
IEEE TRANSACTIONS ON ROBOTICS, VOL. 24, NO. 2, APRIL 2008 331

A Practical Visual Servo Control for an Unmanned
Aerial Vehicle
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Abstract—An image-based visual servo control is presented for
an unmanned aerial vehicle (UAV) capable of stationary or quasi-
stationary flight with the camera mounted onboard the vehicle.
The target considered consists of a finite set of stationary and
disjoint points lying in a plane. Control of the position and orienta-
tion dynamics is decoupled using a visual error based on spherical
centroid data, along with estimations of the linear velocity and
the gravitational inertial direction extracted from image features
and an embedded inertial measurement unit. The visual error used
compensates for poor conditioning of the image Jacobian matrix by
introducing a nonhomogeneous gain term adapted to the visual sen-
sitivity of the error measurements. A nonlinear controller, that en-
sures exponential convergence of the system considered, is derived
for the full dynamics of the system using control Lyapunov func-
tion design techniques. Experimental results on a quadrotor UAV,
developed by the French Atomic Energy Commission, demonstrate
the robustness and performance of the proposed control strategy.

Index Terms—Aerial robotic vehicle, experiments, image-based
visual servo (IBVS), underactuated systems.

I. INTRODUCTION

V ISUAL servo algorithms have been extensively developed
in the robotics field over the last 10 years [11], [30]. Visual

servo systems may be divided into two main classes [24]; pose-
based visual servo (PBVS) control or image-based visual servo
(IBVS) control. Position-based visual servo control (PBVS) in-
volves reconstruction of the target pose with respect to the robot
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and results in a Cartesian motion planning problem. This ap-
proach requires an accurate 3-D model of the target, is sensitive
to camera calibration errors, and displays a tendency for image
features to leave the camera field of view during the task evolu-
tion. Image-based visual servo control treats the problem as one
of the controlling features in the image plan such that moving
features to a goal configuration implicitly result in the task being
accomplished [11]. Feature errors are mapped to actuator inputs
via the inverse of an image Jacobian matrix. There are a wide
range of features that have been considered including points,
lines, circles, and image moments. Different features lead to
different closed-loop responses and there has been important
research into optimal selection of features and partitioned con-
trol where some degrees of freedom are controlled visually and
others by a second sensor modality [5], [19]. Image-based vi-
sual servo control avoids many of the robustness and calibration
problems associated with PBVS, however, it has its own prob-
lems [6]. Foremost in the classical approach is a requirement to
estimate the depth of each feature point in the visual data. Var-
ious solutions have been investigated, including estimation via
partial pose estimation [24], adaptive control [28], and estima-
tion of the image Jacobian using quasi-Newton technics [29].
More recently, there has been considerable interest in hybrid
control methods whereby translational and rotational control
are treated separately [8], [10], [24], [27]. Most existing IBVS
approaches were developed for serial-link robotic manipulators
[18]. For this kind of robot, there are low-level joint controllers
that compensate for system dynamics, and position control, such
as visual servo control, is undertaken at the level of the system
kinematics [11]. There are very few integrated IBVS control de-
signs for fully dynamic system models [3], [34] and even fewer
that deal with underactuated dynamic models such as unmanned
aerial vehicles (UAVs) [14], [26]. The key challenge in applying
classical visual servo control to a dynamic system model lies
in the highly coupled form of the image Jacobian. Much of the
existing research in visual servo control of aerial robots (and
particularly, autonomous helicopters) have used PBVS method-
ology [1], [25], [31] that avoids the image Jacobian formulation.
Prior research by the authors [14] proposed a theoretical IBVS
control design for a class of underactuated dynamics using an
image-based visual feature augmented with an inertial direc-
tion, obtained from a partial attitude pose-estimation algorithm.
In [15], a fully IBVS control design for dynamic systems as-
sociated with UAV systems capable of hover fight, is derived.
Both control schemes assume that the translational velocity of
the system is measured directly. In [22], an IBVS control for
a fully dynamic system is designed for a translational motion
of a rigid body. The image features considered are a first-order
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Fig. 1. X4-flyer UAV.

unnormalized spherical moment for position stabilization and
optic flow for velocity. Direct implementation of the control
strategies proposed in [14], [15] and [12] has been found to
have poor sensitivity and conditioning when implemented di-
rectly on an experimental vehicle.

