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Abstract The calibration theorem by Rabin (2000) implies that seemingly plausible small-

stake choices under risk imply implausible large-stake risk aversion. This theorem is derived 

based on the expected utility of wealth model. However, Cox and Sadiraj (2006) show that 

such implications do not follow from the expected utility of income model. One may then 

wonder about the implications for more applied consumption analysis. The present paper 

therefore expresses utility as a function of consumption in a standard life cycle model, and 

illustrates the implications of this model with experimental small- and intermediate-stake risk 

data from Holt and Laury (2002). The results suggest implausible risk aversion parameters as 

well as unreasonable implications for long term risky choices. Thus, the conventional 

intertemporal consumption model under risk appears to be inconsistent with the data.  

 

Key words: Expected utility of income, expected utility of final wealth, dynamic 

consumption theory, asset integration, time inconsistency, narrow bracketing 

 

JEL classification: D81, D91 

 

Acknowledgement: I am grateful for very constructive comments from two anonymous 

referees, an advisory editor, Martin Dufwenberg, Kjell Arne Brekke, Thomas Aronsson, 

Frank Heinemann, Robert Östling, Richard Thaler, Peter Wakker, Fredrik Carlsson, Matthias 

Sutter and seminar participants at Umeå University, as well as for financial support from the 

Swedish Research Council and the Swedish International Development Cooperation Agency 

(Sida). 

 1

mailto:Olof.Johansson@econo


1. Introduction 

How well expected utility (EU) theory describes human behavior in general, including in 

small- and intermediate-stake gambles, has recently been discussed intensively. At the core is 

what expected utility is expressed as a function of. This note provides a simple extension of 

some important aspects of this discussion to a life cycle setting where people derive utility 

from consumption (instead of wealth or payoffs), and illustrates this with numerical 

implications based on experimental data from Holt and Laury (2002).  

 Rabin (2000) presents an important theoretical contribution in terms of a calibration 

theorem that implies conclusions of the following kind: “If for all wealth levels an expected 

utility maximizing person turns down a 50-50 lose $100/gain $200 gamble, he would also 

turn down a 50-50 lose $200/gain $20,000 gamble.” While it may seem plausible that some 

people would turn down the first gamble (for all wealth levels), it seems much less reasonable 

to turn down the second. According to Rabin and Thaler (2001, 206): “Even a lousy lawyer 

could have you declared legally insane for turning down this bet.”1 An important feature of 

this calibration theorem is that it does not assume anything regarding the functional form of 

the utility function. However, the “for all wealth levels” part of the theorem is important. 

Although one can derive less extreme versions without this assumption, one must still assume 

                                                 
1 Given that “expected utility” refers to “expected utility of wealth,” it is actually straightforward to derive an 
even stronger conclusion, as follows: “If for all wealth levels an expected utility maximizing person turns down 
a 50-50 lose $100/gain $200 gamble, he would also turn down a 50-50 lose $200/gain infinity gamble.” Let K 
denote the (cardinal) gain in utility U from a wealth increase from w  to 200w+ , where  is initial wealth. Then 
if the individual turns down a 50-50 lose $100/gain $200 gamble, it follows by concavity that the utility loss 
from a wealth change from w  to  is at least 2K. Since this holds for all initial wealth levels it would also 
hold for the initial wealth ; hence we know that a wealth increase from 

w

200w−
200w+ 200w+  to  implies a U 

increase of less then K/2, and that a wealth increase from 
400w+

200( 1)rw+ −  to 200w r+ , where r is an arbitrary 
positive integer larger than 1, implies a utility increase of less than 1( / 2)rK − . Hence, the utility change for a 
wealth increase from w  to  is less than 200rw+ 1

0
/ 2r

i
2(1 5i 0. )rK K−

=
= −∑ . Consequently, the expected utility 

change of a 50-50 lose $200/gain $200r gamble is less than (1 0.5 ) 0.5r rK K =

w

K−− − . Thus, the expected utility 
change is negative irrespective of r, i.e. irrespective of the gain. (One can easily obtain less extreme versions by 
replacing the “for all wealth levels” with “for wealth levels up to w+Δ .”) Moreover, by replacing $100 with an 
arbitrary positive number A in the above analysis, it follows more generally that, “If for all wealth levels an 
expected utility maximizing person turns down a 50-50 lose A/gain 2A gamble, he would also turn down a 50-50 
lose 2A/gain infinity gamble.” 
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that the individual would have made the same choice had he been substantially wealthier than 

what he actually is (see Rabin and Thaler and footnote 1 in the present paper). Largely based 

on the implications of this theorem, Rabin (2000a, b) and Rabin and Thaler (2001) argue more 

generally that EU theory cannot explain behavior based on small-stake gambles, and hence 

that we need some other theory; they suggest a combination of loss aversion and mental 

accounting. 

 However, Cox and Sadiraj (2006) question this conclusion in a recent paper. They show 

that for the small-stake risk aversion assumption of Rabin (2000), implausible large-stake risk 

aversion would not follow for the expected utility of income (EUI) model, where utility is 

expressed as a function of payoffs, in contrast to the expected utility of final wealth (EUW) 

model.2 Moreover, since the global small-stake risk aversion assumed by Rabin (2000) has no 

implication for the EUI model, it has no general implication for EU theory either. It is clear 

that Cox and Sadiraj have a valid and important point since EU theory is very general and 

builds on a set of axioms that do not preclude that utility may depend on wealth, income, 

experimental payoffs, or almost any state variable.3 

 In the light of the findings by Cox and Sadiraj, one may be inclined to conclude that 

what has become known as the Rabin critique is overstated. Perhaps applied economists 

interested in measuring people’s risk preferences or analyzing behavior based on existing 

estimates can ignore the Rabin critique and continue to interpret their results in terms of the 

concavity of universally valid utility functions? However, the results in this paper suggest that 

such a conclusion would be premature.  

 In applied economic analysis people often make decisions over time, deriving 

instantaneous utility based on their present consumption level. Under risk, the conventional 
                                                 
2 Although it is clear from Rabin (2000 a, b) and Rabin and Thaler (2001, 2002) that they focus on the EUW 
model in their analyses, some of their statements may seem to imply (or at least have been interpreted to imply) a 
criticism of expected utility theory more generally. Cox and Sadiraj (2006) also consider a more general two-
argument model where utility depends on both initial wealth and payoff.  
3 Samuelson (2005), Rubinstein (2006), and Harrison et al. (2007) have provided similar arguments.  
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assumption is then that people maximize the expected present value of future instantaneous 

utility (e.g. Deaton 1992; Gollier 2001). We will denote this model the expected utility of 

consumption over time (EUCT) model, and take it as our point of departure. An obvious 

example is how to best invest retirement savings; see e.g. Gomes and Michaelides (2005).4 In 

the EUCT model, utility is expressed as a function of a flow variable (unlike the EUW 

model), i.e. consumption, and implies complete asset integration (as in the EUW model), 

meaning that the gains from a risky choice will be treated in exactly the same way as income 

or wealth obtained in any other way. 

 The main contributions of the present paper can be summarized as follows: First, the 

relations between the EUCT model, on the one hand, and the EUW and EUI models, on the 

other, are analyzed in Section 2. It is concluded that the EUCT model is essentially equivalent 

to the EUW model when the wealth measure in the EUW model consists of the present value 

of all future consumption or income. In addition, it is shown that the functional form of the 

instantaneous utility function, which is expressed as a function of current consumption, 

carries over in a straightforward way to a utility function that is expressed as a function of the 

present value of all future incomes, if and only if the instantaneous utility function belongs to 

the class of functions characterized by hyperbolic absolute risk aversion (HARA), which is a 

flexible functional form that includes CRRA and CARA functions as special cases (Merton, 

1971).  

 Second, by using data from a careful experimental study by Holt and Laury (2002), 

Section 3 analyzes whether observed behavior in small- and intermediate-stake size risk 

experiments can be reconciled by the EUCT model. The answer is negative. The calculated 

implicit risk aversion parameters are found to be unreasonably large, and therefore can not 

                                                 
4 Long-run environmental problems, such as the greenhouse effect, constitute another important example where 
both time and risk are crucial. It is also typically shown that the profitability of extensive abatement today 
depends critically on the discount rate chosen, which in turn depends strongly on the concavity of the 
instantaneous utility function; see e.g. Stern (2006) and Nordhaus (2007). 
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constitute concavity measures of universally valid instantaneous utility functions. Moreover, 

strong implications are derived with respect to what these degrees of risk aversion would 

correspond to for long-term risky choices in terms of future income or consumption levels. 

