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Self-Similar Ripples Through Math and Mind 
Commentary on Marks-Tarlow’s “A Fractal Epistemology for Transpersonal Psychology”)

Jonathan Root
California Institute of Integral Studies

San Francisco, CA, USA

1 Introduction

It is in fact not a surprise to me that someone, such 
as Terry Marks-Tarlow, is attempting to relate a field 

of pure mathematics with transpersonal psychology. 
One can understand the field of mathematics at 
large from a few different angles.

• At the level of rigor and proof.
• At the level of intuition and the level 

of creation or creativity. This is often a 
transpersonal phenomena; mathematicians 
create new mathematics from an intuitive 
understanding of the material, which itself 
comes from years of study and meditation. 
Moreover, the key insights in discovery 
often come “out of thin air.”

• At the level of communication and metaphor.
• As a language for the physical laws and as a 

model of certain structures in the universe.

A Fractal Epistemology for Transpersonal Psychology 
seems to be issued as a combination of the second 
and third items above.

Because the creative element of pure 
mathematics is often an exercise in the transpersonal 
realm, one could in fact argue that the scope of the 
Marks-Tarlow’s paper could and should be expanded. 
The idea of “the unreasonable effectiveness of 
mathematics in the natural sciences” is well-known. 
But it is also true that much of mathematics does 
not model the physical universe, and that many pure 
mathematicians are not interested in doing so. Thus 
much of pure mathematics does not manifest itself in 
the material plane. A mathematician is often driven 
by an aesthetic function, a sense of wonder, curiosity, 
or marvel, and an imagination with guides him or 
her through the infinite expanse of the transpersonal, 
mathematical realm. These ideas are considered 
once again in section 3 of this commentary.

At the same time, much of modern mathe-
matics is synergistic work; many theorems require 
techniques from a diverse range of mathematical 
subjects to prove and thus communicate. Thus within 
the parts lie the whole – a rather apt (fractal) metaphor 
in this context. That is, in using one branch of modern 
mathematics as metaphor and model you will in fact 
be using several.

In this commentary my aim is to introduce 
a clear, sometimes technical, but simultaneously 
intuitive presentation of fractal geometry. In doing 
so I will then attempt to derive what I see to be the 
connections between transpersonal psychology and 
fractal geometry. This will both echo and reformulate 
Marks-Tarlow’s synthesis. Rather than going line by 
line through Marks-Tarlow’s paper and commenting 
on what is and what is not clear, correct, or needs 
further edit, I have taken this approach in hopes 
that it would lead to a greater understanding. I 
have not avoided using technical language in what 
follows. I feel that this is best. I have tried to derive 
the technicalities from an intuitive foundation. I have 
used Kenneth Falconer’s (2003) Fractal Geometry  
as my major technical, mathematical source on this 
subject. A more readable and introductory book on 
this topic is Robert Devaney’s (1990) Chaos, Fractals, 
and Dynamics [2]. However, if you feel that you do 
not want to go through all the mathematical details 
right away, then you can skip to section 3, and 
refer back to section 2 as needed. I must admit that 
pictures are invaluable in this branch of mathematics, 
especially at the intersection of complex dynamics 
and fractal geometry. Thus a second, more illustrated 
source (such as [2]) will certainly be of use.

2 Fractal Geometry

Fractal geometry as an emerging field and a 
fractal as a mathematical concept seems to have 

eluded a rigorous definition within the mathematical 
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community, but essentially a fractal—call it F—
possesses the following attributes [1]:

1. F has a fine structure, i.e. detail on arbitrarily 
small scales.

2. F is too irregular to be described in traditional 
geometrical language, both locally and 
globally.

3. Often F has some form of self-similarity, 
perhaps approximate or statistical.

4. Usually, the ‘fractal dimension’ of F (defined 
in some way) is greater than its topological 
dimension.

5. In most cases of interest F is defined in a 
very simple way, perhaps recursively.

A canonical example of a fractal is the Cantor 
set (briefly mentioned in Marks-Tarlow’s paper as 
Cantor dust). This set is traditionally constructed via 
an iterative process which repeatedly deletes middle 
third intervals at each stage of iteration. Specifically, 
let C0 = [0, 1], and construct Ci+1 from Ci recursively 
by removing the middle third from each interval in 
Ci. The Cantor set is then defined as C := �∞ Ci. This 
construction is displayed below.

