
Russian Journal of Nonlinear Dynamics, 2019, vol. 15, no. 1, pp. 41–57.

Full-texts are available at http://nd.ics.org.ru

DOI: 10.20537/nd190105

NONLINEAR PHYSICS AND MECHANICS

MSC 2010: 70Exx, 76Bxx, 76Dxx

The Motion of a Balanced Circular Cylinder

in an Ideal Fluid Under the Action

of External Periodic Force and Torque

E.V.Vetchanin

The motion of a circular cylinder in a fluid in the presence of circulation and external
periodic force and torque is studied. It is shown that for a suitable choice of the frequency of
external action for motion in an ideal fluid the translational velocity components of the body
undergo oscillations with increasing amplitude due to resonance. During motion in a viscous
fluid no resonance arises. Explicit integration of the equations of motion has shown that the
unbounded propulsion of the body in a viscous fluid is impossible in the absence of external
torque. In the general case, the solution of the equations is represented in the form of a multiple
series.
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1. Introduction

There has been much discussion recently of problems concerning the propulsion of rigid
bodies in a fluid without using external moving elements, for example, by means of moving
internal masses or rotors. To describe the motion of such systems, two approaches are used: those
based on various finite-dimensional models and those based on the joint numerical solution of the
Navier – Stokes equations and equations of body motion. Depending on the formulation of the
problem in finite-dimensional models one takes into account the influence of inertial properties
of the fluid (the effect of added masses), circulation, gravity force, vortices, and viscous friction.
Below we give references to a number of publications devoted to the mathematical modeling of
the motion of rigid bodies in a fluid using a specific approach.
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In [25], within the framework of the Kirchhoff equations [20], the problem of the propulsion
of a rigid body using the motion of the internal mass was considered for the first time, first inte-
grals were found and necessary conditions for unbounded propulsion of the body were obtained.
The ideas of [25] were developed in [26, 39], and a qualitative experimental confirmation of these
ideas was presented in [21]. In [11, 42, 43], also within the framework of the Kirchhoff equations,
the motion of an unbalanced ellipsoid and a helical body by means of rotors was considered.
The results of experimental investigations of the dynamics of an ellipsoid of zero buoyancy with
rotors were presented in [18].

The motion of a smooth body under the action of constant circulation and gravity force
was examined in [8]. An analysis of the asymptotic behavior of rigid bodies in an ideal fluid
in a gravitational field was presented in [4]. The motion of an ellipsoid with internal rotors in
an ideal fluid in a gravitational field was considered in [41]. In [40], problems of controlling the
motion of a smooth body by means of the internal mass and the rotor with constant circulation
were discussed. Also in [40], analysis was made of the problem of compensation for the drift,
arising due to circulation, using controls. The focus of [37] was on the problem of controlling the
motion of a smooth body using the internal fly-wheel and the Flettner rotor creating variable
circulation. The motion of the smooth body by means of oscillations of the rotor and by
periodically changing circulation was studied in [10].

It should be noted that in the case of a smooth body the law of change in circulation is either
postulated or defined on the basis of some auxiliary mathematical models. On the contrary, for
bodies with a sharp edge, within the framework of the model of an ideal fluid, circulation can
be calculated on the basis of the Kutta –Chaplygin condition [14, 27] and for a moving body
will depend on its translational and angular velocities (see, e.g., [33]). The Kutta –Chaplygin
condition can also be used as a basis for the modeling of vortex shedding from sharp edges of
the body [34, 38].

When it comes to modeling the motion of rigid bodies in a viscous fluid, the most detailed
description of the system dynamics can be obtained by using a joint numerical solution of the
Navier-Stokes equations and equations of body motion [15, 36, 44]. Such an approach involves
rather laborious calculations, but turns out to be useful in constructing various finite-dimensional
models of body motion in a fluid [5, 19, 31]. A qualitative investigation of the motion of smooth
bodies in a viscous fluid by means of internal mechanisms was carried out, for example, in
[9, 10]. In [32] the problem of self-propulsion of a body with a sharp edge in a viscous fluid
by oscillations of the rotor was discussed. It should be noted that the application of different
phenomenological models for the same system can lead to qualitatively different results [28].

