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Abstract

Abnormalities in sensory processing are a common feature of many developmental disabilities 

(DDs). Sensory dysfunction can contribute to deficits in brain maturation, as well as many vital 

functions. Unfortunately, while some patients with DD benefit from the currently available 

treatments for sensory dysfunction, many do not. Deficiencies in clinical practice surrounding 

sensory dysfunction may be related to lack of understanding of the neural mechanisms that 

underlie sensory abnormalities. Evidence of overlap in sensory symptoms between diagnoses 

suggests that there may be common neural mechanisms that mediate many aspects of sensory 

dysfunction. Thus, the current manuscript aims to review the extant literature regarding the neural 

correlates of sensory dysfunction across DD in order to identify patterns of abnormality that span 

diagnostic categories. Such anomalies in brain structure, function, and connectivity may eventually 

serve as targets for treatment.

1. INTRODUCTION

Sensory dysfunction is a common factor in a large proportion of individuals with a variety of 

developmental disabilities (DD; Engel-Yeger & Ziv-On, 2011; Ermer & Dunn, 1998; Levit-

Binnun, Davidovich, & Golland, 2013; Liss, Mailloux, & Erchull, 2008), even though such 

symptomology is only recently becoming diagnostically relevant in some DDs (e.g., Autism 

Spectrum Disorder; ASD; American Psychiatric Association, 2013). Additionally, there is a 

great deal of overlap in the clinical presentation of sensory abnormalities across diagnostic 

lines (Acevedo, Aron, Pospos, & Jessen, 2018; Koziol, Budding, & Chidekel, 2011). 

Similarities or duplication in the manifestations of sensory symptoms across diagnostic 

categories may suggest common neural mechanisms that subserve these abnormalities, 

regardless of diagnosis. Furthermore, sensory irregularities can be extremely debilitating to 

patients and have the potential to alter development of the brain and affect fundamental 

behavioral domains such as communication, academics, social interaction, cognitive 

function, attention, memory, and emotional responsivity (Ashburner, Ziviani, & Rodger, 

2008; Ben-Sasson, Carter, & Briggs-Gowan, 2009; Butler et al., 2009; Cascio, Moore, & 

McGlone, 2018; Cosbey et al., 2010; Engel-Yeger, Hardal-Nasser, & Gal, 2011; Hannant, 

Tavassoli, & Casidy, 2016; Linke et al., 2018).

Unfortunately, the majority of existing treatments for sensory abnormalities, while effective 

for some, are inconsistent and not backed by neurobiological evidence. Given the incidence 

and overlap of sensory abnormalities across developmental disabilities, their potential 
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impacts on patient outcome, and the need for better treatments, increasing our understanding 

about their neuroanatomic and -physiologic underpinnings could improve the basic 

conceptualization of these disorders and lead to advancements in clinical practice. This 

notion is particularly true, given the estimated rise in prevalence of DD by the Center for 

Disease Control (CDC; Zablotsky et al., 2017) and the emphasis the National Institute of 

Mental Health has put on understanding the biological bases of clinical symptoms, 

regardless of diagnosis (i.e., Research Domain Criteria (RDoC) initiative; Kozak & 

Cuthbert, 2016). Thus, the current manuscript aims to review the extant literature concerning 

the similarities and differences in the neural underpinnings of sensory dysfunction across 

DD in order to further understanding of the basic mechanisms that lead to these symptoms 

and identify potential targets for their treatment.

The structure of the current review includes, first, a discussion of several general principles 

vital to the topic of brain development and sensory processing. Sensory loss, and its effects 

on brain development, as well as Sensory Processing Disorders (SPDs), are both discussed 

in this section. Following this introductory segment, sensory processing findings along with 

their (possible) neural underpinnings are discussed for three other common DDs: Autism 

Spectrum Disorder (ASD), Attention Deficit Hyperactivity Disorder (ADHD), and 

Schizophrenia (SCHZ). Finally, a cataloguing and comparison of sensory processing results 

across DDs is undertaken. In order to review the various literature required to obtain 

information about the disparate topics that are integrated in the current review, PubMed 

searches using a host of search terms were performed. For instance, the full name or 

abbreviation for each of the aforementioned disorders, plus the terms ‘sensory’, ‘sensory 

abnormality’, ‘sensory dysfunction’, ‘sensory processing’, ‘sensory sensitivity’ were 

initially used to compile articles relevant to the topic of abnormal sensory processing for 

each disorder. During these searches, many articles were discovered that included 

neuroanatomical and/or -physiological methods. Further search terms and publications were 

derived from these articles via reuse of keywords and prominent terms and investigation of 

citations. Finally, a number of articles were found which formally compared results from 

behavioral, neurologic, or both types of method between two or more DDs. Where relevant 

to the above DDs, these articles were catalogued and used in determining patterns of 

similarities and differences in the neural correlates of abnormal sensory processing across 

these DDs. The results of this effort are summarized in Table 1.

1.1 The Role of Sensory Processing in Development: General Principles

Normal sensory function is fundamental to typical brain development. The initial 

organization of the cerebral cortex is driven primarily by intrinsic (e.g., genetic) factors 

(Pallas, 2001). However, following these early foundational steps, sensory input further 

motivates, informs, and refines cerebral maturation. For instance, extrinsic influences largely 

determine which connections survive the synaptic pruning in cortical development (Hebb, 

1949; Huttenlocher & Dabholkar, 1997). Additionally, it appears that normal sensory 

activity is positively related to the onset and increase of inhibitory activity throughout the 

brain during development (Foeller, 2004), which is instrumental in establishing the proper 

balance of excitation and inhibition and the initiation and closing of sensitive periods needed 

for mature function (Dorrn, Yuan, Barker, Schreiner, & Froemke, 2010; Hensch, 2005; 
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Uhlhaas & Singer, 2012). One important aspect of brain development that appears to be 

mediated by inhibitory function is synchronization of neural oscillations within and between 

brain areas (esp. in the gamma oscillatory band; Uhlhaas & Singer, 2006, 2012; Uhlhaas et 

al., 2010). Lack of this temporal coordination has the potential to lead to malformation of 

canonical brain networks, such as the default mode network (DMN), which could lead to 

reduced coordination of global function, as well as isolation of local processors. Such 

processes could contribute to the development of pathological states. Due to factors such as 

these, intrinsically established neural pathways are not sufficient for maturation toward 

adult-like function.

Sensory input must be of normal amount and type in order for typical development to occur. 

Otherwise, atypical sensory experience has the potential to be associated with abnormalities 

in brain development and function. For instance, Sur et al., (1988) experimentally altered the 

pattern of sensory stimulation allowed to enter the auditory cortex by switching the inputs to 

the auditory thalamus from auditory to visual. That is, via the intact thalamo-cortical 

auditory pathways, the auditory cortices of their subjects ultimately received visual input. 

Following a short period of this manner of stimulation, the auditory cortices of these 

subjects began to exhibit structural and functional similarities typically specific to visual 

cortex. Thus, changes in sensory input have the potential to greatly alter various aspects of 

brain development.

One straightforward example of the developmental and functional impacts of sensory 

abnormalities in humans can be seen in individuals who present with partial or total sensory 

loss. People who experience both deafness and blindness exhibit alterations in brain function 

and organization, which, in turn, have been shown to be related to functional performance 

(Niemeyer and Starlinger, 1981; Neville & Lawson, 1987; Lepore et al., 1998; Rettenbach et 

al., 1999; Bavalier et al., 2000; Levänen, 2001; Bavelier & Neville, 2002; Merabet & 

Pascual-Leone, 2010). For instance, children who are born with hearing loss show delays in 

auditory cortical maturation, if auditory stimulation is not provided via auditory prosthetic 

devices (i.e., hearing aids and/or cochlear implants) within a sensitive period (Ponton, 1996; 

Sharma et al., 1997; Sharma et al., 2002a, 2002b, 2005). Additionally, numerous human and 

animal studies have shown that adults with profound deafness experience reorganization of 

the auditory cortex by both the visual and somatosensory systems—termed cross-modal 
reorganization (Buckley & Tobey, 2011; Doucet, Bergeron, Lassonde, Ferron, & Lepore, 

2006; Fine, Finney, Boynton, & Dobkins, 2005; Finney, Clementz, Hickok, & Dobkins, 

2003; Neville et al., 1983; Rebillard et al., 1977; Sadato, 2005). Similarly, both auditory and 

somatosensory stimuli (e.g., Braille reading) activate visual cortex in blind adults 

(Hyvarinen et al., 1981a, 1981b; Neville et al., 1983; Uhl et al., 1991 Kujala et al., 1995; 

Sadato et al., 1996; Cohen et al., 1997; Hamilton & Pascual-Leone, 1998; Roder et al., 

1999). Recent reports expand on this notion by presenting evidence that children who are 

born with severe cases of hearing loss, but in whom auditory function is restored via 

auditory prostheses, exhibit cross-modal reorganization of the auditory cortex (Campbell & 

Sharma, 2016; Sharma & Glick, 2016; Sharma, Campbell, & Cardon, 2015). Moreover, 

children who are diagnosed with Auditory Neuropathy Spectrum Disorder (ANSD)—a 

disorder of auditory temporal processing—also present with abnormalities in cortical 

maturation (Campbell, Cardon, & Sharma, 2011; Cardon & Sharma, 2013; Cardon, 
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Campbell, & Sharma, 2012; Sharma & Cardon, 2015; Sharma et al., 2011). Also, Central 

Auditory Processing Disorder (CAPD), which is characterized by deficits in sound 

localization, discrimination, pattern recognition, temporal processing, and sound processing 

in background noise, in the absence of a peripheral hearing loss is also associated with 

abnormal cortical auditory responses (Koravand et al., 2017). Thus, it appears that both the 

amount and type of sensory input can affect maturation of the sensory cortices.

