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The Basic Reproduction Number
as a Loop Gain Matrix

A. Colombo , Senior Member, IEEE

Abstract—The COVID-19 pandemic and the disordered
reactions of most governments made the importance of
mathematical modelling and model-based predictions evi-
dent, even outside the scientific community. The basic
reproduction number R0 quickly entered the common jar-
gon, as a concise but effective tool to communicate the
spreading power of a disease and estimate, at least roughly,
the possible outcomes of the epidemic. However, while R0
is easily defined for simple models, its proper definition
is more subtle for larger, state-of-the-art models. Here we
show that it is nothing else than the spectral radius of the
gain matrix of a linear system, and that this matrix gen-
eralizes R0 in the computation of the vector-valued final
epidemic size and epidemic threshold, in a large class of
finite-dimensional SIR-like models.

Index Terms—Biological systems, compartmental and
positive systems, network analysis and control.

I. INTRODUCTION

IN DECEMBER 2019 a wave of pneumonia cases spread
through the city of Wuhan (China) [1], [2]. These were

soon attributed to a new strain of coronavirus, SARS CoV-2,
a virus related to the strains that caused the MERS and SARS
epidemics in recent years [3], but with different pathology and
epidemiology that make it a relatively unpredictable pathogen.
In a year the infection spread to affecting over 100 million peo-
ple worldwide [4]. Chinese authorities reacted by setting up
a massive campaign of testing and social restrictions. As the
pathogen spread through other countries, governments were
for the most part initially reticent to implement restrictive mea-
sures along the line of what was done in China, only to follow
suit under the pressure of exponentially increasing infections
and consequent fatalities.

An unexpected by-product of the disease’s disruptive
dynamics was a surge in public consciousness about the impor-
tance of reliable modelling of the disease’s dynamics, to
provide predictions and guide the response to the pandemic.
Common mathematical models, such as the SIR model by
Kermack and McKendrick [5], became common parlance, and
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the basic reproduction number R0 entered the pages of daily
newspapers.

A finite-dimensional SIR model is a system of three dif-
ferential equations describing the total number of susceptible
(S), infected (I) and removed (R) individuals in a population.
In virtually all studies on COVID-19 a simple variant of the
model is used, which assumes no endemic equilibrium (all
infected eventually heal or die), and no vital dynamics (birth
and death for reasons other than the disease is neglected).
Despite the simplicity of the setting, these SIR-like models
can have hundreds of differential equations and thousands of
parameters to model the geographic distribution or social strat-
ification of the population [6]–[9], and have been successfully
used to model the diffusion of past epidemics [10], [11]. In
these cases, the time evolution of the S, I, and R compartments
can be written as:

Ṡ = −D(S)TI,

İ = AI + BD(S)TI,

Ṙ = CÃI, (1)

where S ∈ R
m+, I ∈ R

n+, R ∈ R
p
+. Here and in the following

we use the notation D(x) for a diagonal matrix with elements
of vector x in the diagonal. Symbols A, Ã, B, and T instead
denote matrices of suitable dimensions. We assume that
(i) A is stable (all eigenvalues have strictly negative real

part),
(ii) A is Metzler (all elements except diagonal ones are

nonnegative), and all elements of Ã, B, C, and T are
nonnegative,

(iii) columns of B and C sum to 1, and columns of A+ Ã sum
to 0,

(iv) all rows of T have at least one strictly positive element.
Assumption (i) guarantees the absence of endemic equilib-
ria. Indeed, if such an equilibrium existed, by definition
it would satisfy Ṡ = 0 and İ = 0 for I �= 0. The
first equation requires D(S)TI = 0, which would imply
that, in the second equation, AI = 0. This contradicts (i).
Assumption (ii) follows from the nature of the right-hand side
of (1), which describes flows between and within compart-
ments, while assumption (iii) ensures mass conservation, i.e.,
‖S(t)‖1 +‖I(t)‖1 +‖R(t)‖1 = 1, for all t. Assumptions (ii) and
the structure of (1) further imply that the system is positive.
Finally assumption (iv) ensures that all subcompartments of S
can be infected.
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The matrix product BD(S)T in (1) is known in the epidemio-
logical literature (e.g., [12], [13]) as the transmission matrix: it
models all epidemiological events that lead to a new infection,
through the flow D(S)TI from compartment S to I. Matrix A
is instead known as the transition matrix: its elements encode
the flows of individuals within compartment I, as well as from
compartment I to R. The flow from I to R, in particular, is
given by ÃI, and is distributed among the subcompartments
of R through matrix C.