In the case of strongly anisotropic friction the motion of a rigid body in a fluid can be
approximately described by nonholonomic models [12, 17, 24]. For the plane-parallel motion of
a rigid body in a fluid such an approach leads to equations of the Chaplygin sleigh, the controlled
motion of which was considered, for example, in [1–3]. Approximation by nonholonomic models
turns out to be valid only for some time interval, and numerical examples demonstrating this
can be found in [6, 9, 16].

Along with internal mechanisms, periodic external actions can be used to set a body in
motion. For example, in [29] the dynamics of a body with a fixed point and the dynamics
of a body in a fluid under the action of periodic force and torque of small amplitude were
examined. In [30] the self-propulsion of a sphere in a fluid at low Reynolds numbers by periodic
deformations was studied and the force acting on the body were calculated.

This paper is concerned with the problem of the plane-parallel motion of a circular cylinder
under the action of external periodic force and torque. Such a periodic action can be imple-
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mented, for example, by means of water-jet motors capable of pulling and ejecting water. Section
2 presents a derivation of equations of motion. Section 3 addresses motion in the case of an
ideal fluid. It is shown that in the absence of friction the components of the translational ve-
locity of the body undergo oscillations with increasing amplitude due to resonance. Section 4 is
concerned with motion in a viscous fluid. In the general case, the solution of the equations of
motion can be represented in the form of a multiple series. It is shown that, in the absence of
external torque, propulsion in a viscous fluid is impossible.

2. Equations of motion

2.1. The main assumptions and kinematic relations

Let us consider the plane-parallel motion of a circular cylinder in a fluid in the presence of
circulation. We make the following assumptions for the system of interest:

− from the fluid, the body is acted upon by forces and torques due to the effect of added
masses, circulation and viscous friction. We assume that viscous forces and torque are
proportional to the corresponding velocity components of the body as in [23];

− the body is acted upon by the force and torque changing periodically in the coordinate
system attached to the body;

− the airfoil is balanced. Thus, the gravity force is balanced by the buoyancy force;

− the airfoil possesses zero buoyancy. Thus, the moment of the gravity force is zero.

For the system described above we consider the following problem:

investigate the possibility of the speed-up of the system and unbounded propulsion.

To describe the motion of the body, we introduce two coordinate systems: a fixed frame Oxy
and a moving frame Obx1x2 atached to the body (see Fig. 1).

Fig. 1. Oxy — a fixed coordinate system, Obx1x2 — a moving coordinate system.

We will specify the position of the body relative to the fixed coordinate system using the
radius vector r = (x, y) of the origin Ob of the moving coordinate system, and the orientation,
using the angle ϕ between the positive directions of the axes Ox and Obx1, measured from the
axis Ox. Thus, the configuration space of the system Q = {q = (x, y, ϕ)} coincides with the
motion group of the plane SE(2).

Let v = (v1, v2) denote the velocity of point Ob in the moving coordinate system and ω the
angular velocity of the body. Then the following kinematic relations hold [7]:

ẋ = v1 cosϕ− v2 sinϕ, ẏ = v1 sinϕ+ v2 cosϕ, ϕ̇ = ω. (2.1)
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2.2. Equations of motion

The motion of a rigid body in an ideal fluid in the presence of circulation is described by the
Chaplygin equations [13]. We supplement the Chaplygin equations with dissipative terms for
the modeling of viscous friction and with periodic terms defining the external periodic action:

d

dt

(
∂T

∂v1

)
= ω

∂T

∂v2
− Γ′v2 −

∂R

∂v1
+ δ′1 sinΩt,

d

dt

(
∂T

∂v2

)
= −ω

∂T

∂v1
+ Γ′v1 −

∂R

∂v2
+ δ′2 sinΩt,

d

dt

(
∂T

∂ω

)
= v2

∂T

∂v1
− v1

∂T

∂v2
− ∂R

∂ω
+ ε′ sinΩt.

(2.2)

where T is the kinetic energy of the body–fluid system, Γ′ is the circulation of the fluid velocity

around the body, R =
1

2

(
μ′
1v

2
1 + μ′

1v
2
2 + μ′

2ω
2
)
is the dissipative Rayleigh function, μ′

1, μ
′
2 are

the viscous resistance coefficients, δ′1, δ′2, ε′ are the oscillation amplitudes of external force
components and torque, and Ω is the circular oscillation frequency of external force and torque.