Sensory impairment, and associated brain abnormalities, have been shown to be highly 

correlated with patient outcome in a variety of domains, such as social/emotional 

functioning, speech and language development, cognitive abilities, theory of mind, academic 

performance, among others (Corina & Singleton, 2009; Peterson et al., 2016). In the 

aforementioned studies concerning the effects of hearing loss on cerebral cortex 

organization, the degree of cross-modal reorganization was negatively correlated with 

participants’ ability to accurately perceive speech presented in background noise (Campbell 

& Sharma, 2016; Sharma & Glick, 2016; Sharma, Campbell, & Cardon, 2015), which is 

consistent with other related studies (Buckley & Tobey, 2011; Cardon & Sharma, 2018; 

Doucet et al., 2006). Deaf children also show more theory of mind delays and social/

emotional difficulties (i.e., peer popularity) than their hearing peers (e.g., Peterson et al., 

2016), as well as a greater propensity to exhibit impulsivity and distractibility (Dye, Hauser, 

& Bavalier, 2008; Parasnis, Samar, & Berent, 2003; Reivich & Rothrock, 1972). These 

behavioral issues could be mediated by neural consequences of sensory loss.

Another principle that is central to the issue of abnormal sensory processing and its role in 

development is the notion of developmental diaschisis. This concept holds that atypical 

structure/function in one part of the brain can contribute to abnormality in distant brain areas 

(Saré, 2016). Recent reports have provided compelling evidence that this process is indeed at 

work in the cerebral cortex and other parts of the brain (e.g., Feliciano, Su, Lopez, Platel, & 

Bordey, 2011; Ishii, Kubo et al., 2015). For instance, Ishii et al., (2015) showed that mice, in 

which somatosensory deficits had been induced in utero, eventually exhibited abnormalities 

in the medial prefrontal cortex (mPFC) and its associated behaviors, despite the lack of any 

apparent direct neural connections between these affected brain areas. When these 

investigators preferentially stimulated the neurons in the damaged part of the somatosensory 

cortex, the mPFC mediated behaviors improved. Others have proposed that developmental 

diaschisis may be at work in DD, such as Autism Spectrum Disorder (ASD). Wang et al., 

(2014), for example, argued that dysfunction of the cerebellum may disrupt the maturation 

of distant cortical networks. Using this same reasoning, one might reason that abnormality in 

areas involved in sensory processing could be associated with abnormal development of 

other, apparently unrelated, parts of the brain. Given the overlap in sensory symptoms 

observed across DD and the principle of developmental diaschisis, it might be reasoned that 

sensory abnormalities could be foundational to many cases of DD. Orefice et al., (2016), in 

fact, showed that prenatally altering peripheral somatosensory function (esp. GABAergic 

inhibition) caused somatosensory sensitivities, as well as social deficits. These same 

differences were not seen in adults in whom the same manipulations were carried out. 

Consistent with this line of thinking, differences in diagnosis, despite similarities in sensory 

symptoms, might be explained by genetic and environmental factors and their interaction. 

This notion is in keeping with the RDoC advocated by the NIMH, which includes sensory 
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perception (esp. auditory, visual, and olfactory/somatosensory/multimodal) as one of the 

fundamental components of functioning that might contribute to mental illness.

In addition to specific changes in brain development associated with sensory loss, many 

consider the presence of sensory abnormalities as a sign of overall brain vulnerability (Levit-

Binnun, Davidovich, & Golland, 2013; Pitzianti et al., 2016). While sensory symptoms are 

often not included in the primary diagnostic criteria of DD, they are recognized as secondary 
symptoms or neurological soft signs (NSSs). This category of phenotypes includes 

deficiencies in motor function, sensory integration and processing, sleep, feeding, and self-

regulation that are often more subtle than primary symptoms. It is thought that NSS are 

related to the loss of robust ability to adapt to perturbations in environmental stimuli that is 

associated with abnormal brain network architecture (Levit-Binnun, Davidovich, & Golland, 

2013). This deficit in adaptability, in turn, leads to vulnerability of the brain during stressful 

events and greater likelihood for deviation from homeostasis. Decreased cerebral resilience 

and increased vulnerability could ultimately lead to psychopathology. Indeed, the sensory 

symptoms that are exhibited in many DDs may be indicators of abnormal brain architecture 

and vulnerability in these disorders. In fact, in numerous cases of DD, sensory and motor 

symptoms are recognized prior to official diagnosis via the observation of core symptoms. 

For example, diagnosis of Autism Spectrum Disorder (ASD), Dyslexia, Attention Deficit 

Hyperactivity Disorder (ADHD), and Schizophrenia have been shown to be preceded by 

sensory and motor abnormalities (Baranek, 1999; Bhat, Galloway, & Landa, 2012; Bryson et 

al., 2007; Cannon, Jones, Huttunen, Tanskanen, & Murray, 1999; Fliers et al., 2009; Kroes et 

al., 2002; Murray et al., 2006; Ozonoff et al., 2008; Schiffman et al., 2009; Viholainen et al., 

2006). Thus, sensory abnormalities seem highly related to overall adaptive function of the 

brain.

1.2 Sensory Processing Disorders

The idea of a specific set of disorders negatively affecting normal behavioral responses to 

sensory stimuli was first advocated by Ayres (1972, 2005). This investigator originally 

conceptualized such dysfunction as a deficiency in sensory integration (i.e., sensory 

integration disorder; SID). Subsequently, the terms sensory processing disorder (SPD) and 

sensory modulation disorder (SMD) have been used seemingly interchangeably to describe 

peoples’ difficulties with sensory stimulation (Koziol, Budding, & Chidekel, 2011). 

However, it could be argued that processing and modulation refer to specific challenges with 

sensory input. That is, sensory processing could describe the processing that occurs within 

distal sensory receptors, as well as higher order, even top-down, brain function related to 

perception and interpretation of sensory input. Also, sensory modulation seems to be more 

specifically associated with responsivity to sensory stimulation—either hypo- or 

hyperresponsiveness (Baranek, David, & Poe, 2006, 2007). People who exhibit 

hyporesponsivity to sensory input require more intense sensory stimulation to elicit a 

reaction, while those who present with hyperresponsivity often perceive otherwise 

innocuous stimuli as extreme or even threatening—the former appears to others as lack of 

responsiveness and the latter leads to evasive or defensive behaviors. Still others who are 

classified as having an SPD display sensory seeking behavior, in which they consistently 

pursue sensory stimulation in order to satisfy a physiologic craving for it, or to re-establish a 
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sense of homeostasis (Baranek et al., 2006). Because ‘processing’ is a more general term 

which might include both integration and modulation, it will be used throughout the 

remainder of this manuscript to describe general sensory dysfunction. More specific terms 

will be used as needed.

Currently, SPD/SID/SMD are not universally recognized as stand-alone disorders. While 

many (esp. occupational and physical therapists) commonly use the above terms and work 

with patients who have sensory difficulties, the fields of neurology, psychiatry, and 

neuropsychiatry generally do not distinguish these patients as a separate group (Koziol, 

Budding, & Chidekel, 2011). For instance, the Diagnostic and Statistical Manual, fifth 

Edition (DSM-5; APA, 2013), and previous editions, do not list SPD as a separate condition. 

This lack of recognition may be due to the variable nature in which sensory symptoms 

present and are diagnosed. In other words, sensory symptoms can be manifest in any sensory 

modality(i.e., auditory, visual, somatosensory, olfactory, gustatory, vestibular, and 

proprioception), or combination thereof, and can span basic sensory function to high level 

integration, interpretation, and comprehension.

Sensory abnormalities are diagnosed primarily via parent/caregiver questionnaires, such as 

the Sensory Profile (Dunn, 1997). While these instruments are generally effective at 

determining whether a given patient exhibits sensory abnormalities, they have several 

limitations. For example, they do not provide information about the possible neural 

underpinnings of SPD (Koziol, Budding, & Chidekel, 2011). Additionally, the symptoms of 

SPD overlap with many symptoms that are common to other, more generally accepted, 

disorders. Indeed, recently, the DSM-5 includes sensory abnormalities as a core feature of 

Autism Spectrum Disorder (ASD). Thus, the definition of SPD may not be sufficiently 

concrete for all to accept it as its own condition.

The decision of whether SPD is a disorder of its own, or not, is beyond the scope of this 

review. However, in considering sensory abnormalities across DDs, it is worthwhile to 

summarize the various sensory symptoms that can be exhibited and the manner in which 

some have attempted to define them. Due to the lack of consensus regarding SPD/SID/SMD, 

it is clear that more work is needed to fully understand and describe sensory abnormalities 

across DD. Specifically, though improving, there is a distinct shortage of reliable and 

reproducible information regarding the neural correlates of sensory dysfunction. One 

possible impact of this dearth of information and consensus is that the various treatments 

used to ameliorate the debilitating effects of sensory abnormalities have had inconsistent 

success (Case-Smith, Weaver, & Fristad, 2014; Lang et al., 2012; Leong et al., 2015). 