For example, whether based on constant relative risk aversion (CRRA) or constant absolute 

risk aversion (CARA) preferences, a majority of the subjects from Holt and Laury would 

(given that they are EUCT maximizers) in the base case prefer an income level that with 

certainty would enable them to for the rest of their lifetime consume 36,000 USD annually, 

rather than a risky alternative where they with a 1% probability would be able to consume 

35,990 USD annually and with a 99% probability an infinite amount. This clearly seems 

implausible. Similar implausible results are then obtained also for broader class of HARA 

preferences. Section 4 generalizes and demonstrates that the main conclusions hold also under 

uncertain future incomes and for a time-inconsistent formulation. 

 Compared to the results based on the EUW model by Rabin (2000) and Rabin and 

Thaler (2001), the results here are less general in the sense that they depend on specific 

functional forms. On the other hand, the results here are less restrictive in the sense that they 

do not rely on any assumption that the choices would have been the same for all lifetime 

wealth levels, or for any higher lifetime wealth levels than the individuals currently have or 

expect to obtain.5 Section 5 concludes that the standard EUCT model appears inconsistent 

with available experimental small- and intermediate-stake data.  

 

2. The EUCT model 

The standard approach when dealing with intertemporal choices under uncertainty is to 

maximize the expected present value of future instantaneous utility (e.g. Deaton 1992; Gollier 

                                                 
5 However, note that the choices for CARA preferences would have been the same for all lifetime wealth levels. 
When utility is CRRA, by contrast, we know that an individual that is indifferent between accepting a risky 
gamble would always accept it for higher wealth levels than the present one. 
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2001). Let us start with the intertemporal consumption choice under certainty and in the next 

step take risky decisions into account.  

 

2.1 The intertemporal choice problem and HARA preferences 

Here an individual experiences the instantaneous utility  at time t (from now), where u is 

increasing and strictly concave. Assume that the individual will live for T more years, and, as 

is standard, an additive and time consistent utility formulation such that the individual will 

maximize 

( )tu c

 ,   (1) 
0

( )
T t

tU u c e ρ−= ∫ dt

where ρ  is the pure rate of time preference, sometimes denoted the utility discount rate. We 

will refer to U as utility. Under certainty, U is purely ordinal, so that any monotonic 

transformation of U is permissible and hence constitutes an equally valid measure of utility. 

Under risk, however, each possible utility outcome Ui
  must be interpreted in a cardinal sense, so 

that only affine transformations are permissible. The expected value of U, E(U), is nevertheless 

still ordinal.6 The intertemporal budget constraint implies that the present value of future 

consumption equals the present value of future income, so that  

 ,   (2) 
0 0

T Trt rt
t tc e dt y e dt Y− −= ≡∫ ∫

where r is the market interest rate. The associated Lagrangean can then be written as 

, implying the corresponding first order conditions 
0 0

( ) ( )
T Tt

t t tu c e dt y c e dtρ λ−= + −∫ ∫L rt−

                                                 
6 This means for example that under certainty, is an equally valid measure of utility as U, in the sense 
that an individual that chooses a consumption path in order to maximize U , will also maximize U. However, the 
only transformations of u that leaves the optimal consumption path unaffected are affine transformations; hence 
u is cardinal and unique only up to affine transformations. Under uncertainty, where we choose between 
different lotteries, we instead want to maximize 

lnU U≡

i
i iEU = p U∑ . The optimal choice would then be unaffected by 

any monotonic transformation of EU, whereas only affine transformations of , describing the utility in state i, 
leave the choice unchanged generally, and are hence permissible. Consequently,  is cardinal.   

iU
iU

 6



 ,  (3) ( ) ( )
0'( ) '( )r t r t

tu c e u c eρλ −= = ρ−

which together with the budget restriction determine the optimal consumption path.7 Since the 

individual maximizes U given a certain present value of lifetime income Y, we can 

alternatively write ( )U V Y= , for a fixed interest rate.  

 We will subsequently analyze implications of choices between small-stake lotteries 

with respect to what these choices would imply in terms of risk aversion measures when 

people are EUCT maximizers, and also what they would imply in terms of large-stake 

choices. In doing so, we would like to know the relationship between the instantaneous utility 

function and our measure of utility as expressed as a function of Y. More specifically, we 

would like to know under which conditions the functional form carries over from to( )tu ⋅ ( )V ⋅ . 

For example, if is CRRA, can we then know that also ( )tu ⋅ ( )V ⋅  is CRRA? If this is the case 

(and it turns out that it is), it simplifies the analysis largely, since it is then straight forward to 

reduce the dynamic problem to a static analogue and work with the V-function instead of the 

u-function. We will start by considering a more general result on the relation between 

to , followed by a more specific result which is straight forward to apply in the 

subsequent numerical analysis:  

( )tu ⋅ ( )V ⋅

Proposition 1. The functional form of u carries over to V, in the sense that we can either 

write utility as  or as ( )U V Y= ( )*ˆ ( )tU u c Y= , where  is an affine transformation of U, if 

and only if any of the following equivalent conditions are fulfilled:  

Û

i. The optimal consumption in period t can be written as an affine function of Y, such that 

, where  and  may depend on t and r, but are independent of Y . * ( ) ( )t t tc a r b r Y= + ( )ta r ( )tb r

ii. The instantaneous utility function u is HARA, such that ( )( 1) /

1
t

t

c
u

β βα β
β

−+
=

−
. 

                                                 
7 For example, when r=ρ  it follows that '( )tu c λ= , implying that also  is constant over time. Intuitively, 
people want to smooth their consumption over their life cycle in order to equalize their marginal instantaneous 
utility of income, which is a standard result in dynamic consumption theory (e.g. Hall, 1978). 

tc
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Proof: see Appendix. Note that since  is an affine transformation of U, it is by definition an 

equally valid measure of utility. This means that as long as we know that the consumption 

path is optimal, the instantaneous utility in any point in time (e.g. at present or ten years from 

now) is an equally valid measure of utility, i.e. of the present value of the instantaneous utility 

over the whole lifetime period. Moreover, since  is an affine transformation of U, and not 

just a monotonic transformation, it follows that for HARA preferences is also a valid 

measure of von Neumann-Morgenstern utility under risk. For our purposes, an even more 

useful result follows directly from Proposition 1, expressed in terms of the annuity , 

where  

Û

Û

Û

0 /c Y S≡

1 rTeS
r

−−
≡  is the annuity factor:8  

Proposition 2. If the instantaneous utility function is HARA, such that ( )( 1) /

1
t

t

c
u

β βα β
β

−+
=

−
, it 

follows that an affine transformation of U, U , is also HARA such that 
( )( 1)/0

1

c
U

β β
α β

β

−
+

=
−

. 

Proof: see Appendix. Note first again that since U  is an affine transformation of U, U is both 

a valid measure of utility under certainty, and a valid measure of von Neumann-Morgenstern 

utility under risk. This result will be used repeatedly in Section 3. Note also that Proposition 2 

holds whether a constant consumption path is optimal or not, i.e. whether rρ =  or not.  

 It is easy to verify that the Arrow-Pratt coefficient of absolute risk aversion, defined 

based on the instantaneous utility function, is in the HARA case given by 

'' 1
'

t
t

t t

uA
u cα β

≡ − =
+

, and that the corresponding coefficient of relative risk aversion is given 

by ''
'

t
t t

t t

u cR c
u c

t

α β
≡ − =

+
. It follows that the instantaneous utility function is characterized by 

                                                 
8 Thus, an individual could exactly afford the constant consumption level  for the rest of his lifetime. 0c
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CRRA for the special case when 0α = , implying that 
( 1)/ 1

1 1

R
t

t
c cu t

R

β β

β

− −

= =
− −

, where 1/R β= , 

and hence that we can write 
( )1
1

oc
R

U
R

−

=
−

. Similarly, u converges towards CARA when β  

approaches 0, so /
t

t

Ac
c

t
eu e

A
αα

−
−= − = −  , where 1/A α= , and we may write 

0AceU .
A

−

= − 9 

These results will also be used in the numerical calculations in Section 3. 

 

2.2 Introducing risk 

i
tyConsider now a lottery with the income path  for  with probability0t ≥ ip , where the 

realized income path is revealed before the consumption path is chosen. Expected utility is 

then given by 

 ,  (4) ( )( )*
1 0

Tn i t i
ti

u c e dt pρ−
=

=∑ ∫ 1
( )n i i

i
x p

=
=∑

*i
tc

i+EU V Y

ixwhere each element of the optimal consumption path  will satisfy (3), and where  is the 

lottery gain. Again, we see that the EUCT model is equivalent to the EUW model in the case 

where wealth is defined as the present value of all future incomes Y. Note that (17) holds 

generally, whereas in the case of HARA preferences we also have that the functional form 

carries over from to . It is also noteworthy that Proposition 2 implies that the choice 

of an individual with HARA preferences in a choice between lotteries with different lifetime 

incomes, implying different feasible future constant consumption streams, is independent of 

the individual’s time preference

( )tu ⋅ ( )V ⋅

ρ . 

