a mixture of
normals with density

pðRt jrt ;hzt ;hytÞ ¼ ∑
1

j ¼ 0
pðjjhytÞϕðRt jμtþ jμJ ;hztþ jσ2

J Þ; ð5Þ

where pðjjhyt Þ is the PoissonðhytÞ density and ϕ is the
Gaussian density. For future reference, note that

pðnt jRt ; rt ;hzt ;hytÞppðRt jrt ;hzt ;hyt ;ntÞpðnt jhytÞ ð6Þ
by Bayes' rule.

In practice, nt, zt, yt, hzt and hyt are not observable. To
estimate the model, CJO propose the filter:

~μt ¼ rtþ λz�
1
2

� �
~hztþ λy�ξ

� � ~hyt ð7Þ

~zt ¼ ∑
1

j ¼ 0

~hzt

~hztþ jσ2
J

Rt� ~μt� jμJ

� �
p nt ¼ jjRt ; rt ; ~hzt ; ~hyt

� �
ð8Þ

~yt ¼ Rt� ~μt� ~zt ð9Þ



Table 1
Summary statistics.
This table reports summary statistics for the true and filtered states and

innovations using data simulated from the GARCH-DJI model with the
parameter vector reported by Christoffersen, Jacobs, and Ornthanalai
(2012). SD¼standard deviation.

True Filtered

GARCH state (hz)
Mean � 1,000 0.0719 0.0678
SD � 1,000 0.0605 0.0504
Skewness 2.7662 2.2499
Kurtosis 15.1248 10.7819

Jump intensity (hy)
Mean � 1,000 23.3164 21.5456
SD � 1,000 29.3464 23.3113
Skewness 2.9781 2.3117
Kurtosis 16.3256 10.4829

GARCH innovation (z)
Mean � 1,000 �0.0019 0.0356
SD � 1,000 8.4780 8.1350
Skewness �0.0008 0.3308
Kurtosis 5.1227 4.4093

Jump innovation (y)
Mean � 1,000 �0.4083 �0.4047
SD � 1,000 3.1034 2.1649
Skewness �8.7148 �10.8684
Kurtosis 89.7829 148.9068
~hz;tþ1 ¼wzþbz ~hztþ
az
~hzt

ð~zt�czhztÞ2þdzð ~yt�ezÞ2 ð10Þ

and

~hy;tþ1 ¼wyþby ~hytþ
ay
~hzt

ð~zt�cyhztÞ2þdyð ~yt�eyÞ2; ð11Þ

with initial conditions ~hz0 and ~hy0. CJO show that Eqs. (1)–(2)

with hzt ¼ ~hzt and hyt ¼ ~hyt imply that ~zt ¼ Eðzt jRt ; rt ; ~hzt ; ~hytÞ
and ~yt ¼ Eðyt jRt ; rt ; ~hzt ; ~hytÞ.

Using this filter, it is straightforward to back out

implied values of ~hzt and ~hyt conditional on data fRt ;

rtgt�1
t ¼ 1, parameter vector θ, and initial conditions ~hz0 and

~hy0. The parameter vector is then estimated by optimiza-
tion,

θ̂ ¼ argmax
θAΘ

∑
T

t ¼ 1
pðRt jrt ; ~hzt ; ~hyt ;θÞ; ð12Þ

where the summands are given by Eq. (5) but with ~hzt and
~hyt in place of hzt and hyt. CJO refer to this as a maximum
likelihood estimator.

In fact, θ̂ is the maximum likelihood estimator not for
the GARCH-DJI model (1)–(4) but instead for the model
defined by (7)–(11) in conjunction with

Rt ¼ ~μtþϵt ð13Þ

where ϵt is a mixture of normals with density ∑1
j ¼ 0p

ðjj ~hytÞϕð�; j ~μJ ;
~hztþ j ~σ2

J Þ and pðjj ~hytÞ is the Poisson ð ~hytÞ
density. This model, which we refer to as FILTER-DJI, is
motivated by GARCH-DJI but not equivalent to it.