   Figure 1: The Cantor Set C

You may in fact wonder why C is non-empty. 
This relies on a fundamental topological notion 
known as compactness. Such constructions can 
be made in higher dimensions as well, such as the 
Sierpinski triangle, which is obtained by repeatedly 
removing inverted equilateral triangles from an 
initial equilateral triangle. See figure 2. Features of 
the Cantor set include:

• The length of Cn is (2/3)n, and thus the length 
of the Cantor set is n limnD∞(2/3)n = 0.

• The Cantor set is uncountably infinite. 
Specifically it is in bijective correspondence 
with the real number line.

i=1

• The Cantor set is self-similar. The part of C 
in the interval [0, 1/3] and the part of C in 
the interval [2/3, 1], are both geometrically 
similar to C, scaled by a factor of 1/3. The 
parts of C in each of the four intervals of C2 
are similar to C but scaled by a factor of 1/9. 
The Cantor set contains copies of itself at 
many different scales. [1]

• The Cantor set has a ‘fine structure’; that is, it 
contains detail at arbitrarily small scales. The 
more we enlarge the picture of the Cantor 
set, the more gaps become apparent to the 
eye. [1]

• Although C has an intricate detailed structure, 
the actual definition of C is straightforward. 
[1]

• C is obtained by a recursive procedure.

• The geometry of C is not easily described 
in classical terms: it is not the locus of the 
points that satisfy some simple geometric 
condition, nor is it the set of solutions of an 
simple equation. [1]

• It is awkward to describe the local geometry 
of C – near each of its points are a large 
number of other points, separated by gaps of 
varying lengths. [1]

    Figure 2: The Sierpinski triangle
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• Topologically C contains no open interval (a, 
b), has no isolated points, every point of C is 
the limit of a sequence of other points in C, 
and C is a closed and bounded subset of the 
real line.

• Although C is large in the sense of cardinality 
– uncountably infinite – it has zero length. 
Thus it cannot be quantified by “usual” 
measures. [1]

I would like to expand on the first, 
second, and last items above as key insights in 
the development of fractal geometry. Essentially, 
what is at stake here is that our usual measuring 
sticks are not properly equipped to distinguish 
between various fractal sets. The Cantor set is 
uncountable, so cardinality alone is insufficient; 
if we measure the “length” of the Cantor set we 
obtain length zero. Objects such as the von Koch 
curve (figure 3) or a fractal coastline – examples 
of fractal curves – have infinite length but are of 
zero area. One is thus led to the notion of fractal 
dimension. Fractal dimension was popularized by 
Benoit Mandelbrot in his 1977 book The Fractal 
Geometry of Nature. However, a “proper” notion 
of fractal dimension predates Mandelbrot by over 
half a century, and was first introduced in 1919 
by Felix Hausdorff. Now referred to as Hausdorff 
dimension, this notion provides a geometric, 
quantitative way to distinguish between fractal sets. 
However, there are many alternative definitions of 
fractal dimension, including upper and lower box 
dimension, correlation dimension, information 
dimension, Lyapunov dimension. It seems that on 
the most basic of fractals, these notions agree. 
However, many of these notions of dimension may 
not coincide on a variety of fractal constructions. 
Ultimately, definitions of a dimension are accepted 
based on experience and intuition [1].

   

2.1 Fractal Dimension

I will now give a brief mathematical overview of 
fractal dimension. In considering a square and a 

rectangle, we are considering a two and a three 
dimensional object, respectively. In a square, there 
exist two independent modes of movement, or two 
perpendicular directions. Within the cube a third 
independent direction has been added. At the same 
time, the area of a square with side length a is a2; 
the area of a cube with side length a is a3. Evidently 
these areas respectively obey a power law in the 
dimension. We also notice that the dimension of the 
square is that of the plane, and the dimension of the 
cube is that of 3-space. That is, dimension obeys a 
certain scale-invariance.