 Assuming that the potential gains x (which can be positive or negative) from the lottery 

occur today, we can write expected utility as 
1

( )i
i

n iEU V=∑ Y x
=

+ p . According to the so-

                                                 
9 Note again that any affine transformations are permissible. Note also that while the parameter of relative risk 
aversion is dimension free and scale independent, the parameter of absolute risk aversion is not dimension free 
and can e.g. be expressed per dollar unit. 
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called Arrow-Pratt approximation (see e.g. Gollier 2001, p. 22), for small risks the risk 

premium ψ  is approximately given by var( )
2

xAψ ≈ , so that 2
var( )

A
x

ψ
≈  and hence 

0

2
std( ) std( )

ScR
x x

ψ
≈ , where  and ''/ 'A V V≡ − ''/ 'R YV V≡ −  are the associated coefficients of 

absolute and relative risk aversion, respectively. The literature based on life cycle 

consumption behavior often refers to values of R in the 0.5-3 range.10 According to 

Kocherlakota (1996, 52), “A vast majority of economists believe that values above 10 (or, for 

that matter, above 5) imply highly implausible behavior.” The ratio between the present value 

of all future consumption and the standard deviation of the monetary outcome of a risk 

experiment is typically very large. This implies that the risk premium must be a tiny fraction 

of the standard deviation of the monetary outcome for the behavior in the risk experiment not 

to be described as “highly implausible” by the above quotation, which will be illustrated 

further in the next section. 

 

3. Numerical illustration based on data from Holt and Laury (2002) 

There are many suitable experimental studies that could be used to illustrate the implications 

of the above model, but let us here rely on the well-known and carefully undertaken study by 

Holt and Laury (2002), who elicited the risk preferences of (mainly) US university students 

by using real money experiments with different stake sizes. Each student made a number of 

pairwize choices between one less risky (Option I) and one more risky (Option II) gamble; see 

Table 1 for a relevant sub-set. Indifference between Option I and Option II then implies a 

certain degree of risk aversion, and the choices were ordered so that indifference between the 

options implies larger and larger risk aversion. By observing at what point a subject switched 

                                                 
10 For example, Blundell et al. (1994) and Attanasio and Browning (1995) found, in most of their estimates, R to 
be in the order of magnitude of 1 or slightly above. Vissing-Jørgensen (2002) found that R differs between 
stockholders (approx. 2.5 to 3) and bond holders (approx. 1 to 1.2). 
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to Option II, they obtained a risk aversion range in which the subject belongs. Holt and Laury 

used several different functional forms, including the flexible expo-power functional form 

that includes CRRA and CARA as special cases, but did not integrate the gains with other 

expected lifetime incomes, i.e. in line with the EUCT model.   

  

3.1 CARA and CRRA preferences 

In order to test the implications of the EUCT model with real data, let us first focus on the two 

most commonly used functional forms, CRRA and CARA,11 where the instantaneous utility 

function can hence be written as 1 /(1 )R
t tu c R−= −  and tAc

tu e−= − , respectively. From 

Proposition 2 together with (4) we have that when an individual is indifferent between two 

lotteries, I and II, we have: 

 ( ) ( )1I 0 I II 0 II
1 1

/
Rn n

i i i ii i
p c x S p c x S

−

= =
+ = +∑ ∑

1
/

R−

II /i

,  (5) 

 
I /I II

1 1
i

n nAx S Ax S
i ii i

p e p e−
= =

=∑ ∑ −

1 R−

                                                

.  (6) 

From (5) and (6) we can easily solve numerically for R and A. 

 Consider now for comparison the EUI model where the lotteries are evaluated in 

isolation, and hence independent of other incomes. The EUI model is therefore of course in 

general not consistent with EUCT. In the CRRA case we have: 

 .  (7) ( ) ( )1I I II II
1 1

Rn n
i i i ii i

p x p x
−

= =
=∑ ∑

Clearly, since x is typically small compared to , (7) should generally result in a smaller R 

than (5), when indifferent between the two lotteries. However, in the CARA case, where 

initial wealth does not affect choices, (6) still holds (corrected for the scale of A). The reason 

is of course that the expected utility change of a lottery is here independent on the initial 

0Sc

 
11 Following convention, these names just reflect the functional form of the instantaneous utility function. What 
these functional forms imply in terms of actual choices under risk depends of course also about other 
assumptions of the model.  
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wealth level, which is only true for CARA preference. Consequently, the EUI model is 

equivalent to the EUCT model for the CARA, and only the CARA, instantaneous utility 

function. 

 Consider first for comparison the result of the EUI model, where the experimental gains 

are evaluated independently of people’s baseline income and wealth levels. It can be observed 

from Table 1 that, based on the CARA preferences as expressed in (6), the median parameter 

of absolute risk aversion A is between 0.101 and 0.299 based on the low-stake lottery, and 

between 0.015 and 0.026 based on the high-stake lottery. Based on CRRA preferences, the 

median parameter of relative risk aversion R is calculated from (7) to be between 0.146 and 

0.411 based on the low-stake lottery, and between 0.411 and 0.676 based on the high-stake 

lottery.  

 Consider now the conventional EUCT model. In the CARA case, A of course remains 

the same, since with CARA preferences the choice between risky options are independent of 

initial wealth; cf. e.g. Rabin and Weizsäcker (2007). Since the parameter estimates differ 

largely between the high- and low-stake lotteries, this suggests that CARA does not constitute 

a good approximation of subject preferences. However, the main concern here is whether the 

orders of magnitude constitute reasonable reflections of globally valid instantaneous utility 

functions. In the CRRA case, we clearly need estimates of S and  in order to solve for R in 

(5). Let us therefore assume that the subjects are 20 years old, that they expect to live until 

they are 80 (i.e. that they have 60 years left), that the real market interest rate is 5% annually, 

and that they quite pessimistically will earn future incomes that will enable them to consume 

= 10,000 USD per year (at today’s price level). For example, the second high payoff lottery 

in the Holt and Laury experiment corresponds then to a lottery between the present values of 

future incomes, such that the subjects in option I can afford a constant annual consumption of 

0c

0c
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10002.1048 USD with probability 0.6 and 10001.6839 USD with probability 0.4, and in 

option II 10004.0518 USD with probability 0.6 and 10000.10524 USD with probability 0.4. 

 As can be seen in Table 1, the median R is now larger than 19,000 based on the low-

stake lottery, and larger than 2,800 based on the high-stake lottery. These are clearly values 

way above what is generally considered to be plausible, i.e. values in the range of 0.5 to 3, or 

in any case considerably smaller than 10.12 Note that we have made no assumption regarding 

the pure rate of time preference ρ , and all results are independent of whether the students 

actually would prefer to have a future increasing or decreasing consumption path over time. If 

the future annual consumption of the subjects would be larger than 10,000 USD, then the 

implicit parameters of relative risk aversion would of course be even larger.  

 However, one may also believe that students have liquidity constraints and hence face a 

larger real interest rate than others. Let us therefore make the extreme assumptions of an 

annual real interest rate of 500% (instead of 5%). Solving for R in (5) nevertheless again 

reveals absurdly large values, as the last column of Table 1 shows.  

<<Table 1 about here>> 

Thus, we have seen that the choices in Holt and Laury imply absurdly large risk aversion 

coefficients if based on CRRA preferences, whereas the coefficients are identical between the 

EUI model and the EUCT model in the case of CARA preferences.  

 However. since A is not dimension free, it may be difficult to have a good intuition 

about what a reasonable range of A is. One perhaps tempting interpretation could be that the 

EUCT model works perfectly fine, but that people have CARA preferences (or similar) rather 

than CRRA preferences. However, even if one is willing to ignore the A discrepancies 

between the small- and large-stake experiments, this is not a plausible conclusion. To see this, 

consider the following gamble: In a safe alternative the individual would obtain the present 

                                                 
12 Independent from this study, Schechter (2007) also obtained absurdly large parameters of relative risk 
aversion in a risk experiments based on a sample in rural Paraguay.  

 13



value of all future income equal to 5 million USD. In a risky alternative, the individual would 

instead with the probability of 1 % obtain 4.9999 million USD, and with 99 % obtain an 

infinite amount. Presumably, most people would prefer the risky alternative. However, an 

individual with  would actually prefer the safe alternative.0.101A = 13 Hence,  is 

indeed unreasonably large. We will next more systematically look into the implications of the 

choices in the Holt and Laury lotteries, for implied choices in large stake lotteries expressed 

in terms of future consumption possibilities.    