While CJO show that ~zt ¼ Eðzt jRt ; rt ; ~hzt ; ~hytÞ and ~yt ¼
Eðyt jRt ; rt ; ~hzt ; ~hytÞ, it does not follow that ~hzt ¼ Eðhzt jF t�1Þ
or that ~hyt ¼ Eðhyt jF t�1Þ, where F t is the σ-algebra gener-
ated by fRτ ; rτgtτ ¼ 1. So Eqs. (7)–(10) does not possess a key
feature typically desired of a filter. And while Eq. (12) is
the MLE for FILTER-DJI, it is not the MLE for GARCH-DJI.
Furthermore, even if the state filter were unbiased, (12)
would not be the MLE for GARCH-DJI. Computing the
likelihood for this model requires integrating across state
uncertainty. A plug-in estimate of the states, even an
unbiased one, is not sufficient. The properties of this
estimator with respect to the parameters of the GARCH-
DJI model are unknown.

3. Findings

We performed a number of experiments to assess the
extent of bias in state and parameter estimates associated
with using the CJO filter. Some of the results are reported
here.

3.1. Comparison of true and filtered states

This subsection investigates the extent to which the
filtered states ~hzt and ~hyt are informative about the true
states hzt and hyt. The experiment performed here uses
simulated data generated using the GARCH-DJI model with
the parameter vector reported by CJO in Table 1 of that
paper. We simulate one million observations with a burn-
in period of one thousand observations to minimize the
effects of initial conditions. The filter (7)–(11) is then
applied to the simulated returns to extract filtered states
~hzt and ~hyt and innovations ~zt and ~yt . Because the data are
simulated, the true states hzt and hyt and innovations zt and
yt, which are latent in empirical applications, can be
observed. Thus, comparison of the true and filtered states
and innovations is possible.

Table 1 reports summary statistics for the true and
filtered states and innovations. Relative to the true states,
the filtered states ~hzt and ~hyt are systematically biased
downward, have smaller standard deviation, and are less
skewed and less leptokurtic.

3.2. Comparison of true and estimated parameters

This subsection reports the results of a Monte Carlo
study investigating the issue of potential bias in the
estimator Eq. (12) with respect to the parameters of the
GARCH-DJI model. Each replication in the study involves
generating N¼11,979 observations of simulated data
(equal to the sample size used in the application provided
by CJO) using the GARCH-DJI model with the parameters
from Table 1 of CJO (as described above) and then
estimating the model using Eq. (12) (as proposed by
CJO). We perform one thousand replications and report
the bias and root mean square error of the resulting
parameter estimates. For comparison, we then repeat this
procedure using data generated from the FILTER-DJI model
with the same parameter vector. In this case, Eq. (12)
represents the true MLE.

In the full model, some of the parameters are difficult
to pin down accurately, with correlations implied by



Table 2
Monte Carlo study for bias and root mean square error (RMSE) of estimator.
In each case, data were simulated using the indicated model with parameter vector θ0, and estimates were obtained using Eq. (12). Each experiment

consisted of one thousand replications using simulated data sets of 11,979 observations each. The columns labeled “CR” report the coverage ratio of the
nominal 95% confidence interval for each individual parameter. SD¼standard deviation. For GARCH-DJI, coverage ratio for 95% confidence region centered
at θ0: 39.0%; for FILTER-DJI, coverage ratio for 95% confidence region centered at θ0: 94.9%.

GARCH-DJI FILTER-DJI

θ0 Bias SD RMSE CR Bias SD RMSE CR

λz � 0:1 0.0506 �0.0363 0.2430 0.2456 0.971 �0.0088 0.2611 0.2611 0.974

az � 106 2.2300 0.2006 0.2050 0.2867 0.839 �0.0069 0.1718 0.1719 0.966

bz 0.9260 0.0032 0.0065 0.0072 0.883 �0.0010 0.0066 0.0067 0.958
cz � 0:01 1.3200 �0.1057 0.1229 0.1621 0.816 0.0116 0.1243 0.1248 0.957