Presumably, if the neurobiological underpinnings of sensory dysfunction could be identified, 

one could use these as targets for more effective treatments. To this end, the efforts that have 

been put forth to understand sensory abnormalities across selected developmental disabilities 

and their neural underpinnings will be reviewed in the following sections.
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2. SENSORY ABNORMALITIES WITHIN SELECTED DEVELOPMENTAL 

DISORDERS AND THEIR POSSIBLE NEURAL UNDERPINNINGS

The majority of the existing research publications related to sensory processing in 

developmental disabilities focus on a single diagnosis. Thus, the current section will review 

the basic patterns of sensory dysfunction and their possible neural underpinnings within 

DDs that commonly present with sensory abnormalities and for which there is a significant 

literature which attempts to describe their sensory abnormalities. These DDs include, 

Autism Spectrum Disorder (ASD), Attention Deficit Hyperactivity Disorder (ADHD), and 

Schizophrenia.

2.1 Autism Spectrum Disorder

2.1.1 Abnormal Sensory Processing in Autism Spectrum Disorder—Reports of 

sensory abnormalities have existed since very early characterizations of ASD (Asperger, 

1944; Kanner, 1943). However, only recently has “hyper- or hyporeactivity to sensory input 

or unusual interests in sensory aspects of the environment” been added to the ASD 

diagnostic checklist (DSM-5; APA, 2013). Studies indicate that between 90% and 96% of 

patients present with sensory abnormalities (Baranek et al., 2006; Leekam et al., 2007; 

Marco et al., 2011; Tomchek & Dunn, 2007). Sensory processing abnormalities are 

increasingly being considered as foundational to ASD, contributing to the development of 

social, communication, and cognitive deficits that are characteristic of this condition (Baum, 

Stevenson, & Wallace, 2015; Wang et al., 2004, 2006). In fact, investigations have shown 

that sensory symptoms were present in young children prior to receiving an ASD diagnosis 

(Robertson & Baron-Cohen, 2017), and were correlated with social impairment (Wang et al., 

2004, 2006). As such, some have argued that behavioral and physiologic correlates of 

sensory dysfunction could be used as early markers of ASD (Robertson & Baron-Cohen, 

2017). Unfortunately, due to a high degree of variability in testing paradigms, stimuli, 

methods and the heterogeneous nature of the ASD population, there are many 

inconsistencies and even contradictions within the available body of research concerning the 

above. However, several patterns are emerging from the literature that provide insight into 

the sensory symptoms experienced by those with ASD and their neural underpinnings.

Persons with ASD might experience abnormal responsivity to sensory input in a host of 

ways and in response to stimuli from any sensory modality or combination thereof (Ben-

Sasson, Cermak, & Orsmond, 2007; Ashburner et al., 2008; Klintwall et al., 2011; Marco et 

al., 2011; Baum et al., 2015; McCormick et al., 2015; Uljarević et al., 2017). Sensory 

reactivity in ASD seems to lie along a spectrum between extreme hyperreactivity and 

hyporeactivity (Baranek et al., 2006, 2009). Furthermore, sensory seeking behaviors are also 

common in ASD. On the other hand, while these categories of sensory reactivity are 

accepted by many, others submit that they are too simplistic (Robertson & Baron-Cohen, 

2017). For instance, people with ASD tend to present with a visual search superiority in 

which they are able to locate a visual target amongst a set of other visual stimuli more 

quickly than typically developing (TD) peers (Baldassi et al., 2009; Joseph et al., 2009; 

Kéita et al., 2010; Keehn et al., 2008; O’Riordan et al., 2001; Plaisted, O’Riordan, & Baron-

Cohen, 1998a, 1998b). In contrast, these same patients are less sensitive to the number of 
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visual distractors. Additionally, persons with ASD seem to be more tuned to the pixel-level 

or first-order (e.g., contrast, luminance) aspects of a visual scene, but less so with elements 

that involve objects or relationships, to which TD peers are preferentially attuned (Bertone, 

Mottron, Jelenic, & Faubert, 2005). Thus, those with ASD might exhibit different types of 

sensory preference or reactivity to separate components of a given sensory landscape. In all, 

one fundamental principle of sensory processing in ASD seems to be a preferential tuning to 

local, as opposed to global aspects of the environment (Robertson & Baron-Cohen, 2017).

2.1.2 Abnormalities in Sensory-Specific Cerebral Cortices in ASD—In an 

attempt to discover the neural origins of sensory abnormalities in ASD, studies have been 

performed examining sensory systems from periphery to central sites, using both behavioral 

and physiologic methods. Though varied, the sites of lesion identified in many of these 

investigations seem to be located centrally, rather than peripherally. For instance, a recent 

study of the hearing profiles of children with ASD indicated that a higher proportion of 

children with ASD (55%) presented with clinical auditory impairment, compared to only 6% 

of typically developing (TD) children (Demopoulos & Lewine, 2016). Further analysis 

revealed that most of the loci of these impairments originated at the level of the brainstem or 

higher, not in the cochleae.

Following this reasoning, many of the existing studies concerning sensory dysfunction in 

ASD have focused on primary sensory cerebral cortices. Atypical findings have been 

documented in these cortical regions, including studies that have found structural differences 

in several primary sensory cortical areas (e.g., Gage et al., 2009; Herbert et al., 2005; Rojas 

et al., 2002, 2005; Sparks et al., 2002). Also, EEG and MEG studies have shown significant 

differences in response latencies in the auditory, somatosensory, and visual cortices 

(Bruneau et al., 2003; Edgar et al., 2013; Marco et al., 2011; Miyazaki et al., 2007; Oram 

Cardy et al., 2008; Roberts et al., 2010; Vandenbroucke et al., 2008; Wilson et al., 2007). 

Abnormalities were also observed in the primary visual cortices together with typical 

function in higher-order areas of the brain associated with decision making in ASD (Mikami 

et al., 1986; Shadlen and Newsome, 1996; Snowden et al., 1991). Areas that tend to be 

involved in higher-order visual processing, such as the fusiform face area, have also been 

implicated in ASD (e.g., Lynn et al., 2018). A recent study showed decreased correlations 

between the structural characteristics (i.e., structural covariation) between a number of 

sensory-related brain structures in participants with ASD vs. control subjects (Cardon, 

Hepburn, & Rojas, 2017). Structural covariation findings such as these suggest abnormal 

connectivity between sensory brain regions and are consistent with previous studies showing 

non-sensory specific alterations in structural covariation in ASD (Balardin et al., 2015; 

Bethlehem, Romero-Garcia, Mak, Bullmore, & Baron-Cohen, 2017; Ray et al., 2014; 

Sharda et al., 2016).

2.1.3 Neural Correlates of Abnormal Multi-Sensory Processing in ASD—Many 

of the issues observed with sensory processing observed in ASD seem to be related to multi-

sensory processing, rather than simple/unisensory function (Baum et al., 2015; Marco et al., 

2011). In order to make sense of the complex sensory environments in which we typically 

find ourselves, we must be able to both integrate sensory stimuli that come from the same or 
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similar sources and separate those that come from different sources. People with ASD often 

have trouble with both of these functions. Several studies have shown that individuals with 

ASD do not benefit in the same manner, as their TD peers, from the addition of visual cues 

in a speech-perception-in-noise task (Foxe et al., 2015). This deficit may be related to other 

studies which have shown an altered window of temporal binding in ASD, leading to 

patients’ decreased ability to integrate signals from different sensory modalities that come 

from the same source or eventdi.e., lip movement and speech sounds (Noel et al., 2017; 

Stevenson et al., 2016; Wallace & Stevenson, 2014). These behavioral multisensory deficits 

suggest that neural temporal processing shortcomings underlie sensory dysfunction in ASD. 

Direct evidence of dysfunctional temporal processing have been reported in the population. 

For instance, inter-trial coherence (ITC) can be used as a measure of the similarity in EEG 

(EEG) responses between trials (i.e., between evoked potential “sweeps”). A high degree of 

ITC is an index of strong cortical neuronal synchrony. Decreased inter-trial coherence in 

patients with ASD recorded in the auditory, visual, and somatosensory modalities suggests 

that the temporal pattern of cortical neuron activity over time (i.e., neural synchrony) may be 

lacking in ASD (Butler, Molholm, Andrade, & Foxe, 2017; Dinstein et al., 2012; Koldewyn 

et al., 2011; Milne, 2011). In other words, temporal processing seems to be less consistent or 

noisier in people with ASD (Robertson & Baron-Cohen, 2017).

This pattern of abnormal temporal processing in ASD may be related to the findings from 

numerous reports which provide evidence for altered balance of excitatory and inhibitory 

activity in the brains of people with ASD (Rubenstein & Merzenich, 2003). Investigators 

have theorized and shown evidence of an overabundance of Glutamate, the primary 

excitatory neurotransmitter in the cerebral cortex, and a scarcity of GABA, the principal 

inhibitory neurotransmitter in the brain, in ASD (Rubenstein, 2010). Excessive glutamate, 

paired with decreased GABA, could lead to hyperexcitability throughout the brains of those 

with ASD. In addition, temporal processing, local neural synchrony, and temporal 

coordination of disparate nodes of cortical networks (e.g., as in multisensory processing) are 

all mediated by GABAergic functioning and have all been shown to be defective in ASD 

(Klimesch et al., 2007; Thatcher et al., 2009).