In this paper, the practical implementation of an IBVS con-
trol for an UAV, capable of stationary or quasi-stationary flight,
is presented. The model considered is that of an “eye-in-hand”
type configuration, where the camera is attached to the airframe
of the UAV. The approach taken is based on recent research
by the authors [14] for which the dynamics of the image fea-
tures have certain passivity-like properties. A new visual error
term is considered that improves the conditioning of the image
Jacobian. The initial analysis is undertaken for the kinematic
response of the system, the normal visual servo framework, and
shows that the resulting image Jacobian is well conditioned.
Following this, a nonlinear controller integrating the linear and
rotational dynamics is developed using a structured control Lya-
punov function for exponential stabilization of the full dynamics
of the UAV. The vehicle considered is equipped with an inertial
measurement unit (IMU) and an explicit complementary filter
is used to provide filtered estimates of attitude [16] and angular
velocity for the vehicle. An estimate of translational velocity is
derived from a nonlinear filter that fuses the IMU and visual
data [7]. Experimental results are obtained on a quadrotor UAV
system, developed by the French Atomic Energy Commission
(CEA), capable of stationary and quasi-stationary flight. The
closed-loop visual servo control is shown to be locally expo-
nentially stable and experimental results demonstrate the per-
formance and robustness of the proposed control.

The paper is arranged into six sections. Following the intro-
duction, Section II presents the fundamental equations of motion
for a quadrotor UAV. Section III presents the proposed choice of
image features. Section IV provides a kinematic control design
for the translational motion. Section V extends the control to the
full dynamics of the system. Section VI presents experimental
results obtained on the experimental quadrotor (Fig. 1). Finally
Section VII provides some concluding remarks.

II. DYNAMIC MODEL FOR AN HOVERING UAV

In this section, we present equations of motion for an UAV in
quasi-stationary (or hover) flight conditions. The model used is
based on those introduced in the literature to model the dynam-

ics of helicopters [13], [17], [31]. Let I = {Ex,Ey ,Ez} denote
a right-hand inertial or world frame such that Ez denotes the
vertical direction downward into the earth. Let ξ = (x, y, z) de-
note the position of the center of mass of the object in the inertial
frame I. Let A = {Ea

1 , Ea
2 , Ea

3 } be a (right-hand) body-fixed
frame centered at the center of mass and assume that it coincides
with the camera frame. The orientation of the airframe is given
by a rotation R : A → I, where R ∈ SO(3) is an orthogonal
rotation matrix. Let V ∈ A denote the linear velocity and Ω ∈ A
denote the angular velocity of the camera both expressed in the
camera frame. Let m denote the mass of the rigid object and
let I ∈ R

3×3 be the constant inertia matrix around the center of
mass (expressed in the body-fixed frame A). The dynamics of
a rigid body are

ξ̇ = RV (1)

mV̇ = −mΩ × V + F (2)

Ṙ = Rsk(Ω) (3)

IΩ̇ = −Ω × IΩ + Γ. (4)

where the notation sk(x) denotes the skew-symmetric matrix
associated with any vector x ∈ R

3 such that for any vector
y ∈ R

3 , sk(x)y = x × y.
The exogenous force and torque are denoted by F and

Γ, respectively. The inputs considered correspond to a typ-
ical arrangement found on a vertical take-off and landing
(VTOL) aircraft (Section VI). The inputs are written as a sin-
gle translational force, denoted F , along with full torque con-
trol, Γ = (Γ1 ,Γ2 ,Γ3)T around axes (Ea

1 , Ea
2 , Ea

3 ). The force F
combines thrust, lift, gravity, and drag components. It is con-
venient to separate the gravity component1 mgEz = mgRT e3
from the combined aerodynamic forces and assume that the
aerodynamic forces are always aligned with the z-axis in the
body-fixed frame

F := −Te3 + mgRT e3 (5)

where T ∈ R is a scalar input representing the magnitude of
the external force applied in direction e3 . This is a reason-
able assumption for the dynamics of a UAV in quasi-stationary
flight, where the exogenous force is dominated by the lift force
while the aerodynamical drag (depending on the square of the
linear velocity) and forward thrust are negligible [13], [22],
[32]. Control of the airframe is obtained by using the torque
control Γ = (Γ1 ,Γ2 ,Γ3) to align the force (or thrust vector)
F0 := TEa

3 = Te3 as required to track the goal trajectory.

