
November 11, 2017 9:11 WSPC/S0218-396X 130-JCA 1750025

Journal of Computational Acoustics, Vol. 25, No. 4 (2017) 1750025 (23 pages)
c© The Author(s)
DOI: 10.1142/S0218396X17500254

More Than Six Elements Per Wavelength: The Practical Use of
Structural Finite Element Models and Their Accuracy

in Comparison with Experimental Results

P. Langer∗,§, M. Maeder∗, C. Guist†, M. Krause‡ and S. Marburg∗
∗Chair of Vibroacoustics of Vehicles and Machines

Department of Mechanical Engineering
Technische Universität München

Boltzmannstraße 15, 85748 Garching, Germany
†BMW Group, 80788 Munich, Germany

‡ISKO engineers AG, 80807 Munich, Germany
§P.Langer@tum.de

Received 13 May 2016
Revised 21 February 2017
Published 29 March 2017

Choosing the right number and type of elements in modern commercial finite element tools is
a challenging task. It requires a broad knowledge about the theory behind or much experience
by the user. Benchmark tests are a common method to prove the element performance against
analytical solutions. However, these tests often analyze the performance only for single elements.
When investigating the complete mesh of an arbitrary structure, the comparison of the element’s
performance is quite challenging due to the lack of closed or fully converged solutions. The purpose
of this paper is to show a high-precision comparison of eigenfrequencies of a real structure between
experimental and numerical results in the context of an element performance check with respect to a
converged solution. Additionally, the authors identify the practically relevant accuracy of simulation
and experiment. Finally, the influence of accuracy with respect to the number of elements per
standing structural bending wave is shown.

Keywords: Finite element method; accuracy evaluation; experimental validation; virtual prototyp-
ing; finite element modeling; experimental modal analysis; uncertainty quantification.

1. Introduction

Engineers utilizing the finite element method (FEM) are confronted with the choice of
element type and number of elements to solve a given problem efficiently. Many different
element types have been implemented over the years, for example, beam, shell, plate and
solid elements.1 Koschnick2 underlines the importance of solid elements and their broad
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applicability. Numerical and FEMs in acoustics are well explained in the literature.3–5 Due
to today’s high demand to reduce the costs related to the development time, FEM has
become increasingly important for industrial tasks. This has been clear ever since the first
investigations by Kompella and Bernhard6 into the variation of two structure-borne and
two air-borne paths of 57 apparently identical Isuzu pickup trucks. A loudspeaker and an
impact hammer were used for measuring the air-borne and structure-borne transmission
paths. Hills et al.7 have compared the measurement variability of audio-frequency response
of a hatchback model with both a three-door (411 vehicles) and five-door (403 vehicles)
derivative and a mid-sized family five-door car (316 vehicles). In summary, the frequency
response functions (FRFs) varied by approximately 5–15 dB over the frequency range 0–
1000 Hz for the structure-borne and air-borne paths.

Nowadays, the construction and development process of a new product is often sepa-
rated from the actual static and dynamic analyses. For this purpose, numerical tools have
been developed to help engineers. These tools numerically solve partial differential equations
(PDEs) that represent certain physical behaviors, such as structural dynamics, thermome-
chanics or elastoacoustics. Here, the domain is divided into elements and nodes, and these
equations are solved for these nodes. The nodes are connected via elements. In the first step,
the element equations are formulated and approximated utilizing the Galerkin method, for
example, to build the element system matrices. In a second step, the global system matrices
are compounded with the use of appropriate boundary conditions. Choosing a suitable ele-
ment type and the required number of degrees of freedom (DOF) for the numerical model
are crucial in terms of accuracy and computational cost. Despite the presumed meaningful
results a mathematical tool can calculate, it is the responsibility of the engineer to decide
whether or not the result is reliable. Hornikx et al.8 proposed a platform for benchmark
cases to compare different models with respect to accuracy and modeling effort. Benchmark
cases in the fields of linear acoustics, high frequency acoustics, acoustics and vibrations
and acoustics involving heterogeneous and moving fluides are shall be proposed. Within
this platform, analytical, numerical and experimental techniques are considered. Marburg
et al.9 have verified numerical solutions with experimentally measured data in the field of
structural-acoustic modeling in order to gain knowledge about the certain degree of accu-
racy despite the amount of computational effort. Cifuentes and Kalbag10 have compared
linear and quadratic tetrahedral and hexahedral elements in various structural problems
and observed equivalent results in terms of both accuracy and computational time. Lee and
Bathe11 have investigated the influence of distortion on the performance of isoparametric
quadrilateral elements. Langer et al.12 have published a study about the effect of distorted
elements in three-dimensional finite element models of simple structures.