0.101A =

 Consider the choice between a safe and a risky option concerning a subject’s future 

income. In the safe option he will with certainty for the rest of his life earn an amount 

corresponding to a constant annual consumption of  per year. In the risky option he will 

with probability p obtain the high future income level that corresponds to a constant annual 

consumption level of 

Sc

Hc , and with probability 1 p−  a low future income corresponding to 

the constant annual consumption level . We can then solve for  from (5) and (6) for the 

CRRA and the CARA cases as follows: 

Lc Lc

  
( ) ( )

1
1 1 1

1

R R RS H
L

c p c
c

p

− − −⎛ ⎞−⎜=
⎜ −
⎝ ⎠

⎟
⎟

,  (8) 

 1 1ln S
L

Ac Ac

pc
A e pe− −

⎛ ⎞−
= ⎜⎜ −⎝ ⎠

H ⎟⎟

R Sc

.  (9) 

In the special case where the “lucky” outcome implies an infinite consumption level, and 

where  R > 1 and A > 0, (8) and (9) reduce to: 

 ,  (10) 1/(1 )(1 )Lc p − −= −

 1 ln(1 )L Sc c p
A

= + − .  (11) 

<<Table 2 about here>> 
                                                 

⋅13 This is because . 
6 60.101 5 10 0.101 4.9999 100.01 0.99 0e e− ⋅ ⋅ − ⋅ ⋅− > − −

 14



Table 2 illustrates the case where the lucky consumption level is infinite, and where moreover 

the probability of a lucky outcome is as high as 99%. Consider first the CRRA case with a 5% 

interest rate. The first line of Table 2 reveals that indifference between the safe and the risky 

option implies the same R as indifference between Option I and Option II in Table 1. 

Consequently, if people’s behavior can be described by the EUCT model with CRRA 

preferences, the same fraction (66%) would prefer the less risky option. This means that 66% 

of the subjects in Holt and Laury would actually prefer being able to consume 36,000 USD 

annually with certainty rather than being able to consume an infinite amount with a 99% 

probability and 35,991 USD annually with a 1% probability. If we instead draw on the results 

from the high payoff lottery in Holt and Laury, the results become less extreme, although only 

slightly. Indeed, as shown from the fifth line, as many as 62% would prefer the safe option 

(36,000 USD annually) before a risky one with a 1% probability of being able to consume 

35,942 USD per year and a 99% probability of gaining infinite consumption. If we consider 

the extreme case of 500% interest per year, the implied choices are still absurd. Moreover, as 

observed in the third and fourth column of Table 2, when considering CARA (instead of 

CRRA) preferences the results are consistently even more extreme.14  

 

3.2 More general HARA preferences  

While HARA is the mostly used flexible functional form of the utility function, the second 

most used is the so-called Expo-power utility function (Saha, 1993). Both of these flexible 

forms include CRRA and CARA as special cases. However, since the Expo-power function 

has some unattractive characteristics, in particular in regions of extreme risk aversion, we will 

here focus on the HARA function. Still, we will briefly describe some features of the Expo-

power function, and how it in principle can be used, in the Appendix.     

                                                 
14 An important reason for this is the pessimistic assumption regarding the subjects’ future income that underlies 
the R estimates in Table 1. 

 15



 The HARA instantaneous utility function, ( )( 1) /

1
t

t

c
u

β βα β
β

−+
=

−
, implies decreasing 

absolute risk aversion ( 0t tA c∂ ∂ < ) for 0β > , and increasing absolute risk aversion for 

0β < ; we also observe decreasing relative risk aversion for 0α <  and increasing relative risk 

aversion for 0α > . It is also straightforward to see that this instantaneous utility function is 

globally concave as long as tcα β− < , and that both  andtA tR  are everywhere increasing in 

α  and β . When an individual is indifferent between two lotteries, I and II, we have 

 ( ) ( )( 1) / ( 1) /I 0 I II 0 II
1 1

( / ) ( / )n n
i i i ii i

p c x S p c x S
β β β β

α β α β
− −

= =
+ + = + +∑ ∑ .  (12) 

From (12) we can solve for β  for a given value of α , and vice versa, or solve for either α  or 

β  for a specified relationship between them. It is convenient for presentational purposes to 

rewrite (12) for 0β >  as 

 ( ) ( )( 1)/ ( 1)/I 0 I II 0 II
1 1

/ / / /n n
i i i ii i

p c x S p c x S
β β β β

α β α β
− −

= =
+ + = + +∑ ∑ ,  (13a) 

whereas we for 0β < instead have  

 ( ) ( )( 1)/ ( 1)/I 0 I II 0 II
1 1

/ / / /n n
i i i ii i

p c x S p c x S
β β β β

α β α β
− −

= =
− − − = − − −∑ ∑ .  (13b) 

Moreover, suppose now that α  and β  have been identified based on a risk experiment, such 

as the one by Holt and Laury, for an individual. Let the same individual choose between a 

safe and a risky option regarding all future income levels, as in the previous case for CRRA 

and CARA preferences. Given indifference between the options we can solve for  as 

follows: 

Lc

 
/( 1)( 1)/ ( 1)/

1
1 1

L S Hpc c c
p p

β ββ β β β
α α α
β β β

−− −⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜= + − +⎜ ⎟ ⎜ ⎟⎜ − −⎝ ⎠ ⎝ ⎠⎝ ⎠

⎟ −
⎟

  (14) 

Let us now again focus on the extreme case where the high income outcome implies an 

infinite consumption level. For 1β < , (14) then converges towards   
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 ( ) /( 1)1Lc p cβ β Sα α
β β

− − ⎛ ⎞
= − + −⎜ ⎟

⎝ ⎠
.  (15) 

In Table 3 below, we calculate  for a very wide range of Lc /α β .15 As observed, the implied 

choices are still absurd for almost all values of /α β . Consider for example the case where 

/ 7000α β = − . The number 35,977 in the fourth column should then be interpreted as 

follows: Assume that a student makes a choice between Option I and Option II in the first low 

payoff lottery choice described in Table 1, and that he has HARA preferences where the 

relation between α  andβ  is such that 7000α β= − , where β  is a positive number. Based on 

the EUCT model with a 5% annual interest rate, this implies that if he chooses Option I, he 

would prefer a future income stream allowing him to for the rest of his life consume 36,000 

USD annually with certainty before a risky alternative where he with a 99% probability would 

be able to consume an infinite amount and with a 1% probability would be able to consume 

35,977 USD annually. This clearly seems implausible.  

<<Table 3 about here>> 

The only exception occurs where /α β  is very close to the negative of the baseline income 

level, which in our case occurs where = 10,000. Indeed, when 0c / 10,000α β = − we can 

write utility of a lottery outcome at state i as 

( ) ( )5.85 5.8500.17 10,000iU c
− −

= − − + + 0.17x = −i ix , where ix  here represent the possible 

constant consumption level on top of . Hence, this function is equivalent to the CRRA EUI 

model at this value of . This also means that the coefficient of the relative risk aversion 

0c

0c

                                                 
15 Note that for the instantaneous utility function to be defined we must for 0β > , i.e. where we have decreasing 
absolute risk aversion, have that  for all 0( /ik c x S> − + ) ix . In the lottery about future wages we must then 
have that Lk c> − . When 0β < , i.e. where we have increasing absolute risk aversion, we must have that 

. This means that the instantaneous utility function in this range is not defined for a sufficiently 
large consumption level. In our future wage lottery we must then have that 

0(k c< − + / )ix S
Hk c< −

000
. In order to still illustrate this 

(rather unrealistic) range of the HARA utility function, we choose  here. 100Hc =
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would be the same as for the EUI case, reported in Table 1. Hence, we do not obtain the 

absurd choices in the example of future wages here. However, as shown below, ew  will still 

case described above. Indeed, for the case where r = 5

obtain unreasonable large stake choices close to the baseline consumption level.   

 So far we have drawn implications based on a single pair wise choice based on either 

the low payoff or high payoff lotteries of Holt and Laury. However, since we have two 

parameters in the HARA case we can actually estimate the parameters consistent with being 

indifferent in the first low-payoff pairwise lottery choice as well as the second high-payoff 

pairwise lottery choice. When doing so we obtain parameter values that are rather close to the 

% annually, we can write utility as  

( ) ( )0.92 9999.84 0.92 0.16i i iU c x x= − − + + = − + . Here too, there are no extreme risk 

averse choices with respect to the above thought experiment of future wages. The reason is 

that in order to match indifference in both the first low-payoff pairwise choice and the second 

high-payoff pairwise choice of Holt and Laury, the utility function has to have an extreme 

curvatur in this region. This, in turn, implies that the local risk aversion for small changes 

around 0c = 10,000 will be extremely large, whereas it will decrease rapidly fo els. 