In general when determining the “area” of a 
complex set (such as a fractal), one first approximates 
or covers the set by a sequence of simplified sets 
which have a well defined area (cf. measure theory). 
The most basic of fractals, however, such as the 
Cantor set or the Sierpinski Triangle, may be realized 
as a union of (covered, approximated by) self-similar, 
scaled subsets. The relationship between the number 
of such self-similar, scaled subsets required to cover 
the fractal set and the scaling factor will determine 
the dimension.

Let’s first see how this relationship works in 
such standard geometric objects as the unit square 
and unit cube. Fix n > 1. We may realize the unit 
square as a union of n2 smaller squares each of side 
length 1/n – the scaling factor is 1/n. We may realize 
the unit cube as a union of n3 smaller cubes each 
of side length 1/n – the scaling factor is again 1/n. 
Thus, in both cases we derive the formula n = (1/m)d, 
where n = number of self-similar pieces, m = scaling 
factor, and d = dimension. Said another way, the 
dimension satisfies the formula d = − log n/ log m. 
The dimension of the square is 2 = − log n2/ log (1/n); 
the dimension of the cube is 3 = − log n3/ log (1/n). 

We can thus apply this method and formula 
to fractals which retain a constant self-similarity 
at each iteration, such as the Cantor set or the 
Sierpinski triangle. The Cantor set may be regarded 
as comprising four copies of itself scaled by a factor 
of 1/9. Thus, we might say that the dimension of 
the Cantor set is − log 4/ log (1/9) = log 2/ log 3.    Figure 3: Constructing the von Koch curve
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In general, the Cantor set may be regarded as 
comprising 2n copies of itself scaled by a factor of 
1/3n; in all cases, however, we arrive at the same 
dimension: − log 2n/ log (1/3n) = log 2/ log 3. The 
Sierpinski triangle may be regarded as comprising 
three copies of itself scaled by a factor of 1/2; or 3n 
copies of itself scaled by a factor of 1/2n. In any case 
we arrive at a dimension of log 3/ log 2. See figure 4.

This construction is known as the similarity 
dimension. Due to the intricacy of most fractal 
constructions, we cannot hope for this method to 
work in general. We must consider approximations 
of our general set by a wider array of simplified 
sets. This leads to a fundamental notion known as 
‘measurement at scale δ.’ Consider the Cantor set. 
This set may be exactly approximated at scales δ = 
1/3n for all n ≥ 1: the parts of C in the respective 
intervals of length 1/3n are similar to the Cantor set 
but scaled by a factor of 1/3n, and so C comprises 
the union of these sets. The smaller δ is, the finer the 
approximation. In dealing with more intricate sets, 
or fractals, we are interested in approximations as 
the scale δ → 0.

   Figure 4: Self-similar coverings

Let U be any non-empty subset of 
n-dimensional Euclidean space Rn. We define the 
diameter of U by |U| := sup{|x − y| : x,y ∈ U}. In 
words, the diameter of U is the maximum distance 
(least upper bound) between any two points in U. 
Now let F be any bounded, non-empty subset of 
Rn. Denote by Nδ(F) the smallest number of sets of 
diameter at most δ which can cover F . A dimension 
of F is then determined by the power law (if any) 
obeyed by Nδ(F) as δ → 0 [1]. That is, 

Nδ(F) ∼ cδ−s 

for constants c, s. Take the Cantor set, for example. 
For δ = 1/3n, we have Nδ(C) = 2n. Then 

Nδ(C) = 2n =(1 / 3n)−log 2/log 3 = δ−log 2/log 3.

Thus s = log 2/ log 3, and so we expect s to 
be a measure of the dimension as δ → 0. With this in 
mind, we define the box dimension of F by

assuming the limit exists. For example, we have 
shown that the box dimension of the Cantor set is log 
2/ log 3, which agrees with its similarity dimension 
calculated above.

