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Modern technology is relying on hardware accelerators to achieve enhanced performance of computing systems. In the modern 

computing paradigm, floating point representation of numbers has gained popularity owing to its wide dynamic range. Rounding of 

floating point numbers to integer is used in modern processor architectures e.g. ARM and Intelۑs architecture (IA) as well as in 

specific applications such as multimedia. However, the academic literature lacks discussion on hardware designs for rounding binary 

floating point numbers to integer in different rounding modes. This paper presents novel efficient algorithms and hardware 

architecture designs for rounding binary floating point numbers to the integer for the following rounding modes: round towards zero, 

round up (towards positive infinity), round down (towards negative infinity), round to the nearest integer, and round to nearest even. 

The paper also proposes an integrated multi-mode rounding (IMR) algorithm and hardware design which can be configured to a 

specific rounding mode among the above mentioned five modes. This paper proposes a mantissa bit of rounding (MBR) to determine 

the condition of rounding for the various modes. The MBR is identified on the basis of the dynamic range and precision features of 

floating point representation. To the best of our knowledge, we present the individual as well as an integrated hardware design for 

the various rounding modes for the first time in the literature. The proposed designs have been implemented on an FPGA platform to 

analyze the design metrics such as area, delay and power. The results imply that the proposed designs are suitable to aid the intended 

hardware accelerators as they are efficient in terms of the design parameters. Moreover, this paper presents the integration of the 

proposed rounding hardware design with the compression processor and evaluates the integration overhead which is found to be 

nominal (<1%).  
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1 INTRODUCTION 

Hardware acceleration has fulfilled a pivotal role in realizing fast and high throughput computing systems 

of modern age. Performing data and computationally intensive functions through a dedicated hardware 

counterpart not only accelerates the computing task to offer the higher performance but also saves the 

power [1]. For instance, multimedia and machine learning applications perform large computations on 

ample amount of data. This entails employing dedicated hardware to accelerate their processing [2]-[5]. 

The computations in the multimedia and machine learning applications are largely performed on real 

numbers.  

The real numbers are commonly represented in floating point representation in the computers because 

of their capability of offering wide dynamic range and dynamic precision. According to the IEEE-754 

standard, there exist various rounding modes such as round towards zero, round up (round towards 

positive infinity), round down (round towards negative infinity), round to nearest (where ties break-up 

with round away from zero) and  round to even (where ties break-up with the nearest even integer) to 

round the results obtained from the elementary operations such as multiplication, division, square root, 

and so on [6], [7]. Further, in some specific applications also, the floating point representation is desirable 

over the integer representation such as in High Dynamic Range (HDR) photography and videography. To 

support the HDR, the sample values are represented in floating point numbers [8]-[10]. For example, half 

precision floating point number representation is used by the EXR format which is employed in post-
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processing of cinematic material. It can cover dynamic ranges up to 10.7 magnitudes in luminance [8]. 

Additionally, modern shading units in GPUs denote the pixel information in floating point [11]. Further, 

floating point samples are required to be converted to integer samples in the most audio 

programs/processing [12]. Intel provides an optimized signal processing library which has fast rounding 

and conversion functions [12].  

Floating point rounding to integer (or whole number) is also useful in various problems such as 

polymatroid and branching optimization problems [13], GPS integer ambiguity resolution [14], integer 

optimization and relaxed integer programming problems [15] etc. Apart from this and more popularly, 

specific applications such as multimedia and machine learning require rounding of fractional values to the 

integer as intermediate data or final result. For instance, multimedia applications such as JPEG image 

compression and MPEG video compression require rounding to integer value in the quantization step. 

More explicitly, the lossy compression processor performs discrete cosine transformation (DCT) followed 

by quantization step wherein the rounding to integer is performed after the multiplication/division 

operation [16], [17]. Further in the machine learning (ML) applications such as K-means clustering, the 

numbers encountered during the computations are quantized into the corresponding integer value using 

the rounding operation. Here, this rounding to integer operation enables the computation of the Euclidean 

distances using simple integer arithmetic [18]. Additionally, ML or deep learning based regression models 

for user ratings prediction or recommendation systems also require rounding of decimal data to integer 

[19]. Thereby, efficient methods of rounding of floating point numbers to integer using the desired 

rounding mode are required. 

In neural network training, some portion of the process such as accumulators, weights, gradients, error 

and activation computation during back-propagation rely on floating-point arithmetic to ensure successful 

training (high numerical accuracy) [20]. However, conversion of floating point numbers into integer 

(fixed-point format) is required to store data into desired format efficiently [20]. The proposed approach 

converts the floating point numbers into integer in the floating-point format. However, there are methods 

and hardware designs that can translate the floating point format to fixed point format. Therefore, the 

hardware for floating point to fixed point conversion can be used in conjunction with the proposed 

rounding hardware to achieve the result in the desired format. To the best of our knowledge, there is no 

such design available that directly rounds the floating point numbers into integer in the fixed-point format.  

1.1 Motivation and Novel Contributions 

Floating point rounding to integer operations are employed in both general purpose processor and 

application specific processors. The general purpose processor or instruction set architecture of Intel and 

ARM use some specific instructions for floating point rounding [21], [22]. For example, Intel-64 or IA (Intel 

Architecture)-32 use instructions such as `ROUNDSD' and `ROUNDSS' for rounding scalar double 

precision and scalar single precision floating-Point values respectively [21]. The rounding process of 

`ROUNDSD' and `ROUNDSS' instructions returns the integer result as a double and single precision 

floating-point value respectively. There is an immediate operand field in these instructions which specifies 

the control fields for the rounding operation. The particular two bits i.e. the Rounding Control (RC) bits 

(b1b0) of the immediate operand field help select the specific rounding-mode [21]. The following rounding 
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modes are supported in `ROUNDSD' and `ROUNDSS': round to nearest even (using b1b0=00), round down 

(using b1b0=01), round up (using b1b0=10), round towards zero (using b1b0=11). Similarly, ARM 

instructions such as `VCVT' and `VCVTR'  are used to convert between floating-point and integer [22]. 

Although the Intel and ARM architectures are facilitating the various floating point rounding to integer 

operations, however the rounding hardware designs have not been explicitly discussed yet and are not 

publicly available for the academic research.  

On the other hand, the need for rounding hardware is also escalating in the application specific 

processors such as multimedia and ML processors. Since the frameworks of multimedia and ML 

applications are computationally intensive, therefore they are efficient to be executed using dedicated 

hardware for achieving acceleration. We can achieve the enhanced acceleration and higher performance 

by executing the desired rounding operations in the multimedia and ML applications through a dedicated 

hardware. Hence, designing area-power efficient and high performance hardware architectures for 

rounding of the floating point numbers to the integer can play a crucial role in aiding multimedia and ML 

accelerators.  

In the literature, Tsen et al. [25] have proposed rounding algorithm and corresponding hardware unit in 

case of decimal floating point arithmetic (binary integer decimal) for the various rounding modes. 

However, the rounding algorithm and hardware designs for binary floating point have not been presented 

or discussed in [25] unlike the proposed approach. Rathor et al. [26]  discussed rounding of floating point 

numbers in round to nearest mode, however they did not analyzed the other rounding modes. Further, 

algorithms for the stochastic rounding of elementary arithmetic operations in the floating-point arithmetic 

have been proposed by Fasi and Mikaitis [23]. However, they neither specifically target rounding to the 

whole number nor the hardware designs for all the conventional rounding modes. Furthermore, Mikaitis 

[24]  have proposed algorithm and hardware design for the stochastic rounding of fixed-point arithmetic. 

However, it [26] lacks discussion on hardware designs for the binary floating point rounding to integer. 