The kinetic energy of a homogeneous, balanced circular foil is defined by the following
expression:

Tb =
1

2
m
(
v21 + v22

)
+

1

2
Iω2, (2.3)

where m is the mass of the foil and I is the central moment of inertia of the body.

The kinetic energy of the fluid surrounding the body is defined by the following expression:

Tf =
1

2
λ
(
v21 + v22

)
, (2.4)

where λ is the added mass of the foil. We note that the added moment of inertia is zero due to
the choice of the moving coordinate system and the circular shape of the body [22].

The total kinetic energy of the body–fluid system can be represented as

T = Tb + Tf =
1

2
A
(
v21 + v22

)
+

1

2
Iω2, (2.5)

where A = m+ λ.

Let us define the linear momentum of the system p = (p1, p2) and the angular momen-
tum M :

p1 =
∂T

∂v1
= Av1, p2 =

∂T

∂v2
= Av2, M =

∂T

∂ω
= Iω. (2.6)

In view of (2.6), the equations of motion (2.2) of the system under consideration take the form

v̇1 = (ω − Γ) v2 − μ1v1 + δ1 sinΩt, v̇2 = − (ω − Γ) v1 − μ1v2 + δ2 sinΩt,

ω̇ = −μ2ω + ε sin Ωt,
(2.7)

Γ =
Γ′

A
, μ1 =

μ′
1

A
, μ2 =

μ′
2

I
, δ1 =

δ′1
A
, δ2 =

δ′2
A
, ε =

ε′

I
.
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In the absence of dissipation (μ1 = 0, μ2 = 0) and external perturbations (δ1 = δ2 = 0,
ε = 0), Eqs. (2.1) and (2.7) admit three first integrals of motion [7, 8]:

px = v1 cosϕ− v2 sinϕ+ Γy = const, py = v1 sinϕ+ v2 cosϕ− Γx = const,

L =
I

A
ω + xpy − ypx +

Γ

2
(x2 + y2) = const.

(2.8)

Using the transformation

v = vx + ivy = (v1 + iv2) exp
(
iϕ(t)

)
, ϕ(t) = ϕ0 +

t∫
0

ω(s)ds, (2.9)

where vx = ẋ, vy = ẏ, δ = δ1 + iδ2, ϕ0 is the initial value of angle ϕ, the first two equations
of (2.7) can be written with respect to the fixed coordinate system in complex form:

v̇ = − (μ1 − iΓ) v + δ sinΩt exp
(
iϕ(t)

)
. (2.10)

Equation (2.10) is a linear inhomogeneous equation, and its solution greatly depends on the
presence of friction and the form of the function ϕ(t). In what follows, we investigate various
cases.

3. Motion in an ideal fluid

3.1. Motion in the absence of external torque

When the body moves in an ideal fluid (μ1 = 0, μ2 = 0) in the absence of external force
and torque (δ = 0, ε = 0), the translational velocity components and the angular velocity are
bounded functions of time [32]. In this case, unbounded propulsion of the body turns out to be
possible only under the condition Γ = 0. In the case Γ �= 0, the motion of the body occurs in
some bounded region of the plane Oxy [40].

For these reasons we consider the motion of a body in the absence of dissipation (μ1 = 0,
μ2 = 0) and external torque (ε = 0). In this case, under a suitable choice of the frequency of
external action a resonance arises, and the velocity of the body undergoes oscillations with an
amplitude linearly increasing with time. Moreover, unbounded propulsion of the body turns out
to be possible even if Γ �= 0.

The third equation of (2.7) takes the following form:

ω̇ = 0. (3.1)

It can be seen from (3.1) that the angular velocity of the body remains constant: ω = ω0 = const,
and Eq. (2.10) can be written as

v̇ = iΓv − iδ exp(iϕ0)

2

(
exp

(
i(Ω + ω0)t

)
− exp

(
−i(Ω− ω0)t

))
. (3.2)

We note that the dynamics of the system for ω0 = Γ = 0 is not considered, since this case
corresponds to the problem of the motion of a material point under the action of a given force.