2.2 Fractals and Dynamics

I have introduced the notion of a fractal in isolation. 
It is just as important, if not more, to consider how 

fractals arise within dynamical systems. Dynamical 
systems is a mathematical study of processes in 
motion. Planetary motion, the dynamics of the 
weather and the stock market, or the motion of 
a simple pendulum are all examples. Processes 
can be viewed in discrete time, continuous time, 
and through the lens of complex variables. This is 
mathematically represented either by a function f : 
D → D, D ⊂ Rn or D ⊂ C, and its iterates or orbits,

 
{f k(x)}∞ = {x, f(x), f(f(x)), f(f(f(x))), . . .}, (1)

or by a differential equation

x = dx = f (x), (2)
dt

along with its family of solution curves x(t), each of 
which is defined uniquely for a given initial condition 

k=0

log Nδ(F)dimB(F) := lim               ,
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x(0). (Assuming some technical conditions on the 
function f , such as ‘smoothness’.) Note that in (1), 
f 0(x) = x, f 1(x) = f (x), f 2(x) = f(f(x)), etc. In both cases, 
we can let time approach infinity and inquire as to 
the end behavior of the system; this is indeed an 
interesting problem because one is often interested 
in predicting the future of the system (will it rain 
tomorrow?). Roughly speaking, we define an attractor 
(repeller) of the system to be a set to which all nearby 
orbits/ solution curves converge (diverge) (in time, 
defined in both the discrete and continuous case). 
This set can manifest itself as a fractal; moreover, 
when it does so the dynamics of the system is often 
chaotic. What is perhaps most interesting, however, is 
that very simple systems, even systems depending on 
only one variable, may behave just as unpredictably 
as the stock market, just as wildly as a turbulent 
waterfall, and just as violently as a hurricane [2]. This 
is, in essence, the notion of chaos.

Consider first a discrete system, given by a 
continuous function f : D → D and its orbits {f k(x)}∞    . 
For example, if f (x) = cos x then f k(x) → 0.739 . . . 
as k → ∞ for every initial value x ∈ R. We consider 
three cases in general.

1. f k(x) converges to a fixed point w, i.e. a point 
w ∈ D such that f (w) = w. Convergence 
means that |f k(x) − w| → 0 as k → ∞. A fixed 
point w is stable or unstable according to 
whether |f'(w)| < 1 or > 1. Stable fixed points 
attract nearby orbits, unstable fixed points 
repel them.

2. f k(x) converges to a periodic orbit, i.e. a set 
of the form 

{v, f(v), f 2(v), . . . , f p−1(v)} 

where p is the minimal integer such that f p(v) 
= v. Convergence in this case means |f k(x) 
− f k(v)| → 0 as k → ∞. A periodic point v of 
period p is stable or unstable according to 
whether |(f p)'(v)| < 1 or > 1. Stable periodic 
points attract nearby orbits, unstable periodic 
points repel them.

3. f k(x) may appear to move about at random, 
but always staying close to certain set, which 
may be a fractal.

k=0

A common example of a discrete dynamical 
system exhibiting chaotic dynamics is given by the 
logistic map fλ : R → R, defined by fλ(x) = λx(1 − 
x), where λ is a positive constant. We outline the 
dynamics of fλ for various λ.

• 0 < λ ≤ 1. Then fλ maps the unit interval to 
itself, and so restricting our attention here 
we find that 0 is an attractive fixed point 
with f k(x) → 0 for all x ∈ [0, 1].

• 1 < λ < 3. fλ has an unstable fixed point at 0 
and a stable fixed point at 1 − 1/λ. We have 
that f k(x) → 1 − 1/λ for all x ∈ (0, 1).

• As λ increases through the value λ1 = 3, the 
fixed point at 1−1/λ becomes unstable and 
almost every point in (0, 1) attracts to a new 
stable orbit of period 2.

• When λ increases through λ2 = 1+√6 the 
period-2 orbit becomes unstable and a new 
stable orbit of period 4 is born.

• This behavior continues as λ increases 
further, with a stable orbit of period 2q 
appearing at λ = λq ; this orbit attracts all but 
countably many points of (0, 1). [1]

• As q → ∞, λ → λ∞ ≈ 3.570, the period 
doubling occurs more frequently and we 
obtain a sequence of attracting (periodic) 
orbits approximating a Cantor set. When λ 
= λ∞ the attractor is a Cantor-like set. The 
Hausdorff dimension of this set has been 
approximated to be 0.538 . . . .

• λ∞ < λ < 4. Several types of behavior occur. 
There exist a set K of positive measure such 
that for λ ∈ K, fλ has chaotic behavior.