Apart from these, rounding using the round-to-nearest (RN) coding [27] based number representation has 

been proposed. This coding style leverages the property of signed-digit representation wherein the 

rounding to the nearest is identical to truncation. The formats or methods for the arithmetic operations 

under round-to-nearest were proposed [28], [29]. However, the focus of our work is on the conventional 

floating point representations of numbers unlike [28], [29]. More precisely, we mainly focus on the 

rounding to the integer for the various rounding modes. 

To the best of our knowledge, the hardware designs for rounding of the binary floating point numbers to 

the nearest integer (in floating point type) for the various rounding modes have not been explicitly 

discussed in the literature so far. Taking into account the significance of the rounding hardware design in 

the instruction set architectures and to aid ML and multimedia accelerators in modern computing 

paradigm, this paper presents the following main contributions as below:  

 This paper presents algorithms of rounding a given binary floating point number to the integer for the 

various rounding modes viz. round to nearest integer (with the halfway cases rounded away from zero), 

round up, round down, round towards zero and round to even (with the halfway cases rounded to nearest 

even).  The returned integer value of the proposed rounding designs have the floating-point type. The 
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proposed idea of rounding is presented for the multi-precision (32-bit and 64-bit) floating point numbers 

and is extendable to the rounding of 128-bit precision as well, without making considerable changes in the 

proposed algorithm. 

 This paper proposes a mantissa bit of rounding (MBR) within the mantissa field to make the rounding 

decisions for the various rounding modes. 

 This paper presents integrated multi-mode rounding (IMR) algorithm and hardware design which can be 

configured to a particular mode out of the above mentioned five modes. The proposed IMR design achieves 

a good savings in resources at the cost of slight increase in propagation delay compared to the five 

individual rounding modes.  

 This paper also proposes low-cost register transfer level (RTL) hardware designs for rounding the floating 

point number to integer value for the above mentioned rounding modes. The rounding hardware have 

been implemented and functionally validated on an Intel۟s FPGA to analyze of the design metrics of the 

proposed rounding hardware units. 

 We integrate the proposed rounding modules with the compression processor to analyze the integration 

overhead which is found to be nominal (less than 1%). 

The rest of the paper is organized as follows. Section 2 presents the intuition behind the proposed idea 

of binary floating point rounding algorithm based on MBR. Further, the proposed algorithms and the 

hardware designs for the round to nearest, round towards zero, round up, round down and round to even 

modes are presented in Section 3. The results and analysis of the proposed hardware designs are discussed 

in Section 4. Finally, we conclude the paper in Section 5.  

2 PLOT OF THE IDEA OF PROPOSED BINARY FLOATING POINT ROUNDING TO 
INTEGER  

The proposed work targets rounding of the multi-precision floating point numbers to integer (the whole 

number), in contrast to the rounding with the desired precision. The definitions of rounding a floating 

point number [I.F] to integer for the various rounding modes is shown in Table 1, where  I represents the 

integer part and F the fractional part. Let's assume b
s
, b

e
[7:0] and b

m
[22:0] denote the sign, exponent and 

mantissa part of the input 32-bit binary floating point number; c
s
, c

e
[7:0] and c

m
[22:0] denote the sign, 

exponent and mantissa part of the rounded output. Similarly, b
s
, b

e
[10:0] and b

m
[51:0] denote the sign, 

exponent and mantissa part of the input 64-bit binary floating point number; c
s
, c

e
[10:0] and c

m
[51:0] 

denote the sign, exponent and mantissa part of the rounded output. The basic intuition behind the 

proposed approach of rounding a binary floating point number to the integer value is discussed as follows. 

The proposed idea uses the dynamic range and dynamic precision features of the binary floating point 

representation to perform the rounding in the various modes.  

Using dynamic range feature to determine the different range of input floating point number 

for which the rounding to be performed: With the increment of one in the exponent field of binary 

floating point representation, the range of the integer part of corresponding input numbers exponentially 

increases. The dynamic range attribute of floating point representation is also depicted in Table 2 and 

Table 3 for the single and double precision respectively. For example, in case of single precision, the 

exponent field b
e
whereas b ۑ1ې .corresponds to only one integer value i.e ە01111111۔ = [7:0]

e
[7:0]= 

 corresponds to 32 different integer values. Therefore, for a range of the numbers, the rounding ە10000100۔
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to integer can be performed based a particular value of the exponent field. It is noteworthy that the b
e
[7:0] 

in between the range ە00000000۔ and ە01111110۔ corresponds to the values in between 0 and 1. Similarly 

for the double precision floating point numbers, a particular value of the exponent field helps determine 

the corresponding range of input numbers to be rounded as shown in Table 3.  

Table 1. Definitions of rounding an input binary floating point number [I.F] to integer T for various modes, where I and F denote the 

integer and fractional part respectively of the input number, and T denotes the rounded result (integer) 

 

Round to Integer Modes 

Condition ‘X’ is Positive numbers Negative numbers 

‘X’ is true ‘X’ is NOT true ‘X’ is true ‘X’ is NOT true 

Round up F=0 T:= I T:= I+1 T:= I T:= I 

Round down F=0 T:= I T:= I T:= I T:= I+1 

Round to nearest 

(with halfway cases rounded  

away from zero) 

0 ≤ � < 0.5 T:= I T:= I+1 T:= I T:= I+1 

Round towards zero F=0 T:= I T:= I T:= I T:= I 

Round to even 

(with halfway cases rounded  

to nearest even) 

0 ≤ � < 0.5 T:= I If ‘I’ is even then  
T:= I 

else T:= I+1 

T:= I If ‘I’ is even then T:= I 
else T:= I+1 

 

Table 2. Exponent bits and mantissa bit of rounding (MBR) of input floating point number used for rounding in case of single precision 

The range of integer part of 

input number to be rounded 

(total values= 222-n integer 

values for a particular n) 

 �� [7 : 5] 

 �� [4 : 0] 

 

MBR (�m [n] bit of 

mantissa field) 

1 011 11111 �m [22] 

2, 3 100 00000 �m [21] 

4 to 7 100 00001 �m [20] 

8 to 15 100 00010 �m [19] 

16 to 31 100 00011 �m [18] 

32 to 63 100 00100 �m [17] 

… … … … 

1048576 to 2097151 100 10011 �m [2] 

 

Table 3. Exponent bits and MBR of input floating point number used for rounding in case of double precision 

The range of integer part of 

input number to be rounded 

(total values= 251-n integer 

values for a particular n) 

 �� [10 : 6] 

 �� [5 : 0] 

 

MBR (�m [n] bit of 

mantissa field) 

1 01111 111111 �m [51] 

2, 3 10000 000000 �m [50] 

4 to 7 10000 000001 �m [49] 

8 to 15 10000 000010 �m [48] 

16 to 31 10000 000011 �m [47] 

32 to 63 10000 000100 �m [46] 

… … … … 

562949953421312 

to 1125899906842623 

10000 110000 �m [2] 
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Using dynamic precision feature to determine the condition of rounding: The floating point 

representation of numbers exhibit the dynamic precision as the small numbers can be represented with 

higher precision in comparison to the larger numbers. For example, in case of single precision, the 

numbers 1.0 and 1.5 are represented as ە00000000000000000000000 01111111 0۔ and 01111111 0۔ 

 respectively. This implies that the mantissa field can accommodate total ە10000000000000000000000

4,194,304 different numbers in-between 1.0 and 1.5. On the contrary, the larger numbers are represented 

with relatively less precision. For example, in case of single precision, the numbers 1048576.0 and 

1048576.5 are represented as ە00000000000000000000000 10010011 0۔ and 10010011 0۔ 

 respectively. This implies that the mantissa field can accommodate total only ە00000000000000000000100

3 different numbers in-between 1048576.0 and 1048576.5. Hence, it can be inferred that the effective part of 

mantissa (highlighted in the bold) expands towards the least significant bit (LSB) as we move from smaller 

to larger numbers. We refer to this effective part of mantissa as our mantissa field of interest. This mantissa 

field of interest is of fixed length for a particular range of the integer part of input number. Here, the least 

significant bit of the `mantissa field of interest' is of our interest as it helps make the decisions of rounding 

to integer in case of the various modes.  