2.1.4 Abnormal Supra-Modal Processing and Sensory Function in ASD—
Given the highly varied presentation of abnormal sensory processing across the ASD 

population, the neural mechanisms that mediate these processes are likely not relegated to 

sensory-specific cortices. Rather, if there are common neural underpinnings to sensory 

dysfunction in ASD, they would more logically be located in regions of the brain that had 

connections to sensory systems and modulated the activity therein, or might be made up of a 

networks of such sites. Indeed, supra-modal brain regions that have strong interconnections 

with sensory systems and processes have also been regularly identified as anomalous in 

ASD. One such brain area is the cerebellum. Converging data suggest that disruptions in the 

cerebellum contribute to the pathophysiology of ASD (Rogers et al., 2013). In fact, the most 

oft reported structural abnormalities in ASD are found in this structure (Courchesne & 

Allen, 1997; Courchesne, 1991; Courchesne, Yeung-Courchesne, Hesselink, & Jernigan, 

1988; Courchesne, 1995; Kemper & Bauman, 1998; Kern, 2002; Pierce & Courchesne, 

2001; Ritvo et al., 1986) as measured in both postmortem (Bailey et al., 1998; Bauman & 
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Kemper, 2005; DiCicco-Bloom et al., 2006) and in vivo imaging (Philip et al., 2012; Vargas 

et al., 2005) studies. Structural findings include, loss, degeneration, and decreased size of 

purkinje cells (Fatemi et al., 2002; Rogers et al., 2013), abnormalities in both grey and white 

matter, and cerebellar global volume, size differences in the vermis, and diffusion tensor 

imaging irregularities in the cerebellar peduncles (D’Mello & Stoodley, 2015; Catani et al., 

2008; Courchesne et al., 2011; Hashimoto et al., 1995; Kemper & Bauman, 1998; Wang et 

al., 2014). Behavioral tests administered to people with ASD have also implicated the 

cerebellum (Gowen & Miall, 2005; Freedman & Foxe, 2017). Finally, functional 

neuroimaging data have revealed cerebellar dysfunction in ASD, including results that 

exhibit irregular connections to a number of sensory systems and frontal brain regions 

(Gowen & Miall, 2005; Hoppenbrouwers et al., 2008; Hanaie et al., 2013).

The cerebellum is highly involved in sensory processing, despite often being characterized 

as a motor structure. Anatomical and functional studies have shown that the cerebellum 

forms reciprocal connections with all sensory systems (Kern, 2002; Schmahmann, 1997) and 

has a high concentration of GABAergic neurons (Hanant et al., 2016). As such, the 

cerebellum has a modulatory relationship with the cerebral cortex, controlling the ‘force’ 

with which sensory stimulation is experienced (Koziol, Budding, & Chidekel, 2011). For 

instance, evidence from electrophysiological studies has shown that the cerebellum 

modulates input from auditory, somatosensory, and visual modalities—especially areas of 

the vermis heavily involved in sensory processing, such as lobules VI and VII (Kern, 2002). 

Because of its ubiquitous connections with sensory systems, the cerebellum is also a center 

of multisensory integration (Ronconi et al., 2017). A recent study that measured the 

structural covariation of 55 sensory-related brain areas, including several from the 

cerebellum, indicated that participants with ASD had decreased structural covariation 

between sensory areas in the cerebral cortex and the cerebellum, relative to controls (Cardon 

et al., 2017). These results suggest atypical connectivity between sensory cortices and the 

cerebellum.

Based on the above, the cerebellum may be implicated in sensory dysfunction in ASD, 

though its specific role remains elusive (Hannant, Tavassoli, & Casidy, 2016). However, one 

prominent theory about how the cerebellum interacts with functions typically tied to the 

cerebral cortex holds that it is central to generating internal models of aspects of the 

environment (Stoodley, 2012). These internal models are based on and adjusted by 

experience, and are ultimately used to make predictions about future events (i.e., Bayesian 

predictive coding; Baum et al., 2015; Ghajar & Ivry, 2009; Ito, 2008; Miall & King, 2008; 

Sinha et al., 2014). These predictions can be then used in preparing the necessary systems to 

respond to incoming sensory information, a function that allows for very flexible and 

smooth quotidian functioning. In contrast, inaccurate predictions about sensory input could 

also lead to unpleasant and maladaptive functioning, such as:1) becoming overwhelmed by 

sensory inputs due to decreased ability to determine/predict what environmental stimuli 

were of interest, while also filtering unimportant stimuli; 2) confusion about and aversion to 

sensory stimuli, because of its inherently unpredictable nature; and 3) overly literal 

perception and understanding of eternal input, resulting from lack of top-down contributions 

to interpretation (Lawson, Rees, & Friston, 2014; Miall & King, 2008; Pellicano & Burr, 

2012). All of these possible outcomes of decreased predictive abilities could negatively 
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affect social functioning as well as prediction of constantly uncertain sensory events (Sinha 

et al., 2014). Such phenomena could also contribute to an intolerance of uncertainty (i.e., 

lack of predictive ability could motivate one to seek the most predictable situations), the 

result of which could be atypically aversive reactions to unpredictable stimuli (Gomot & 

Wicker, 2012; Neil et al., 2016). These types of behavioral patterns are observed regularly in 

people with ASD.

Overstimulation perceived as threatening could result in enhanced fear responses in ASD, 

which would likely be mediated by other non-sensory specific brain regions, such as the 

amygdala (Markram & Markram, 2010; Markram et al., 2007, 2008). It has been shown that 

the degree to which the amygdala is stimulated during a sensory event predicts the extent to 

which that sensory experience is deemed unpleasant or threatening (Zald, 2003). 

Additionally, populations of GABAergic neurons make up a signifi-cant proportion of 

human amygdalae, further implicating this structure in ASD (Hannant et al., 2016). 

Abnormalities of the amygdala, including larger and overactive amygdalae, have often been 

reported in ASD and animal models of ASD (Markram et al., 2008; Schumann et al., 2004; 

Sparks et al., 2002). Green et al., (2015) found human ASD subjects’ amygdalae and 

primary auditory and somatosensory cortices to be overreactive during mildly aversive 

sensory stimuli, when compared to controls. This and a related study also both showed that 

the fMRI responses of ASD amygdalae were positively correlated with behavioral measures 

of sensory over-reactivity in these individuals (Green et al., 2013, 2015). These findings 

provide clear evidence of a link between function in the sensory cortices and the amygdala 

and this network’s role in aversive reactions to sensory stimuli in ASD.

Numerous reports have also flagged the basal ganglia as contributing to sensory dysfunction 

in ASD (Koziol, Budding, & Chidekel, 2011; Hannant et al., 2016). As one is bombarded 

with countless sensory stimuli at any given time, one is faced with the challenge of selecting 

which of all of these stimuli are relevant and desired. Many investigators argue that the 

interaction of the cerebral cortex and basal ganglia is essential to resolve this problem. That 

is, the basal ganglia imposes a primarily inhibitory influence on the brain and, thus, aides as 

a selection mechanism for attention by releasing inhibition on the thalamus in response to 

sensory stimulation and allowing the appropriate areas of the cortex to become active 

(Koziol, Budding, & Chidekel, 2011). In this way, the basal ganglia acts as a sort of gate 

between lower brain levels and the cortex (Frank, Loughry, & O’Reilly, 2001; O’Reilly and 

Frank, 2006; Stocco et al., 2010). One way to measure this type of function is via sensory 

gating testing paradigms, in which EEG is recorded as paired sensory stimuli are presented. 

In control subjects, the cortical response to the initial stimulus is larger in amplitude than the 

that of the second stimulus. This suppression is taken as a marker of increased inhibitory 

activity in response to repetitive stimuli. Sensory gating abnormalities have been tied to both 

basal ganglia dysfunction (Prat et al., 2016) and excitation/inhibition imbalance (Orekhova 

et al., 2008; Madsen et al., 2015; Hannant et al., 2016). The available literature on sensory 

gating in ASD presents evidence that some with ASD exhibit sensory gating deficits, while 

others do not (Madsen et al., 2015; Oranje et al., 2013; Orekhova et al., 2008).

2.1.5 Higher Order Cognitive Processes and Large-Scale Brain Networks in 
Abnormal Sensory Processing in ASD—Higher-order functions may also make 
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significant contributions to sensory dysfunction in ASD (Baum et al., 2015). Cognitive 

processes, such as attention have been implicated regularly throughout the literature as 

contributing to sensory abnormalities, given their role in modulating activity in sensory brain 

regions (Kastner et al., 1998; Robertson & Baron-Cohen, 2017; Silver et al., 2007). One area 

of the brain that may be of interest in attentional function in ASD is the fronto-insular cortex 

(FIC; Uddin & Menon, 2009; Uddin et al., 2013; Uddin, 2015). This area seems to be 

instrumental as an intermediary between the default mode network (DMN; i.e., task-negative 

network) and the central executive network (CEN; i.e., task-positive network). As such, the 

FIC is an important component of the salience network (SN)—interconnected brain regions 

instrumental in detecting environmental stimuli that are behaviorally relevant (Uddin & 

Menon, 2009; Uddin, 2015). The FIC is anatomically and functionally specialized to receive 

sensory information and relay it to the CEN, where decisions can be made about the stimuli. 