This family of compartmental models covers most of the
finite dimensional, deterministic epidemic models that have
been proposed and validated for the modelling of COVID-
19, including socially stratified, spatially explicit (spatially
structured) and networked models, though it excludes vital
dynamics. As an illustrative example, consider the case of a
toy metapopulation consisting of two SEIR subpopulations,
where the exposed individuals (E) are not infective, while the
infective individuals (I) can come into contact with suscep-
tibles of either subpopulation. The model equations for one
subpopulation are

Ṡi = −Si(ai,iIi + ai,jIj)

Ėi = Si(ai,iIi + ai,jIj) − biEi

İi = biEi − ciIi

Ṙi = ciIi, (2)

with i = 1, j = 2, the other subpopulation model is obtained
by swapping indices. The model has 8 state variables. To
cast it into form (1) we collect them into three vectors:
S := (S1, S2)

�, I := (E1, I1, E2, I2)
�, R := (R1, R2)

�. The
model matrices then become

A :=

⎛
⎜⎜⎝

−b1 0 0 0
b1 −c1 0 0
0 0 −b2 0
0 0 b2 −c2

⎞
⎟⎟⎠, B :=

⎛
⎜⎜⎝

1 0
0 0
0 1
0 0

⎞
⎟⎟⎠,

T :=
(

0 a1,1 0 a1,2
0 a2,1 0 a2,2

)
, C :=

(
1 1 0 0
0 0 1 1

)
,

Ã :=

⎛
⎜⎜⎝

0 0 0 0
0 c1 0 0
0 0 0 0
0 0 0 c2

⎞
⎟⎟⎠.

The sign of the elements of vectors and matrices plays an
important role in the analysis of this system, so we need to
introduce some notation to avoid confusion. Given a vector x
or a matrix M, we write x ≥ 0 or M ≥ 0 if all elements of x or
M are nonnegative. Such a vector or matrix is called nonnega-
tive. In the case that all entries of x or M are strictly positive,
we say that x or M is positive, writing x > 0 or M > 0.

The contributions of this letter are as follows. In Section II,
we rewrite system (1) to highlight the feedback structure of its
I compartment’s dynamics, and we use this structure to com-
pute a loop gain matrix, called GD(S), which we show to share
the same spectral properties as the Next Generation Matrix
(NGM), the tool typically used to define the basic reproduction
number in ODE-based epidemic models (see, e.g., [13]).

Our main contributions are in Theorems 2 and 3, which
establish a relation between GD(S) and the asymptotic distri-
bution of non-infected individuals among the compartments of

S, and prove this distribution to be the globally asymptotically
stable equilibrium of a discrete-time map over a compact set,
and in Theorem 5, which proves that, for the class of systems
we consider, a decrease of any term of matrix T (the con-
tact rates) implies a decrease of the final epidemic size. These
results suggest how GD(S) (more naturally than the NGM)
plays the role of a matrix-valued basic reproduction number
in the general class of systems described by (1).

We also show through Theorem 4 and its corollary how
the epidemic threshold (the threshold of susceptible individu-
als, distributed among compartments of S, above which a new
infection can trigger and epidemic) is related to the spectral
radius of GD(S). In the light of the link between GD(S) and
the Next Generation Matrix, which we established, this is a
known result. The relevance stands in the link itself: if the
epidemic threshold depends only on the dynamics of the lin-
ear feedback system (4), the vast body of results about the
robust stability and control of linear feedback systems can be
used to assess, for instance, the robustness of a sub-threshold
population in uncertain models with nominal equations of the
form (1).

II. THE BASIC REPRODUCTION NUMBER

AS A LOOP GAIN MATRIX

The basic reproduction number, R0, is defined as the
expected number of new infections that a typical infected indi-
vidual in (1) will cause, in a fully susceptible population. It
was defined algebraically in [13], [14] as the spectral radius of
the NGM (or, more precisely, the NGM with large domain),
which in the notation of (1) is written as

− BD(S0)TA−1, (3)

where S0 is the value of S at time 0. Note that the NGM is
a nonnegative matrix, a fact that follows from B, D(S0) and
T being nonnegative, from our assumption of A being stable,
and from the following result.