More precisely, within this mantissa field of interest, we propose a mantissa bit of rounding (MBR) to 

determine the condition of rounding to the integer. The MBR can be defined as that bit of the mantissa field of 

interest which undergoes low-to-high transition when the fractional part F becomes equal to 0.5 for a 

particular value of exponent field. This bit is also the least significant bit of the mantissa field of interest. 

The mantissa field of interest can also be defined in terms of MBR as follows. It is that part of mantissa 

whose most significant bit (MSB) is the MSB of mantissa but the LSB is the MBR. In case of single 

precision, the mantissa field of interest is represented by b
m

[22:n] where n denotes the index of the 

mantissa signifying the MBR. Similarly, b
m

[51:n] represents the mantissa field of interest for the double 

precision floating point.  The index of the MBR within the mantissa is always fixed for a particular range 

of the integer part of input number. Table 2 and Table 3 show the MBR (n
th

 index of mantissa) for the 

different range of integer part of the input numbers, for the single and double precision respectively.  

It is evident from the tables that as we move from smaller to larger range of numbers, the respective 

index of MBR propagates from MSB to LSB. For instance, the index of MBR is the 22
nd

 bit of mantissa in 

case of the integer part is 1, whereas  it is the 2
nd 

bit for the range of integers from 1048576 and 2097151 as 

shown in Table 2. In case of single precision, Table 2 shows that total 2
22-n 

different integer values (range) 

can be rounded for the MBR being at n
th

 index of mantissa field which can vary from 22 down to 2. 

Similarly in case of double precision, Table 3 shows that 2
51-n 

different integer values can be rounded for 

the MBR being at a particular index of mantissa field which varies from 51 down to 2. It is to be noted that 

when the MBR reaches at index ۑ1ې, there will only be the LSB of mantissa i.e. b
m

[0] that can take value of 

either 0 or 1. In this case, only two different values can be represented in floating point representation for 

the fractional part varying in-between 0 to 0.5. For example, for the real values in between 2097152.0 and 

2097152.5, there can have only two possible single precision floating point number representation. 

Similarly, when the MBR reaches at index ۑ0ې, then there is no range of values that can be taken by the 

fractional part in floating point representation for a particular real input value. Therefore, if the integer 

part is very large then the fractional part is insignificant. Hence, applying rounding rule is not so required. 
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For the larger real values that have very large integer part (for which the MBR reaches either at index 1 or  

0 in floating point representation) can simply be truncated to the integer.    

Finally, the plot behind our basic idea of rounding to integer for various modes can be summarized as 

follows:  

 Using the exponent field value of input binary floating point number, we determine (i) the range of integer 

part for which the rounding condition is applied and (ii) the index of MBR. 

 Using the mantissa field of interest and MBR, we determine the condition of rounding to the integer for the 

different range of integer part.   

Based on the above discussed plot of our idea, the proposed algorithms and hardware designs for 

rounding the single and double precision floating point numbers to the integer value in the five different 

rounding modes are discussed in the following section.  

3 ALOHA-FP2I: PROPOSED ALGORITHMS AND HARDWARE DESIGNS FOR 
FLOATING POINT ROUNDING TO INTEGER  

This section presents the proposed algorithms and hardware designs for rounding the single and double 

precision floating point numbers to the integer for the following rounding modes: round to nearest, round 

towards zero, round towards positive infinity, round towards negative infinity and round to even. For each 

rounding mode, the proposed work is presented in the following sub-sections.   

3.1 Rounding to Nearest Integer 

In case of rounding to the nearest integer, if an input number b is in between the range -0.5< b < 0.5, it 

must be rounded to 0. Hence, the sign bit of rounded output c
s 

will be zero irrespective of the b
s
 bit. 

However for other cases, the c
s
 will remain same as that of b

s
. The algorithmic flow of performing this 

method of determining the sign bit for the single and double precision are shown in Fig. 1(a) and (b) 

respectively. 

Further, exponent and mantissa field of the rounded output are determined based on the mantissa field 

of interest and MBR of input floating point number as discussed in section 2. For the fractional part being 

greater than or equal to five for a particular range of the integer part (as shown in the Table  2 and Table 

3), the MBR sets to ۑ1ې which becomes the basis of making the decision of rounding to the nearest whole 

number. In general, the following steps are performed for rounding to nearest in case of single precision.  

 First, the exponent field of input floating point number is concatenated with the mantissa field of interest. Let us 

define it as: B23-n[30-n :0] = b
e
[7:0]||b

m
[22 :n], where n denotes the MBR. 

 If the MBR is 0, c
e
= B23-n[30-n:23-n] and c

m
=B23-n[22-n : 0] ||{0}

n
.  

 If the MBR is 1, the B23-n[30-n : 0] is incremented by one and it is denoted using B۟23-n[30-n : 0]. Now, 

c
e
= B23ۑ-n[30-n:23-n] and c

m
=B23ۑ-n[22-n : 0] ||{0}

n
. 

Above, the operators ۑ||ې concatenates bit strings and {0}
n 

gives a string with n zeros. Similarly, the steps 

of rounding a 64-bit floating point number to the nearest integer are as follows. 
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 The concatenation of the exponent field and the mantissa field of interest is defined as follows: 

B52-n[62-n : 0] = b
e
[10:0]||b

m
[51 : n], where n denotes the MBR. 

 If the MBR is 0, c
e
= B52-n[62-n : 52-n] and c

m
=B52-n[51-n : 0] ||{0}

n
.  

 If the MBR is 1, the B52-n[62-n : 0] is incremented by one and it is denoted using B۟52-n[62-n : 0]. Now, 

c
e= B52ۑ-n[62-n : 52-n] and c

m=B52ۑ-n[51-n : 0] ||{0}
n
.  

 

Fig. 1. Algorithmic flow of sign bit generation of rounded floating point output for the (a) round to nearest mode for 
32-bit (b) round to nearest mode for 64-bit (c) round towards zero, round up and round to even modes for 32-bit (d) 

round towards zero, round up and round to even modes for 64-bit; Note: In case of rounding down, the sign bit is not 
altered. 

Special Case: For the numbers that are in the range 0≤b<1, the exponent part is not constant but varies 

from ە00000000۔ to ە01111110۔ for the single precision. Similarly, it varies from ە00000000000۔ to 

 .for the double precision. In this scenario, round to nearest integer is performed as follows ە01111111110۔

(i) for the range 0≤b<0.5, the output is rounded to 0, and (ii) for the range 0.5≤b<1, the exponent field is 

incremented by one and the mantissa field is set to 0. 