III. CHOICE OF IMAGE FEATURES

A. Kinematics of an Image Point Under Spherical Projection

Let P be a stationary point target visible to the camera ex-
pressed in the camera frame. The image point observed by the
camera is denoted p and is obtained by rescaling onto the image
surface S of the camera. Following the approach introduced
in [14], we consider a camera with a spherical image plane.

1Here e3 = (0 0 1) denotes the third-axis unit vector in R
3 .

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 18, 2009 at 23:52 from IEEE Xplore.  Restrictions apply.



GUENARD et al.: A PRACTICAL VISUAL SERVO CONTROL FOR AN UNMANNED AERIAL VEHICLE 333

Thus

p =
P

|P | (6)

where |x| represents the Euclidian norm of any vector x ∈ R
n ,

|x| =
√

xT x. The dynamics of an image point for a spherical
camera of image surface radius unity are [4], [14]

ṗ = −Ω × p − πp

r
V (7)

where r = |P | and πp = (I3 − ppT ) is the projection πp :
R

3 → TpS2 , onto the tangent space of the sphere S2 at the
point p ∈ S2 .

B. Centroid of a Target Surface

Consider a point target consisting of N points {Pi} with
image points {pi}. The centroid of a point target is defined to
be

q0 :=
∑N

i=1 pi∣∣∣∑N
i=1 pi

∣∣∣
∈ S2 . (8)

The centroid measures the center of mass of the observed
points in the chosen camera geometry. The centroid depends
implicitly on the camera geometry, and for a different geometry
(such as a camera with perspective projection), the direction of
the centroid will be different.

Using the centroid information is an old technique in visual
servo control [2], [20], [33]. Among the advantages in comput-
ing target centroids; it is not necessary to match the observed
image points with desired features as would be necessary in
a classical image-based visual servo control [18], the calcula-
tion of an image centroid is highly robust to pixel noise, and
centroids are easily computed in real time. The disadvantage
of the definition (8) is that it measures only two degrees of
freedom associated with the direction of centroid with respect
to the body-fixed-frame axes of the camera. The unnormalized
spherical centroid is defined to be

q :=
N∑

i=1

pi ∈ R
3 . (9)

Intuitively, as the camera approaches the geometric center of
the target points for a spherical camera geometry, the observed
image points spread out around the focal point of the camera,
decreasing the norm of q. In the limit, the value of q can the-
oretically reach zero, although for most practical systems, this
will not be possible while keeping the image points in the field
of view of the camera. Conversely, as the camera moves away
from the geometric center of the target points, the observed im-
age points cluster together in the direction of the image. The
unnormalized centroid q converges to a vector that has norm N
and points toward the target. This relationship between the norm
of q and the distance to the target provides a third constraint in
the image-based error term. It is, however, highly nonlinear
and leads to sensitivity and conditioning problems that must be
overcome in the control design.

For a point target comprising a finite number of image points,
the kinematics of the image centroid are easily verified to be

q̇ = −Ω × q − QV (10)

where

Q =
i=n∑
i=1

πpi

|Pi |
(11)

is a positive definite matrix as long as there are at least two
(N ≥ 2) visible target points [14].

C. Image-Based Errors

In this paper, we augment the image information with inertial
information acquired from a standard IMU used in most small-
scale UAVs.

Formally, let b ∈ I denote the desired inertial direction for
the visual feature. The norm of b encodes the effective depth
information for the desired limit point. Define

q∗ := RT b ∈ A

to be the desired target vector expressed in the camera-fixed
frame. The orientation matrix R is estimated from filtered data
acquired on a strapdown IMU on the vehicle. Since q∗ ∈ A, it
inherits dynamics from the motion of the camera

q̇∗ = −Ω × q∗.

The natural image-based error is the difference between the
measured centroid and the target vector expressed in the camera
frame

δ := q − q∗. (12)

The image error kinematics are

δ̇ = −Ω × δ − QV. (13)

To regulate the full pose of the camera using a fully actuated
kinematic system (such as a robotic manipulator), it would be
necessary to introduce an additional error criterion for orienta-
tion control.