Depending on the relation of the quantities ω0 − Γ and Ω, two qualitatively different cases
are possible: a nonresonant case with ω0 − Γ �= ±Ω and a resonant case with ω0 − Γ = ±Ω.
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1. Nonresonant case with ω0 − Γ �= ±Ω. The solution of Eq. (3.2) can be written as

v(t) = v0 exp (iΓt)−
δ exp(iϕ0)

2

(
exp(i(Ω + ω0)t)− exp(iΓt)

Ω + ω0 − Γ
+

+
exp(−i(Ω − ω0)t)− exp(iΓt)

Ω− ω0 + Γ

)
, (3.3)

where v0 is the initial value of the translational velocity of the body. It can be seen from (3.3)
that

in the case at hand the projections of the translational velocity of the point Ob of the body
onto the axes of the fixed coordinate system are bounded functions of time.

According to (3.3), if v0 �= 0, the phase trajectory on the plane (vx, vy) is periodic if the
following conditions are satisfied:

Γ

Ω
∈ Q,

ω0

Ω
∈ Q. (3.4)

Otherwise the trajectory is quasi-periodic. Examples of phase trajectories for v0 = 0, δ = 0.2 − 0.1i
and different values of ω0, Γ and Ω are shown in Fig. 2.

The trajectory of the point Ob of the body can be obtained by integrating the expres-
sion (3.3), and when Ω �= ±ω0, the trajectory is described by the expression

z = x+ iy = z0 −
iv0
Γ

(
exp(iΓt)− 1

)
+

+
iδ exp(iϕ0)

2(Ω + ω0 − Γ)

(
exp (i(Ω + ω0)t)− 1

Ω + ω0
+

exp (iΓt)− 1

Γ

)
−

− iδ exp(iϕ0)

2(Ω − ω0 + Γ)

(
exp(−i(Ω − ω0)t)− 1

Ω− ω0
+

exp (iΓt)− 1

Γ

)
(3.5)

and, when Ω = ω0, by the expression

z = x+ iy = z0 −
iv0
Γ

(
exp(iΓt)− 1

)
+

+
iδ exp(iϕ0)

2(Ω + ω0 − Γ)

(
exp (i(Ω + ω0)t)− 1

Ω + ω0
+

exp (iΓt)− 1

Γ

)
−

− δ exp(iϕ0)

2(Ω − ω0 + Γ)

(
t+

i exp (iΓt)− i

Γ

)
, (3.6)

where z0 is the initial position of point Ob. For Ω = −ω0 an expression similar to (3.6) can be
obtained.

It can be seen from (3.5) that, when Ω �= Γ, the trajectory of point Ob always lies in
a bounded region of the plane Oxy. When conditions (3.4) are satisfied, the trajectory is
a periodic curve (see Fig. 3a), otherwise the trajectory is quasi-periodic (see Fig. 3b).

It can be seen from (3.6) that in the case Ω = ω0 the trajectory of point Ob is unbounded
and the body moves in the direction of the vector (−δ1 cosϕ0 + δ2 sinϕ0, −δ1 sinϕ0 − δ2 cosϕ0)

with average velocity
|δ|

2(Ω − ω0 + Γ)
(see Fig. 3c).

Thus,

when the conditions Ω = ±ω0 and ω0 − Γ �= ±Ω are satisfied, the mean motion of the
system of interest is rectilinear.
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(a) ω0 = 4, Γ = 5, Ω = 3 (b) ω0 = Γ = 3, Ω = 2π

Fig. 2. Phase trajectories of the system for v0 = 0, δ = 0.2− 0.1i and different values of ω0, Γ and Ω.

(a) ω0 = 4, Γ = 5, Ω = 3 (b) ω0 = Γ = 3, Ω = 2π (c) ω0 = 3, Γ = 2, Ω = 3

Fig. 3. Trajectories of the point Ob of the body for v0 = 0, δ = 0.2 − 0.1i and different values of ω0, Γ
and Ω.

2. Resonant case with ω0 − Γ = Ω.1 The solution of Eq. (3.2) can be written as

v(t) =

(
v0 +

iδ exp(iϕ0)

2
t

)
exp (iΓt)− δ exp(iϕ0)

4Ω
(exp (i (2Ω + Γ) t)− exp (iΓt)) . (3.7)

It can be seen from (3.7) that

under the action of external periodic force with ω0−Γ = Ω the velocity of the body undergoes
oscillations whose amplitude increases linearly with time.