In engineering, it is common to use a fixed number of elements per wavelength to control
the accuracy of finite and boundary elements. This rule has been questioned with the
observation of the pollution effect which exhibits an additional error that is observed for
high frequencies, see for example Babuška et al.13 and Ihlenburg.14 It was shown that this
additional error is reduced when higher order basis functions are applied.15 A recent study
by Dogan et al.16 has established how to evaluate the dispersion error of a meshless boundary
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element method. It was shown by Marburg and Schneider17,18 that there is no indication
for a pollution error in boundary element methods. However, recent results of Marburg19

challenge this observation and will further be investigated in the near future.
This paper starts with a convergence study of elements based on the element type and

the DOF, followed by investigations about other discretization parameters for finite element
models. This study is focused on the number of layers across the whole wall thickness of the
investigated structures, the element edge length, and the element type. Natural frequencies
and mode shapes obtained from a numerical and experimental modal analysis (EMA) are
compared. The types of elements are restricted to solid elements to ensure a maximum of
flexibility for meshing complex structures. ABAQUS/CAE is used as the numerical tool. The
element formulations are almost the same in different FE software. The reader is assured
that the recommendations about finite element modeling are software independent. The
test cases are a simple beam and a more complex geometry, i.e. a simplified crankcase.

A short overview of deviations in natural frequencies due to uncertainties in material
geometry is provided. For measuring the FRF in the frame of an EMA, a harmonic excitation
by a shaker or a loudspeaker together with a scanning laser Doppler vibrometer is utilized.

2. Theory

2.1. Modal analysis

The equations of motion for a multi-DOF (MDOF) for free vibration problems in matrix
notation read

[M ][q̈] + [D][q̇] + [K][q] = [0], (1)

where [M ] is the mass, [D] the damping, [K] the stiffness matrix, and [q] the components
of the generalized vector of unknowns. The dot represents the derivative with respect to
time. By separating of variables such as [q] = [q̂]eµt, the following eigenvalue problem can
be stated:

(µ2[M ] + µ[D] + [K])[q] = [0], (2)

(µ2
i [M ] + µi[D] + [K])[φi] = [0]. (3)

Calculating all eigenvalues µ and reinstating each µi into Eq. (3), the components of the
corresponding eigenvectors [φi] can be determined. For the problem of interest, [M ] and [K]
are symmetric and positive definite. For this system, real eigenvalues and eigenvectors can
be expected. By assuming that [D] is negligible, the system has only complex conjugated
eigenvalues µ2

i , and real eigenvectors [φi].
One method for the eigenvalue extraction of symmetric systems in the FEM is the

Lanczos method, which is very well described by Newman and Pipano20 as well as by
Parlett.21 For further information about eigenvalue extraction, see Wilkinson22 and Bathe
et al.23
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2.2. Description of elements

It is assumed that the reader is familiar with the fundamental formulations of the FEM.
Therefore, the authors refrain from including a detailed description here, but refer the
reader to the literature, such as Refs. 24–27. For the following studies, the commercial
FEM software ABAQUS v6.10 with the pre- and post-processor ABAQUS/CAE and the
implicit solver ABAQUS/Standard were utilized. Table 1 displays the elements of interest
of the ABAQUS element library that have been investigated based on discussions with rep-
resentatives from the industry as well as personal experiences. The use of shell elements
is not part of this paper due to the limited usability for meshing complex structures. The
ABAQUS library24 provides elements with first-order (linear) and second-order (quadratic)
interpolation polynomials. The user has to decide which element type has the optimal accu-
racy for solving the mathematical model of the corresponding physical problem. First-order
elements are essentially constant strain elements. This implies that the higher-order content,
for example the stress field of a beam in bending deformation, is not resolved accurately.
The element with the ending I has 13 additional variables representing incompatible modes.
These elements, as well as second-order elements exactly capture a linear strain field. Fur-
thermore, the user is left with the question of whether full or reduced integration is applied
for building the system matrices. All tetrahedral elements use full integration. Full inte-
gration only signifies that the number of integration points is sufficient to calculate the
virtual work expression most accurately. For the reduced integration procedure, the inte-
gration points are at the locations that gain optimal accuracy. These points or locations are
known as Barlow points, as described in Barlow.28 A second advantage is a decreasing CPU

Table 1. Description of three-dimensional finite element types.24

Name Figure Nodes Order General Remarks

C3D20 20 Quadratic 20-node 3D hexahedral element with full integration24

C3D20R 20 Quadratic
20-node 3D hexahedral element

with reduced integration at the Barlow points28

C3D8 8 Linear 8-node 3D hexahedral element with full integration

C3D8I 8 Linear
8-node 3D hexahedral element with

full integration and additional DOF

C3D10 10 Quadratic 10-node 3D tetrahedral element with full integration
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time and storage requirements. The primary disadvantage is that this integration permits
deformation modes that do not cause any strain field at the integration points and therefore
inaccurate solutions, since only first-order quadrilateral and hexahedral elements are taken
into account. The authors also use quadratic elements with reduced integration, since the
fully integrated elements are not capable of resolving nearly incompressible material behav-
ior. This drawback is known as volumetric locking. By referring to the treatises,26,29–31 one
can see that fully integrated first-order isoparametric elements can have problems with
bending of thin structures due to shear locking.