• The behavior of the logistic map is universal 
in the sense that it is qualitatively the same as 
any family of transformations of the form f(x) 
= λf(x), provided that f has a single maximum 
at a point c with f"(c) < 0.

The values of λ which mark a change in 
the qualitative behavior of the dynamics (iterates) 
of fλ are known as bifurcations. Thus above for the 
logistic map such values include λ1 = 3, λ2 = 1 + √6, 
. . . . This sequence lists a series of period-doubling 
bifurcations leading to chaos. We summarize this 
behavior in figure 5, known as the bifurcation 

λ
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diagram for fλ. Each value along the horizontal axis 
represents a value of λ, above which is plotted the 
long term behavior of the iterates f k(x) for suitable x 
(as described above).

Finally, it will be useful to remark how fractals 
arise within the realm of complex dynamics. Let f : C 
→ C be a polynomial of degree n ≥ 2 with complex 
coefficients. We are again interested in orbits {f k(z)}∞ 
of various z ∈ C. In particular we are interested in 
the boundary zone between orbits which diverge 

to ∞ and orbits which do not. This “boundary” is 
known as the Julia set of f. Specifically, we define the 
filled in Julia set of f by 

K(f) := {z ∈ C : f k (z) /→ ∞}.

The Julia set of f, denoted J(f), is then the (topological) 
boundary of K(f). That is, for every point z ∈ J(f), 
there exists a small disk Dz(r) of radius r > 0, and 
points w and v in Dz(r) with f k(w) /→ ∞ and f(v) → ∞.

λ

k=0

The Julia set of the function f (z) = z2 is the 
unit circle. Points inside this circle iterate to 0, while 
points outside the circle iterate to ∞. However, if f is 
perturbed ever so slightly to fc(z) = z2 + c, then the 
possible structures of the Julia set become diverse, 
often fractal.

The pictures that arise in these examples are 
majestic to say the least. See, for example, [2] for an 
introduction to this topic.

We remark that the Mandelbrot set M is 
defined to be the collection of all c ∈ C for which 
f k (0) /→ ∞:

M = {c ∈ C : f k (0) /→ ∞}.

The Mandelbrot set is, in words, the 
collection of all c values (in C) for which the Julia 
set of fc(z) = z2 + c does not break into pieces (i.e. is 
connected). The Mandelbrot set may be viewed as 
a picture book of the various Julia sets that arise as c 
varies in fc. This is because each c value corresponds 
to a specific connected Julia set. This is displayed in 
figure 7.

The Mandelbrot set is a highly complicated 
figure with a main cardioid region to which a series 
of circular ‘buds’ are attached. In addition fine ‘hairs’ 
grow out from the buds carrying within miniature 
copies of the entire Mandelbrot set. The Mandelbrot 
set is connected (topologically) and its boundary 
has Hausdorff dimension 2. The Mandelbrot set is 
pictured in figures 8, 9, and 10.

c

c

   Figure 5:  The bifurcation diagram of the logistic map  
fλ(x) = λx(1 − x)

   Figure 6: The Julia set of f (z) = z2 − 1

   Figure 7:  Julia sets for c at different points in the  
Mandelbrot set
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The Julia set of the function f (z) = z2 is the 
unit circle. Points inside this circle iterate to 0, while 
points outside the circle iterate to ∞. However, if f is 
perturbed ever so slightly to fc(z) = z2 + c, then the 
possible structures of the Julia set become diverse, 
often fractal.

The pictures that arise in these examples are 
majestic to say the least. See, for example, [2] for an 
introduction to this topic.

We remark that the Mandelbrot set M is 
defined to be the collection of all c ∈ C for which 
f k (0) /→ ∞:

M = {c ∈ C : f k (0) /→ ∞}.

The Mandelbrot set is, in words, the 
collection of all c values (in C) for which the Julia 
set of fc(z) = z2 + c does not break into pieces (i.e. is 
connected). The Mandelbrot set may be viewed as 
a picture book of the various Julia sets that arise as c 
varies in fc. This is because each c value corresponds 
to a specific connected Julia set. This is displayed in 
figure 7.