For example, the relative risk aversi ption level  is 

1.09 1.090 − −

e 

on at the benchm

here equal to  

r larger lev

ark consum 0 10,000c =

/ 10,000 0.479 29937.5
/ 9999.84 10,000
cR

c
β

α β
⋅

= = =
+ − +

, whereas at the consumption 

level 36,000 we have 36,000 0.479 0.18
9999.84 36,000

R ⋅
= =
− +

large stake risk aversion here too, but in another interval, namely close to the benchmark 

consumption level. Indeed, with these preferences an individual would prefer a safe option 

with a future income corresponding to a constant consumption level of 10,000 per year, 

instead of a risky option where he with 99.99% probability would obtain an infinite amount 

. This implies that we will obta rd in absu
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and with a 0.01% probability would obtain an amount corresponding to 9999.84 per year 

(since utility converges to minus infinity at this level).  

 Thus, we observe absurd large stake implications based on the choice behavior in the 

Holt and Laury experiments for all HARA utility functions consistent with either the behavior 

in the small stakes experiment, the large stake experiment, or both. Overall, it can then be 

concluded that the major conclusions about absurd large stake implications based on the 

hoice behavior in the Holt and Laury experiment hold much more generally than for CRRA 

es. 

 account. Then we consider possible self-control 

terms of time-inconsistent present-bias preferences. As will be shown, the main 

lizations.  

outcome is o  thi

makes it impossible to pool any future income risks. An individual would then maximize 

c

and CARA preferenc

 

4. Generalizations 

In Section 3 we found that the EUCT model does not seem to be consistent with the 

experimental data provided by Holt and Laury (2002), and that absurd conclusions follow also 

when based on pessimistic forecasts regarding future income and with an extremely high 

interest rate. In this section we provide further generalizations. First we consider a setting 

where we take future income uncertainty into

problems in 

findings are robust to these genera

  

4.1 Uncertainty in future income 

So far we have assumed perfect foresight, i.e. where future income is known, which can be 

questioned. Let us therefore now assume that future income is uncertain. Let us moreover 

assume that the true future income will be revealed only once, directly after the experimental 

bserved. In this way, the impact of the uncertainty is maximized, since s 

0
( )

T

tu c e dt  as before, but this time subject to the budget constraint that
0

T

tc e dt Ytρ−∫ rt− =∫ , 
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where resent value of all future income. The first Y

EU

is a stochastic variable representing the p

order conditions are the same as before and given by (3), and expected utility is now given by 

 .  (16) 

ple expressions, this 

also implies thick “tails” in order to get large effects from the uncertainty of present risky 

choices. Combining this with HARA preferences, cf. eq. (12), we obtain 

  

max

min
1

Y
n

i
Y

=

Moreover, let the distribution of the future income per time unit be uniform, implying a 

uniform distribution also of 0c  (since 0 /c Y S= ). Besides facilitating sim

( ) ( )i ip V Y x f Y dY= +∑ ∫

( )

( )

( ) (( )

max

min

max

min

( 1) /0 0
max min

(2 1) /0
max min

)max

( / )

1 ( / )
(2 1)

( / ) ( / )

c

i ii
c

c

i ii

i i ii

cp c x S dc
c c

c p c x S
c c

p c x S c x S

β β

β β

EU

(2 1) / (2 1) /min

c

β β β β− −

α β

α β
β

θ α β α β

−

−

= + +
−

⎡ ⎤= + +⎢ ⎥⎣ ⎦− −

= + + − + +

∑ ∫

∑

∑

,  (17) 

where max min

1
(2 1)

c
c c

θ ≡

mplies

β− −
 is a constant. Indifference between the two lotteries I and II 

en i  that 

)

th

 
i i ii

i i ii

p c x S c x S

p c

( ) ( )( )
( ) (( )

(2 1) / (2 1) /I max I min I

(2 1) / (2 1) /II max II min II

( / ) ( / )

( / ) ( / )x S c x S

β β β β

β β β

α β α β

α β α β

− −

− −

+ + − + +

= + + − + +

∑

∑
β

ondingly implied choices as reported 

.  (18) 

In order to obtain some numerical estimates, let us make the extreme assumptions that 

min 1000c = USD and max 19,000c = per year, so that the expected future income is the same as 

before (i.e. equally pessimistic). However, numerical calculations of the kind provided in 

Table 1 reveal in the CRRA case that the implied parameters of relative risk aversion are still 

absurdly large, although about a factor ten smaller than in the base case. The median values 

are between 1,926 and 5,675 and between 285 and 492 in the small- and large-stake lotteries, 

respectively, with a 5% annual interest rate. The corresp
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in Table 2 would of course then also be extreme. Consequently, the absurd results are not 

ncome assumptions.  

bias model similar to the one used in the seminal work by Laibson (1997), and many others. 

In our continuous time framework, the individual would then at each time period t maximize   

 

driven by our deterministic future i

 

4.3 Time inconsistent preferences 

So far, we have made the standard assumption that people have time-consistent intertemporal 

preferences. However, there is much empirical evidence that people in fact often do not make 

intertemporal choices in a time-consistent way (Frederick et al., 2002). Here we therefore 

generalize the model in order to take time inconsistency into account, by means of a present 

( )( ) ( ) t
t tU u c dt u c e dρ τ

τ

T

t dt

σ τ− −= + ∫
+

where 

,   (19) 

σ  is the ratio between the weight attached to the present consumption and that for the 

near future, whereas the relative weights given to future time periods are given by the 

constant discount rate as in the standard exponential discounting case. In order to focus on the 

most extreme outcomes, we will solely focus on “naïve” individuals that will not today take 

into account that they will be time inconsistent also tomorrow; cf. O’Donoghue and Rabin 

(1999). The Lagrangean associated with the maximization at time t can then be written  

 ( )t rt r
te d Y e c e dρ τ τ

τ( ) ( )
T T

t
t dt t

u c dt u cτσ τ λ τ− − −+ −⎜ ⎟∫ ,  

t
rt rs⎛ ⎞

+

⎛ ⎞
= +

⎝ ⎠
∫L

where  is the present value of lifetime income minus the present value 

f con

0
t sY e Y c e ds−= −⎜ ⎟

⎝ ⎠
∫

sumption uno til time t, implying the corresponding first order condition for consumption 

at time t  

 '( )tu cσ λ= ,  (20) 
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and for all future time after t  

 '( )tu c ( )re ρ τλ − −
τ+ = (21) 

Consequently, the intertemporal marginal rate of substitution between two future time periods 

is given by '( ) /
itu c u c

.  

( )( )'( ) i j

j

r
t e ρ τ τ
τ

− − −
+ =

 by '( ) / r
tu c u

τ+  as in the time consistent case, whereas the 

corresponding intertemporal marginal rate of substitution between the present and any future 

time period is given '( )tc e( )ρ τ
τ σ+ = .  

RA, so that 

−

 Consider for example the case where the instantaneous utility function is characterized 

by CR
1

( )
1

R
t

t
cu c

R

−

=
−

. Then t  it follows tha 1/ 1/
0 0 1

c R
Tc Y

e η

ηR tc σ= =
−

σ − , where 0
tcc is 

the time consistent consumption at time 0, i.e. the consumption an individual would have if 

1σ = , and where (rR r) Rη ρ= + − t tc cσ= , where tc is the consumption . Similarly, 

chosen by an individual who has been tim e ho will be time 

consistent from then on. Thus, 

1/ R tc

e inconsistent up to tim

tc

t but w

1/

( )1

R

t tT tc Y
e η− −− t
σ η

=   is the present value of 

lifetime income minus the present value of consumption until time t. Then we have 

 

, where again Y

1/

( )
01

tR

t sT te η− −

⎛ ⎞
⎜ ⎟− ⎝ ⎠

∫

For example, when preferences are logarithmic (R = 1), 1.1

rt rsc e Y c e dsσ η −= − .  (22) 

σ =  and r=ρ , so that a time 

consistent individual would prefer a constant consumption level, it follows that an individual 

will always consume 10% more per time unit than he can afford to consume per time unit 

during the rest of his lifetime. By differentiating the integral equation (or more precisely the 

Volterra integral equation of the second kind) in (22) by t, and then substituting in (22), we 

btain the following separable differential equation  o
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( )
1/ 1/ 2 1/

( )
2( ) ( )( )

0

( ) 1/

( )