3. Description of Test Specimens

Figure 1 shows the test specimens. A beam-like structure with nominal dimensions of
(0.2 × 0.04 × 0.004m) and a simplified crankcase structure made of aluminum are investi-
gated, for which linear elastic material behavior, i.e. Hooke’s Law, is assumed. Figure 1(a)
shows the beam specimen and Fig. 1(b), the investigated more, complex structure. The
dimensions are comparable to a real crankcase of a three cylinder engine. All radii of the
investigated structures were manufactured with less than 0.005m. Langer et al.12 discussed
the question how accurately edges and curves of the real component should be simulated.
The investigated radius of 0.005m on monolithic beam structures has a negligible influence

h

(a) (b)

Fig. 1. Investigated structures. (a) Simple beam structure; l = 0.2 m, w = 0.04 m, h = 0.004 m and (b) more
complex structure — simplified crankcase.

Table 2. Mean value of material parameters.

Property Value Unit

Density [�] 2674 kg
m3

Young’s Modulus [E] 71 GPa
Poisson’s Ratio [ν] 0.33 —
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to the calculated eigenfrequencies and the accuracy with respect to experiments. The mate-
rial properties have been experimentally validated and are presented in Table 2.

4. Experiments

By performing an EMA, it is possible to measure the resonance frequencies of a struc-
ture. The modal parameters such as eigenfrequencies, modal damping, and eigenvectors are
numerically evaluated utilizing a curve fit algorithm along with a decomposition scheme of
the fitted polynomials. In this paper, only the eigenfrequencies of the examined structures
are considered. For the sake of clarity in this section, the general setup of the experiments
is explained, while details of the structures are presented afterwards.

4.1. Beam setup

For the EMA, results depend on the precision of the measuring device and the apparatus
used in the experiment. Therefore, a suitable measurement technique must be carefully
chosen to correctly record the excitation and the structural response. To examine the beam
specimen, the structure is exited with a loudspeaker while measuring the sound pressure
at a reference position. However, this method is only applicable for sound sensitive struc-
tures. A review of different measurement techniques is provided by Ewins32 as well as the
International Organization for Standardization.33

In all tests, the boundary condition is considered as free–free for simplicity with respect
to the simulations explained in the following sections. The authors understand that this is
an ideal estimation of the real setup. But since the frequencies of the corresponding rigid
body motions were less than 10 times the resonance frequency of the first deflection shape,
the mutual influence is considered to be negligible.32

In the measurement setup, the beam is attached to two elastic strings in an anechoic
chamber, see Fig. 2. A microphone measures the sound pressure level in front of the loud-
speaker, which excites the structure with a periodic chirp signal. The advantages of the
applied signal are its continuity up to the first derivative and its periodicity within the time
block. Therefore, a continuous, sequential measurement utilizing a scanning laser Doppler
vibrometer is possible. The time signals of all quantities were windowed with a Rectangular-
Window, transformed into frequency domain with the use of the Fast Fourier Transforma-
tion (FFT) and handled further to obtain the FRFs of each measurement. Handing over
the FRFs to ME’Scope34 as a postprocessing tool, the eigenfrequencies and the associated
mode shapes are identified.

4.2. Simplified crankcase setup

As mentioned before, the use of a loudspeaker is only applicable for structures that are
sound sensitive. In the second test case, a simplified geometry of a three-cylinder crankcase
is analyzed. Since this structure’s impedance is too large for it to be excited by a loudspeaker,
a shaker excitation together with a force transducer has been preferred. A scanning laser
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1 

2 

3 4 

5 

Fig. 2. Experimental setups for beam structure: (1) microphone, (2) specimen, (3) loudspeaker, (4) elastic
strings, (5) anechoic chamber.

(a) Shaker position 1 (b) Shaker position 2

Fig. 3. Experimental setups for complex structure.

Doppler vibrometer measured the surface normal velocity at discrete points on the structure.
Again, a periodic chirp signal for the shaker allowed a rectangular window for transforming
all measured time signals into the frequency domain.