For an underactuated dynamic system of the form 1–4, the
attitude dynamics are used to control the orientation of the ve-
hicle thrust, which, in turn, provides the control of the system
position dynamics. It is physically impossible to separately sta-
bilize the attitude and position of the camera. The error criterion
chosen regulates only the position of the rigid body and the
orientation regulation is derived as a consequence of the system
dynamics.

IV. KINEMATIC CONTROL DESIGN

In this section, a Lyapunov control design is given for the
kinematics of the translational motion (1) based on the visual
error (13).

Define a storage function S

S =
1
2
|δ|2 . (14)
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Taking the time derivative of S and substituting for (13) yields

Ṡ = −δT QV. (15)

Note that (15) is independent of the angular velocity Ω.
For N ≥ 2, the matrix Q > 0 is known to be positive defi-

nite, and although its exact structure is not known, its maximal
eigenvalue must satisfy

λmax(Q) ≤
i=n∑
i=1

1
|Pi |

(16)

where |Pi | denotes the relative depth of the ith image point.
Thus, a simple choice

V = kδδ, kδ > 0

is sufficient to stabilize S for a kinematic control regime. Indeed,
substituting into (15), one obtains

Ṡ = −kδδ
T Qδ.

Since Q is a positive-definite matrix, the classical Lyapunov
theory guarantees that δ converges exponentially to zero. The
eigenvalues of the matrix Q are generally ill-conditioned

λmin(Q) << λmax(Q).

Convergence rates of the components of the error δ depend on
the eigenvalues of Q. As a consequence, the natural control
V = kδδ leads to poor asymptotic performance of the closed-
loop system.

A. Compensation of the Control Gain Sensitivity

A number of different approaches have been proposed to
compensate the poor conditioning of the Jacobian matrix Q
and to improve the performance of the closed-loop system [4].
In earlier research, only the kinematic model was studied and
the dynamics of the system were not considered in the control
design. In this paper, we propose a modification of the visual
error term to improve the conditioning of the Jacobian matrix
Q in the neighborhood of the set point q∗, thus preserving the
passivity-like properties and allowing control design for the full
dynamics of the system.

At the set point, the Jacobian matrix Q displays two eigen-
values of comparable magnitude and one eigenvalue, associated
with the direction q∗, which is an order of magnitude smaller.
To deal with this ill-conditioning, two new error terms are
introduced

δ11 = q∗0 × q, δ12 = q∗T0 δ, q∗0 =
q∗

|q∗| . (17)

Differentiating δ11 and δ12 , it follows that

δ̇11 = −sk(Ω)δ1 − sk(q∗0)QV (18)

δ̇12 = −q∗T0 QV. (19)

Lemma 4.1 Consider the system defined by (13) and let
k1 , λ > 0 be two strictly positive constants. Define

δ1 = δ11 + λq∗0δ12 . (20)

Assume that the image remains in the camera field of view for all
time. Then, the closed-loop system (13) based on the following
control (21)

V = k1(−sk(q∗0) + λq∗0q
∗T
0 )(δ11 + λq∗0δ12) (21)

exponentially stabilizes the visual error δ1 , and therefore, δ.
Proof:
Define

S1 =
1
2
|δ11 |2 + λ2 |δ12 |2 .

It is straightforward to verify that the two components of δ1 (δ11
and q∗0δ12) are orthogonal, and therefore,

S1 =
1
2
|δ11 + λq∗0δ12 |2 =

1
2
δ2
1 .

Deriving S1 and substituting the control input V by its expres-
sion, yields

Ṡ1 = −k1δ
T
1 Hδ1

where

H = A(q∗0)QA(q∗0)
T , A(q∗0) = −sk(q∗0) + λq∗0q

∗T
0 . (22)

Since Q is positive-definite matrix and A(q∗0) is a nonsingu-
lar matrix, H > 0, and therefore, δ1 (respectively δ) converges
exponentially to zero.