1 11 

(
=

)
1

tR R R
rt rt rs T t rt rtt

t sT t T tT t

T t R

tT t

dc e c e Y c e e re
dt e ee

r e r c
e

η
η ηη

η

η

σ η σ η σ η

η σ η

− − − − +
− − − −− −

− −

− −

⎛ ⎞⎛ ⎞⎜ ⎟= − + − +⎜ ⎟⎜ ⎟− −−⎝ ⎠⎝ ⎠
− + −

−

∫
. (23) 

It is straightforward to solve (23), for 

ds

0η > , as 

 ( ) ( ) 1/

( )1

T t R
t

T t
t

r e rdc dt
c e

η

η

η η− −

− −

− + −
=

−∫ ∫ , 
σ

 

implying 

( ) ( ) ( )1/ 1/ln 1 lnR R T t
tc r t e e Kη ηησ σ= − + − − + , 

or 

( ) ( )( )1/1/ 1RRr t T t
tc e e e e

σησ η η −−
= − K ,  

where K is the constant of integration. K can be identified by the initial condition 

(24) 

1/

0 1 Tc Y
e η−=

−
, implying ( ) ( )1/ 1/1Rησ 1

1
K T

Te e Y
e

η
η−= −

−
, which substituted in (24) implies

R Rσ ησ− −

 

16 

( )( )

( )( )
( )1/Rr t

T

e e
c e Yησ

η

ησ −−
= .  (25) 

1/

1/

1
1/

11 1

R

R

T tR

t
Te e

ση η

ση

−

− −− −

A person who repeatedly and consistently behaves in this way will then end up with much 

lower consumption when old even for a σ  that is relative ose to one. Indeed, in this case 

it follows that the consumption will converge towards zero at the end of life when 1

ly cl

σ > , i.e. 

ive of irrespect ρ  and r, since ( )( )1/ 1R
T te e

ση η −
−  will then converge towards zero.  can 

                                                

17 We

 
16 For 0η <  we obtain instead the optimal consumption path as follows: 

( ) ( )( )

( )

1/

1/

11/

1

R

R

r tR T t

t
T

e e e
c Y

e

ση η η

ση

ησ
−− − −

−

−
= −

−

. 

Similarly, for 0η =  we get . The same reasoning can be used for the more 
general case of HARA preferences, although the integral and differential equations naturally become 
substantially more complicated in this case (results are available from the author upon request).  

( )
1/1/ 21/ 1

RRR rt
tc e T T t σσσ − +−= − − Y

17 See Diamond and Köszegi (2003) for a discrete time application to pension savings. 
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then obtain non-monotonic consumption paths, i.e. paths that are initially increasing up to a 

certain point in time and thereafter decreasing, when rρ < . For example, a 20 year old 

individual who expects to live until the age of 80, with R = 1, 1.3σ = , 0.03ρ =

e-inconsistent preferences for risky 

l faces a lotte

, and where 

, would reach a peak consumption at about the age of 60.  

plications of tim

choices by again writing the expected utility ry with n 

different prices. Letting 

0.05r =

 Let us next consider the direct im

 when an individua

( )( )

( )( )
( )1/Rr tησ  w

1/

1/

1
1/

11 1

R

R

T tR

t T
T

e e
G e

e e

ση η

η ση

ησ
−

−

− −

−
=

− −

ay write expected utility as 

e can write (25) as t tc G Y= , 

so that we m

 

( ) ( )1 1
0

1 0

1 1 1

1 0

1 1

( ) ( )
1 1

( )
1 1 1

'
1 1

Ti t i t i

R R RTn t i
i

i i

0

1 0( ) ( / )

R R
n

i

i t

R R
n n

1

i i

dt e dt p

Y x c x S

σ

− −

=

i i

G Y x G Y x
E dt e dt p

R R

Y x G G
R R R

p p
R R

ρ

ρ

σ −

− − −

U

−

− −

+ +

= +⎜ ⎟

+ +

∑ ∫ ,  (26) 
=

= =

⎜ ⎟= +
⎜ ⎟− −

⎛ ⎞+
− − −⎝ ⎠

= ϒ =ϒ
− −

∑ ∫

∑ ∑

where ϒ  and 'ϒ are arbitrary positive constants. Thus, these final expressions look exactly as 

in the time consistent case in eq. (12), i.e. they do not depend at all on 

⎛ ⎞

⎝ ⎠

σ ! Hence, although 

time inconsistency in the form of present bias preferences can have very large im

plications for the behavior in risky choices 

plications on 

mption path and saving decisions, the im

se none. Conse

the consu

are much smaller, and in our ca quently, our standard, but perhaps unrealistic, 

assumption about time consistency in our initial EUCT formulation is not what drives the 

absurd implications of the choices made in the Holt and Laury (2002) data.    

 

4. Discussion and Conclusion 

The explanatory power of EU theory has recently been discussed intensively (e.g. Rabin 

2000a; Rabin and Thaler 2001; Cox and Sadiraj 2006; Rubinstein 2006). The present paper is 
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concerned with the implications of this discussion for applied economics research under risk. 

In such research people often make decisions over time, where the standard model (here 

denoted the EUCT model) assumes that people maximize the expected present value of future 

instantaneous utility. The relations between the EUCT model and the EUW and EUI models, 

respectively, are analyzed. It is shown that the EUCT model is equivalent to the EUW model 

when wealth is measured by the present value of all future consumption or income, whereas 

the EUCT model is equivalent to the EUI model only for CARA preferences. Moreover, it is 

shown that the functional form of the instantaneous utility function, which is expressed as a 

ntaneous utility functions. For example, in the 

function of current consumption, carries over in a straightforward way to a utility function 

that is expressed as a function of the present value of all future incomes, if and only if the 

instantaneous utility function belongs to the class of functions characterized by hyperbolic 

absolute risk aversion, which includes CRRA and CARA as special cases. 

 However, as argued by Palacios-Huerta and Serrano (2006), the important question is 

not whether the EU model, or in our case the EUCT model, is literally correct. We know that 

it is not. What is important for applied economics is the extent to which the model can 

provide a reasonable approximation of actual behavior. Here the implications of the EUCT 

model have therefore been investigated based on data from a careful risk experiment reported 

in Holt and Laury (2002). The result suggests that the EUCT model is ill-suited to explain 

experimental behavior in such small- and intermediate-stake gambles. The calculated implicit 

risk-aversion parameters are found to be unreasonably large, and therefore can not constitute 

concavity measures of universally valid insta

base case with CRRA preferences, making conservative or realistic assumptions regarding 

future wages, etc., the median coefficient of relative risk aversion is above 2,000 even based 

on the high-stake lottery choices, despite that most analysts seem to agree that R should be in 

the 0.5-3 range, or at least not larger than 10. 
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 Even more strikingly, the results also suggest unreasonable implications in terms of 

what these degrees of risk aversion would correspond to for long-term risky choices in terms 

of the subjects’ future consumption levels. Whether based on CRRA or CARA preferences, 

most subjects from Holt and Laury would in the base case EUCT model prefer a certain 

income enabling them to for the rest of their lifetime consume 36,000 USD annually instead 

of a risky alternative where they with a 1% probability would be able to consume 35,990 

USD annually and with a 99% probability would be able to consume an infinite amount. 

Moreover, since the results in Holt and Laury (2002) are in no way unique, but are in line 

 a much 

                                                

with most small and intermediate stake experimental risk studies,18 it can be concluded that 

the EUCT model appears inconsistent with observed experimental small- and intermediate-

stake data. The same applies to at least some kinds of actual consumption behavior, such as 

additional insurances for electronic equipment.  

 However, a caveat regarding the numerical results is in order. The numerical analysis 

here implicitly assumes that the choices reported in Holt and Laury are without errors, which 

is of course not the case in reality. Moreover, when extrapolating to implied choices at

larger scale, as is done here, such errors will of course increase too, as pointed out by Cox and 

Harrison (2008). This means that the numerical results here should accordingly be taken with 

some grain of salt. Still, in order to escape the main conclusions, one has to assume that the 

choices in Holt and Laury are almost solely driven by random, which seems unlikely. 

 Consequently, we need another model to explain small- and intermediate-stake risk 

behavior. There are several suggestions well worth considering in the literature; see e.g. Rabin 

and Thaler (2001), Köbberling and Wakker (2005), Barberis et al. (2006), Cox et al. (2008), 

Heinemann (2008), and Rabin and Weizsäcker (2007). Although it is beyond the scope of the 

present study to discriminate between these and other models, two remarks appear clear based 

 
18 See e.g. Cox and Sadiraj (2008) for a discussion and analysis of other recent risk experiments. 
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on the findings here: 1. Loss aversion cannot explain the choice behavior in Holt and Laury, 

and hence not the numerical findings in this paper, since all outcomes were in the gain domain 

ity in a certain period depends only on the choices made in that period while 

 the EUCT model an increased consumption reduces future utility. The extent by which 

ate the payoffs from a certain stage in a game with the payoffs from other stages, 
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Appendix  
 
Proof of Proposition 1. 
 