5. Example 1: Beam Structure

5.1. Model description

Figure 4 shows the finite element model that was created using ABAQUS/CAE. The mesh
consists of 640 second-order brick elements (C3D20). To minimize the numerical error, no
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Fig. 4. Finite element model of the beam structure.

distorted elements were allowed in the process of meshing the geometry. The boundary
conditions are ideal free–free. In order to compare results of simulations with experimental
results, a converged solution is required. C3D20R elements tend to yield more accurate
results when using fewer DOF in comparison to the other element types of interest.24,28

5.2. Eigenfrequency error

5.2.1. Error measures

A converged solution is assumed when the results, in the frame of a numerical modal
analysis, vary less than 1% after doubling the DOF. Using these results, a relative error can
be calculated:

ε =
∣∣∣∣100 ·

(
f

fcon
− 1

)∣∣∣∣%, (4)

where fcon is the eigenfrequency from the converged numerical calculations and f is the
corresponding eigenfrequency obtained by the experiment or simulation with fewer DOF or
different element types than the converged reference solution. Furthermore, a comparison of
the CPU times required to solve for the numerical results is presented. All calculations were
executed on a 64-bit Windows machine with 16 cores @ 2.53GHz and 24 GByte RAM. In
the following, a sufficiently accurate solution of a finite element model, where the relative
deviation for the investigated eigenfrequencies is less than 1% to a reference model, is
defined. This virtual model has a larger number of DOF to ensure convergence.

5.2.2. Identify practically relevant accuracy

A reduction of the threshold value of 1% is not useful, according to the results in Fig. 5.
The numerical and experimental results for the eigenfrequencies of the first three bending
modes of 10 beam samples are presented.

The numerical models are meshed with quadratic elements C3D20 and C3D10, as well
as with a mesh with lower resolution, which has been used by Langer et al.35 Experimental
results are shown with black solid curves labeled “LDV”. The solution of the numerical
model is influenced by all input parameters and their specific uncertainties. These parame-
ters include geometrical dimensions as well as material parameters of Hooke’s model. The
dimensions l, w and h of all samples have been measured to identify the true deviations
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Fig. 5. Range Rm of ten finite element models of simple beam structures in the first three eigenfrequencies
of bending modes due to uncertainties in material and geometry. LDV: experimental results; C3D20 and
C3D10: solutions of finite element models discretized with quadratic hexahedral and tetrahedral elements.

within the set. The material parameters are Young’s modulus, E, the density, � and Poisson’s
ratio, ν. For an accurate determination of the material parameters, the pulse-echo method
has been used to measure the velocity of sound of the longitudinal wave and transversal wave
in each sample. With the high-precision measurement of the density �, we can calculate the
Young’s modulus E and Poisson’s ratio ν. The relevant uncertainties arise from the error
propagation by taking into consideration the accuracy of all measurement data and their
statistical fluctuations. For each sample, the standard deviation and measurement uncer-
tainty are determined from the mean values. The maximum averaged deviations from the
mean value are ±2.3% for the Young’s modulus, ±0.2% for the density and ±3.3% for the
Poisson’s ratio. The relative deviation for the shape parameters are ±0.01% for the length,
±0.05% for the width and ±0.5% for the height. By means of the error propagation theorem,
upper and lower bounds around the mean values can be stated. This indicates the range
Rm, representing the total uncertainty. That means that for the first three eigenfrequencies
of bending modes of the simplest structure, a relative deviation surrounds the mean values
of ±1.75%, ±2.1% and ±1.9% in the finite element solution, respectively. As a result of
this considerable uncertainty, it can be assumed that a relative deviation of 1% < ε < 2%
between simulations and experiment is reasonably accurate. A lower deviation is inside the
distribution of the numerical results due to material and geometry uncertainties.

In addition, it was found to be physically correct that the physical model is limited by
the solution of numerical models. Figure 5 shows a perfect match between the ranges of the
finite element models and the experiment.

5.2.3. Number of elements per wavelength

The goal of this study is to investigate the number of elements (el) per wavelength (λ) in
order to achieve a criterion for a sufficiently accurate numerical modal analysis. Figure 6
shows the structural wavelength of the beam structure investigated. The boundary condition
is free–free. The first bending mode consists of a half of a wavelength (λ/2) and the second
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half of a wave

one wave

one and a half waves

two waves

two and a half waves

three waves

536 Hz

1483 Hz

2912 Hz

4810 Hz

7162 Hz

9938 Hz

Fig. 6. Structural wavelength (λ) of the beam structure.

mode shows one complete wave. The number of elements per wavelength were constant
over the whole frequency range for the first specific investigation. The other parameters
of discretization, such as the element type and the number of layers, remain unchanged.
The finite element model had two layers of elements over the thickness and one layer over
the width of the beam. A frequency range up to 10 kHz was chosen, because the focus was
exclusively on the first six natural frequencies of the bending modes. Two mesh settings are
examined: one with elements using a quadratic formulation (C3D20) and another one using
a discretization scheme with linear formulation (C3D8).