Given this role, if the FIC is dysfunctional, sensory information may never reach the ECN, 

or could be corrupted before its arrival, leading to alternate brain systems (e.g., limbic) 

becoming involved in response preparation, or erroneous decisions being made in the CEN 

due to inaccurate input (Sridharan et al., 2008). In fact, recent studies in both animal models 

of ASD and humans have presented evidence of abnormalities in the DMN, CEN, and SN in 

ASD, and connectivity between these networks (Abbott et al., 2016; Di Martino et al., 2009, 

2014; Failla et al., 2017; Gogolla et al., 2014; Lynch et al., 2013; Uddin & Menon, 2009; 

Uddin et al., 2013). Germane to the current review, deficiencies in the functional 

connectivity between the DMN/CEN and the SN have been shown to be associated with 

abnormal sensory symptoms in ASD (Abbott et al., 2016).

Some have proposed that people with ASD present with hyper-connectivity within local 

brain regions, but long-range hypo-connectivity (Anderson et al., 2011; Courchesne & 

Pierce, 2005a, 2005b; Hull et al., 2017; Maximo et al., 2013; Paakki et al., 2010; Rudie and 

Dapretto, 2013). Indeed, abnormalities of white matter tracts of the brain have been shown 

regularly in ASD, especially in the anterior-posterior axis, which is relevant to the DMN and 

cerebellar-cortical connectivity (Maximo et al., 2013; Monk et al., 2009; Stein & Stanford, 

2008). This notion might lead to isolated processing modules that don’t communicate 

effectively with other parts of the brain and could lead to behavioral symptoms such as 

preference for local aspects of sensory situations, at the expense of more global 

characteristics (Robertson & Baron-Cohen, 2017).

2.2 Attention Deficit Hyperactivity Disorder

2.2.1 Abnormal Sensory Processing in Attention Deficit Hyperactivity 
Disorder—Attention Deficit Hyperactivity Disorder (ADHD) is one of the most common 

developmental disabilities, with an estimated 5% of all children in the United States 

receiving an ADHD diagnosis (APA, 2013). ADHD is generally characterized by a 

persistent pattern of inattention and/or hyperactivity-impulsivity that interferes with 

functioning or development (DSM-5). In addition to symptoms of inattention, hyperactivity, 

and impulsivity, people with ADHD often present with sensory dysfunction. However, 

unlike ASD, sensory abnormalities are not included in the core diagnostic criteria for 

ADHD. Additionally, it appears that sensory symptoms are often present at birth in those 

who are eventually diagnosed with ADHD (Ben-Sasson, Soto, Heberle, Carter, & Briggs-
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Gowan, 2014). In these ways, children with ADHD, ASD, and sensory processing disorders 

have some overlap (Yochman et al., 2013).

The most common finding surrounding sensory abnormality in ADHD has been that people 

with ADHD simply tend to have more sensory symptoms than typical controls (Ben-Sasson 

et al., 2014; Bijlenga, Tjon-Ka-Jie, Schuijers, & Kooij, 2017; Clince et al., 2015; Hern & 

Hynd, 1992; Iwanaga et al., 2006; Micoulaud-Franchi et al., 2015; Miller et al., 2012; 

Pfeiffer et al., 2014). Often these results are obtained via parent/caregiver report, such as the 

Sensory Profile (Cheung & Siu, 2009; Dunn & Bennett, 2002; Ermer & Dunn, 1998; 

Mangeot et al., 2001; Shimizu et al., 2014; Yochman et al., 2004, 2013). Persons with 

ADHD have presented with abnormalities in the vestibular (Bhatara et al., 1978, 1981; Dunn 

& Bennett, 2002; Grossman & Lithgow, 2012; Mulligan, 1996; Ren et al., 2014), tactile 

(Cermak, 1988; Parush et al., 1997; Schaughency, 1987), visual (Dunn & Bennett, 2002; 

Engel-Yeger & Ziv-On, 2011; Nazari et al., 2010; Ren et al., 2014; Schaughency, 1987), 

olfactory (Engel-Yeger & Ziv-On, 2011; Lorenzen et al., 2016; Romanos et al., 2008), and 

auditory (Bijlenga et al., 2017; Cheung & Siu, 2009; Engel-Yeger & Ziv-On, 2011; 

Ghanizadeh, 2009) modalities. In addition, multisensory processing seems to be challenging 

for many with ADHD (Panagiotidi et al., 2017). Also, people with ADHD have shown 

common sensory processing patters, such as hypersensitivity, hyposensitivity, and sensory 

seeking (Ghanizadeh, 2011). Furthermore, sensory over-responsivity (esp. tactile and 

auditory) has been shown to be associated with anxiety (as in ASD; Ghanizadeh, 2011), 

attentional deficits (Micoulaud-Franchi et al., 2015; Panagiotidi et al., 2018; Pitzianti et al., 

2016), hyperactivity (Lin et al., 2013), and adaptive participation in daily life activities in 

ADHD. Thus, it is clear that patients with ADHD are very likely to present with some form 

of sensory atypicality and these challenges are closely linked to the other symptoms of 

ADHD. However, not unlike the variety of attentional and hyperactivity/impulsivity 

symptoms displayed across patients with ADHD, this group is heterogeneous in their 

presentation of sensory symptoms (Pfeiffer et al., 2014).

2.2.2 Sensory and Supra-Modal Brain Region Involvement in Sensory 
Dysfunction in ADHD—To date, there are no definitive structural or functional brain 

characteristics that have been tied to sensory abnormalities in ADHD, though several are 

implicated. For example, several researchers have presented neurophysiological evidence of 

abnormalities in cortical visual evoked potentials, which were associated to both early visual 

sensory processing, as well as later attentional processing, such as filtering, orientation, and 

response inhibition (Kemner et al., 1996; Nazari et al., 2010; Perchet et al., 2001; 

Woestenburg et al., 1992; Yong-Liang et al., 2000). Furthermore, enhanced resting-state 

brain activity was shown in adolescents with ADHD, compared to age-matched controls, in 

primary or secondary visual, auditory, and somatosensory cortices and thalamus by Tian et 

al., (2008). Findings such as these suggest that sensory-specific cortices and subcortical sites 

are likely involved to some degree in abnormal sensory processing in ADHD.

The heterogeneous presentation of sensory abnormalities across ADHD suggests that 

supramodal brain regions are also involved in these symptoms. For instance, cortical 

thinning throughout the brain has been proposed as a marker of ADHD (Narr et al., 2009). 

While association cortices, where a great deal of sensory integration occurs, exhibited 
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cortical thinning, primary sensory regions were largely of typical thickness, suggesting a 

neural correlate of multisensory integration impairments in ADHD. In addition, areas that 

are connected to sensory systems and tend to have a modulatory influence over sensory 

cortices, such as the cerebellum (Cao, Shu, Cao, Wang, & He, 2014; Cherkasova & 

Hechtman, 2009; Davis et al., 2009; Goetz et al., 2014; Hong et al., 2014; Uddin et al., 

2017), basal ganglia (Di Martino et al., 2013; Hong et al., 2014; Pereira et al., 2016), frontal 

cortices (Hong et al., 2014; Pereira et al., 2016; Uddin et al., 2017), and amygdala (Cocchi et 

al., 2012) are regularly shown to function abnormally in ADHD. While these structures have 

largely not been evaluated in terms of sensory abnormalities, one might reason that they 

could be involved in abnormal sensory processing in ADHD due to their connections to 

sensory systems, their role in higher order functions, such as prediction, inhibition, 

emotional reactivity, temporal processing, multisensory integration, and sensory filtering, 

and their likely involvement in sensory dysfunction in other disorders, such as ASD. 

Furthermore, the superior colliculus (SCs), which is important for sensory integration, 

appears to function atypically in those with ADHD (Panagiotidi et al., 2017). It is possible 

that problems integrating signals from multiple sensory modalities in the brainstem could 

lead to further abnormalities in multisensory processing at higher processing levels.

One pattern of sensory processing abnormality that has been investigated in ADHD (and 

ASD) is sensory overload (Micoulaud-Franchi et al., 2015). That is, many people with 

ADHD often feel overwhelmed by constant sensory stimulation, resulting from difficulty 

filtering out unwanted signals and attending to relevant or desired stimuli (Micoulaud-

Franchi et al., 2015). This type of challenge could certainly contribute to inattention and 

hyperactivity. Some have argued that such deficits could be underpinned by sensory gating 

impairments, possibly mediated by basal ganglia dysfunction in ADHD (Holstein et al., 

2013; Micoulaud-Franchi et al., 2015; Sable et al., 2012).

2.2.3 Patterns of Brain Connectivity Related to Abnormal Sensory 
Processing in ADHD—In addition to alterations within structures, the connectivity 

between these brain regions may be abnormal in ADHD. For instance, functional 

connectivity between the amygdala and frontal cortices, as well as fronto-temporal-occipital, 

have both been shown to be impaired and associated with inattention and hyperactivity in 

ADHD (Cocchi et al., 2012). Large-scale intrinsic brain networks, such as the default mode 

network (DMN), salience network (SN), and central executive network (CEN) appear to 

function differently in participants with ADHD (Cao et al., 2014; Carmona et al., 2015; 

Pereira et al., 2016). As mentioned in the above section concerning ASD, dysfunction of any 

or all of the hubs or their network connections could lead to sensory processing deficits in 

ADHD.