The decoupling between δ11 and δ12 and the decrease of
the storage function S1 toward zero guarantee the exponential
convergence of the error δ to zero. �

Remark 4.2: The best choice of the gain λ is characterized by
setting

H ∼= I

where the symbol ∼= means “equality up to a multiplicative con-
stant.” Although this relationship cannot be exactly assigned, it
can be approximately satisfied over a large neighborhood around
the desired set point and overcomes the inherent sensitivity and
conditioning of the control law proposed in [14]. �

V. CONTROL DESIGN FOR THE FULL DYNAMICS

In this section, the kinematic control developed in Section IV
is adapted to apply to the full underactuated system dynam-
ics using the backstepping control Lyapunov function design
approach.

The dynamics of the error term δ1 (20) may be written

δ̇1 = −sk(Ω)δ1 −
k1

m
Hδ1 −

k1

m
Hδ2 (23)

where δ2 defines the difference between the desired (or virtual)
kinematic controller (21) and the true velocity

δ2 :=
m

k1
A(q∗0)

−T V − δ1 (24)
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and will form an error term to stabilize the translational dynam-
ics. With the aforementioned definitions, one has

Ṡ1 = −k1

m
δT
1 Hδ1 −

k1

m
δT
1 Hδ2 . (25)

It is easily verified that

(A(q∗0)
−1)T = A(q∗0)

−T = sk(q∗0) +
1
λ

q∗0q
∗T
0 .

Deriving,A(q∗0)
−T one obtains

d

dt
(A(q∗0)

−T ) = −sk(Ω × q∗0) −
1
λ

sk(Ω)q∗0q
∗T
0

+
1
λ

q∗0q
∗T
0 sk(Ω). (26)

Using the relation

sk(Ω × q∗0) = sk(Ω)sk(q∗0) − sk(q∗0)sk(Ω)

the derivative of A(q∗0)
−T may be rewritten as

d

dt
(A(q∗0)

−T ) = − sk(Ω)sk(q∗0) + sk(q∗0)sk(Ω)

− 1
λ

sk(Ω)q∗0q
∗T
0 +

1
λ

q∗0q
∗T
0 sk(Ω)

= −sk(Ω)A(q)−T + A(q)−T sk(Ω). (27)

Deriving δ2 and recalling (2), (23), and (27), one obtains

δ̇2 = −sk(Ω)δ2 +
k1

m
Hδ1 +

k1

m
Hδ2 +

1
k1

A(q∗0)
−T F. (28)

Let S2 be a second storage function associated with the trans-
lational dynamics

S2 =
1
2
|δ1 |2 +

1
2
|δ2 |2 . (29)

Taking the time derivative of S2 , it follows that

Ṡ2 = −k1

m
δT
1 Hδ1 +

k1

m
δT
2 Hδ2 +

1
k1

δT
2 A(q∗0)

−T F. (30)

The positive-definite matrix H = A(q∗0)QA(q∗0)
T is not exactly

known; however, for a suitable choice of λ, it will be well con-
ditioned with known bounds on eigenvalues in a large neighbor-
hood of the desired set point. Thus, choosing

F := −k2
1k2

m
A(q∗0)

T δ2 (31)

where k2 > λmax(H) = max{λmax(Q), λ2λmin(Q)}, is suffi-
cient to stabilize the translational dynamics. Since the rigid body
system considered is underactuated, the force input F cannot
be directly assigned. The proposed control algorithm continues
the backstepping procedure by using the aforementioned defi-
nition as a virtual input. A virtual differentiation Ṫ of thrust is
introduced in the following development to ensure decoupling
between translational and rotational dynamics, as shown in the
sequel (37).

Set

Fv := −k2
1k2

m
δ2 . (32)

A new error term δ3 is defined to measure the scaled difference
between the virtual and the true force inputs

δ3 :=
m

k2
1k2

A(q∗0)
−T F + δ2 . (33)

The derivative of δ2 (28) becomes

δ̇2 =− sk(Ω)δ2 +
k1

m
Hδ1 −

k1

m
(k2I3 −H)δ2 +

k1

m
k2δ3 (34)

and the derivative of the second storage function is now

Ṡ2 = −k1

m
δT
1 Hδ1 −

k1

m
δT
2 (k2I3 − H)δ2 +

k1

m
k2δ

T
2 δ3 . (35)

Deriving δ3 and recalling (28), yields

δ̇3 = −sk(Ω)δ3 +
k1

m
Hδ1 −

k1

m
(k2I3 − H)δ2 +

k1

m
k2δ3

+
m

k2
1k2

A(q∗0)
−T

(
Ḟ + sk(Ω)F

)
. (36)