Example: Let us assume an input number is 7.5 whose binary 32-bit floating point representation is 0۔ 

For this example, b .ە11100000000000000000000 10000001
e
and b ە100۔ =[7:5]

e
 In this case, the .ە00001۔ =[4:0]

corresponding MBR is b
m

[20] as per the Table 2 and hence the value of n is 20. According to the proposed 

algorithm, firstly b
e
[7:0] are concatenated with b

m
[22:20] which results in B3[10:0]= ە10000001111۔. 
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Secondly, n=20
th

 bit of mantissa part is checked. Since it is ۑ1ې,  B3[10:0]= is incremented by one resulting 

into Bە10000010000۔ =[10:0]3ۑ. Further, B[10:3]3ۑ is assigned to c
e
[7: 0]  and 

Bە00000000000000000000۔||[2:0]3ۑ is assigned to c
m

[22: 0] to produce the exponent and mantissa bits of the 

rounded output. This produces the number ە00000000000000000000000  10000010 0۔ which is equivalent to 

8.0. 

Proposed hardware design: The proposed register transfer level (RTL) hardware design of rounding 

32-bit binary floating point to the nearest integer is shown in Fig. A.1 in Appendix-A, where the blocks 1, 2 

and 3 corresponds to the sign bit, exponent field and mantissa field generation logic. This design first 

divides the [30-n : 0] into [30-n : 23-n] and [22-n : 0] for generating the exponent and mantissa part 

respectively of the rounded output. Further, based on the MBR, it selects either B23-n[30-n : 23-n] or B23ۑ-n 

[30-n : 23-n] for the exponent part using the multiplexers. Similarly, it selects either B23-n [22-n : 0] or B23ۑ-n 

[22-n : 0] for the mantissa part.   

3.2. Rounding towards Zero 

In case of rounding towards Zero, if an input number b is in between the range -1.0< b < 1.0, it must be 

rounded to 0. Hence, the sign bit of rounded output c
s 

will be zero irrespective of the b
s
 bit. The 

algorithmic flows of generating the sign bit for the single and double precision are shown in Fig. 1(c) and 

(d) respectively. Further, mantissa field of interest plays an important role in determining the mantissa of 

the rounded output. For a particular range of the integer part (shown in the Table 2 and Table 3), the 

mantissa field of interest excluding the MBR is concatenated with a sequence of zeros to perform the 

rounding towards zero. The algorithm for determining the exponent and mantissa field of the rounded 

output, in case of single precision, is presented as follows. 

 ce
[7 : 0]= b

e
[7 : 0]. 

 cm
 = b

m
[22 : n+1] || {0}

n+1
, for 2 ≤ n ≤ 21, where n is the index of mantissa signifying the MBR and b

m
[22 : n+1] is 

the mantissa field of interest excluding the MBR. 

 cm
 = {0}

n+1
, for n = 22. 

Similarly, rounding of a 64-bit floating point number towards zero is performed as follows. 

 ce
[10 : 0]= b

e
[10: 0]. 

 cm
 = b

m
[51 : n+1] || {0}

n+1
, for 2 ≤ n ≤ 50. 

 cm
 = {0}

n+1
, for n = 51. 

Example: To round the number 7.5 towards zero, we find the corresponding MBR which is b
m

[20] as 

per the Table 2 and hence the value of n is 20. According to the proposed algorithm, firstly b
m

[22:21] is 

concatenated with ە000000000000000000000۔ and assigned to c
m

[22: 0] to produce the mantissa bits of the 

rounded output. On the other hand, the exponent part remains same as that of input. Finally, this produces 

the number ە11000000000000000000000  10000001 0۔ which is equivalent to 7.0. 

Proposed hardware design: The proposed RTL design of rounding 32-bit binary floating point 

towards zero is shown in Fig. A.2 in Appendix-A, where the blocks 1, 2 and 3 corresponds to the sign bit, 

exponent field and mantissa field generation logic. As shown, the exponent field generation logic does not 
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require any additional hardware, whereas mantissa field of rounded output can be generated using the 

mantissa field of interest (except the MBR) and the exponent field (acting as the select line) of input 

number and multiplexers.  

 

Fig. 2. RTL hardware design for rounding 32-bit floating point number towards negative infinity (Round-Down) 

3.3. Rounding towards Positive Infinity 

In case of rounding towards positive infinity, the sign bit of rounded output is altered only if the input 

number b is in between the range -1.0< b < 0. In this case, the number must be rounded to 0 hence the sign 

bit of rounded output c
s
 will be zero. The algorithmic flows of determining the sign bit for the single and 

double precision are shown in Fig. 1(c) and (d) respectively. In this case of rounding, positive and negative 

numbers require separate procedure. While the negative numbers are rounded towards zero only, the 

positives numbers are rounded to the next integer value for the fractional part being not equal to zero as 

defined in the Table 1. For determining the exponent and mantissa field of the rounded output, the 

following steps are performed for the single precision numbers. 

If numbers are positive (b
s
=0): 

 First, b
e
[7 : 0] is concatenated with the b

m
[22 : n]. Let us define it as: BEM[29 − n : 0] = be

[7 : 0] || b
m

[22 : n+1], for 

2 ≤ n ≤ 21  

 If the b
m

[n : 0] is 0, c
e
[7 : 0]= b

e
[7 : 0] and c

m
[22 : 0]=b

m
[22 : 0]. 

 Else, if the b
m

[n : 0] is not 0, the BEM[29 − n : 0] is incremented by one and it is denoted using B۟EM[29−n : 0]. 

Now, c
e
= B۟EM[29−n : 22−n] and c

m
 = B۟EM[21− n : 0] || {0}

n+1
 

If numbers are positive (b
s
=1): 

 ce[7 : 0]= be[7 : 0]. 

 cm = bm[22 : n + 1] || {0}n+1, for 2 ≤ n ≤ 21. 

 cm = {0}n+1, for n = 22. 

For the double precision numbers, the steps are as follows. 
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If numbers are positive (b
s
=0): 

 First, be[10 : 0] is concatenated with the bm[51 : n+1]. Let us define it as:  

BEM[61 − n : 0] = be[10 : 0] || bm[51 : n+1],  

 If the bm[n : 0] is 0, ce[10 : 0]= be[10 : 0] and cm[51 : 0]=bm[51 : 0]. 

 Else, if the bm[n : 0] is not 0, the BEM[61 − n : 0] is incremented by one and it is denoted using B’EM[61−n : 0]. 

Now, ce= B’EM[61−n : 51−n] and cm = B’EM[50− n : 0] || {0}n+1 

If numbers are positive (b
s
=1): 

 ce[10 : 0]= be[10 : 0]. 

 cm = bm[51 : n + 1] || {0}n+1, for 2 ≤ n ≤ 50. 

 cm = {0}n+1, for n = 51. 

Example: Let us assume the number to be rounded towards positive infinity is 7.4 whose 32-bit binary 

floating point representation is ە11011001100110011001101 10000001 0۔. In this example, the corresponding 

MBR is b
m

[20] as per the Table 2 and BEM[9 : 0] is ە1000000111۔ as per the algorithm. Since the b
m

[20 : 0] is 

not  0, hence BEM[9 : 0] is incremented by one which results into  ە1000001000۔. Further, the first eight bits 

from MSB (i.e. ە10000010۔) are assigned to the c
e
[7: 0] and reaming two bits (i.e. ە00۔) are  concatenated 

with ە000000000000000000000۔ and assigned to c
m

[22: 0] to produce the mantissa bits of the rounded 

output. Finally, this produces the number ە00000000000000000000000  10000010 0۔ which is equivalent to 

8.0. However, in case the number is negative; the example remains same as shown for the round towards 

zero. 

Proposed hardware design: The proposed RTL design of rounding 32-bit binary floating point 

towards positive infinity is shown in Fig. A.3 in Appendix-A, where the blocks 1, 2 and 3 corresponds to 

the sign bit, exponent field and mantissa field generation logic. As shown, 2:1 multiplexers are used to 

select between the logic for the positive and negative numbers. Further, the outputs of multi-bit OR gates 

are used to generate the select line of the multiplexers that decide between the logic whether to increment 

the integer part for rounding up or not.  