Lemma 1 (See [15]): Let A be a Metzler matrix whose
eigenvalues have negative real part. Then A−1 ≤ 0.

The Perron Frobenius theorem (see, e.g., [16]) thus ensures
that its spectral radius equals its largest positive eigenvalue.

Starting from (3), we can give a further, more intuitive rep-
resentation of R0 as the spectral radius of the gain matrix of
the linear system that models the instantaneous diffusion of
the disease. We begin from the following algebraic result.

Lemma 2: Let M and N be matrices such that MN and NM
are square. Then the set of nonzero eigenvalues of MN is equal
to the set of nonzero eigenvalues of NM.

Now, we consider once again system (1), and specifically
the equation of İ. We can rewrite the dynamics of the infected
as the following feedback loop

İ = AI + Bu

y = TI

u = D(S)y

y

u
S (4)
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The upper block is a linear time-invariant system. The input
vector u, which has the same size as S, represents the (normal-
ized) instantaneous flow of newly infected individuals, which
are distributed through the compartment I as dictated by matrix
B. The output vector y, of the same size as S and u, is the frac-
tion of susceptible individuals in each subcompartment of S
that come in contact with an infected, per unit time. The gain
matrix of this linear system is

G := −TA−1B,

and describes the ratio of y over u at steady state.
The lower block is a time-dependent gain, simply multiply-

ing the vector y by the square, time-variant matrix D(S), that
is, translating the number y of infectious contacts into the flow
u of newly infected individuals according to the current distri-
bution of susceptible individuals. It follows that the loop gain
matrix of the feedback loop for a fixed value of S is equal to

GD(S).

If we evaluate it at S = S0, where S0 encodes the structure of
the metapopulation in the absence of the disease, then GD(S0)

indeed describes how a given distribution y of new infections
in a fully susceptible population initially propagates under the
dynamics of (1). It easily follows from Lemma 2 and the
definition of the NGM that

Theorem 1: R0 is the spectral radius of the loop gain matrix
GD(S0).

Proof: From Lemma 2, setting M := BD(S0)

and N := TA−1.
Note that, in the common case of a vector I of dimension

larger than S (i.e., in metapopulations where each infected
compartment is divided in more than one subcompartment),
matrix GD(S0) has smaller dimension than −BD(S0)TA−1. It
may resemble, in this sense, the NGM with small domain
from [13]. The two matrices are however not identical, in
general, even though they share the same set of nonzero
eigenvalues.

We see in the next section how the gain matrix GD(S0)

generalizes usage of R0 in the computation of typical epidemic
quantities for all models of the form (1).

III. RELATIONS BETWEEN GD(S0) AND

THE EPIDEMIC QUANTITIES

A. The Final Epidemic Size

A typical use of R0 is in estimating, based on initial con-
ditions and the structure of the population, the final epidemic
size, i.e., the total number of individuals that will be infected
during the course of the epidemic. As long as I vanishes
asymptotically, by mass conservation the asymptotic values of
S or R, which we call S∞ and R∞, can be used interchangeably
for this purpose.

This is a simple exercise in the case where S, I and R are
scalar. First notice that, using (3), assuming S0 = 1, and taking
B = 1 according to our hypotheses, the basic reproduction
number for the scalar system is R0 = −BS0T

A = −T
A . Now,

taking the first two equations in (1) we can write

dI

dS
= − A

ST
− 1,

which gives I(t) = −A
T ln S(t) − S(t) + C. Assuming that S0

is asymptotic to 1 (therefore I0 is asymptotic to 0) we obtain
C = 1. Finally, assuming limt→∞ I(t) = 0 we obtain

− ln S∞ = R0(1 − S∞), (5)

or equivalently − ln(1 − R∞) = R0R∞. We can general-
ize the above calculation as follows, using vector � with
�i := Si,∞/Si,0 to represent the final epidemic size weighted
on the initial population distribution, that is, the fraction
of individuals in each subcompartment of S that remain
uninfected throughout the epidemic.

Theorem 2: The asymptotic value � satisfies

− ln(�) + TA−1I0 − GD(S0)(1 − �) = 0, (6)

where 1 is a vector with elements equal to 1 and ln(�) is the
elementwise natural logarithm of �.