Recalling (5), the full vectorial term
(
Ḟ + sk(Ω)F

)
is explicitly

given by

(
Ḟ + sk(Ω)F

)
=




0 T 0
−T 0 0
0 0 1







Ω1
Ω2
Ṫ


 . (37)

The goal of the paper is to control the full system dynamics
(1)–(4). In practice, the IMU onboard a flying vehicle provides
high-bandwidth low-noise measurements of angular velocity Ω
of the vehicle. This allows us to apply a high gain control loop
around the angular dynamics (4) and use the angular velocity
Ω as an input to the remainder of the system dynamics (1)–(3).
The control of (1)–(3) relies on much lower bandwidth visual
feedback and occurs at a much lower bandwidth than the angular
velocity control. In fact, only the first two components of the
angular velocity Ω1 and Ω2 are required in the visual servo
control loop, along with the set point for the dynamic extension
of the thrust Ṫ .

Theorem 5.1: Consider the system dynamics (1)–(3) with in-
puts (Ω1 ,Ω2 , Ṫ ). Let δ1 be defined by (20) and δ2 , δ3 be defined
by (24) and (33), respectively. Choose (Ω1 ,Ω2 , Ṫ ) according to
(37) such that

m

k2
1k2

(
Ḟ + sk(Ω)F

)
:= − (k1k2 + k3)

m
A(q∗0)

T δ3 (38)

for k1 , k3 > 0 and k2 > λmax(H). Then, δ1 is locally exponen-
tially stable to zero and the attitude direction RT e3 is locally
exponentially stable to e3 .

Proof: Let L be a Lyapunov candidate function defined by

L =
1
2
|δ1 |2 +

1
2
|δ2 |2 +

1
2
|δ3 |2 = S2 +

1
2
|δ3 |2 . (39)

Taking the derivative of L, and recalling (35) and (36), one
obtains

L̇ = −k1

m
δT
1 Hδ1 −

k1

m
δT
2 (k2I3 − H)δ2 +

k2

m
δT
2 δ3

× k1

m
δT
3 Hδ1 −

k1

m
δT
3 (k2I3 − H)δ2 +

k1

m
k2δ

T
3 δ3

+
m

k2
1k2

δT
3 A(q∗0)

−T
(
Ḟ + sk(Ω)F

)
.
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Introducing the expression (38) in the Lyapunov function deriva-
tive, one obtains

L̇ = −k1

m
δT
1 Hδ1 −

k1

m
δT
2 (k2I3 − H)δ2

+
k1

m
δT
3 Hδ1 −

k1

m
δT
3 (k2I3 − H)δ2 −

k3

m
δT
3 δ3 .

Completing the square three times to dominate the cross terms,
it may be verified that the choice of the control gains given in
the theorem ensures that the right-hand side is negative definite
in all the error signals δi , i = 1, . . . , 3. The classical Lyapunov
theory ensures exponential convergence of δi → 0.

If the position and linear velocity are regulated, then the total
external force must be zero, F = 0. Recalling (5) one has

RT e3 = e3 , T = mg. (40)

�
Note that the error term δ3 does not determine the full attitude

of the system considered. Only pitch and roll components of
the attitude are regulated by the error δ3 while the yaw rotation
around the thrust direction is independent of the error criteria. In
practice, it is desirable to stabilize the yaw of the vehicle to avoid
unwanted second-order dynamic effects and provide a stabile
platform for sensor systems. Different solutions may be used to
stabilize the freedom of yaw rotation in the attitude dynamics.
An additional visual error is proposed in Hamel and Mahony
[14]; however, this leads to significant additional complexity in
the mathematical development. To avoid complexity, a simple
damping term

Γ3 = −k4Ω3 , k4 > 0

can be used to stop unwanted rotation without specifying a
specific yaw set point. The solution adopted in Section VI is a
hybrid control, where the position, pitch, and roll of the vehicle
are controlled autonomously, while the yaw is manually servo-
controlled using the operator joystick.

VI. EXPERIMENTAL RESULTS

In this section, the control algorithm presented in Proposition
5.1 is implemented on a quadrotor, made by the CEA (Fig. 1).

