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Abstract

The goal of image registration is to find a 1–1 point-wise correspondence between two images, a 

subject image and a target image. Knowing the pointwise correspondence between two brain 

images allows comparison of structural and functional imaging data such as regions of interest, 

functional data (e.g., fMRI, EEG, MEG, DTI), and geometric shapes. The image registration 

process also allows creation of probabilistic anatomical atlases (Mazziotta et al., Neuroimage 2(2):

89–101, 1995; Thompson, J Comput Assist Tomogr 21(4):567–581, 1997; Thompson et al., 

Detecting disease-specific patterns of brain structure using cortical pattern matching and a 

population-based probabilistic brain atlas. In: IPMI2001. Lecture notes in computer science, pp 

488–501, 2001), automatic segmentation by label transfer, modality fusion, morphological 

analysis (Hua, Neuroimage 43(3):458–469, 2008), and many other applications. Image registration 

techniques strive to find a one-to-one correspondence between subject and target images to 

perform this task. This correspondence is defined by a smooth deformation field. This deformation 

field captures the geometric variations in the two images. In this chapter, we will review various 

techniques for image registration that are specifically designed for human brain.
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1 Introduction

Registration of brain images is an essential step in multi-subject and multi-modality brain 

image analysis. Studies of anatomical changes in the brain over time or differences in brain 

anatomy between populations require that the data first be transformed to a common 

coordinate system in which anatomical structures in the brain scans are aligned. Similarly, 

longitudinal studies within subject or group analyses of functional data also require that the 

brain images are anatomically aligned. The morphological differences in the brains can be 

analyzed using techniques such as MRI-volumetry [1] that uses segmentations of regions of 

interests (ROIs), either manually or automatically, voxel based morphometry (VBM) [2] that 

studies voxel-wise intensity statistics, deformation based morphometry (DBM) [3], which 

analyzes spatial position differences, and tensor based morphometry (TBM) [4] that 

analyzes the deformation tensors at every voxel computed from Jacobian of the deformation 

field. These techniques rely on the 1–1 pointwise correspondence established by image 

registration as well as the resulting deformation fields that aligns the images.
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The goal of image registration is to find a one-to-one correspondence between biological 

homologous points between two brain imaging scans. This correspondence is represented by 

a mathematical transformation called deformation or warping field. The idea of image 

registration originates from the continuum mechanics and perhaps was first applied for 

biological structures in the works of D’Arcy Thompson in his book On Growth and Form 
[5]. Figure 1 shows his application of deformation grids for warping coordinate grids to 

deform skulls of primates and humans.

The human brain can be analyzed either as a surface represented by the cerebral cortex or 

the volume that contains cortical as well as sub-cortical structures. Since the cerebral cortex 

of the brain is highly folded, it is often convenient to model it as a 2D surface and use 

surface registration techniques. On the other hand, volumetric registration techniques are 

often applied where we are interested in cortical as well as sub-cortical structures.

In this chapter, we will focus on anatomical registration of brain images based on T1 MRI. 

We will first describe the surface based registration techniques that focus on alignment of 

the cerebral cortex. Next we will describe volumetric registration techniques that try to align 

brain volumes and in the end we will describe surface-constrained volumetric registration 

techniques (combined registration techniques) that try to align cortical surface as well as the 

sub-cortical structures. Finally, we will review existing intensity based linear and nonlinear 

image registration approaches commonly used.

2 Surface Registration

Human cerebral cortex is often modeled as a highly convoluted sheet of gray matter. A 

triangular mesh representation of cortical surfaces is generated using software such as 

BrainSuite (http://brainsuite.org), FreeSurfer (https://surfer.nmr.mgh.harvard.edu/), 

BrainVisa (http://brainvisa.info/), etc. Since it is often not possible to align this highly 

convoluted cortex in the 3D space, a necessary first step for cortical registration is cortical 

surface parameterization that maps the cortical surface to a sphere as in FreeSurfer or 