3.4. Rounding towards Negative Infinity 

Proposed algorithm and hardware design: In case of rounding towards negative infinity, the sign bit is 

not altered in any case. Further, for producing the exponent and mantissa field of the rounded output, the 

same logic as described for the rounding towards positive infinity can be applied with a slight 

modification. In this case, the positive numbers are rounded towards zero only. On the other hand, the 

negative numbers are rounded to the next integer value for the fractional part being not equal to zero as 

shown in the Table 1. This condition is just opposite to that of rounding towards positive infinity. The 

hardware design for rounding to negative infinity is shown in Fig. 2. As shown, the hardware design for 

the round up can be made work in round down mode using a 2:1 multiplexer and a NOT gate. If the select 

line `up/down' is ۑ0ې, it acts as in the round up mode and if it is ۑ1ې, it acts as in the round down mode.   

Example: Let us assume the number to be rounded towards negative infinity is -7.4 whose 32-bit 

binary floating point representation is ە11011001100110011001101 10000001 1۔. In this example, the sign bit 

is ۑ1ې therefore it is inverted to ۑ0ې in order to utilize the round up hardware design to perform in the round 



 

 
ACM Trans. Embed. Comput. Syst. 

down mode as shown in Fig. 2. Now, the process of rounding the number down remains same as that of 

rounding up. The exponent and mantissa field produced by applying rounding up with sign bit ۑ0ې (which 

is same as rounding down with sign bit ۑ1ې) are ە10000010۔ and ە00000000000000000000000۔ respectively, 

while keeping the sign bit as it is. This produces the binary floating point number equivalent to 8.0. 

However, in case the number is positive; the example remains same as shown for the round towards zero.  

3.5. Rounding to Even 

In this rounding mode, the algorithm of determining the sign bit of rounded output is same as that of 

rounding towards Zero which is shown in Fig. 1(c) and (d) for the single and double precision respectively. 

Further, based on the definition of rounding to even mentioned in Table 1, the algorithm of producing 

exponent and mantissa field of rounded output is given below. In this case, the bit preceding to MBR (i.e. 

the bit at (n+1)
th

 index of mantissa or at the second place in the mantissa field of interest from its LSB) also 

plays an important role in determining the condition of round to even because of the following reason. For 

the numbers in which the integer part is even, the bit preceding to MBR is always ۑ0ې. On the contrary 

when the integer part is odd then this bit is always ۑ1ې.  Thus, we leveraged the capability of the bit 

preceding to MBR of distinguishing between the even and odd integer part to make the decision of 

rounding to even. 

 First, the exponent field of input floating point number is concatenated with the mantissa field of interest as shown 

below: B23−n[30 − n : 0] = be[7 : 0] ||bm[22 : n], 

 If the MBR is ‘0′,  
– ce= B23−n[30 − n : 23 − n] and cm=B23−n[22 − n : 0] || {0}n. 

 If the MBR is ‘1′, then 

– if the bit preceding to MBR is ‘0′ then ce[7 : 0]= be[7 : 0], and cm = bm[22 : n + 1] || {0}n+1, for 2 ≤ n ≤ 21, and 
cm = {0}n+1, for n = 22. 

– if the bit preceding to MBR is ‘1′ then the B23−n[30 − n : 0] is incremented by one and it is denoted using 

B’23−n[30 − n : 0]. Now, ce=B’23−n[30 − n : 23 − n] and cm = B’23−n[22 − n : 0] || {0}n. 

For the double precision numbers, the steps are as follows. 

 B52−n[62 − n : 0] = be[10 : 0] ||bm[51 : n], 

 If the MBR is ‘0′,  
– ce= B52−n[62 − n : 52 − n] and cm=B52−n[51 − n : 0] || {0}n. 

 If the MBR is ‘1′, then 

– if the bit preceding to MBR is ‘0′ then ce[10 : 0]= be[10 : 0], and cm = bm[51 : n + 1] || {0}n+1, for 2 ≤ n ≤ 50, 
and cm = {0}n+1, for n = 51. 

– if the bit preceding to MBR is ‘1′ then the B52−n[62 − n : 0] is incremented by one and it is denoted using 

B’52−n[62 − n : 0]. Now, ce=B’52−n[62 − n : 52 − n] and cm = B’52−n[51 − n : 0] || {0}n. 

Example: Let us illustrate the example for two different numbers viz. 2.5 and 3.5. In case of 2.5 whose 

32-bit binary floating point representation is ە01000000000000000000000 10000000 0۔, the illustration is as 

follows. In this example, the corresponding MBR is b
m

[21] as per the Table 1 and hence the value of n is 21. 

Here, the MBR is ۑ1ې and the bit preceding to MBR (i.e. at (n+1)
th

 index) is ۑ0ې therefore the exponent part 

remains same as that of input according to the algorithm. To produce the mantissa bits of the rounded 
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output, firstly b
m

[22] is concatenated with ە0000000000000000000000۔ and assigned to c
m

[22: 0]. Finally, 

this produces the number ە00000000000000000000000 10000000 0۔ which is equivalent to 2.0.  

In case of 3.5 whose 32-bit binary floating point representation is 10000000 0۔ 

the corresponding MBR is also b ,ە11000000000000000000000
m

[21] and hence the value of n is 21. Here, the 

MBR is ۑ1ې and the bit preceding to MBR is also ۑ1ې therefore, firstly, b
e
[7:0] is concatenated with b

m
[22:21] 

which results in B2[9:0]. Secondly, B2[9:0] is incremented by one resulting into B[9:0]2ۑ. Further, B[9:2]2ۑ is 

assigned to c
e
[7: 0]  and Bە000000000000000000000۔||[1:0]2ۑ is assigned to c

m
[22: 0] to produce the exponent 

and mantissa bits of the rounded output. Finally, this produces the number 10000001 0۔  

  .which is equivalent to 4.0 ە00000000000000000000000

Proposed hardware design: The proposed RTL design of rounding 32-bit binary floating point to even 

is shown in Fig. A.4 in Appendix-A, where the blocks 1, 2 and 3 corresponds to the sign bit, exponent field 

and mantissa field generation logic. As shown, the logic of performing the rounding decisions based on the 

MBR and its preceding bit are realized using the multiplexers in the hardware.  

To summarize, the hardware designs for rounding towards positive infinity and rounding towards 

negative infinity share logic as explained in section 3.4 and Fig. 2. The logic of rounding towards positive 

infinity (round up) can be reused to generate the logic of rounding towards negative infinity as shown in 

Fig. 2. Other proposed designs require separate logic. Note that in case of special input values, the 

rounding cannot be performed. Therefore, Zero is represented as Zero, NaN is represented as NaN and +/-

INF is represented as +/-INF at the output in the proposed algorithms.   

3.6. Proposed Integrated Multi-mode Rounding (IMR) and Hardware Design 

As discussed earlier, the proposed algorithms for all the different rounding mode are based on the idea of 

MBR and MFI. Therefore, it becomes feasible to integrate the five different rounding algorithm and design 

an integrated multi-mode rounding (IMR) hardware. It helps achieve a good improvement in area 

(hardware resources) at the cost of slight increase in power and delay in comparison to the cumulative 

area, power and delay of individual hardware designs for the various modes. The proposed IMR hardware 

design is configured to a specific rounding mode based on the select bus S[2:0], where S[2:0]={000, 

001,010,011,100} indicates {round to even, round to nearest integer, round up, round down, round towards 

zero} modes respectively. The algorithm of the IMR for 32-bit floating point numbers is described as 

follows: 

 If S[2]= ۞1۟ then 

– c
e
[7 : 0]= b

e
[7 : 0]. 