A quadrotor is a vertical takeoff and landing vehicle ideally
suited for stationary and quasi-stationary flight. The vehicle
consists of four individual fans fixed to a rigid cross frame. An
idealized dynamic model of the quadrotor [1], [17] is given by
the rigid body equations (1)–(4) along with the external force
and torque inputs (cf.Fig. 2)

T = Trr + Trl + Tf r + Tf l (41)

Γ1 = d(Tf r + Tf l − Trr − Trl) (42)

Γ2 = d(Trl + Tf l − Trr − Tf r ) (43)

Γ3 = Q(Tf r ) + Q(Trl) + Q(Tf l) + Q(Trr )

= κ (Tf r + Trl − Tf l − Trr ) . (44)

The individual thrust of each motor is denoted T(.) , while κ is
the proportional constant giving the induced couple due to air

Fig. 2. Force and torque inputs for an X4-flyer.

resistance for each rotor and d denotes the distance of each rotor
from the center of mass of the quadrotor.

The control set point for T is obtained by integration of
the third component of (38), while the control torques Γ1 and
Γ2 are obtained via a high-gain stabilization of the first two
components of (4) to the control set points given by the first
two components of (38). The final torque component Γ3 is
independently determined via high-gain feedback control to a
set point Ω3 derived from the joystick.

The parameters used for the dynamic model have been
identified as follows: m = 0.55 kg, I = diag(0.009, 0.009,
0.018) kg·m2 , d = 0.23m, κ = 0.018m and g = 9.8m·s−2 .

A. Prototype Description

The CEA’s quadrotor is equipped with a set of four electronic
boards [Fig. 3(b)] designed by their staff. Vibration-absorbent
material was placed between the electronic boards and the air-
frame to minimize sensor noise in the microelectromechanical
system (MEMS) sensor components. Each electronic board in-
cludes a microcontroller and has a particular function. The first
board integrates the motor controllers that regulate the rota-
tion speed of the four propellers. The second board integrates
an IMU, developed by the CEA, consisting of three low-cost
MEMS accelerometers, three angular rate sensors, and two mag-
netometers. The explicit complementary filter [16] is used to es-
timate the attitude vector (pitch and roll) and gyros bias from the
IMU data. On the third board, a digital signal processing (DSP),
running at 150 MIPS, is embedded and performs the control
algorithm and filtering computations. The final board provides
a serial wireless communication between the operator’s joystick
and the vehicle. An embedded camera [Fig. 3(a)] with a field of
view of 120◦ is mounted pointing down, and transmits video to
a ground station personal computer (PC) via a wireless analogi-
cal link at 2.4 GHz. Finally, a lithium–polymer battery provides
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Fig. 3. (a) Embedded camera. (b) Set of electronic boards.

Fig. 4. (a) Initialization of the algorithm. (b) Target view from the camera.

nearly 10 min of flight time. The images sent by the embedded
camera are received by the ground station at a frequency of
15 Hz. In parallel, the quadrotor sends the inertial data to the
ground station at 9 Hz. The data is processed by the ground sta-
tion PC and incorporated into the control algorithm. The visual
servo control algorithm is computed in the ground station PC
and provides desired orientation velocities and a desired thrust
rate. These control set points are transmitted to the drone where
the high-gain control of the motor torque is embedded on the
DSP running at 166 Hz. This high-gain control ensures stability
of the vehicle despite the presence of significant latency in-
curred in the reception and processing of inertial data and visual
features and the transmission of control demand.

B. Experiments

The target considered consists of the four black marks on
the vertices of a stationary planar square [Fig. 4(b)]. A standard
computer vision segmentation algorithm extracts the marks from
the background and computes the central moment of each mark.
The central moments are transformed into unit-norm spherical
image plane representation using the camera calibration matrix
provided by the manufacturer. The four image points obtained in
this manner are summed to compute the unnormalized spherical
centroid q (9). The characteristics of the experimental camera
ensure that the observed target remains visible if the quadrotor

Fig. 5. Schematic block diagram of estimation and control loops.

remains in cone of angle ≈ 45◦ around the observed target and
has at most ≈ 5◦ inclination. This generates a workspace of
diameter approximately 1.5 m around the center of the target
at an altitude of 1.4 m. The desired image feature b∗ is chosen
such that the camera set point is located 1.4 m above the target

b∗ �




0
0

3.9


 (45)

Fig. 4(a) shows the unmanned aerial vehicle mounted at the set
point during the process of acquiring the set point image for the
image error.