Figure 7 shows the relative error of finite element models with a fixed number of ele-
ments per wavelength for the eigenfrequencies of the first six bending modes compared to
a reference model with 2000 quadratic elements across the length l. Due to the resulting
bad shapes of these elements, the reference model was verified with a finite element model
with four layers across the width. The result was a negligible influence of the model solution
for using one layer across the width. The number of elements per wavelength — four, six,
ten, twenty, forty, and five hundred — are taken into consideration. Using second-order
elements, 20 elements per wavelength are sufficient to achieve results within a 1% error up
to 10 kHz. To calculate the first natural frequency of a finite element model with 400 DOF,
this value is quite sufficient. The computational time for the highest natural frequency of
this model is less than 0.1 sec. For fewer elements per wavelength, higher relative errors can
be expected. For finite element models discretized with linear elements, at least 500 ele-
ments per wavelength are needed to achieve a relative error below 1%. This leads to a finite
element model with 4500 DOF and a computational time of 0.6 sec. The error increases
significantly with fewer elements per wavelength. Accuracy of finite element simulations is
nearly independent of the variation of the number of elements in the width of the beam.

A further effect in the error analysis is observed. The relative error decreases with a
higher number of bending modes for models discretizised with quadratic and linear elements.
This phenomenon was determined independently of the number of elements per wavelength.
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Fig. 7. Relative error with a fixed number of elements per wavelength for the eigenfrequencies of the first
six bending modes.

5.2.4. Behavior of relative errors

Referring to the corresponding literature, see Refs. 36–40, it was assumed that the error due
to the pollution effect should increase with higher wavenumbers, because the rule of using
a fixed number of elements per wavelength is not sufficient for high frequencies. However,
when discussing this, it should be clarified that the pollution effect is usually measured
as a displacement error (structural elements) or a sound pressure error (acoustics) in the
H1-norm or the H1-seminorm. Eigenfrequencies can be understood as the quotient of two
energy norms (generalized Rayleigh quotient) but do not refer to the local derivative as the
H1-norm does. When analyzing the error with respect to the eigenfrequencies, the pollution
effect cannot be identified. The effect observed here has even been the opposite to the
pollution effect. In the following, further investigations are presented to understand this
phenomenon.

In order to achieve minimal influence of the element edge length, beams with quadratic
cross section have been analyzed. In this case, the examined meshes are composed of cube-
shaped elements. Figure 8 shows the relative error for the first four eigenfrequencies of
bending modes to a reference finite element model with 2500 quadratic elements across the
length l. Contrary to the expectations for quadratic and linear elements, the relative error
decreases again with higher eigenfrequencies of bending modes.

To investigate not only finite element models with elastodynamic material behavior,
an acoustic model was considered by solving the Helmholtz equation. Therefore, a further
examination is to solve a one-dimensional duct problem. In this case, it is the solution of the
Helmholtz equation for an air-filled duct with the length l = 1m. The material data of air
consists of the density �air = 1.3 kg/m3 and the speed of sound cair = 340m/s.41 Figure 9
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Fig. 8. Beam with the length l = 0.2 m and quadratic cross section area (0.2 × 0.004 × 0.004 m): Relative
error with a fixed number of elements per wavelength for the first four eigenfrequencies of bending modes.
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Fig. 9. One-dimensional duct: Relative error with a fixed number of elements per wavelength to a reference
model for the first nine eigenfrequencies.

shows the relative error with a fixed number of elements per wavelength to a reference
model for the first nine eigenfrequencies using quadratic and linear elements. Regarding
the relative error, a highly accurate solution is reached, with six quadratic elements per
wavelength and a relative error of less than 1% to a reference model with 500 quadratic
elements per wavelength. The model meshed with linear elements provides high quality
solutions with more than 10 elements per wavelength. It can be found that the relative
error in models with quadratic and linear elements is constant over the whole frequency
range. This is in strong contrast to the results of the three-dimensional structural finite
element models.
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The presented results are in contrast to the investigations by Oberai and Pinsky,42

who discussed the effect to pollution through the comparison of FEMs for the Helmholtz
equation. The authors explain this with the properties of the directions normal to the lon-
gitudinal axis of the three-dimensional beams: In a bending deflection, the shear stress τ12,
where the 1-direction is along the length and the 2-direction is along the height of the beam,
has a quadratic progression between the upper and the lower side faces. According to this,
the accuracy of this approximation is higher with more elements in the transverse direction.