– c
m

 = b
m

[22 : n+1] || {0}
n+1

, for 2 ≤ n ≤ 21. 

– c
m

 = {0}
n+1

, for n = 22. 

 Else if S[2]= ۞0۟ then 

 if S[1]= ۞0۟ then 

– B23−n[30 − n : 0] = b
e
[7 : 0] ||b

m
[22 : n], 

– B۟23−n[30 − n : 0]= B23−n[30 − n : 0]+1 

o If the MBR is ۞0′, ce
= B23−n[30 − n : 23 − n] and c

m
=B23−n[22 − n : 0] || {0}

n
. 
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o If the MBR is ۞1′, then 

o if S[0]= ۞0۟ then 

o if the bit preceding to MBR is ۞1′ then 

o c
e
=B۟23−n[30 − n : 23 − n] and c

m
 = B۟23−n[22 − n : 0] || {0}

n
. 

o if the bit preceding to MBR is ۞0′ then 

o  c
e
[7 : 0]= b

e
[7 : 0], and c

m
 = b

m
[22 : n + 1] || {0}

n+1
, for 2 ≤ n ≤ 21, and cm

 = 

{0}
n+1

, for n = 22. 

o if S[0]= ۞1۟ then 

o c
e
=B۟23−n[30 − n : 23 − n] and c

m
 = B۟23−n[22 − n : 0] || {0}

n
. 

 if (S[1:0]= ۞10۟ and if bs
= ۞0۟) or (S[1:0]= ۞11۟ and if bs

= ۞1۟) then 

o If the b
m

[n : 0] is 0, then c
e
[7 : 0]= b

e
[7 : 0] and c

m
[22 : 0]=b

m
[22 : 0]. 

o Else, if the b
m

[n : 0] is not 0, then   

o B22−n[29 − n : 0] = b
e
[7 : 0] ||b

m
[22 : n+1], for 2 ≤ n ≤ 21 

o B۟22−n[29 − n : 0]= B22−n[29− n : 0]+1 

o c
e
=B۟22−n[29 − n : 22 − n] and c

m
 = B۟22−n[21 − n : 0] || {0}

n+1
. 

 if (S[1:0]= ۞10۟ and if bs
= ۞1۟) or (S[1:0]= ۞11۟ and if bs

= ۞0۟) then 

– c
e
[7 : 0]= b

e
[7 : 0]. 

– c
m

 = b
m

[22 : n+1] || {0}
n+1

, for 2 ≤ n ≤ 21. 

– c
m

 = {0}
n+1

, for n = 22. 

The corresponding RTL hardware design of IMR is shown in Fig. 3, where block-1 generates the sign 

bit, block-2 the exponent field and block-3 the mantissa field for the desired rounding mode. The select line 

S[2:0] is used to run the desired rounding mode. The proposed hardware design primarily uses 

multiplexing logic; hence it achieves a considerably good latency (fast execution). The reusing of common 

logic of the different rounding modes saves significant amount of resources. The impact on overall 

hardware resources, propagation delay and power due to the integration of different rounding modes is 

discussed in the results section 4.2.  

3.7. Extension of Proposed Idea of Rounding for Quadruple (128-bit) Precision 

The proposed idea of rounding binary floating point numbers to the integer can seamlessly be applied for 

quadruple precision. In this case, the mantissa part is 112 bits long, therefore the MBR (the n
th

 index of 

mantissa field) can vary in between [111 : 0] to realize the condition of rounding for the different range of 

integer parts of input number. In this case, the mantissa field of interest is represented by b
m

[111 : n]. 

Similar to the single and double precision, the following concatenation operation is performed in case of 

the quadruple precision. The exponent field b
e
[14 : 0] is concatenated with the mantissa field of interest 

b
m

[111 : n] to generate B112-n[126-n : 0]. Thus produced concatenated output can be partitioned into two 

parts based on the MBR in order to assign to the exponent and mantissa field to produce the desired 

rounded output, similar to the proposed idea for single and double precision. 
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3.8. Advantages of Proposed Rounding Hardware and its Application in Industrial 
Setting  

Both the individual rounding hardware designs and the IMR hardware design have advantages. The IMR 

hardware design can be used in general purpose processor architecture to execute the ROUND instruction 

in various modes where a specific rounding mode can be selected using the select bus S[2:0]. Compared to 

the separately implemented rounding hardware for different modes, the integrated rounding hardware is 

more advantageous in terms of wide applicability and design metrics as the same hardware can execute 

different rounding modes (achieving savings in area). However, each individual rounding mode hardware 

can also be beneficial especially in case of application specific hardware design. If an application specific 

processor is customized to cater a specific function with a particular rounding mode then using only the 

desired individual rounding hardware can be useful. It will save area, power and latency compared to the 

integrated design. For example, an image compression processor hardware can be designed to use only 

 rounding mode. It can also be used in machine learning accelerators of deep ۑround to nearest integerې

learning and k-means clustering. Further, rounding hardware design in ېround downۑ mode can be used in 
integer division hardware and executing the `floor' operation. Further, ېround upۑ design can be used in 

calculating the least integer greater than or equal to a given number and executing the ېceilۑ operation. 
 design can be used for truncating a real number to its integer value. The round ۑRound towards zeroې
towards zero hardware design is useful in stochastic rounding hardware and machine learning 

accelerators. ېRounding to evenۑ mode avoids the statistical bias (important for addition and subtraction) 
because it rounds upward about half of the time and downward about half of the time. The applicability of 

proposed rounding hardware design in an industrial setting can be seen in terms of both application 

specific processor and general purpose processor/co-processor design. For example, the proposed rounding 

hardware can be integrated to an image compression processor using the following steps: (i) the 

computationally intensive task (such as DCT transformation and quantization) of the image compression 

algorithm is converted to RTL using high level synthesis process; thus obtaining RTL of the computational 

kernel (ii) next, the RTL of the computational kernel of image compression processor is integrated with the 

RTL of the proposed rounding hardware (iii) further, logic synthesis process is performed to obtained the 

gate level netlist of the image compression processor with rounding hardware. 

In case of general purposes processor architecture, the proposed rounding hardware can be used as 

follows: (i) proposed IMR hardware is integrated with the floating point co-processor datapath (ii) the 

selection bits S[2:0] can be used as a portion of a `ROUND' instruction that can perform various rounding 

operations (iii) during execution, the `ROUND' instruction is decoded to perform rounding in the desired 

mode among the five modes, based on the particular value of S[2:0]. 

4. RESULTS AND ANALYSIS  

This section presents results of the proposed hardware designs of rounding 32-bit and 64-bit binary 

floating point numbers to integer and analyses in terms of the design metrics such as area, power and 

propagation delay. The results of proposed IMR hardware design have also been analyzed and compared 

with the design metrics of individual implemented rounding modes. Further, this paper also presents the 

results of integration of the proposed rounding hardware unit with the computing core of image/video 

compression processor. The proposed hardware designs of five different rounding to integer modes viz. 
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round to nearest, round towards zero, round up, round down and round to even have been implemented 

on Intel's FPGA of Cyclone-II family using the Quartus II tool. The results of the rounding for all the five 

modes have been functionally validated using the Quartus simulator. The area is assessed in terms of 

FPGA resource consumption, whereas delay and power of the proposed designs are assessed using the 

 tool respectively of Quartus II. The ۑPowerPlay Power Analyzerې and ۑTimeQuest Timing Analyzerې
proposed rounding hardware are applied for JPEG image compression application to assess the image 

quality. Further, we also compare the proposed work with the existing related work.  