1) Initialization: To implement the control algorithm, it is
necessary to estimate the parameter λ that is integral in im-
proving the conditioning of the Jacobian matrix Q around the
desired position. The set point for the experiment was set at
(x, y, z) � (0, 0, 1.4) m [Fig. 4(a)] leading to a Jacobian matrix

Q∗ �




2.35 0 0
0 2.36 0
0 0 0.056


 . (46)

The condition number of Q∗ is ρ(Q∗) = λmax(Q∗)/λmin(Q∗)
� 42.14. The asymptotic convergence rates of the proposed al-
gorithm are given by the eigenvalues of H = A(q∗0)Q

∗A(q∗0)
T .

For the experimental configuration considered, one has (22)

A(q∗0) =




0 1 0
−1 0 0
0 0 λ


 . (47)

Choosing λ = 6.44, one obtains

A(q∗0)Q
∗A(q∗0)

T = 2.35




1 0 0
0 1 0
0 0 1


 . (48)

Since H = A(q∗0)QA(q∗0)
T ≈ A(q∗0)Q

∗A(q∗0)
T in the vicinity

of the set point, it is expected that the overall system performance
will be acceptable.

2) Results: During the experiments, the yaw velocity (Ω3)
was controlled via the joystick. Yaw velocity does not affect
the proposed control scheme (37) and the convergence of the
closed-loop system is independent of the operator input. The
drone is flown under manual control into the neighbourhood
of the target to ensure the target marks are visible before the
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Fig. 6 Error term δ1 .

Fig. 7. Error term δ11 .

control algorithm is engaged. An estimate of the initial position
is (x0 , y0 , z0) � (0.7,−0.8, 2) m.

The exponential convergence of the visual error δ1 is clearly
visible in Fig. 6. The separate convergence of the error terms δ11
and δ12 are shown in Figs. 7 and 8. Fig. 9 shows the evolution of
the centroid vector, q, and Fig. 10 shows the convergence of the
thrust direction Re3 to e3 . Fig. 11 shows the evolution of target
points in the image space. Fig. 12 shows the position evolution of
the quadrotor in the Cartesian space as obtained from the full-
pose estimation algorithm that was run separately in parallel
to the control algorithm.2 The closed-loop performance of the
system maintains an error of approximately 10 cm around the
desired position (Fig. 12). The authors believe that the most
significant source of error is due to aerodynamic disturbances

2Note that the only place where the full-pose estimates are used is in plotting
Fig. 12, although the pose estimation algorithm is used to generate the estimate
of linear velocity used in the control algorithm.

Fig. 8. Error term δ12 .

Fig. 9. Centroid evolution.

that can be considered as a load disturbance to the system. Any
rotor craft creates vortices at the tips of the rotor plane when in
hover. These vortices grow in size and strength, and then become
unstable and get sucked through the rotor, causing a momentary
loss of lift, before a new vortex begins to grow. Interestingly,
this effect is worst in stationary hover conditions as translation
through the air causes the protovortices to be washed through
the rotor before they have built-up energy. Other sources of error
in the closed-loop system may come from system modeling and
transmission delays. Despite the errors, experiments show that
the regulation error remains bounded and smaller than 10 cm
around the desired position. The authors feel that the practical
stability is very good with regards to the experimental system
considered.
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Fig. 10. Evolution of the components of the vector Re3 .

Fig. 11. Trajectory in the image plan of the four black marks.

Fig. 12. Three-dimensional UAV position.

VII. CONCLUSION

In this paper, we presented a visual servo control for stabi-
lization of a quadrotor UAV. This research is an extension of the
recent theoretical work on visual servo control of underactuated
systems [14] that overcomes ill-conditioning of the Jacobian
matrix. Based on the previous research [4], a new visual error
is proposed that improves the conditioning of the closed-loop
Jacobian matrix in the neighborhood of the desired set point. A
nonlinear controller is derived, using backstepping techniques,
and implemented on an experimental flying robot developed by
the CEA. The experimental results show good performance and
robustness of the proposed control strategy.
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