The phase trajectory of the system on the plane (vx, vy) is a nonuniform spiral (see Fig. 4a).
The trajectory of point Ob can be obtained by immediate integration of the expression (3.7):

z = x+ iy = z0 −
i(v0Γ + δ exp(iϕ0))

4ΓΩ

(
exp

(
iΓt)− 1

)
+

+
iδ exp(iϕ0)

4Ω(2Ω + Γ)

(
exp

(
i(2Ω + Γ)t

)
− 1

)
− iδ exp(iϕ0)

2Γ2

((
iΓt− 1

)
exp

(
iΓt

)
+ 1

)
. (3.8)

It can be seen from (3.8) that the point Ob of the body moves in a spiral trajectory (see Fig. 4b).
Thus,

in the absence of torque, mean rectilinear motion in an ideal fluid is impossible for the
system when the conditions ω0 − Γ = ±Ω are satisfied.

1The case ω0 − Γ = −Ω is similar to that considered here and will not be presented.
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Fig. 4. Phase trajectory of the system (a) and the trajectory of the point Ob of the body (b) for v0 = 0,
δ = 0.2− 0.1i, ω0 = 4, Γ = 5, Ω = −1.

3.2. Motion in the presence of external torque

Consider the motion of a body in the absence of dissipation (μ1 = 0, μ2 = 0) and in the
presence of external periodic torque (ε �= 0). In this case, the solution of Eq. (2.10) can be
obtained in the form of a Fourier series. In addition, resonant frequencies can be found at which
the velocity of the body undergoes oscillations with increasing amplitude.

According to the third equation of (2.7), the angular velocity in this case is a periodic
function of time:

ω(t) = ω̃ − ε

Ω
cosΩt, ω̃ = ω0 +

ε

Ω
, (3.9)

where ω0 is the initial value of the angular velocity and the angle ϕ is defined by the expression

ϕ(t) = ϕ0 + ω̃t− ε

Ω2
sinΩt. (3.10)

In view of (3.10), Eq. (2.10) takes the form

v̇ = iΓv + δ exp
(
iϕ0

)
exp

(
ω̃t− ε

Ω2
sinΩt

)
sinΩt, (3.11)

and its solution can be represented as

v(t) = v0 exp (iΓt) + δ exp (i (Γt+ ϕ0))

t∫
0

exp (i (ω̃ − Γ) s) exp
(
−i

ε

Ω2
sinΩs

)
sinΩsds. (3.12)

Let us expand in a Fourier series the periodic function exp
(
−i

ε

Ω2
sinΩs

)
sinΩs, which appears

in the solution (3.12), and perform term-by-term integration:

v(t) = v0 exp (iΓt)− iδ exp (iϕ0)

∞∑
n=−∞

σn
exp (i (nΩ+ ω̃) t)− exp(iΓt)

nΩ+ ω̃ − Γ
, (3.13)

where the Fourier coefficients σn are expressed in terms of Bessel functions of the first kind [35]:

σn =
i

2
(− sign ε)n+1

(
Jn+1

(
|ε|
Ω2

)
− Jn−1

(
|ε|
Ω2

))
.

RUSSIAN JOURNAL OF NONLINEAR DYNAMICS, 2019, 15(1), 41–57



The Motion of a Balanced Circular Cylinder in an Ideal Fluid 49

Fig. 5. Dependences σ0(Γ) for ε = 0.1 and ε = 0.2.

If nΩ+ ω̃− Γ �= 0, then the series written on the right-hand side of (3.13) converges and is
a bounded function of time. The relations

Ω =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ε

Γ− ω0
, n = 0,

Γ− ω0 ±
√

(Γ− ω0)2 − 4nε

2n
, n �= 0

(3.14)

are resonant frequencies at which the translational velocity components can undergo oscillations
with increasing amplitude. In this case, the corresponding Fourier expansion coefficient must
be different from zero. Figure 5 shows the dependences of the Fourier coefficient σ0(Γ) in the

resonant case with ω0 = 0 and Ω =
ε

Γ
for ε = 0.1 and ε = 0.2. It is seen from Fig. 5 that σ0 is

mainly nonzero.