wz � 104 �1.1600 �0.0014 0.0017 0.0022 0.856 0.0003 0.0016 0.0016 0.957

λy � 100 0.5880 0.2820 0.7883 0.8369 0.965 0.0708 0.8489 0.8514 0.967
ay � 1000 0.8110 0.2106 0.2633 0.3371 0.976 0.0434 0.2255 0.2295 0.982
by 0.9730 �0.0035 0.0051 0.0062 0.948 �0.0021 0.0058 0.0062 0.978
cy � 0:01 0.0000 �0.0843 0.2641 0.2771 0.941 �0.0025 0.3077 0.3075 0.953
wy � 10 �0.5290 �0.0024 0.0028 0.0037 0.966 �0.0006 0.0022 0.0023 0.979
μJ � 100 �1.7500 �0.3336 0.2617 0.4239 0.712 �0.0103 0.2816 0.2816 0.914
σJ � 100 0.9780 �0.2235 0.2479 0.3337 0.867 �0.0463 0.2208 0.2255 0.943
estimates of the asymptotic covariance matrix as high as
0.995. This is analogous to the situation of near-
multicollinearity in linear regression and results in very
large standard errors. In addition to being very flat in some
dimensions, the likelihood surface has multiple local
maxima, making global optimization problematic. For the
results reported here, we treat the parameters, dz, ez, dy,
and ey—for which the likelihood function is particularly
uninformative—as given and focus on the remaining para-
meters, which largely alleviates these issues.

Table 2 reports bias, standard deviation, and RMSE of
parameter estimates across the one thousand replications.
When applied to data generated from the GARCH-DJI
model, the estimator shows evidence of bias with a
magnitude equal to about one standard error for several
parameters, notably az, cz, ay, μJ , and σJ . No evidence of
bias is apparent when the estimator is applied to data
generated from the FILTER-DJI model.

The columns of the table labeled “CR” report the coverage
rate of the nominal 95% confidence interval for each para-
meter. Confidence intervals are slightly conservative for the
FILTER-DJI model. (That is, for most parameters the 95%
confidence interval contains the true value just over 95% of
the time.) For data generated from GARCH-DJI, in contrast,
coverage rates are substantially lower than 95% for several
parameters (notably, 71.2% for μJ). The results are approxi-
mately as expected. For a normally distributed estimator with
known variance, a bias of one standard error implies that the
95% confidence interval fails to include the true parameter
value about 16% of the time.

A multivariate confidence region can be constructed by
inverting the likelihood ratio statistic (analogous to the
construction of confidence regions in multivariate linear
regression). Let UðXÞ ¼ fθ:2Lðθ̂ ;XÞ�2Lðθ;XÞoFcritg; where
L is the likelihood function, θ̂ is an estimator, X denotes
data, and Fcrit is the appropriate critical value for a chi-
squared distribution with degrees of freedom equal to the
number of estimated parameters. For example, in this
model there are 12 free parameters, so for a 95%
confidence region Fcrit ¼ P�1ð0:95;12Þ ¼ 21:03, where
Pð�; kÞ indicates the cumulative distribution function of a
chi-squared random variable with k degrees of freedom.
For a maximum likelihood estimator (assuming regularity
conditions), U should contain the true parameter vector
95% of the time asymptotically. In the exercise undertaken
here, the coverage rate was 94.9% for data generated from
the FILTER-DJI model and 39.0% for data generated using
the GARCH-DJI model. For FILTER-DJI, the results are
consistent with theory. In contrast, operating under the
(false) supposition (maintained by CJO) that Eq. (12) is the
MLE for GARCH-DJI entails a substantial risk of Type I
errors.
4. Conclusions

CJO provide evidence that including dynamic jump
intensity provides a significant improvement in fitting
stock returns relative to some models without that feature.
They also provide evidence that the models they propose
perform better than some alternatives in explaining option
prices.

Although the GARCH-DJI model is the primary object of
interest in that paper, the estimator that CJO propose is the
MLE for a different model, which we refer to as FILTER-DJI.
The estimator is not consistent with respect to the para-
meters of the GARCH-DJI model, the associated filter is
biased, and implied log likelihood values (and correspond-
ing model comparisons) are invalid. These issues are
resolved by the FILTER-DJI model proposed here.
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