Another pattern of sensory processing that has been noted in ADHD is a tendency toward 

local vs. global processing. This propensity may be sub-served by local hyperconnectivity, 

with decreased long-range connections throughout the brain (Cao et al., 2014; Cocchi et al., 

2012). For instance, Ahmadlou, Adeli, and Adeli (2012) reported that participants with 

ADHD showed high interconnectivity between brain structures, but that the characteristic 

length of strong connections was very short. The DMN was shown to have decreased 

anterior-posterior connectivity in those the ADHD (Cao et al., 2014). Several studies have 
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presented diffusion tensor imaging (DTI; i.e., white matter tract integrity) evidence of 

abnormal connectivity in ADHD. For example, Cao et al., (2013) showed poor global 

connectivity with high degrees of local connectivity, which was theorized to be tied to 

similar functional deficits. Also, Hong et al., (2014) provided DTI evidence of deficient 

connectivity between frontal, striatal, and cerebellar regions, which would likely be 

considered long-range connections. Overall, persons with ADHD seem to be highly likely to 

present with sensory abnormalities, which tend to follow certain sensory processing patterns 

that seem to be mediated by dysfunction within subcortical and cortical structures, as well as 

their connections.

2.3 Schizophrenia

2.3.1 Abnormal Sensory Processing in Schizophrenia—Schizophrenia (SCHZ) is 

behaviorally characterized by cognitive and affective impairments, such as delusions, 

disorganized speech, hallucinations and disorganized or catatonic behavior, among others 

(DSM-5). SCHZ is most commonly diagnosed in adolescence or adulthood. However, there 

is a severe and rare form of SCHZ, which is diagnosed before the age of 13, termed 

childhood-onset SCHZ (COS; Bartlett, 2014). Sensory abnormalities, beyond hallucinations, 

are common in patients with Schizophrenia, though they are often ignored in practice (Javitt 

& Freedman, 2015). For instance, studies using the Sensory Profile (Dunn, 1997) have 

reported abnormally high scores in sensory sensitivity, sensation avoiding, and low 

registration in SCHZ (e.g., Brown, Cromwell, Filion, Dunn, & Tollefson, 2002; Halperin, 

2018; McGhie & Chapman, 1961; Melle et al., 1996; Muntaner et al., 1993; Parham et al., 

2017; Pfeiffer et al., 2014). Other studies have reported behavioral sensory abnormalities, 

such as hyperacusis (sounds seeming louder than they physically are), decreased auditory 

memory, misperception and distortion of sounds and visual stimuli, decreased acuity in 

processing dim, rapidly presented, or moving objects, increased pain thresholds, impaired 

two-point discrimination, and odor discrimination deficits (see Javitt, 2009 and Javitt & 

Freedman, 2015 for reviews). Furthermore, studies have shown that persons with SCHZ also 

present with deficits in multisensory integration. For instance, Ross et al., (2007) presented 

evidence of impairments in integrating visual and auditory information during a speech 

perception in noise task, even when the same participants exhibited no irregularities in 

unisensory speech perception. Thus, sensory abnormalities, though varied, are common 

findings in people with SCHZ, including children (Brown et al., 2002; David et al., 2011). 

While most believe that sensory abnormalities do not cause SCHZ, some argue that basic 

sensory difficulties may lead to some of the higher order cognitive symptoms experienced by 

those with the disorder (Javitt, 2009; Leitman et al., 2010; Rissling and Light, 2010).

2.3.2 Neuroanatomic and -Physiologic Correlates of Sensory Abnormalities 
in Schizophrenia—Numerous studies present evidence regarding the neuroanatomic and -

physiologic underpinnings of some common sensory anomalies in SCHZ. For example, 

probably the most common sensory abnormality reported in SCHZ is atypical sensory gating 

(e.g., Braff, 1993; Brown et al., 2002; Cadenhead, Light, Geyer, & Braff, 2000; Hamilton et 

al., 2018; Javitt & Freedman, 2015; Javitt, 2009; Jin et al., 1998; McDowd et al., 1993; 

Smucny et al., 2013; Swerdlow et al., 2006). There are several different methods to measure 

sensory gating that have been used in SCHZ studies. One of these methods, pre-pulse 
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inhibition (PPI), occurs as two sounds are played sequentially, the first much quieter tn the 

second. The second sound is presented at a level that is loud enough to elicit a startle 

response from the participant, if it were played by itself. However, if the loud sound is 

preceded by a separate initial auditory stimulus, it will not cause typically developing 

participants to startle. Similarly, one can measure cortical auditory evoked potentials to 

paired auditory stimuli played at more comfortable listening levels. Presenting an auditory 

stimulus will elicit an evoked potential response that contains a positive-going waveform 

peak that occurs around 50 ms in adults, termed the P50. If one auditory stimulus is 

preceded by a similar auditory stimulus, the P50 (and N100 waveform component) response 

to the second stimulus will normally be suppressed (i.e., it will be of lesser amplitude than 

the P50 response to the first stimulus). PPI and P50 suppression have both been taken as 

evidence of sensory gating, or filtering of repetitive, irrelevant, or unwanted sensory 

information. This type of filtering, which seems to be based on inhibitory filtering and 

habituation, is important, because it allows our brains to be ready to process novel 

information (Javitt & Freedman, 2015). Deficits in this type of filtering could lead to sensory 

overload, which is often reported in SCHZ. Several brain regions appear to be involved in 

the filtering process, such as the reticular formation’s rapidly habituating neurons, the 

thalamus, basal ganglia, hippocampus, dorso-lateral pre-frontal cortex (DLPFC) and 

superior temporal gyrus (STG; Hamilton et al., 2018). One replicable sensory finding in 

SCHZ has been deficient pre-pulse inhibition and P50 suppression, suggesting compromises 

in sensory gating mechanism, possibly due to atypicality in the structure and/or function of 

the above structures and their connections (Hamilton et al., 2018). Complimentary evidence 

of structural abnormalities in the thalamus (Gonthier and Lyon, 2004) and STG (Taylor et 

al., 2005) have been shown in SCHZ. In addition, P50 suppression and PPI impairments 

have been associated with a variety of cognitive processes—working memory, speed of 

processing, hypovigilance, attention—and are associated with clinical symptoms of SCHZ, 

such as frequency and intensity of auditory hallucinations (Arnfred and Chen, 2004; Erwin, 

Turetsky, Moberg, Gur, & Gur, 1998; Louchart-de la Chapelle et al., 2005; Freedman, Adler, 

Gerhardt, & Franks, 1987; Hamilton et al., 2018; Javitt & Freedman, 2015; Potter et al., 

2006; Ringel et al., 2004; Yee et al., 1998). In contrast, some contradictory evidence has also 

been published (Adler et al., 1990; Light et al., 2000; Santos et al., 2010; Thoma et al., 

2005).

One prominent notion is that sensory gating deficits are a result of inhibitory defects (Javitt, 

2009). For example, it is thought that inhibitory gating stems from projections from the 

reticular formation that activate inhibitory interneurons in the hippocampus and other 

modulatory brain regions, ultimately leading to the inhibition of the cortical response to 

repetitive or irrelevant sensory stimuli (Frazier et al., 1998; Freedman, Adler, Waldo, 

Pachtman, & Franks, 1983; Javitt & Freedman, 2015). Consistent with this notion, studies 

using time/frequency analysis of EEG recordings from patients with SCHZ also present 

findings that suggest inhibitory deficits (Hong et al., 2004; Javitt, 2009; Spencer et al., 

2003). For example, Hong et al., (2004) found that some patients with SCHZ and their first-

degree relatives showed decreased gamma band (40 Hz) synchronization in response to a 

steady-state auditory stimulus. This is germane to the current discussion, because gamma 

synchronization has been shown to be subserved by both glutamatergic and GABAergic 
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function (Uhlhaas & Singer, 2006, 2012; Uhlhaas et al., 2010). Abnormality in neural 

synchrony suggests possible imbalance of excitatory and inhibitory brain activity in SCHZ 

(Hong et al., 2004; Javitt & Freedman, 2015; Spencer et al., 2003; Uhlhaas & Singer, 2006, 

2012; Uhlhaas et al., 2010).

Gamma synchronization is needed for the binding of activity from different areas of the 

cerebral cortex and, thus, may be vital to successful multisensory integration. One prominent 

theory regarding the neural underpinnings of SCHZ is the disconnection hypothesis (Friston 

& Frith, 1995; McGuire & Frith, 1996). This theory states that SCHZ symptoms arise from 

disconnection of distant parts of the brain, even in the presence of intact local processing. 

That is, many believe that inhibitory mechanisms work to sync the activity of disparate parts 

of the brain in order to allow these distinct regions to work together. Given the above, it is 

highly possible that gamma dys-synchronization could be central to both abnormal sensory 

processing and the central causes of SCHZ.

Further evidence from network analysis of fMRI data has shown abnormalities that seem 

consistent with the disconnection hypothesis of SCHZ (e.g., Calhoun, Eichele, & Pearlson, 

2009; Fornito, Zalesky, Pantelis, & Bullmore, 2012). For instance, Wotruba et al., (2014) 

presented evidence of aberrant connectivity of the central executive (CEN), default mode 

(DMN), and salience (SN) networks in participants with SCHZ, such that the SN and DMN 

were hypoconnected. Other studies have also shown abnormalities in connectivity between 

the cerebral cortex and cerebellum, as well as cerebellar structural anomalies (esp. vermis), 

in both adults and children with SCHZ (Keller et al., 2003; Konarski et al., 2005; Moberget 

et al., 2017). Additionally, Shi et al., (2012) found that graph theoretical analysis of the 

covariation of structural characteristics (e.g., cortical thickness) of 90 cortical and 

subcortical areas, as well as white matter connectivity, showed overall less correlation 

between these sites and tracts in neonates at high risk for developing SCHZ. One measure 

from this study showed that the central hubs of the networks in these infants exhibited 

overall less connections entering and leaving them than those of typically developing infants 

(see also Rubinov and Bullmore, 2013; Zugman et al., 2015; Palaniyappan et al., 2018). 