Proof: We have
∫ ∞

0

dI(τ )

dτ
dτ = I∞ − I0

= A
∫ ∞

0
I(τ )dτ + B

∫ ∞

0
D(S(τ ))TI(τ )dτ.

We know that Ṡ = −D(s)TI and, by the assumption of no
endemic equilibrium, that I∞ = 0, therefore

−I0 = A
∫ ∞

0
I(τ )dτ − B

∫ ∞

0

dS(τ )

dτ
dτ

= A
∫ ∞

0
I(τ )dτ − B(S∞ − S0).

Multiplying both sides by TA−1 we obtain

− TA−1I0 =
∫ ∞

0
TI(τ )dτ + TA−1B(S0 − S∞). (7)

Finally, from the law of Ṡ we have D−1(S)Ṡ = −TI, that is
∫ ∞

0
TI(τ )dτ = ln

(
S0

S∞

)
= − ln(�).

Substituting this in (7) and simplifying we obtain the desired
relation.

We can further prove existence and uniqueness of the solu-
tion of (6), and a means to compute it, as follows. Take x ∈ R

m

and define the map

x �→ F(x) := −TA−1I0 + GD(S0)(1 − e−x),

where e−x is the element-wise exponential of −x. Call X the
box {x : 0 ≤ x ≤ x̄} for some x̄ > −TA−1I0 + GD(S0)1. The
following theorem generalizes the result of [17, Th. 5.4] to the
class of systems in (1), using a similar proof structure.

Theorem 3: Defining � := e−x and provided that I0 > 0,
the value of � solution of (6) exists and is the unique fixed
point of F(x) in X, and is the limit of the sequence x(k) :=
F(x(k−1)), starting from any x(0) ∈ X.

Proof: X is positively-invariant under F. Consider the
sequences x(k) = F(x(k−1)) with x(0) = 0 and x(0) = x̄.
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The map F is order-preserving, F(0) ≥ 0, and F(x̄) < x̄,
therefore the sequences are totally ordered and monotonic.
Since they are also bounded within the compact set X they
converge to fixed points p and q, respectively. Furthermore,
since 0 ≤ x ≤ x̄ for all x ∈ X, points p and q are ordered
(p ≤ q) and are lower and upper bounds to the limiting value
of x(k) = F(x(k−1)) for all x(0) ∈ X.

We now show by contradiction that p and q must coincide.
Consider a straight half-line starting from q and going through
p. The line intersects the boundary of X at some point w such
that wi = 0, for some i ∈ {1, . . . , m}. Call Fi(x) the i-th
component of F. Using Lemma 1 and assumptions (i), (ii) and
(iv), we have that −TA−1 ≥ 0 and all rows have at least one
strictly positive element. This implies that −TA−1I0 > 0 (since
I0 > 0) and GD(S0)(1 − e−w) ≥ 0 (since B(1 − e−w) ≥ 0).
This means that Fi(w) > wi = 0. Moreover, Fi(x) is a concave
function of x, hence if we take a weight α such that p =
αw+(1−α)q, we obtain pi = Fi(p) ≥ αFi(w)+(1−α)Fi(q) =
αFi(w) + (1 − α)qi. Then either α = 0 (hence p = q), or
pi > αwi + (1−α)qi = pi, which is a contradiction. Therefore
F has a unique fixed point in X.

In the statement of Theorem 2, I0 appears as an additive
term in the implicit definition of �. This means that the dis-
tribution of individuals in S∞ is minimally affected by the
distribution of the initial seed I0 of infected individuals: as
‖I0‖1 → 0, S∞ tends to a distribution independent of I0 and
implicitly given by the relation

− ln � = GD(S0)(1 − �), 0 < � < 1.