5.2.5. Discretization parameters

In relation to global discretization parameters, note the following statements for thin-walled
structures: Not only the number of DOF and the element formulation are essential for highly
accurate solutions of finite element models; in order to achieve an accurate numerical solu-
tion for thin-walled structures, initial studies have shown that the discretization parameters,
such as the number of layers across the thickness ln and the regularity of the mesh, are essen-
tial as well. Of course, with increasing the number of layers and the use of a shorter element
edge length, DOF increase in the finite element model as well. The using of a regular mesh
in finite element models is recommended. That can generate positive effects, such as less
computational time with constant accuracy due to optimally shaped elements. Figure 10
shows the deviation of different mesh strategies compared to a reference model. The element
edge length, the element type, and the number of layers have been varied. These parameters
are altered in such a way that no distorted elements are generated. Therefore, for element
edge lengths of 5 mm, 1mm and 0.5 mm, it has been possible to generate 1, 2, or 3 layers
over the thickness.

Fig. 10. Relative deviation of one finite element model with different discretizations to a reference model
for the first three eigenfrequencies of bending modes. hel: element edge length in mm; ln: number of layers
across the thickness h; fr: approximate solution of the reference model.
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The eigenfrequencies fr are the results of the reference finite element model with
quadratic elements, 0.5 mm element edge length, and 3.4 · 106 DOF. In general, apart
from other discretization parameters, the solutions of finite element models meshed with
second-order elements demonstrate a more stable solution. Compared to a mesh with linear
elements, here, a good conditioning of the element shape, close to the cubic form, is less
essential. For example, despite the increased number of DOF, a mesh with an element edge
length of 5 mm and one layer yields more accurate results compared to a discretization with
1-mm element edge length and one layer. In the latter case, the elements aspect ratio is too
large and the element shape resembles a stretched rectangle. That means that for linear
elements, a fully converged solution cannot be achieved. This is also observed for meshes
with more layers over a 1-mm element edge length. These high deviations can arise due to
a variety of reasons, e.g. a not completely converged solution, or a mesh which tends to a
numerical solution includes stiffening effects, called locking effect. Koschnick2 describes geo-
metric and material stiffening effects from three different points of view: the numerical, the
mathematical, and the mechanical. According to this description, a numerical convergence
to the exact solution can occur with larger DOF, but the computation time is much longer
compared to locking-free elements. In order to understand different locking effects, a critical
parameter can be defined to describe the influence on the solutions of virtual models. For
the dimensions of the investigated beam structures, geometrical stiffening effects can addi-
tionally be taken into account. One of these effects is shear locking for bending structures.
Here, the critical parameter is the aspect ratio of the numerical elements. A good expla-
nation is provided by Sun43 and Belytschko.44 A more detailed process of analyzing the
reasons and evaluations of stiffening effects can be found in the literature, such as Babuška
and Suri.45

5.2.6. Guideline for thin-walled structures

These results provide a clear indication that the dicretization parameters, such as the num-
ber of layers across the thickness ln, the number of elements per wavelength el/λ, and the
elements aspect ratio αel, play a role as well. With the experience gained from several stud-
ies of element types,35 investigations of torsion modes, as well as the variation of many
discretization parameters, a recommendation:

Table 3 shows a guideline for a meshing process of three-dimensional finite element mod-
els for thin-walled structures, sufficient for an accurate solution up to the mid-frequency
range. The guideline’s data indicates an accuracy of 1% of the calculated eigenfrequencies
to a reference finite element model with a larger number of DOF. For an accurate finite
element model to analyze eigenfrequencies of bending modes, two and three layers across
the thickness ln are sufficient for quadratic and linear elements, respectively. For the highest
considered bending mode, efficient discretizations for linear and quadratic element formu-
lation are 500 and 20 elements per wavelength, respectively, with a maximum element’s
aspect ratio of 1:4 and 1:10. That means that for the mesh with linear element formulation,
many more DOF are required.
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Table 3. Guideline for discretization
parameter for meshing thin-walled struc-
tures. p: order of basis function; el/λ:
minimum number of elements (el) per
wavelength (λ) for bending mode; ln:
minimum number of layers across the
thickness; αel: elements aspect ratio.

Bending Mode

p Linear Quadratic

el/λ 500 20
ln 3 2
αel 1:4 1:10

5.2.7. Error of natural frequency in terms of DOF

Figures 11 and 12 display the results for the first bending and lateral modes of the beam.
These investigations are independent of the discretization parameter in the finite element
models and focus only on the DOF. Since it is not possible to measure lateral deflection
with the previously described experiments, Fig. 12 does not show experimental results. The
discretizations with results with less than a 1% relative error are useful for high-quality
statements.