Let  denote the optimal consumption at time t and consider the welfare effect of a small 

lifetime income increase:  

*
tc

 
* *

* *
00 0

'( ) '( ) '( )
T Tt rtt t

t
c cdU V u c e dt u c e dt u c

dY Y Y Y
ρ− −∂ ∂∂

= = = =
∂ ∂ ∂∫ ∫ *

0 ,  (A1) 

where we have used (3) and  
*

0
1

T rttc e dt
Y

−∂
=

∂∫  from differentiating the budget restriction (2). 

Intuitively, the utility increase of consuming everything of a small income increase 

immediately is equally large as any other pattern of the consumption increase, as long as the 

initial consumption pattern is optimal. By combining (3) and (A1) we also have V Yλ = ∂ ∂ . 

When r is given we can write , and from (3) we then have ( )U V Y= ( )* (' ( ) r t
t

dV u c Y e
dY

)ρ−=  so

 ( )( ) *( ) ' ( )r t
tV Y e u c Y dY Kρ−= ∫ + ,  (A2) 

where K  is independent of Y. Now, since 
( )( ) ( )

* *
*

( )
' ( )

t t
t

d u c Y cu c Y
dy Y

∂
=

∂
 we have that 

( ) ( )*
*

*

( )
' ( ) t

t
t

u c Y
u c Y dy K

c Y
=

∂ ∂∫ + , where K  is independent of Y, if and only if 
*
tc

Y
∂
∂

 is 

independent of Y, i.e. when we can write  

 ,  (A3) * ( ) ( )t t tc a r b r Y= +

so that 
*

( )t
t

c b r
Y

∂
=

∂
. Hence, there is an affine relationship between V and u such that we may 

write 

 ( )1 *( ) ( )tU V Y K u c Y K= = + 2 ,   
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w re independent of Y, if and only if (A3) holds. This implies in turn that we here  and a

mation of U, and hence an equally valid measure of utility. This 

eans

implies ii. In doing so we will make use of 

plications due to changes in the interest rate, so

differentiating (3) with respect to Y we obtain 

 

 1K 2K  

may write  

 ( )*ˆ ( )tU u c Y=   (A4) 

where Û  is an affine transfor

m  that, when consumption is optimal, the instantaneous utility at any point in time is a 

measure of overall utility U.  

 Next we will consider the implications of affine optimal consumption functions for the 

underlying utility function, and show that i 

im  we will write ( , ) here. By U V Y r=

* 2
( ) ( )

2''( ) ''( ) ( ) r t r tt
t t t

c Vu c u c b r e e
Y Y Y

ρ ρλ − −∂ ∂ ∂
= = =

∂ ∂ ∂
.  (A5) 

Similarly, differentiating (3) with respect to the interest rate r, we obtain 

 
*

( ) ( )''( ) ''( ) r t r tt tc a V Vu c u c e teρ ρ− −∂ ∂ ∂⎛ ⎞= − .  (A
2

t
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b Y
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∂ ∂
+ =⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

6) 

 we have 
2 2V V

Y r r Y
∂ ∂

=
∂ ∂ ∂ ∂

By Youngs theorem . Differentiating (1)

 

 with respect to r implies  

*c aV V∂ ∂∂ ∂*

0 0
'( )

T Tt rtt t t
t

bu c e dt Y e dt
r r Y r r

ρ− −∂⎛ ⎞= = +⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠∫ ∫ ,  (A7) 

from which it follows that 

 
2 2 2

r Y Y
=

∂ ∂ ∂ 2 20 0 0

T T Trt rt rtt t ta b bV V V Ve dt Y e dt e dt
r Y r Y r

− − −∂ ∂ ∂∂ ∂ ∂ ∂
+ +

∂ ∂ ∂ ∂ ∂∫ ∫ ∫ ,  (A8) 

where in the last line (3) and (A5) are used. Substituting (A7) and (A8) into (A6) and dividing 

by (A5) implies 
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where 1

0 0

T T

t
a a b
r r r

∂ ∂ ∂⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠∫ ∫

 

rt rtt t tk e dt b t e dt− −= − − and 

2 T Trt rtt t tb b bk e dt b t e dt
r r r

− −∂ ∂ ∂⎛ ⎞ ⎛ ⎞= − −
∂ ∂ ∂⎝ ⎠ ⎝ ⎠

.20  

By definition, (A9) implies tha

0 0t⎜ ⎟ ⎜ ⎟∫ ∫

t V belongs to the class of utility functions characterized by 

ARA that u is also HARA in c (that 

can also easily be verified by dividing (A5) by (3) when V is HARA). What remains to be 

hown is that if u is HARA in c then the optimal consumption functions are affine functions 

 A HARA instantaneous utility function can be written as 

 

H  in Y. And since V is HARA in Y , we know from above 

s

of Y and that V is HARA in Y.  
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−
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By differentiating (A10) and substituting into (3), we get 
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β β ρ

t
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From the budget condition (2), we get ( )
( ) ( )( (1 ) )
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1
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rT
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Y e

re
β

β βρ

β β βρ αλ
β

− −
− − +
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= +⎜ ⎟− ⎝ ⎠

− , so that 

the optimal consumption path is given by 

                                                 
20 Note that  and are constants, due to the fact that the left-hand-side of (A9) is time invariant. This of 
course has implications for the pattern of time dependency of and , but these will not explore further here. 

1k 2k
ta tb
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−
 is a constant; hence,  is an affine function of Y. By substituting 

(A11) into (A10), we obtain: 
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here 

β ρα β − −+
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 1 rTeS
r

−−
≡  w is the annuity factor. Substituting (A12) into (1), finally, gives 
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 HARA in Y.  

 

e of 

showing that V is indeed

  QED 

Proof of Proposition 2. 
 
One can obtain U  by multiplying the right hand sid (A13) by 1/ (1 )/M Sβ β β− , i.e. by 

applying an affine transformation. Alternatively, by continuity and the m  

ere must exist at least one point in time 

ean value theorem

such that  * 0c cτ =τ , th , im

he Expo-power i tantaneous utility function  

ntaneous utility function can be written as  

 

plying that Proposition 2 is 

just a special case of Proposition 1. QED 

 
 
T ns

The EP insta

tc
tu e

σω−= − ,        (A14) 

so that 

 t t
1'( ) tcu c c e

σωσωσ −−= .        (A15) 
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Hence, for  to be increasing in  we must imtu tc pose the parameter restriction that 0σω > . It 

follows that the coefficients of absolute and relative risk aversion are given by 

1 t
t

t

A
c

c σσ σω− + ,=  and 1t tR c σσ σω= − + , respectively. neous utility 

CRRA in the limit case when 0

Hence the EP instanta

function is characterized by ω =  approaches 0, whereas u is 

CARA when 1σ = . M ver, we observe 1o DARA forreo  σ < , IARA for 1σ > , DRRA for 

0ω < , and IRRA for 0ω > . The EP instantaneous utility function is hence always concave 

for 1σ < , while for 1σ >  we need that  11tc σω
σ

> − . Moreover, and more imp rtantly, 

egree of risk aversion for the EP function is not globally monotonic in its 

eter values. Indeed  (and of course t

o

unlike 

param

HARA the d

, tA R  as well) is increasing in σ  when 

(1 ln ) 1t tc cσω σ+ > , and decreasing when the opposite holds. Likewise tA  increases in ω  for 

0σ >  and decreases for 0σ > . These features m ters le

terpret, and they may also make the numerical calculations more problematic.   

ake EP parame ss straightforward to 

in

 By substituting (A15) into (3) we obtain 

 ( ) 1
0'( ) tcr t

tu c e c e
σωρ σωσ −− −=         (A16) 

for which there is no algebraic solution with respect to tc , preventing us from obtaining a 

closed form solution of the optimal consumption path. Moreover, it can be shown by 

contradiction that optimal initial consumption cannot i  general be written as an affine 

function of Y, implying that the functional form does in this case not carry over from u to V; 

n

21hence, V will not have the expo-power functional form.  The exception is when rρ =  for 