These converging results from different neuroanatomic and -physiologic methods lend 

credibility to the disconnection hypothesis of SCHZ and may contribute to our 

understanding of its sensory abnormalities. However, there are inconsistencies between the 

above and other studies’ results (e.g., Greicius, 2008), which suggests that more work is 

needed to comprehensively understand neural connectivity in SCHZ and how it relates to 

behavioral outcome.

Still other abnormalities in neural processing related to sensory processing have been 

reported in SCHZ using EEG. For instance, the mismatch negativity (MMN) and P300 

responses are both indices of the brain’s ability to detect an anomalous stimulus embedded 

within a string of other repetitive stimuli (i.e., oddball paradigm). The MMN is elicited 

without a conscious response from the listener, while the P300 only occurs when a 

participant is asked to response (i.e., push a button) when he or she hears a target deviant 

stimulus interspersed within a string of frequent stimuli. People with SCHZ have regularly 

presented with significant differences in the amplitudes of their MMN and P300 response 

(Jahshan et al., 2012; Javitt, 2009; Leitman et al., 2010; Rissling and Light, 2010). Such 
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findings are present in those at-risk for Schizophrenia, as well as diagnosed patients, and 

have been associated with behavioral psychosocial performance. Overall, abnormalities in 

MMN and P300 may suggest deficits in the ability to detect and register stimuli that are 

salient to most people, and cold be related to behavioral function relevant to social 

performance (i.e., detection and interpretation of prosody, theory of mind, sarcasm; Javitt & 

Freedman, 2015). Additionally, the fact that the MMN is pre-conscious, while the P300 

requires a participant response, is taken by some as evidence that people with SCHZ have 

deficits in both early and higher order sensory processing (Javitt, 2009; Leitman et al., 2010; 

Rissling and Light, 2010).

In addition to the auditory findings presented above, significant difference in visual 

processing have also been reported in SCHZ. These results follow a pattern that seems to be 

widely accepted in the field, which is that patients with SCHZ appear to present with deficits 

in processing in the visual magnocellular pathway, rather than the parvocellular pathway 

(e.g., Butler et al., 2007; Friedman, Sehatpour, Dias, Perrin, & Javitt, 2012; Martinez et al., 

2008, 2012; Schechter et al., 2005). It is commonly held that the magnocellular pathway in 

the visual system processes information from the peripheral portion of the visual field. As 

such, it is primary concerned with visual stimuli that are presented in low light situations, 

that deal with movement, speed, and timing. On the other hand, the parvo-cellular visual 

pathway seems to be preferentially involved in processing details, shapes, sizes, colors, and 

contrast. Thus, the magnocellular system provides a sort of “frame” into which information 

from parvocellular information can be inserted (Javitt & Freedman, 2015). If persons with 

SCHZ have abnormal magnocellular processing, it is possible that inaccuracies about reality 

could be related to their lack of ability to create a context into which the details of their 

visual field (i.e., driven by parvocellular function) can be situated. This type of mismatch 

between magnocellular and parvocellular visual processing may also lead to feelings that 

images are fragmented, perception of visual illusions, and/or impaired emotional processing 

(Butler et al., 2009; Javitt, 2015). This notion presents one possible connection between 

abnormal sensory processing and the core symptoms of SCHZ.

3. COMMON PATTERNS IN THE NEURAL CORRELATES OF SENSORY 

DYSFUNCTION ACROSS DEVELOPMENTAL DISABILITIES

The above paragraphs have reviewed the most common findings related to sensory 

processing and their neural underpinnings for ASD, ADHD, and SCHZ. However, there are 

many other DDs in which sensory abnormalities are present, though, perhaps, not as 

abundant (e.g., Dyslexia and other Language Learning Disorders, Tourette Syndrome, 

Obsessive Compulsive Disorder, Oppositional Defiant Disorder, Intellectual Disability, 

among many others). Reviewing all of these conditions and their respective sensory 

processing characteristics is beyond the scope of this manuscript. However, in reviewing the 

details of sensory processing in ASD, ADHD, and SCHZ, it is apparent that there are many 

similarities and some differences between the aforementioned disorders. It is plausible that 

elucidating the similarities and differences in sensory abnormalities between DDs could lead 

to increased understanding of the neural mechanisms that underlie sensory processing 

deficits, and the disabilities themselves. Thus, the current section will attempt to catalogue, 
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compare, and contrast the current evidence regarding sensory abnormalities across the three 

reviewed developmental disabilities, especially focusing on studies in which two or more of 

these conditions are represented and statistically compared (see Table 1).

3.1 Single Brain Areas Are Insufficient to Comprehensively Define the Neural Correlates 
of Sensory Abnormalities in DD

The extant evidence suggests that sensory dysfunction does not stem from one single part of 

the brain in any DD. In fact, while it is intuitive to expect the primary sensory areas of the 

brain to be the main culprits in the hunt for the neural correlates of sensory dysfunction, this 

notion is not supported by the literature. Though these primary sensory areas often show 

some abnormalities in studies investigating sensory abnormalities in DD, there are other 

brain regions and networks that are implicated. Because of the variability in the 

manifestation of sensory abnormalities, even within a given diagnostic category, it is 

reasonable to argue that other, possibly non-sensory specific (i.e., supramodal), regions of 

the brain contribute to sensory dysfunction. In order for this type of area to be influence 

sensory processing, it would have to: i) be connected to one or more sensory systems and ii) 

affect these systems’ function in some way. Throughout the current manuscript, several brain 

regions that fit these criteria have been mentioned in the context of multiple DDs. For 

instance, the cerebellum and basal ganglia are commonly found to be abnormal in ASD, 

ADHD, and SCHZ (Hong et al., 2014; Keller et al., 2003; Konarski et al., 2005; Koziol, 

Budding, and Chidekel, 2011; Moberget et al., 2017; Rogers et al., 2013), as well as other 

DDs, such as Dyslexia (Nicolson et al., 2001). Provided that the cerebellum has connections 

with all sensory systems, exerts a modulatory influence on them, is important for sensory 

integration, and is instrumental in forming predictions about sensory situations and 

preparing our systems for adaptive reaction to incoming sensory stimuli, cerebellar 

dysfunction could plausibly contribute to abnormal sensory processing (Koziol, Budding, 

and Chidekel, 2011). Though not focused specifically on sensory dysfunction, in their 

review of structural MRI in ASD and ADHD, Dougherty, Evans, Myers, Moore, and 

Michael (2015) (see Table 1) reported that both patients with ASD and ADHD consistently 

presented with decreased cerebellar volumes and abnormal structural connectivity within the 

cerebellum and between the cerebellum and other brain structures.

The basal ganglia is important for sensory gating and filtering of irrelevant sensory 

information (Koziol, Budding, and Chidekel, 2011). These functions allow the brain to 

attend to desired stimuli, while also blocking out a significant amount of input. Another 

recent study directly assessed and compared network connectivity of resting-state fMRI 

throughout the brain between children with ASD and ADHD (Di Martino et al., 2013; see 

Table 1). Consistent with the current discussion, this study found that children with ASD 

who also exhibited ADHD-like symptoms, and those with ADHD all presented with 

network abnormalities of the basal ganglia.

Koziol, Budding, and Chidekel (2011) proposed a model in which the cerebellum and basal 

ganglia are vital to sensory processing and disorders thereof. Within this model, the basal 

ganglia (primarily inhibitory) serves as a ‘selection mechanism’ that interacts with sensory 

cortices (primarily excitatory) to allow/disallow information to be processed at these higher 
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levels. The model also holds that the cerebellum controls the quality or intensity (i.e., force) 

with which sensory stimuli are perceived and plays a role in balancing excitatory and 

inhibitory influences over sensory perception. Thus, disordered basal ganglia function could 

lead to informational flooding (i.e., sensory overload). Furthermore, cerebellar dysfunction 

might result in hypo- or hyper-reactivity to sensory stimuli, abnormal temporal processing of 

sensory input, and/or poor multisensory integration. Together, these types of sensory 

abnormalities represent many of those observed in ASD, ADHD, and SCHZ. Since both the 

cerebellum and basal ganglia are often deficient in ASD, ADHD, and SCHZ, cerebellar- and 

basal ganglia abnormality-related sensory dysfunction could account for some of the overlap 

in sensory symptoms between these disorders.