For the bending deflection in Fig. 11, the experimental results using 2 · 105 C3D20R
elements differ about 0.2% from the converged solution. This element type provides highest
accuracy with the lowest number of DOF. Linear and quadratic elements converge from

1st bending mode
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Fig. 11. Beam results — bending mode. (a) Eigenfrequency of first bending mode from finite element models
with different types of elements and experiment and (b) relative error of first bending mode to a reference
finite element model with 3.4 · 106 DOF and quadratic elements.
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Fig. 12. Beam results — lateral mode. (a) Eigenfrequency of first lateral mode from finite element models
with different types of elements and (b) relative error of first lateral mode to a reference finite element model
with 3.4 · 106 DOF and quadratic elements.

above. Furthermore, it can be noted that quadratic elements tend to yield more accurate
results than linear elements with respect to constant DOF. With quadratic elements, the
same quality as with the use of linear elements can be achieved using a number of DOF
ten times less. The model with C3D8I elements has more accuracy than the C3D8 models
with the same number of DOF. This is only the case for a regular mesh. Additionally, the
C3D8I model produces better results with fewer number of DOF. When the elements deform

Computational Time
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Fig. 13. Comparison of computational time (beam) of the finite element models with different types of
elements.
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laterally, the results are quite smooth, since originally finite elements are good to solve for a
homogenous stress distribution within the element. Missing values in Fig. 12 indicate that
there is no difference between the converged solution and the solutions obtained with fewer
elements or with different types of elements in logarithmic scale. Linear elements converge
from below, quadratic elements from above.

5.2.8. Computational time in terms of DOF

Taking into account the computational time in Fig. 13 needed to obtain the results, it can
be observed that quadratic elements achieve more accurate results in less wall clock time.
For the linear elements, the C3D8I model has a higher accuracy than the C3D8 model and
requires less computational time. For these investigations, the standard eigensolver Lanczos
was used.

6. Example 2: Complex Geometry, a Simplified Crankcase

6.1. Model description

The behavior of elements has been further investigated using a more complex geometry.
Figure 14 shows the finite element model of a simplified crankcase. The boundary conditions
are ideal free–free and no distorted elements were present.

6.2. Error of natural frequency in terms of DOF

Focusing on the first three calculated structural eigenfrequencies, the elements’ performance
is shown in Figs. 15–17.

Fig. 14. Finite element model of a simplified crankcase as a more complex structure.
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Fig. 15. Simplified crankcase results — first structural mode. (a) Eigenfrequency of first structural mode
from finite element models with different types of elements and experiment and (b) relative error of first
structural mode to a reference finite element model with 3.2 · 106 DOF and quadratic elements.
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Fig. 16. Simplified crankcase results — twentieth structural mode. (a) Eigenfrequency of twentieth structural
mode from finite element models with different types of elements and experiment and (b) relative error of
twentieth structural mode to a reference finite element model with 3.2 · 106 DOF and quadratic elements.

A mode shape of a complex structure, which is determined by the geometry, the parame-
ters of the material model and the boundary conditions, has an unknown shape, the elements
may deform in a complex way. Therefore, the elements can deform arbitrarily. Because
of this complex behavior, a straightforward forecast of the elements’ performance is not

1750025-18

J.
 C

om
p.

 A
co

us
. 2

01
7.

25
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 5

4.
22

7.
23

0.
22

4 
on

 1
0/

05
/2

0.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



November 11, 2017 9:11 WSPC/S0218-396X 130-JCA 1750025

More than Six Elements Per Wavelength

40th structural mode

C3D20R
C3D20
C3D8

C3D8I
C3D10
Experiment

f 
[H

z]

8750

9000

9250

9500

9750

10000

DOF
104 105 106

40th structural mode

C3D20R
C3D20
C3D8

C3D8I
C3D10

ε i
n 

%

10−2

10−1

100

101

DOF
104 105 106

(a) (b)

Fig. 17. Simplified crankcase results — fortieth structural mode. (a) Eigenfrequency of fortieth structural
mode from finite element models with different types of elements and experiment and (b) relative error of
fortieth structural mode to a reference finite element model with 3.2 · 106 DOF and quadratic elements.