BrainVisa or squares as in BrainSuite (Fig. 2). Inter- and intra-subject comparison involving 

anatomical changes over time or differences between populations requires the spatial 

alignment of the cortical surfaces, such that they have a common coordinate system that is 

anatomically meaningful. Sulcal curves are fissures in the cortical surface and are commonly 

used as surrogates for the cytoarchitectural boundaries in the brain. Therefore, there is also 

great interest in direct analysis of the geometry of these curves for studies of disease 

propagation, symmetry, development, and group differences (e.g. [6, 7]). Labels of cortical 

regions of interest (ROIs) or sulcal curves that are required for these studies can be produced 

using manual [8] or automatic delineation [9, 10]. The manual delineation is often 

performed using interactive software tools [8] which, however, can be a tedious and 

subjective task that also requires substantial knowledge of neuroanatomy and is therefore 

confounded by intra- and inter-rater variability. This variability is reduced to some extent 

using rigorous definitions of a sulcal tracing protocol and extensive training as described in 

[8, 11].
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An alternative approach to this problem is to use automatic surface registration to align 

surface curvature or sulcal depth [12].The mean curvature is used as it represents the sulci 

fundi with negative values and gyral crowns with positive values; therefore, its alignment 

leads to accurate registration of the cortex. The curvature maps generated are then 

transferred to the unit square using the point correspondence established by the p-harmonic 

maps. The alignment of the curvature maps is then performed by minimizing the cost 

function which is a weighted sum of a curvature matching penalty and a 3D coordinate 

matching penalty, regularized by an elastic energy. This step, as shown in Fig. 3, establishes 

a 1–1 correspondence between the subject and target cortical surfaces such that the sulcal 

and gyral patterns on the two brains are aligned. This correspondence can then be used to 

transfer data or labels from one brain image to the other.

3 Volume Registration

The most popular approach for brain image registration is the volumetric registration based 

on intensity information in anatomical T1 image. A piecewise affine transformation termed 

Talairach normalization [13, 14] was the first commonly used volumetric alignment 

technique. This method is constrained to be piecewise affine and uses a restricted set of 

anatomical landmarks. Therefore it results in a relatively poor alignment across subjects. 

Automated intensity-based registration methods overcome this constraint and also allow 

non-rigid deformations [15, 16].

Intensity-based volumetric image registration can be formulated in terms of an optimization 

problem:

h = arg min
h

Csim(T , S, h) + λCreg(h)

where the transformation h minimizes the weighted sum of a similarity function Csim, which 

defines a metric between corresponding features in the pair of images being matched, and a 

regularization function Creg, which resolves the ambiguities among the set of 

transformations that minimize the similarity function by selecting a smooth transformation. 

The regularization parameter λ determines the degree of the smoothing imposed by the 

regularizer. Most of the image registration techniques can be placed in this framework. With 

this formulation, we now consider each of the three major components that define the most 

registration methods: feature selection and similarity metrics, transformation 

parameterization, choice of regularizing function. Table 1 lists many of the similarity 

measures, parameterizations, and regularization operators that have been used to produce 

many of the commonly used image registration algorithms.

Small deformation models such as polynomial warps and linear elastic deformations do not 

guarantee preservation of topology for larger deformations [17, 18]. The viscous fluid 

approach [18] and more recent approaches using large-deformation diffeomorphic metric 

mapping [19–21] were developed to address the problem of ensuring diffeomorphic maps 

and can register the objects whose alignment requires large deformations while conserving 

their topology.
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One important consideration, apart from topology preservation, is inverse consistency of 

image registration [17]. A deformable image registration is called inverse consistent, if the 

correspondence between two images, obtained by reciprocal registration, is invariant to the 

order of the choice of source and target. More precisely, let S and T be the source and target 

images, and h and g be the forward and backward transformations obtained by a given 

registration method. Therefore S
h

T and T
g

S; then an inverse consistent registration 

satisfies h ∘ g = Id and g ∘ h = Id, where Id is the identity map. The property of inverse 

consistency is applied explicitly by minimizing the difference between h ∘ g as well as g ∘ h to 

Id [17] or by modifying the cost function such that the resulting forward map, generated by 

minimization of that cost function is inverse consistent [22]. Additional constraints such as 

transitivity can be imposed to get more desirable results.

In addition, the choice of a regularizer is an important consideration and can significantly 

affect the quality of the registration. A regularizer is used to constrain the transformation and 

ensure that the deformation is smooth and invertible. One common way to select a 

regularizer is to assign a continuum mechanical law to the deforming image medium. For 

instance, in elastic registration [23], the image is regarded as embedded in an elastic 

medium. A force is applied based on the chosen similarity function that pulls the template 

into agreement with the study, while linear elastic forces attempt to restore it to its original 

shape. Elastic registration is not guaranteed to produce 1–1 mapping and often is unsuitable 

for large deformations. In fluid registration, for instance, the image is treated as a viscous 

fluid that follows the Navier–Stokes equation, with a velocity field that is the derivative of 

the deformation field. The fluid flow allows large deformations while ensuring 1–1 mapping. 