4.1. Area, Delay and Power Analysis of Individual Rounding Modes  

The area analysis of the proposed rounding hardware designs in terms of the FPGA resource utilization is 

presented in Table 4. The FPGA resource usage has been measured in terms of total logic elements (cells) 

consumed by the proposed designs. As shown in the table, the total logic elements for the 4-input, 3-input 

and less than equal to 2-input look-up-tables (LUTs) for the rounding modes viz. round towards zero, 

round to nearest, round to even, round down and round up are around 0.15K, 1K, 1K, 1.2K and 1.3K 

respectively for the binary single precision floating point. However in case of binary double precision 

floating point, the count of logic cells are around 0.3K, 4.5K, 4.6K, 5K and 5K respectively which are 

higher than single precision as intuitive. Further, it is noteworthy that the proposed rounding hardware 

designs do not consume dedicated logic registers, DSP elements and embedded multipliers. Hence, the 

proposed designs are efficient in terms of resource utilization because their implementation purely rely on 

the logic cells or LUTs. 

The delay of the proposed rounding hardware designs has been analyzed in terms of worst-case 

propagation delay for the various round to integer modes. Table 5 presents the worst-case propagation 

delay for proposed designs in case of both the single and double precision binary floating point. The worst-

case propagation delay is defined as the longest delay between the edges of a signal propagating from an 

input port to an output port. For the different combinations of edges (such as rising and falling edge) of 

signals between the input and output port, this delay can vary as shown in the table. Where, ېRRې ,ۑRFۑ, 
 ,denote the highest delay measured from rising edge to rising edge, rising edge to falling edge ۑFFې and ۑFRې
falling edge to rising edge and falling edge to falling edge respectively. The proposed designs do not 

require clock signal, however analyzing the worst-case propagation delay is significant in order to 

determine how fast the clock of the bigger entity (in which the proposed designs to be used) can work. 

Further, as evident from the Table 5, the delay for the various rounding modes varies from 13ns to 24ns in 

case of single precision and 15ns to 45ns in case of double precision. In all the case, the delay is on the 

order of tens and hence trivial.  This implies that the proposed rounding hardware designs can offer good 

performance in case of the different rounding modes and the different precision floating point numbers.  
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Fig. 3. Proposed RTL of integrated multi-mode rounding (IMR) hardware design for rounding 32-bit floating point 
number to integer in five different rounding modes, where S[2:0]={000, 001,010,011,100} indicates {round to even, 

round to nearest integer, round up, round down, round towards zero} modes respectively 
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Table 4. FPGA Resource Utilization of Round to Integer Hardware Designs in Various Modes for 32-Bit and 64-Bit 
Binary Floating Point Numbers 

Rounding Modes Logic elements usage by number of LUT inputs 

32-bit binary floating point 64-bit binary floating point 

4 input 

functions 

3 input 

functions 

≤2 input 
functions 

Total logic 

elements 

4 input 

functions 

3 input 

functions 

≤2 input 
functions 

Total logic 

elements 

Round towards zero  86 37 5 128 240 90 46 376 

Round to nearest  378 218 392 988 1513 1213 1789 4515 

Round up 529 159 421 1109 2209 923 1945 5077 

Round down 527 157 426 1110 2214 912 1953 5079 

Round to even 549 60 406 1015 2647 150 1837 4634 

Table 5. Propagation Delay of 32-Bit and 64-Bit Binary Floating Point Round to Integer Hardware Designs for the 
Various Modes Implemented in FPGA 

Rounding Modes Worst case propagation delay in ݊� 
32-bit binary floating point 64-bit binary floating point 

RR RF FR FF RR RF FR FF 

Round towards zero  13.45 13.66 13.66 13.45 15.31 15.81 15.81 15.31 

Round to nearest  19.13 19.13 19.13 19.13 27.18 27.18 27.18 27.18 

Round up 23.43 23.15 23.15 23.43 40.45 40.45 40.45 40.45 

Round down 23.92 26.40 26.40 23.93 42.56 44.47 44.47 42.56 

Round to even 19.27 19.27 19.27 19.27 26.13 26.13 26.13 26.13 

 

Table 6. Power Dissipation of 32-Bit and 64-Bit Binary Floating Point Round to Integer Hardware Designs for the 
Various Modes Implemented in FPGA 

Rounding Modes Power dissipation in ݉� 

32-bit binary floating point 64-bit binary floating point 

Round towards zero  200.68 208.18 

Round to nearest  200.72 208.07 

Round up 200.71 208.73 

Round down 200.89 208.24 

Round to even 200.61 208.83 

 

Table 7. Results of Integrated Multi-mode Rounding Hardware Design Implemented in FPGA 

Hardware Design LUTs Propagation 
delay (ns) 

Power 
(mW) 

Integrated multimode rounding (IMR)  
hardware 

1760 28.305  201.17  

Individual implemented rounding 
hardware for different modes 

4,350 26.400  200.89  

Impact on metrics using proposed IMR 
hardware 

×2.47 
reduction 

7.2% increase 0.1% 
increase 
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The power analysis of the proposed rounding hardware designs has been reported in Table 6. The 

reported power dissipation in milliwatt (mW) is mainly due to the core static thermal power dissipation 

and the input/output thermal power dissipation. Since the proposed designs run independent of clocks, the 

activity factor or toggle rate does not affect the power dissipation and hence the core dynamic power 

dissipation remains zero. Further, as evident from the Table 6, the differences in the power for the various 

rounding modes and also between the single and double precision floating point for a particular rounding 

mode are very nominal. This implies that the proposed rounding hardware designs are power efficient in 

case of the different rounding modes and the different precision floating point numbers.    

4.2. Impact of Integrated Multi-mode Rounding (IMR) on Area, Power and Delay 

The results of the proposed IMR hardware design, implemented in a Cyclone II FPGA platform, is shown in 

Table 7. We compare the resources (in terms of LUTs), propagation delay and power of the IMR hardware 

with that of individual implemented different rounding modes. As evident, the integration of various 

rounding modes in a single hardware reduces LUTs requirement around 2.5 times at the cost of slight 

increase in propagation delay (~7.2%) and power (~0.1%).    

4.3. Case Study: Integration of Rounding Modules with a Compression Processor 

The proposed rounding hardware designs for the various rounding modes have been integrated with the 

computing core of image/video compression processor. The computing core of a compression processor 

performs the DCT transformation on pixel values followed by the quantization. In the quantization 

process, the operation of rounding to integer is performed. We implemented the computing core of the 

compression processor on FPGA platform with the following cases: (i)  without rounding hardware 

integrated (ii) with the proposed rounding hardware integrated in the various modes. Table 8 shows the 

results in terms of FPGA utilization of logic cells, dedicated logic registers and embedded multipliers for 

the different cases. Further, Table 9 presents the average resource overhead (in %) due to integration of the 

proposed rounding hardware with the compression processor. As shown, the integration of the proposed 

rounding hardware results in nominal resource overhead. The average resource overhead is observed to be 

less than 1% for all the five rounding modules.  