Thus,

at frequencies of external action which are defined by (3.14), the velocity of the point Ob of
the body undergoes oscillations with increasing amplitude.

We note that in the case Γ− ω0 = 0 the expressions (3.14) take an especially simple form

Ω = ±
√

− ε

n
. (3.15)

Examples of phase trajectories of the system for ε = 0.1, ω0 = 0.1, v0 = 0, ϕ0 = 0,
δ = 0.2 − 0.1i and different values of Ω, Γ are given in Fig. 6. It can be seen from (3.13) that,

when nΩ+ ω̃ − Γ �= 0 and
Γ

nΩ+ ω̃
∈ Q, the phase trajectory on the plane (vx, vy) is a periodic

curve (see Fig. 6a), otherwise it is quasi-periodic (see Fig. 6b). If the parameter Ω takes
a value equal to one of the resonant frequencies (3.14), then the phase trajectory is a spiral
curve (see Fig. 6c).
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(a) Ω = 0.2, Γ = 0.2 (b) Ω = 0.2, Γ = π (c) Ω = 0.25, Γ = 0.2

Fig. 6. Phase trajectories of the system for ε = 0.1, ω0 = 0.1, v0 = 0, ϕ0 = 0, δ = 0.2− 0.1i and different
values of Ω, Γ.

The trajectory of the point Ob of the body can be obtained by immediate integration of the
expression (3.13):

z = x+ iy = z0 −
iv0
Γ

(
exp(iΓt)− 1

)
− δ exp (iϕ0)

+∞∑
n=−∞

σn
nΩ+ ω̃ − Γ

×

×
(
exp(i(nΩ+ ω̃)t)− 1

nΩ+ ω̃
− exp(iΓt)− 1

Γ

)
, (3.16)

where z0 is the initial position of the body.
When the conditions nΩ + ω̃ − Γ �= 0 and nΩ + ω̃ �= 0 are satisfied, the series written on

the right-hand side of (3.16) converges, and the trajectory of the Ob of the body lies in some
bounded region of the plane Oxy (see Fig. 7a). Relation (3.14) and the relations

Ω =

⎧⎪⎨⎪⎩
− ε

ω0
, n = 0, ω0 �= 0,

−ω0 ±
√

ω2
0 − 4nε

2n
, n �= 0

(3.17)

Fig. 7. Trajectories of the point Ob of the body for ε = 0.1, ω0 = 0.1, Γ = 0.5, v0 = 0, ϕ0 = 0,
δ = 0.2− 0.1i, v0 = 0, z0 = 0 and different values of Ω.
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define the resonant frequencies at which unbounded propulsion of the body is possible. We note
that, when relations (3.14) are satisfied, the trajectory is a helical curve (see Fig. 7b), and when
relations (3.17) are satisfied, the mean motion of point Ob is rectilinear (see Fig. 7c).

Thus,

the mean rectilinear motion of the system in an ideal fluid is possible due to the periodic
force and periodic torque, which act with the frequency defined by (3.17).

4. Motion in a viscous fluid

4.1. Motion in the absence of external torque

Let us consider the motion of the body in the presence of dissipation (μ1 �= 0, μ2 �= 0) and
in the absence of external torque (ε = 0). We show that in this case the projections vx and
vy of the translational velocity of point Ob are bounded functions of time and the trajectory of
point Ob lies in some bounded region of the plane Oxy.

The third equation of (2.7) has an exponentially decaying solution of the following form:

ω(t) = ω0 exp(−μ2t), (4.1)

where ω0 is the initial value of the angular velocity and the angle ϕ changes as follows:

ϕ(t) = ϕ0 +
ω0

μ2

(
1− exp

(
−μ2t

))
. (4.2)

In view of (4.2), Eq. (2.10) then takes the form

v̇ = −
(
μ1 − iΓ

)
v + δ exp

(
iϕ̃
)
exp

(
− iω0

μ2
exp(−μ2t)

)
sinΩt, ϕ̃ = ϕ0 +

ω0

μ2
. (4.3)

The solution of Eq. (4.3) can be represented as

v(t) = v0 exp
(
−(μ1 − iΓ)t

)
− iδ

2
exp (−(μ1 − iΓ)t+ iϕ̃)×

×
t∫

0

(
exp

(
iΩs

)
− exp

(
−iΩs

))
exp

(
(μ1 − iΓ)s

)
exp

(
− iω0

μ2
exp (−μ2s)

)
ds.