                                                 
21 Assuming that we can write  we have by (A15) that * 1 2

0c B B Y= + ,  ( ) ( 1 211 2 )B B YdV B B Y e
dY

σσ ωωσ
− − +

= + . But if 

V is expo-power so that we can write YV e
σω−= −  we have that 1 YdV Y e

dY
σσ ωωσ − −= , which is inconsistent with the 

 nsumption is proportional to Y. This solution follows from 
e special case where

above expression unless 01B =
r

, for which initial co
  ρ = . th

 34



which it follows directly from (3) that the optimal consumption is constant over time, and 

hence proportional to Y in each period. Consequently, when rρ =  then V is also expo-power, 

o that we can write  s

 YV e
σω−= − .         (A17) 

Let us here for simplicity focus on this case. As efore, we can express the expected utility of 

a lottery as a function of Y, or as a function of 0c , which here thus corresponds to a constant 

consumption l

b

evel over time. When an individual is indiffe tween two lotteries, I and II, 

e then have 

rent be

w

 
1 1

i i
i i

0 I 0 II( / ) ( / )I IIn nc x S c x S
i i

p e p e
σ σω ω− + − +

= =
=∑ ∑ .        (A18) 

From (A18  we c n in principle solve for) a ω  for a given value of σ , and vice versa, or solve 

for either ω  or σ  for a specified relationship between them. However, the functional form 

implies that for extreme values of risk aversion, as we have here, the combination of an 

exponential and a power function makes the EP function very sensitive to small deviations in 

parameter values, which in turn makes it difficult for numerical calculations to converge. For 

example, in the neighborhood of the CRRA case we have that the EP function here implies 

that the number e should be taken to the power of the product of two terms, where one goes to 

zero and the other is larger than 10,000 to the po w-stake lottery), i.e. 

f .2

wer of 19248 (for the lo

larger than 10 to the power o  76992 2 

 Still, assuming that ω  and σ  have been identified for an individual we can again 

calculate how the same individual should choose between a safe and a risky option regarding 

all future income vels, based on these preferences. Given indifference between the options 

we can solve for Lc  in the same way as we

le

 did for the other functional forms, and as reported 

for the HARA case in Table 3, as follows: 

                                                                                                                                                         
 
22 The get a little perception of the magnitude of this number, note that the number of atoms in the universe is 
estimated to be in the order of magnitude of 10 to the power of 80. 
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⎛ ⎞−
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.        (A19) 

Focusing on the extreme case where the high income outcome implies an infinite 

consumption level, we have instead 

  ( )
1/1( ) ln 1L Sc c p
σ

σ

ω
⎛ ⎞= + −⎜ ⎟
⎝ ⎠

.        (A20) 

Thus, we have derived a similar expression as in the HARA case for how much the individual 

would need in the unlucky outcome when the lucky outcome is infinite and obtained with 

probability p. 
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Table 1.  Calculated implicit parameters of absolute and relative risk aversion when people are indifferent between Options I and II, where the empirical  
results are taken from Holt and Laury (2002), for different cases.  
 
Option I Option II Fraction 

choosing 
I 

Implicit parameter of 
absolute risk aversion 
A if indifference 
between I and II 

Implicit parameter of relative risk aversion 
R if indifference between I and II 
EUI EUCT 

base case 
EUCT 
 r = 500% 

Low payoff lottery choices      
5/10 of 2 USD, 5/10 of 1.6 USD  5/10 of 3.85 USD, 5/10 of 0.1 USD 66% 0.101 0.146 19248 202.8 
6/10 of 2 USD, 4/10 of 1.6 USD  6/10 of 3.85 USD, 4/10 of 0.1 USD 40% 0.299 0.411 56735 597.7 
7/10 of 2 USD, 3/10 of 1.6 USD  7/10 of 3.85 USD, 3/10 of 0.1 USD 17% 0.516 0.676 97980 1032.1 

High payoff lottery choices      
5/10 of 40 USD, 5/10 of 32 USD 5/10 of 77 USD, 5/10 of 2 USD 81% 0.005 0.146 962.8 23.15 
6/10 of 40 USD, 4/10 of 32 USD 6/10 of 77 USD, 4/10 of 2 USD 62% 0.015 0.411 2838 45.24 
7/10 of 40 USD, 3/10 of 32 USD 7/10 of 77 USD, 3/10 of 2 USD 39% 0.026 0.676 4900 69.75 
Note: A is expressed in terms of the payoffs. All numerical calculations are performed in Mathematica. 

 
 
Table 2. Calculated implicit annual consumption for the rest of life in the unlucky outcome based on  
the EUCT model, so that the degrees of risk aversion correspond to the ones obtained in Table 1. 
 
Safe option 
USD/Year 

Risky option Fraction 
that would 
choose the 
safe option 

Lucky outcome 
(probability = 99%) 

USD/year 

Unlucky outcome (probability =1%), USD/year 
CARA CRRA 

r = 5 % r = 500 % r = 5 % r = 500 % 
 Based on low payoff lottery choices 

36,000 Infinite 35999.0 35901 35991 35188 66% 
36,000 Infinite 35999.6 35967 35997 35723 40% 
36,000 Infinite 35999.8 35981 35998 35840 17% 

 Based on high payoff lottery choices 
36,000 Infinite 35979 34000 35828 29242 81% 
36,000 Infinite 35993 35333 35942 32441 62% 
36,000 Infinite 35996 35615 35966 33668 39% 
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Table 3. Calculated implicit annual consumption for the rest of life in the unlucky outcome based on the EUCT model with HARA preferences, based on the experimental 
choices reported by Holt and Laury (2002), as reported by the first and the fifth pairwise choices in Table 1 in this paper. The parameter 1/ β   is reported in brackets, so that 
A and R can easily be calculated for different consumption levels.  
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/α β  Outcome in safe 

option 
USD/Year 

Lucky outcome 
(probability = 99%) 

USD/year 

Unlucky outcome  (probability =1%) based 
on low payoff lottery choices; 66% would 
choose the safe option 

Lc Unlucky outcome  (probability =1%) based 
on high payoff lottery choices; 62% would 
choose the safe option 

Lc

   r = 5 % r = 500 % r = 5 % r = 500 % 
 u characterized by CARA and IRRA 

-  ∞ 36,000 Infinite 35999 [-∞ ] 35901 [-∞ ] 35993 [-∞ ] 35333 [-∞ ] 
 u characterized by IARA and IRRA 

-500000 36,000 100,000 35998 [-943122] 35785 [-192474] 35985 [-139010] 35017 [-2174] 
-200000 36,000 100,000 35998 [-365700] 35804 [-3850] 35986 [-53902] 35147 [-887] 
-110000 36,000 100,000 35998 [-192474] 35832 [-2026] 35988 [-28369] 35228 [-443] 

u is DARA and DRRA and chosen such that the choices based on the EUCT model with c0 = 10,000 coincides with the choices based on the EUI model 
-10,000 36,000 36,200 17619 [0.146] 17619 [0.146] 19496 [0.411] 19496 [0.411] 

u is DARA and DRRA and chosen consistent with the median subject in both the small-stake and the large-stake experiments of Holt and Laury, r = 5% 
-9999.84 36,000 36,200 19878 [0.479] 17647 [0.151] 19878 [0.479] 19259 [0.374] 

u is DARA and DRRA and chosen consistent with the median subject in both the small-stake and the large-stake experiments of Holt and Laury, r = 500% 
-9964.41 36,000 36,200 34610 [68.69] 21825 [0.906] 30,937 [10.64] 21,825 [0.906] 

 u characterized by DARA and DRRA 
-9900 36,000 Infinite 35380 [193] 10489 [2.2] 3203 [29] 9900 [1.22] 
-9000 36,000 Infinite 35935 [1925] 30308 [20] 35565 [284] 18187 [5.3] 
-7000 36,000 Infinite 35977 [5774] 33857 [61] 35843 [852] 27438 [14.2] 
-4000 36,000 Infinite 35987 [11549] 34803 [122] 35914 [1703] 30892 [27] 

 u characterized by DARA and CRRA 
0 36,000 Infinite 35991 [19248] 35188 [203] 35942 [2838] 32441 [45] 
 u characterized by DARA and IRRA 

5000 36,000 Infinite 35993 [28871] 35382 [304] 35956 [4256] 33254 [67] 
20000 36,000 Infinite 35996 [57742] 35577 [608] 35970 [8511] 34094 [134] 
50000 36,000 Infinite 35997 [115485] 35675 [1216] 35977 [17022] 34525 [267] 
200000 36,000 Infinite 35997 [404196] 35745 [4255] 35982 [59577] 34837 [933] 

 u characterized by CARA and IRRA 
∞  36,000 Infinite 35999 [∞ ] 35901 [∞ ] 35993 [∞ ] 35333 [∞ ] 

Note: The instantaneous utility function u is not defined for Hk c> − . Lk c−  for 0β > . For 0β <  u it is not defined for <
 