This is indeed the generalization of (5) to arbitrary models
of the form (1), and GD(S0) now plays the role of R0 in
the implicit expression of the final epidemic size. The above
formula (or its more general version (6)) can be used, given
an estimate of the initial population distribution S0, to evaluate
the most effective among a set of policies affecting matrix G
(e.g., distancing or isolation of given population classes), by
solving an optimization problem

max
G∈G,0<�<1

Cost(�) s.t. GD(S0)(1 − �) + ln � = 0, (8)

where Cost(�) is a suitable cost function. As a toy example,
consider again the two-population model (2), with a1,1 = 2.4,
a1,2 = 1.2, a2,1 = 1, a2,2 = 2, b1 = b2 = 2, c1 = 1,
c2 = 1.2, S1(0) = 0.5, S2(0) = 0.5 (two populations of
identical size, population 1 has slightly higher probability of
contracting the disease from contacts with members of either
population, and slightly lower recovery rate). Assume that a
fixed amount of protective devices (e.g., face masks) are to be
distributed among the two populations, and their effect is to
reduce the transmission rates, proportionally to the amount of
devices that are distributed. Assume that we aim to minimize
the final epidemic size, so that Cost(�) := S�

0 � = ‖S∞‖1.
Calling α1 and α2 the effect of the distributed devices in
the two populations, respectively, elements of T change as
ai,j �→ ai,j(1 − αi). Now, assuming that the total amount of
available devices binds α1 + α2 = 0.4, we can construct the
set G in (8) as G := {−Tα1,α2 A−1B : α1 + α2 = 0.4},
where −Tα1,α2 denotes matrix T after rescaling of its ele-
ments. A nonlinear solver (in this case, MATLAB fmincon

with default options) finds α1 = 0.4, α2 = 0 as the optimal
resource allocation, corresponding to ‖S∞‖1 � 0.73. Note that
an even resource allocation (α1 = α2 = 0.2) would have
resulted in ‖S∞‖1 � 0.66: the optimal resource allocation,
as opposed to an even allocation, can in this case spare about
7% of the population from contracting the disease.

B. The Epidemic Threshold

An epidemic threshold is a parameter value, in an epi-
demic model, below which the introduction of an infinitesimal
number of infected individuals in an otherwise disease-free
population cannot trigger an epidemic. In the scalar SIR model
without vital dynamics (e.g., [18]), this is given by

S0 <
1

R0
. (9)

When S0 is below threshold, herd immunity prevents an epi-
demic outbreak. Mathematically speaking, this means that I0
is an asymptotically stable equilibrium of (4) with S = S0.
An alternative interpretation of the epidemic threshold in the
same model is as the upper bound to the value of S∞. Once
an epidemic has started, the set of individuals not affected by
the disease at the end of the epidemic wave tends to a value
below the epidemic threshold:

S∞ <
1

R0
. (10)

In vector models such as (1) the fact that a given S be above
or below the epidemic threshold depends not only on ‖S‖1,
but also on the relative value of its elements. Characterizing
the set is therefore a bit more involved. We can generalize the
relations (9) and (10) as follows.

Call �1 the set of S vectors such that (4) with input S is
asymptotically stable, and call �2 the set of S vectors such
that there exists R ≥ 0 for which (S, I, R), with I = 0 is a
limit point of at least one orbit of (1) with initial condition
(S(0), I(0), R(0)) : I(0) > 0. The two sets coincide and are
characterized as follows.

Theorem 4:

�1 = �2 = � := {S : det(I − cGD(S)) > 0, ∀ c ∈ [0, 1]}.
The proof of this theorem uses the following result
Lemma 3 (See, e.g., Corollary 1.5, Chapter 2, in [19]):

Given a Metzler matrix M, its dominant eigenvalue λpf is a
weakly nondecreasing function of any positive perturbation of
the elements of M

Proof of Theorem 4: We consider the first two equations
in (1). The value of S is nonincreasing, and since S is bounded
above 0 it must tend to some limit value S∞ ≤ S(t), for all
t ≥ 0. We can thus rewrite the equation of I as

İ = (A + BD(S∞)T)I + BD(S − S∞)TI, (11)

which we can see as the linear system

İ = (A + BD(S∞)T)I + d (12)

with a time-dependent perturbation d ≥ 0. The value of I
instead must go to 0 as t → ∞ by the assumption of no
endemic equilibrium. We now show by contradiction that (12)
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does not admit any solution I(t) → 0 with I(0) > 0, unless
matrix (A + BD(S∞)T) is stable.