Another supramodal brain structure that seems to have abnormal structural and/or functional 

properties across various DDs is the amygdala (Sparks et al., 2002; Schumann et al., 2004; 

Markram et al., 2008; Cocchi et al., 2012; Green et al., 2013, 2015). The amygdala is highly 

involved in emotional reactivity to sensory input. Thus, abnormalities of the amygdala could 

play a role in the atypical sensory reactivity that is often observed in various DDs, such as 

ASD and ADHD (Green et al., 2013, 2015). In comparing the resting-state network 

connectivity between children with ASD and ADHD, Di Martino et al., (2013) (see Table 1) 

found abnormal temporo-limbic connectivity was a characteristic that distinguished 

participants with ASD from all others. Dougherty et al., (2015) (see Table 1) reviewed 

structural MRI findings in people with ASD and ADHD. Comparison of the available 

findings resulted in the discovery of consistent reports of amygdala overgrowth in ASD, 

while those with ADHD tend to present with structurally normal amygdalae. On the other 

hand, other studies performed with just subjects with ADHD, as well as SCHZ, have shown 

amygdala abnormalities (e.g., Cocchi et al., 2012; Dzafic, Burianov a, Martin, & Mowry, 

2018). It is possible that amygdala deficiencies are common across DDs, but that they are 

more pronounced in ASD. This pattern of results might explain the propensity of children in 

the ASD population to have atypical reactions to various types of sensory stimuli.

In addition to abnormalities in single brain structures, abnormalities have also regularly been 

reported in multiple DDs in large-scale brain networks, such as the default mode network 

(DMN), salience networks (SNs), and central executive network (CEN). These networks are 

highly related to sensory processing as they form the fundamental mechanisms for cognitive 

processing of sensory stimuli. That is, parts of the SN act as a sort of switch between the 

task-negative DMN and task-positive CEN. When sensory stimuli are relevant to a given 

subject, the SN allows information into/alerts the CEN where it can be processed (Sridharan 

et al., 2008; Uddin & Menon, 2009; Uddin, 2015). Thus, abnormalities of these large-scale 

brain networks could result in either hypo- or hyper-responsivity to sensory input, depending 

on the specific nature of the abnormality. These brain networks were discussed with respect 

to their abnormalities and the implications for sensory processing in all three of the DDs 

reviewed above. In addition, one study reviewed the available literature at the time of its 

publishing related to temporal coordination of activity in these large-scale brain networks in 

both ASD and SCHZ (Uhlhaas & Singer, 2012) and concluded that the temporal 

coordination in these networks was often abnormal in these DDs. While not included in this 

comparison, other studies have shown similar findings in ADHD (Cao et al., 2014; Carmona 
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et al., 2015; Pereira et al., 2016). Abnormal sensory processing might be among the 

widespread challenges caused by atypical function of the DMN, SN, and CEN.

3.2 Dysconnectivity

Many findings seem to point to dysconnectivity throughout the brain as being particularly 

important in understanding DD-related symptoms, including sensory processing 

abnormalities. Consistent with the above results regarding large-scale brain networks, many 

argue that people with various DD diagnoses present with alterations in local vs. long-range 

connectivity (Bethlehem et al., 2017; Cao et al., 2014; Geschwind & Levitt, 2007; Ray et al., 

2014; Robertson & Baron-Cohen, 2017; see Table 1). For instance, those with ASD, ADHD, 

and SCHZ, as well as Tourette Syndrome, seem to show patterns of increased local 

connectivity, with decreases in long-range connectivity (Kern et al., 2015). In the 

aforementioned study by Uhlhaas and Singer (2012) (see Table 1), decreases in long-range 

temporal coordination of the DMN, SN, and CEN have been shown in SCHZ and ASD. 

Indeed, white matter connectivity abnormalities are also commonly reported across DDs 

(e.g., Baribeau & Anagnostou, 2013; Dougherty et al., 2015). For example, Dougherty found 

DTI similarities between those with ASD and ADHD. Additionally, Baribeau and 

Anagnostou (2013) (see Table 1) reviewed structural MRI in those with childhood onset 

SCHZ (COS) and ASD, in which they noted alterations in white matter maturation in these 

conditions. These findings are also consistent with other studies which present evidence of 

abnormal temporal processing across DDs (Butler et al., 2017; Dinstein et al., 2012; 

Koldewyn et al., 2011; Milne et al., 2011; Uhlhaas & Singer, 2012). For example, 

abnormalities in the 40 Hz steady-state response in ASD, ADHD, and SCHZ suggest gamma 

binding deficiencies in these disorders, which has implications for the temporal coordination 

of distributed brain regions (i.e., long-range connectivity).

Many argue that deficits in temporal coordination are related to abnormalities in inhibitory 

activity (Klimesch et al., 2007; Rubenstein & Merzenich, 2003; Rubenstein, 2010; Thatcher 

et al., 2009). That is, inhibitory neurons (esp. interneurons) play an important role in setting 

the rhythm of neural oscillations. Thus, if inhibitory neural activity is abnormal, oscillatory 

activity cannot be normal, which might lead to inability of disparate brain regions to 

temporally coordinate their activity. Abnormal temporal processing is often taken as 

evidence of imbalance of excitatory and inhibitory activity throughout the brain (Rubenstein 

& Merzenich, 2003). This type of imbalance is factored into many prominent theories 

regarding several DDs, including ASD, SCHZ, and ADHD (e.g., Rubenstein & Merzenich, 

2003). Behavioral functions, such as processing sensory stimuli in the midst of challenging 

situations (e.g., speech perception in noise) and multisensory integration are highly 

dependent on inhibitory neural function. Deficits in these functions are widespread 

throughout DDs and suggest inhibitory dysfunction. Additionally, the propensity for people 

with ASD, ADHD, and SCHZ to show particular deficits in processing global (as opposed to 

more local) sensory information may be related to issues of deficient long-range 

connectivity and temporal coordination also seen in these disorders.
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3.3 Central and Higher-Order Versus Peripheral Aspects of Sensory Processing

The relationship between sensory symptoms and their neural underpinnings is complex, 

stemming from an intricate interplay of both subcortical and cortical processes seems to be 

at work to produce the behavioral sensory symptoms that are so commonly observed in 

people with DD. In the preceding paragraphs, various subcortical structures (i.e., 

cerebellum, basal ganglia, amygdala, thalamus), as well as cortical structures (i.e., sensory 

cortices) and networks (i.e., DMN, SN, CEN) and white matter tracts, and their roles in 

sensory processing have been discussed. In addition to these notions, there are several top-

down neural processes that may contribute to abnormal sensory detection, perception, and 

interpretation. One such process might be prediction (e.g., Bayesian predictive coding; 

Baum et al., 2015). Typical brains are set up to use previous experience to make predictions 

about the consequences of our own and others’ actions, and other sensory input. These 

predictions afford us many advantages, such as fluidity of interaction with our environment, 

rapid assessment of relevance and threat of stimuli, and experience-dependent development 

of comprehension and response accuracy (Courchesne & Allen, 1997). On the other hand, 

inaccuracy of prediction could lead to problems, such as excessively literal understanding of 

input, due to a lack of top-down influences, dislike of unpredictable situations or rigidity, 

desire to artificially introduce predictability/routine into one’s life, and inability to determine 

relevance of input (Gomot & Wicker, 2012; Neil et al., 2016). All of these deficits have 

implications for sensory processing and are commonly observed in a host of DDs, including 

those reviewed in the current manuscript. On the other hand, upon review, there are some 

discrepancies in the available data regarding some neural mechanisms related to one type of 

prediction—P50 suppression and PPI. That is, while P50 suppression and PPI deficits are 

very common in those with SCHZ, findings are inconsistent in ASD and ADHD, with some 

studies reporting no difference between the latter and TD populations (Magnée et al., 2009; 

Oranje et al., 2013; see Table 1). Thus, it appears there are many complex interactions and 

processes that combine to lead to abnormal sensory processing, many of which are yet to be 

discovered or confirmed. However, the information that is available at present suggests that 

there are many similarities in the underlying neural mechanisms responsible for sensory 

abnormalities across DD.

4. CONCLUSION

Sensory dysfunction is common in DD and can be extremely debilitating, often contributing 

to deficits in many essential functions. Unfortunately, consistently effective treatments for 

sensory dysfunction currently remain elusive. This discrepancy between need and solution 

may be due to a lack of understanding concerning the neural underpinnings of sensory 

dysfunction. The readily observable similarities in sensory symptoms between DDs lends 

credibility to the notion that there may exist shared neural mechanisms of sensory 

dysfunction across DDs. Therefore, the purpose of the current review was to survey the 

available literature regarding the neural correlates of sensory dysfunction across several 

DDs, in order to further understand the common biological mechanisms that lead to sensory 

abnormalities, regardless of diagnosis.

Cardon Page 22

Int Rev Res Dev Disabil. Author manuscript; available in PMC 2019 December 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Based on this review of the literature, several conclusions can be made. First, it appears that 

several patterns concerning the neural correlates of sensory dysfunction that span diagnostic 

categories exist. The literature suggests that sensory dysfunction stems from abnormal 

structural and functional characteristics of central brain regions and networks, including both 

primary sensory, but also supramodal brain areas (i.e., cerebellum, basal ganglia, amygdala). 

Atypical connectivity throughout sensory and large-scale brain networks (e.g., DMN, SN, 

CEN), associated with abnormalities in temporal processing and inhibitory function, seems 

to be fundamental to abnormal sensory processing. These alterations of neural structure and 

function are likely associated with deficits in higher order brain functions, such as prediction 

and attention, which in turn can negatively affect sensory processing. It should be noted that, 

while these patterns are apparent upon survey of the literature, in many cases, replicable 

findings are the exception, rather than the rule. However, these patterns and their 

implications for improvement of clinical practice are viable and exciting avenues for future 

research.
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