Table 8. FPGA Resource Utilization of the Proposed Rounding Hardware Integrated with the Computing Kernel of a 
Compression Processor 

Compression processor in multimedia 
applications 

Logic elements 
in terms of LUTs 

Dedicated logic 
registers 

Embedded 
Multipliers (9-bit) 

Without rounding hardware 36,194 8192 63 

With rounding 
hardware integrated 
for various modes 

Round to nearest 
integer 

37,184 8192 63 

Round up 37,253 8192 63 

Round down 37,272 8192 63 

Round towards zero 36,255 8192 63 

Round to even 37,201 8192 63 
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Table 9. Estimated FPGA Resource Overhead of Integration of the Proposed Rounding Hardware with the 
Compression Processor 

Rounding 
modes 

Round to nearest 
integer 

Round 
up/down 

Round to 
even 

Round towards 
zero 

Average 
%overhead 

0.90% 0.98% 0.92% 0.03% 

 

JPEG Image compression using various rounding modes: The JPEG image compression relies on 

rounding to integers (with halfway cases rounded away from zero) during the quantization step. Hence, 

integrating the proposed hardware of rounding to the integer with the compression kernel of JPEG 

compression processor enhances the overall performance. We analyze the five different round to integer 

modes in JPEG image compression on a standard image ېlenaۑ. We present the original image and the 
compressed images produced using the proposed floating point rounding hardware for quality factor (QF) 

of 50 in Fig. 4. The quality of compressed images is depicted in terms of peak signal to noise ratio (PSNR) 

in Table 10. We have evaluated this metrics using MATLAB 2021a running on system with 8 GB of RAM. 

As shown in Table 10, the PSNR for round to nearest, round to zero and round to even modes are almost 

same, resulting into compressed images of same quality. However, round up and round down modes 

introduce some compression artifacts (also known as `JPEG dimples') in the compressed images as shown 

in Fig. 4 and results into relatively lower PSNR. 

Table 10. PSNR of Compressed Images for Different Rounding Modes 

Rounding 
modes 

Round to nearest  

Integer [26] 

Round up Round 
down 

Round towards  

zero 

Round  

to even 

PSNR 18.3632 15.5849 15.5914 18.5482 18.3630 

 

A co-processor, in which the rounding units are integrated, can select the specific rounding unit for the 

execution using multiplexers (Muxes). The five rounding modes can be driven using a 3-bit select line 

S[2:0] of the Muxes. A specific combination of the select line will choose the corresponding rounding unit 

for the execution.  

4.4. Comparison with Existing Work  

In the literature, the related works apply rounding of floating point numbers to round the result of the 

specific floating point arithmetic such as floating point addition or multiplication etc. For example, Even 

and Seidel [30] present floating point rounding customized for the multiplication only. Similarly, Jaberipur 

et al.  [31] perform rounding to round the result of the floating point addition. The barrel shifter is used in 

the conventional floating point adder for the alignment on the mantissa of the smallest floating point 

number and normalizing the added mantissa [32]. However, the proposed approach is a generic one which 

can be applied to round any input number (or result of any arithmetic operation) to corresponding integer 

in the desired rounding mode irrespective of the arithmetic operation that generated the result. To the best 

of our knowledge, binary floating point rounding hardware designs for performing rounding to integer 

(irrespective of the arithmetic operation type) in various modes is not available in the literature. A binary 
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floating point rounding hardware for rounding to nearest integer mode (with halfway cases rounded away 

from zero)  was presented in  [26]. However, it [26] does not present rounding hardware for other 

rounding modes viz. round to nearest even, round up, round down and round towards zero unlike the 

proposed approach. Moreover, it [26] does not analyze the impact of aforementioned four rounding modes 

on the JPEG image compression. However, the proposed approach also presents this analysis as shown in 

Fig. 4 and Table 10 compared to [26]. A comparison among various floating point rounding algorithms is 

presented in Table 11. It is to be noted that the proposed work differs from [25] in terms of the base of the 

floating point representation. This paper discusses the rounding for binary floating point unlike [25] which 

is based on decimal floating point. The proposed approach is the only work in the literature which 

presents detailed algorithm and hardware for five different rounding modes for the binary floating point 

arithmetic.  

 

Fig. 4. (a) Original and (b) to  (f) compressed images with QF=50 after applying different rounding modes 
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Table 11. Comparison of the proposed work with the related works [21], [25], [26], [30], [31], where (–) denotes ېnot 
availableۑ 

Approaches Round to 
nearest  

Integer 
(break ties 

with 
round 
away) 

Round 
up 

Round 
down 

Round 
towards  

zero 

Round  

to 
nearest 

even 

Rounding base Independence of 
rounding on 

arithmetic operation 
type such as ∗, + and 

/ etc. 

Hardware 
design 

Binary Deci-
mal 

Proposed  ✓ ✓ ✓ ✓ ✓ ✓ × ✓ ✓ 

[26] ✓ ×  × × × ✓ × ✓ ✓ 

[25] ✓ ✓ ✓ ✓ ✓ ×  ✓ ✓ ✓ 

[30] × ✓ ✓ ✓ ✓ ✓ × × ✓ 

[31] × × × × ✓ ✓ × × ✓ 

[21] × ✓ ✓ ✓ ✓ ✓ × ✓ -- 

 

A quantitative comparison of the proposed integrated rounding hardware design for the binary floating 

point with respect to the rounding hardware design for the decimal floating point [25] is shown in Table 

12. The design metrics such as area, delay and static power of the proposed rounding hardware is 

calculated using a 15nm open cell library [33]. The design metrics are achieved to be lower because 

reusing of common logic with multiplexers saves resources (in turn saving area and power) and making 

quick rounding decisions using MBR enables the fast execution. Further, we also compare with [26] which 

only implements one rounding mode (i.e. round to nearest integer). On the contrary, we implement all the 

five rounding modes however incurring only about 1.2 times higher propagation delay and 3 times higher 

area and power than [26] as shown in Table 12. The quantitative comparison with other related works 

such as [30] and [31] may not be relevant as their rounding designs are customized to a particular 

arithmetic operation. On the contrary, the proposed rounding hardware is generalized as its applicability is 

not dependent on a particular operation type only.  

Table 12. Analysis of Design Metrics of the Proposed IMR Hardware with respect to the Related Works [25], [26], 
where (--) indicates `not available' 

Approaches Technology 
Node 

Area (µm
2
) Propagation 

delay (ps) 
Static Power 

(µW) 
Remarks about 
implementation 

Proposed IMR 
hardware 

15 nm  5327.14 716.82 219.49 All five rounding modes 
in binary FP 

[25] 65 nm  2,09,713.0 2240 -- All five rounding modes 
in decimal FP 

[26] 15 nm  1784.41 602.07 62.33 Only Round to nearest 
integer mode in binary FP 

5. CONCLUSION 

The need of high performance and energy efficiency entails employing the hardware accelerators in the 

modern computing systems. Huge computational and data hungry applications such as image 
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compression, video compression and machine learning etc. require rounding to integer in their processing. 

To aid the hardware acceleration of multimedia and machine learning applications, performing rounding 

to integer through a dedicated hardware is important. Hence, in this paper, we propose algorithms and 

hardware designs for efficient rounding of binary floating point numbers to integer in the following 

rounding modes: round towards zero, round to nearest, round up, round down and round to even. We 

have shown that how the proposed MBR and the mantissa field of interest help achieve an efficient 

rounding to integer operation in the various modes, for both the single and double precision floating point. 

The proposed designs have been implemented on FPGA platform to analyze the area, power and delay. 

The results highlight that the proposed designs are efficient in terms of area, power and delay. Thereby, 

they are amenable to be integrated to aid the hardware acceleration in the modern high performance and 

energy efficient computing systems. We have also shown the integration of rounding hardware with the 

computing core of a compression processor used in multimedia applications. The integration overhead is 

achieved to be negligible. 
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Fig. A.1. RTL hardware module for rounding 32-bit binary FP number to nearest integer 
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Fig. A.2. RTL hardware design for rounding 32-bit floating point number using round towards zero mode 
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Fig. A.3. RTL hardware design for rounding 32-bit floating point number using round up mode 
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Fig. A.4. RTL hardware design for rounding 32-bit floating point number using round to nearest even mode 

 

 