First, note that (A + BD(S∞)T) is Metzler. Assume that its
dominant eigenvalue is nonnegative, call v(0) a vector lying in
its stable eigenspace, and assume that v(0) > 0. Then we can
pick two finite perturbations ±p(0) such that v(0) ± p(0) ≥ 0
and such that p(0) is a linear combination of the eigenvectors
of (A + BD(S∞)T) relative to null or positive eigenvalues.
Consider how the flow of an initial condition v(0) ± p(0)

evolves under the vector field (12) with d = 0. We have
limt→∞ v(t) ± p(t) = limt→∞ ±p(t), with limt→∞ |p(t)| > 0.
Since ±p(t) cannot belong to the positive orthant at the same
time, but the positive orthant of (12) is positively invariant, we
conclude that the stable eigenspace of (A + BD(S∞)T) cannot
contain any vector v > 0, unless the dominant eigenvalue of
(A + BD(S∞)T) is negative.

Now we take, as by assumption, an arbitrary I(0) > 0. By
the above reasoning this vector must have nonzero component
in the center or unstable eigenspaces of (A + BD(S∞)T), if
they exist. This implies that if (A + BD(S∞)T) is not stable
then the solution of the linear equation (12) cannot go to 0 for
any d ≥ 0, and the same must hold for the solution of (11).
We thus conclude that (A + BD(S∞)T) is stable at any limit
point S∞. This means that �1 = �2.

We can now characterize the set �. By the matrix determi-
nant lemma, we have

det(A + BD(S)T) = det(A) det(I + TA−1BD(S))

= det(A) det(I − GD(S)),

and given that A is stable by assumption, A + BD(S)T is sta-
ble only provided that det(I + TA−1BD(S)) > 0. Also, by
Lemma 3, if A + BD(S)T is stable then so is A + BD(cS)T ,
for any c ∈ [0, 1]. These facts together give that stability of
A+BD(S)T implies that det(I−GD(cS)) > 0, for all c ∈ [0, 1].

To prove that the converse also holds, note that by the above
mentioned matrix determinant lemma det(I − GD(cS)) > 0,
for all c ∈ [0, 1], implies that det(A + BD(cS)T) �= 0, for all
c ∈ [0, 1]. Since A+BD(cS)T is Metzler, the Perron Frobenius
theorem ensures its dominant eigenvalue is real. We know that
A + BD(cS)T is stable for c = 0, so it can only lose stability
through a zero crossing of its real dominant eigenvalue, which
would imply det(A + BD(cS)T) = 0. Therefore we have

A + BD(S)T is stable ⇔ det(I − GD(cS)) > 0, ∀ c ∈ [0, 1].

We have seen before that S∞ must be such that A+BD(S)T
is stable, so the above statement is equivalent to

S ∈ � ⇔ det(I − cGD(S)) > 0, ∀ c ∈ [0, 1].

The result in Theorem 4, which generalizes the epidemic
threshold, can also be restated as follows:

Corollary 1: � := {S : ρ(GD(S)) < 1}, where ρ is the
spectral radius.

Proof: The eigenvalues of cGD(S) are a continuous function
of c. Given that, for c = 0, all eigenvalues of I − cGD(S) are
strictly positive, and given that the dominant eigenvalue of
cGD(S) is real (the matrix is nonnegative), det(I−cGD(S))>0,

for all c ∈ [0, 1], implies that all eigenvalues of I − cGD(S)

remain strictly positive for all c ∈ [0, 1], including c = 1.
This means that the dominant eigenvalue of GD(S) must be
smaller than 1. As this is also the spectral radius by the Perron
Frobenius theorem, we have ρ(GD(S)) < 1.

The results above prove the almost global asymptotic sta-
bility of the states with S ∈ � and I = 0, and characterize
the set � by the inequality ρ(GD(S̄)) = R0 < 1. Equivalent
characterizations have been given before albeit with different
proofs see, e.g., [20] (Theorem 2). What makes the above for-
mulation novel, besides the different proof, is that it elucidates
the relation between these results and the classical theory of
linear feedback systems: calling F the loop transfer function
of (4) for a fixed S, ρ(GD(S)) ≤ ‖F‖∞, where the latter
denotes the H∞ norm of the transfer function. Therefore, the
stability of (4) by the Small Gain Theorem implies S ∈ �.
This means that questions related to S ∈ �, such as the abil-
ity of a new disease to trigger an epidemic or the minimum
number of infected at the end of an epidemic wave, when
the nonlinear model (1) is subject to parametric or modelling
uncertainties, can be attacked using linear robust stability
techniques [21].