(4.4)

Let us expand the function exp

(
− iω0

μ2
exp (−μ2s)

)
, which appears in (4.4), in a Taylor series

and perform term-by-term integration:

v(t) = v0 exp
(
−(μ1 − iΓ)t

)
− iδ

2
exp (iϕ̃)×

×
( ∞∑

n=0

(
− iω0

μ2

)n exp
(
−(nμ2 − iΩ)t

)
− exp

(
−(μ1 − iΓ)t

)
n!(μ1 − nμ2 + i (Ω− Γ))

−

−
∞∑
n=0

(
− iω0

μ2

)n exp
(
−(nμ2 + iΩ)t

)
− exp

(
−(μ1 − iΓ)t

)
n!(μ1 − nμ2 − i (Ω + Γ))

)
. (4.5)
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(a) (b)

Fig. 8. Limit cycle (a) and the corresponding trajectory (b) for the parameter values μ1 = 1, μ2 = 0.1,
Ω = 3, Γ = 3, δ = 0.2− 0.1i, ϕ0 = 0, ω0 = 1.

From the solution (4.5) one can find the following limit cycle as t → ∞, which arises due
to viscous dissipation (see Fig. 8a):

vlim(t) = − iδ

2
exp (iϕ̃)

(
exp(iΩt)

μ1 + i(Ω− Γ)
− exp(−iΩt)

μ1 − i(Ω + Γ)

)
. (4.6)

Consider the possibility of a resonance arising in the system of interest. Let μ1 − Nμ2 +
+ i(Ω− Γ) = 0 be satisfied for n = N . Then the corresponding term in the solution (4.5) takes
the form

UN =

(
− iω0

μ2

)N t exp
(
−(μ1 − iΓ)t

)
N !

. (4.7)

It is seen from (4.7) that lim
t→∞UN = 0. Thus,

in the presence of dissipation and in the absence of external torque the projections of the
translational velocity of the point Ob of the body onto the axes of the fixed coordinate system
are bounded functions of time.

Explicit integration of the expression (4.6) shows that the trajectory of Ob which corresponds
to the limit cycle is a periodic curve (see Fig. 8b):

zlim = x+ iy = z0 −
δ

2Ω
exp (iϕ̃)

(
exp(iΩt)− 1

μ1 + i(Ω− Γ)
+

exp(−iΩt)− 1

μ1 − i(Ω + Γ)

)
. (4.8)

Thus,

in the system under consideration, unbounded propulsion in a viscous fluid only by means
of the periodic external force is impossible.

4.2. Motion in the presence of external torque

Consider the motion of the system in the presence of dissipation (μ1 �= 0, μ2 �= 0) and
external periodic torque (ε �= 0). In this case, the solution of Eq. (2.10) can be constructed in
the form of a multiple series.
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The solution of the third equation of (2.7) can be written as

ω(t) =

(
ω0 +

εΩ

μ2 +Ω2

)
exp(−μ2t) +

εμ2

μ2
2 +Ω2

sinΩt− εΩ

μ2
2 +Ω2

cos Ωt, (4.9)

and the angle ϕ will change as follows:

ϕ(t) = ϕ̃− α exp(−μ2t)−
√

β2 + γ2 sin(Ωt+ θ), ϕ̃ = ϕ0 + α+ β, (4.10)

α =
1

μ2

(
ω0 +

εΩ

μ2 +Ω2

)
, β =

εμ2

Ω(μ2
2 +Ω2)

, γ =
ε

μ2
2 +Ω2

, θ = arctg
β

γ
.