These approaches often are computationally very expensive and can take hours for 

registering brain scans. Therefore, a demons algorithm [24, 25] was proposed that models 

image registration as a diffusion process. The demons algorithm and its variants (e.g., [26]) 

have become increasingly more popular than the fluid registration due to their speed.

4 Combined Approaches

Since cytoarchitecture and function of the cortex is closely related to the folding pattern of 

the cortex, it is important when comparing brain anatomy and function in two or more 

subjects that their cortical surfaces are aligned. For this reason, there has been an increasing 

interest in development of volumetric brain registration algorithms that also align the cortical 

surface accurately. Similarly, in inter-subject longitudinal studies or group analyses of 

functional data such as fMRI and DTI it is important that the cortical surfaces of the subjects 

are aligned when brain registration is performed. Several methods have been developed that 

perform the surface constrained volumetric registration [27–31]. Here we describe our 

approach to brain image registration based on harmonic maps that combines the surface and 

volumetric registration approaches producing a volumetric alignment in which there is also 

an accurate one-to-one correspondence between points on the two cortical surfaces [29, 32]. 

This approach is implemented in SVReg software available with BrainSuite (http://

brainsuite.org).
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We perform volumetric alignment of brains by first extending the surface registration to the 

entire volume [29] (Fig. 4). This begins with two surfaces that have been aligned using the 

surface registration process. For each brain, the unit-square representations of the brain 

surfaces are mapped onto the unit sphere. The interior brain volume is then mapped to the 

unit ball. This is achieved by extrapolating from the surface to the interior of the sphere 

while minimizing the harmonic energy of the map from brain to sphere. The harmonic 

mapping gives one-to-one correspondence between the two brains based on their respective 

maps to the unit sphere. This provides an initial registration based solely on the initial 

alignment of cortical geometry. Such initialization ensures that cortical features are aligned. 

However, since the interior mapping is based solely on geometry of the cortex, subcortical 

features tend to be misaligned. A refinement of this mapping is computed by minimizing the 

elastic bending energy driven by an intensity matching forces. The output of this process is a 

one-to-one point correspondence between the two brain volumes. The cortical constraint 

ensures that one cortical surface maps precisely onto the other (Fig. 5).

5 Conclusion

Image registration is a very active and fast moving field of research that produced a number 

of software tools available on regular basis in the public domain. Most registration 

approaches are included in some popular software for brain imaging investigation as: 

Automated Image Registration (AIR), ANTs, FreeSurfer, BrainSuite, FSL, LDDMM, ITK, 

CARET, and SPM. A comprehensive comparison of 14 of these software is performed in 

[33]. In this chapter, we reviewed basic techniques of brain image registration, which is an 

essential step for brain image analysis, trying to encompass the widest cohort of methods 

available.
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Fig. 1. 
Image registration as change of coordinates
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Fig. 2. 
Surface parameterization of the cortex is done by constraining the interhemispheric fissure 

to the unit square and rest of the cortex is mapped inside the unit square by using p harmonic 

maps
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Fig. 3. 
Curvature alignment is performed by first generating a multiresolution representation of the 

mean curvature (top row) and then performing the alignment of the curvature in the flat 2D 

space
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Fig. 4. 
Surface-constrained volumetric registration
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Fig. 5. 
SVReg registration showing good alignment at the cortical as well as sub-cortical structures
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Table 1

Registration methods

Corresponding feature Transformation parameterization Regularization/constraints

(dimensionality) (dimensionality) (deformation type)

Landmark (0-D) Rigid (low) None

Contour (1-D) Affine (low) Thin-plate spline (small)

Surface (2-D) Talairach (low) Differential operators (small)

Sub-volume (3-D) Polynomial (low-medium) Prior distributions (small)

Intensity difference (N-D) B-spline(medium-high) Elasticity (small or large)

Cross correlation (N-D) Thin-plate spline (medium) Viscous fluid (large)

Intensity demons (N-D) Discrete cosine (medium-high) Inverse consistency (small or large)

Intensity vectors (N-D) Fourier series (medium-high)

Intensity variance (N-D) Wavelet (medium-high)

Mutual information (N-D) Discrete lattice (high)
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