C. Social Distancing Always Reduces the Total Infected
Population

To conclude, we remark that in the first few months of the
COVID-19 pandemic, when data was insufficient to reliably
identify any predictive model, numerous publications stated
that a reduction of social contacts (in (1), a reduction of the
value of the elements of T) was nonetheless a fundamen-
tal tool to reduce the impact of the pandemic, as numerical
simulations showed that it contributed to reducing the final
epidemic size. While this is certainly a true and important
message to convey to decision makers and to the public, its
truth did not need the use of numerical simulations to be sup-
ported, as it holds for any, arbitrary SIR-like model of the
form (1):

Theorem 5: Let I0 > 0, and let Tjk be element (j, k) of
matrix T . Then, dS∞

dTjk
≤ 0 and dS∞

dTjk
�= 0.

Proof: We have seen that S∞ and T are related through the
vector-valued equation

H(s∞, T) := ln

(
S0

S∞

)
+ TA−1I0 + TA−1B(S0 − S∞) = 0.

We have that dH(S∞,T)
dTjk

= ∂H(S∞,T)
∂Tjk

+ ∂H(S∞,T)
∂S∞

dS∞
dTjk

= 0, and
∂H(S∞,T)

∂S∞ = −D−1(S∞)−TA−1B = −(I −GD(S∞))D−1(S∞).

We know that S∞ > 0, otherwise it would not satisfy
H(S∞, T) = 0 due to the log term, so D−1(S∞) exists. Also,
from Theorem 4 we know that (I − GD(S∞)) is nonsingular.
This implies that ∂H(S∞,T)

∂S∞ is invertible, therefore

dS∞
dTjk

= −
(

∂H(S∞, T)

∂S∞

)−1
∂H(S∞, T)

∂Tjk
.
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Putting the expression for H(s∞, T) in the above formula we
obtain

dS∞
dTjk

= D(S∞)(I − GD(S∞))−1
(
δ(j, k)A−1I0

+ δ(j, k)A−1B(S0 − S∞)
)
,

where δ(j, k) is a matrix with all elements equal to zero, except
element (j, k), which is equal to 1. Now, by assumption we
have I0 > 0, while by Lemma 1 A−1 ≤ 0. Since all other
terms in the expression (δ(j, k)A−1I0 + δ(j, k)A−1B(S0 − S∞))

are nonnegative and A−1 is nonsingular, we have
(
δ(j, k)A−1I0 + δ(j, k)A−1B(S0 − S∞)

)
≤ 0.

Furthermore, having A−1 ≤ 0 and nonsingular, and having
I0 > 0, imply that A−1I0 < 0, therefore

(
δ(j, k)A−1I0 + δ(j, k)A−1B(S0 − S∞)

)
�= 0.

We then know, from Corollary 1, that I − GD(S∞) is stable
and invertible, and we can easily verify that −(I−GD(S∞)) is
Metzler, so by Lemma 1 we know that (I − GD(S∞))−1 ≥ 0.
Therefore,

(I − GD(S∞))−1
(
δ(j, k)A−1I0

+ δ(j, k)A−1B(S0 − S∞)
)

≤ 0.

Nonsingularity of (I − GD(S∞))−1 implies

(I − GD(S∞))−1
(
δ(j, k)A−1I0

+ δ(j, k)A−1B(S0 − S∞)
)

�= 0.

Finally, we have already seen that D(S∞) ≥ 0 and is
nonsingular, therefore

dS∞
dTjk

≤ 0,
dS∞
dTjk

�= 0.

IV. CONCLUSION

Taking a large class of SIR-like models, which covers
many modern state-of-the-art networked, spatially explicit,
and socially stratified models, we have shown how the
basic reproduction number, commonly termed R0, is linked
to the gain matrix of a linear system. This highlights a
stronger connection than commonly acknowledged between
a large class of epidemic models and the linear-feedback
systems. We have shown how this matrix (and not just
its spectral radius), plays the role of R0 in the computa-
tion of the final epidemic size and the epidemic threshold,
and how the epidemic threshold is essentially a simple

by-product of the small gain theorem. Finally, we have for-
mally proved that for all systems in the above-mentioned class,
a reduction in the rate of contacts (at any time during the
epidemic) reduces the final epidemic size.
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