possible. The results displayed in Figs. 15–17 are representative for the general elements’
behavior. The reference model to calculate the relative error ε has 3.2 · 106 DOF. For the
first structural mode, linear and quadratic elements converge from above. For the twentieth
and fortieth structural modes, linear elements converge from below and quadratic elements
from above. It can be seen that the converged solutions differ about 1% from the experi-
mental results. This fact still holds for other and even higher-order modes, but the results
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Fig. 18. Comparison of computational time (simplified crankcase) of the finite element models with different
types of elements.
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are excluded due to the lack of new information. Quadratic elements perform better in
terms of DOF expected for using linear elements C3D8. This means, in order to achieve
a similar simulation quality, two orders of DOF less can be used when choosing quadratic
brick elements instead of linear elements. Comparing quadratic hexahedral and quadratic
tetrahedral elements with each other, it is possible to see that the performance is compara-
ble. The only exception is the usage of the C3D8I elements. With the same number of DOF,
the C3D8 models have more accuracy than C3D8I models. The latter elements tend to give
the worst accuracy in terms of DOF for this model, but have the advantage of having the
lowest CPU time. The models meshed with quadratic tetrahedral elements yield a more
accurate solution for higher structural modes than quadratic hexahedral elements with the
same number of DOF.

6.3. Computational time in terms of DOF

Taking into account the CPU time in Fig. 18 needed to obtain the results, it is obvious
that the tetrahedral quadratic element type achieves more accurate results in less wall clock
time. For these investigations, the standard eigensolver Lanczos was used.

7. Conclusion

The authors presented a finite element performance study based on the assumption that sin-
gle element benchmark tests do not provide reliable information when choosing appropriate
mesh properties for structural FE-analysis. Experimental tests set the basis to evaluate the
simulations’ quality with respect to the highest possible accuracy of converged solutions.
Since the experimentally identified eigenfrequencies of simple structures vary within ±2%
due to material and geometry parameter uncertainties, it is not useful to define a numer-
ical model with a accuracy below a deviation of 1%. The provided guideline for choosing
efficient discretization parameters for thin-walled structures helps the engineer to identify
the element type and DOF for structural analysis in order to achieve a certain degree of
accuracy with respect to experimental results. The rule of thumb for meshing thin-walled
structures states that

(i) the user should use at least 20 quadratic or 500 linear elements per standing bend-
ing structural wave. Such a mesh gives a converged solution for eigenfrequencies of
bending modes with an error of less than 1%, which is considered as a reasonable com-
promise between the accuracy of an experiment and the variation of samples and their
parameters,

(ii) when using linear elements, good conditioning of the element shape close to the cubic
form is essential,

(iii) the pollution effect is not relevant for three-dimensional structured meshes in the fre-
quency range up to medium to high frequencies when measuring the error based on
eigenfrequencies. The investigations show a decreasing error for a constant number of
elements per wavelength with increasing frequency,
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Table 4. Summarized pros and cons of the element types discussed in the paper; complex
geometry: investigated crankcase; real complex geometry in industrial applications: geometry
including sharp edges, beads, ribs, blind holes.

Type Pros Cons

C3D20 • Good conditioning of element shape
less essential

• Suitable for complex geometry

• Needs a structured mesh
• Not suitable for real complex industrial

structures

C3D20R • Highest accuracy with lowest num-
ber of DOF

• Suitable for complex geometry

• Needs a structured mesh
• Not suitable for real complex industrial

structures

C3D10 • Unstructured mesh possible
• Suitable for real complex industrial

structures
• High accuracy with respect to DOF

C3D8 • Suitable for complex geometry • Needs a structured mesh
• Not suitable for real complex industrial

structures
• Good conditioning of element shape

essential

C3D8I • Most accurate linear element with
respect to DOF for regular mesh

• Suitable for complex geometry

• Needs a structured and regular mesh
• Not suitable for real complex industrial

structures
• Good conditioning of element type

highly essential

(iv) quadratic elements perform much better than linear elements when comparing results
of models with identical DOF and are therefore much more efficient and

(v) calculations using a regular mesh greatly benefit in performance.

A detailed list of advantages and disadvantages of each element type are summarized
in Table 4. Corroborated by the results of this study, the authors recommend the use of
quadratic elements as long as the user is able to determine that all field gradients are
monotonic inside the element. In this case, the fact that quadratic elements are not uncon-
ditionally stable is uncritical. Similar conclusions are found in Ramesh et al.46 and Mar-
burg and Schneider17 for acoustic-wave propagation problems with respect to the efficiency
of quadratic boundary elements. For the future, investigation of higher-order elements is
planed. However, only a few commercial finite element codes offer this feature which is one
reason why higher-order elements are hardly used in industry so far.
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37. F. Ihlenburg and I. Babuška, Finite element solution of the Helmholtz equation with high
wavenumber Part I: The h-version of the FEM, Comput. Math. Appl. 30 (1995) 9–37.
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