In view of (4.10), Eq. (2.10) takes the following form:

v̇ =
(
−μ1 + iΓ

)
v + δ exp

(
iϕ̃
)
exp

(
−iα exp(−μ2t)

)
exp

(
−i
√

β2 + γ2 sin(Ωs+ θ)
)
sinΩt. (4.11)

The solution of the equation can be represented in the form of the following quadrature:

v(t) = v0 exp
(
−(μ1 − iΓ)t

)
+ δ exp(iϕ̃) exp

(
−(μ1 − iΓ)t

)
×

×
t∫

0

sinΩs exp
(
(μ1 − iΓ)s

)
exp (−iα exp(−μ2s)) exp

(
−i
√
β2 + γ2 sin(Ωs+ θ)

)
ds. (4.12)

To calculate the integral written on the right-hand side of (4.12), we expand the func-

tion exp (−iα exp(−μ2s)) in a Taylor series and the function exp
(
−i
√

β2 + γ2 sin(Ωs+ θ)
)
in

a Fourier series. Performing term-by-term integration, we obtain the solution of Eq. (4.11) in
the form of a multiple series:

v(t) = v0 exp
(
−(μ1 − iΓ)t

)
− iδ

2
exp(iϕ̃)×

×
( ∞∑

n=−∞

∞∑
p=0

(−iα)pσn
p!

exp(−(pμ2 − iΩ(n+ 1))t)− exp(−(μ1 − iΓ)t)

μ1 − pμ2 + i(Ω(n+ 1)− Γ)
−

−
∞∑

n=−∞

∞∑
p=0

(−iα)pσn
p!

exp(−(pμ2 − iΩ(n− 1))t)− exp(−(μ1 − iΓ)t)

μ1 − pμ2 + i(Ω(n− 1)− Γ)

)
, (4.13)

where the Fourier coefficients σn are expressed in terms of Bessel functions of the first kind [35]:

σn = exp(in(θ + π))Jn

(√
β2 + γ2

)
. (4.14)

From the expression (4.13) one can find the limit cycle (see Fig. 9a), which arises in the
system as t → ∞ due to viscous dissipation:

vlim(t) = − iδ

2
exp(iϕ̃)

∞∑
n=−∞

σn

(
exp(iΩ(n + 1)t)

μ1 + i(Ω(n+ 1)− Γ)
− exp(iΩ(n − 1)t)

μ1 + i(Ω(n− 1)− Γ)

)
. (4.15)
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(a) (b)

Fig. 9. Limit cycle (a) and the corresponding trajectory (b) for the parameter values μ1 = 0.05, μ2 = 0.02,
ε = 0.1 Ω = 2.5, Γ = 0.5, δ = 0.2− 0.1i, ϕ0 = 0, ω0 = 0.4.

The equation of the trajectory (see Fig. 9b) of the point Ob corresponding to the limit
cycle (4.15) can be found by integrating the expression (4.15):

zlim = z0 −
δ

2
exp

(
iϕ̃
)( −2∑

n=−∞
An +

∞∑
n=0

An −
0∑

n=−∞
Bn −

∞∑
n=2

Bn

)
+ 〈vlim〉t, (4.16)

〈vlim〉 =
iδ exp(iϕ̃) cos θ · J1

(
−
√

β2 + γ2
)

μ1 − iΓ
, (4.17)

An =
σn(exp(iΩ(n + 1)t)− 1)

(μ1 + i(Ω(n + 1)− Γ))Ω(n + 1)
, Bn =

σn(exp(iΩ(n− 1)t)− 1)

(μ1 + i(Ω(n − 1)− Γ))Ω(n− 1)
.

It is seen from (4.16) that the motion occurs with the mean velocity 〈vlim〉 defined by (4.17).
Thus,

the propulsion of the circular cylinder in a viscous fluid is possible due to periodic external
force and torque.

5. Conclusion

Explicit integration of the equations of motion has shown that, in the absence of dissipation
and under a suitable choice of the frequency of external action, the system considered may exhibit
a resonance due to which the translational velocity components will undergo oscillations with
increasing amplitude. In the absence of external torque the system has only one value of resonant
frequency, and in the presence of external torque the system possesses a spectrum of resonant
frequencies. In the nonresonant case, mean rectilinear motion of the system is possible.

In the presence of dissipation, no resonance arises, and the translational velocity components
and the angular velocity of the system are always bounded functions of time. Moreover, mean
rectilinear motion turns out to be possible only in the presence of external torque.

To conclude, we note that it is also of interest to consider the motion of an elliptic body in
an ideal and viscous fluid by means of external periodic force and torque.

The author thanks Prof. A.V. Borisov, I. S.Mamaev, and S.P.Kuznetsov for useful discus-
sions.
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