The Mandelbrot set is a highly complicated 
figure with a main cardioid region to which a series 
of circular ‘buds’ are attached. In addition fine ‘hairs’ 
grow out from the buds carrying within miniature 
copies of the entire Mandelbrot set. The Mandelbrot 
set is connected (topologically) and its boundary 
has Hausdorff dimension 2. The Mandelbrot set is 
pictured in figures 8, 9, and 10.

c

c

3 Fractal Geometry and  
Transpersonal Psychology

We began our overview of fractal geometry with 
the unit line segment [0, 1] and a simple iterative 

procedure. This iterative procedure quite literally 
dissolved the unit line segment until all that was left  was 

simultaneously non-trivial or non-empty and yet 
highly imaginative and detailed in nature. This was 
the Cantor set. This set resided between the ordinary 
zero-dimensional realm of discrete points and the one-

dimensional realm of the real line. In fact, we attached 
to this set a dimension of log 2/ log 3, a number which 
quantifies how much space the set fills. This set was 
highly elusive in that the more we searched within the 
set, the more details we found—details which brought 
us right back where we started. Indeed, the Cantor set is 
self-similar on infinitely many scales. Both the concept 
of and the journey into the Cantor set can be seen or 
mirrored through a transpersonal and inner perspective. 
This requires poetic language, and so one might say: 
The farther I reached upward, the tighter I grasped; the

deeper I dove, the less structure I found, yet the more 
detail there was to get lost in. It was all so confusing to 
find myself, my struggles, my highs and lows mirrored 
back to me as if within me is you, within you is me, 
and together we are connected without by a web of 
profundity. And I realized that life was happening to me, 
dissolving my isolated conceptualizations, my isolating 
boundaries, forcing me ever deeper into myself—an 
ever elusive space, a self-similar dream which was 
simultaneously manifesting within and without.

At the same time, we saw how fractals arose 
in the fate of a dynamical system. In a one-dimen-
sional system, such as the logistic map, we saw that 
for certain values of λ the long-term behavior of the 
system attracts to a fractal, Cantor-like set. That is, 
in trying to predict the future we only found chaos. 
And yet within this chaos exists an inherent order; the 
fractal attractor is highly self-similar. Abstractly, one 
might say that within such examples exists an inherent 

   Figure 8. The Mandelbrot set

   Figure 9. Seeing the ‘hairs’ of the Mandelbrot set

   Figure 10.  Glimpsing the Mandelbrot set within the 
Mandelbrot set
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intelligence beyond the scope of our usual mode of 
inquiry. We may consider fractals in nature as well. A 
coastline exists at the boundary between land and sea. 
It is rather curious to remind ourselves that the sea is 
the great symbol of the divine. Thus the coastline—a 
natural fractal—existing at the boundary between land 
and sea, symbolically exists at the boundary between 
the physical and spiritual planes, between the concrete 
and the transpersonal. In complex dynamics, fractals 
exist as Julia sets, defined as the (topological) boundary 
between convergent and divergent orbits. Between 
the finite and the infinite. We thus have a physical 
boundary between land and sea, or a mathematical 
boundary between the finite and the infinite, both 
emanating from the same archetypal pool.

We thus see how mathematics, specifically 
the mathematics of fractal geometry, gives rise to 
metaphor which operates across different modes of 
reality. I would remark further that it is not fractal 
geometry that is giving rise to this phenomenon, and 
it is not just the mathematics alone that is of interest, 
but the larger concepts to which the mathematics 
points. The self-similar ripples that exist across the 
mathematical, physical, and inner worlds. It seems 
that it is not just that mathematics is excellent at 
modeling the physical world, but that the two worlds 
are archetypally self-similar, and further this self-similar 
ripple extends beyond a mere physical manifestation.

If I were to imagine myself manifesting at 
the three billionth stage of the Cantor set, I would 
be overwhelmed by a seemingly orderless detail. 
But if by chance I was one day able to step outside 
of my separate existence, and perceive the whole 
from a higher dimensional perspective, the majesty 
of a pattern would emerge. I was never separate to 
begin with, but a self-similar realization, caught in an 
illusion of low-dimensional separateness, unable to 
glimpse the forest through the trees.
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